JP2579094B2 - Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance - Google Patents

Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance

Info

Publication number
JP2579094B2
JP2579094B2 JP3323145A JP32314591A JP2579094B2 JP 2579094 B2 JP2579094 B2 JP 2579094B2 JP 3323145 A JP3323145 A JP 3323145A JP 32314591 A JP32314591 A JP 32314591A JP 2579094 B2 JP2579094 B2 JP 2579094B2
Authority
JP
Japan
Prior art keywords
less
temperature
point
stress cracking
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3323145A
Other languages
Japanese (ja)
Other versions
JPH05271772A (en
Inventor
均 朝日
明 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3323145A priority Critical patent/JP2579094B2/en
Publication of JPH05271772A publication Critical patent/JPH05271772A/en
Application granted granted Critical
Publication of JP2579094B2 publication Critical patent/JP2579094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐硫化物応力割れ性に
優れた油井用鋼管、特に降伏強度が60kgf/mm2 以上の
油井用鋼管の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel pipe for oil wells having excellent sulfide stress cracking resistance, particularly a steel pipe for oil wells having a yield strength of 60 kgf / mm 2 or more.

【0002】[0002]

【従来の技術】耐硫化物応力割れ性に優れた油井用鋼管
の製造法としては、例えば特開昭62−253720号
公報のように特定化学成分の鋼を焼き入れ・焼き戻しす
る方法が知られている。
2. Description of the Related Art As a method for producing a steel pipe for an oil well having excellent resistance to sulfide stress cracking, there is known a method of quenching and tempering steel having a specific chemical component as disclosed in Japanese Patent Application Laid-Open No. 62-253720. Have been.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記のよ
うな焼き入れ・焼き戻しによる方法は熱効率が悪く、省
工程の技術的動向に反するだけでなく、焼き入れのため
の加熱により表面性状が劣化するなどの欠点がある。従
来、焼き入れ・焼き戻しが必須とされた理由は耐硫化物
応力割れ性が細粒を要求するのに対し、これまでの熱間
シームレス圧延後の直接焼き入れ処理では細粒オーステ
ナイトが得られず、且つ粒度のばらつきが大きいため耐
硫化物応力割れ性の優れた油井用鋼管が得られないとい
う問題があった。
However, the above-described quenching / tempering method is inferior in thermal efficiency and contradicts the technical trend of saving steps, and the surface quality is deteriorated by heating for quenching. There are drawbacks such as. Conventionally, quenching and tempering were indispensable because sulfide stress cracking resistance required fine grains, whereas direct quenching after hot seamless rolling could produce fine-grained austenite. In addition, there is a problem that a steel pipe for oil wells having excellent sulfide stress cracking resistance cannot be obtained due to large variation in particle size.

【0004】本発明は上記問題点を解決するものであっ
て、鋼成分と熱延条件を組み合わせてオーステナイト粒
を比較的細粒化し、得られる粒度で耐硫化物応力割れ性
を高めることにより、高強度で且つ耐硫化物応力割れ性
に優れた油井用鋼管を提供することを目的とする。
[0004] The present invention solves the above-mentioned problems, and the steel composition and the hot rolling conditions are combined to make the austenite grains relatively fine, and to increase the sulfide stress cracking resistance at the obtained grain size. An object of the present invention is to provide a steel pipe for oil wells having high strength and excellent sulfide stress cracking resistance.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために、多くの実験的検討を行った結果、鋼
成分と熱間圧延条件を調整することによりオーステナイ
ト粒を比較的細粒にすることができ、さらにその粒度で
鋼組織を制御することによって耐硫化物応力割れ性に優
れた低合金鋼の油井用鋼管が製造されることを知見し
た。すなわち、本発明は、この知見に基づいて構成した
ものでその要旨は、質量%にて C :0.10〜0.35%、 Si:0.50%以下、 Mn:0.10〜1.2%、 S :0.005%以下、 P :0.015%以下、 Mo:0.10〜0.80%、 Al:0.1%以下、 Nb:0.005〜0.1%、 Ti:0.005〜0.1%で且つTi≧3.4N、 N :0.008%以下、 B :0.0005〜0.0030% を含有し、必要によっては、 Cr:0.1〜1.5%、 V :0.01〜0.1%、 Co:0.05〜0.5%、 Zr:0.001〜0.1% の1種または2種以上と、さらに必要によっては、 希土類元素:0.001〜0.05%、 Ca:0.001〜0.02% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片を1150℃以上に加熱した後、熱間穿孔連
続圧延で中空素管に製管して900℃〜Ar1 点に降下
した該素管を900〜1000℃に加熱して、仕上げ温
度がAr3 点+50℃以上で熱間仕上げ圧延を施し、続
いて該仕上げ鋼管をAr3 点以上の温度から急冷する焼
き入れ処理を施し90%以上の割合のマルテンサイト組
織とし、しかる後Ac1 点以下の温度で焼き戻し処理を
行う耐硫化物応力割れ性に優れた油井用鋼管の製造法で
ある。
Means for Solving the Problems The inventors of the present invention have conducted many experimental studies to achieve the above object, and as a result, by adjusting the steel composition and the hot rolling conditions, the austenite grains can be relatively reduced. It has been found that a steel pipe for an oil well of a low alloy steel excellent in sulfide stress cracking resistance can be manufactured by controlling the steel structure with fine grains and controlling the steel structure with the grain size. That is, the present invention has been constructed based on this finding, and the gist thereof is as follows: C: 0.10 to 0.35%, Si: 0.50% or less, and Mn: 0.10 to 1. 2%, S: 0.005% or less, P: 0.015% or less, Mo: 0.10 to 0.80%, Al: 0.1% or less, Nb: 0.005 to 0.1%, Ti : 0.005 to 0.1% and Ti ≧ 3.4N, N: 0.008% or less, B: 0.0005 to 0.0030%, and if necessary, Cr: 0.1 to 1 0.5%, V: 0.01 to 0.1%, Co: 0.05 to 0.5%, Zr: 0.001 to 0.1%, and further, if necessary, Rare earth element: 0.001 to 0.05%, Ca: 0.001 to 0.02% 1 or 2 or more types, with the balance being substantial After heating the slab consisting of Fe above 1150 ° C., by heating the plain tube dropped to a 900 ° C. to Ar 1 point Seikan the hollow shell by hot piercing continuous rolling in 900 to 1000 ° C., Hot finishing rolling is performed at a finishing temperature of Ar 3 points + 50 ° C. or higher, and then the finished steel pipe is quenched to rapidly cool from a temperature of Ar 3 points or higher to have a martensite structure of 90% or more. This is a method for producing a steel pipe for an oil well having excellent resistance to sulfide stress cracking in which a tempering treatment is performed at a temperature of 1 point or less.

【0006】[0006]

【作用】以下本発明の製造方法について詳細に説明す
る。先ず、本発明において上記のような鋼成分に限定し
た理由について説明する。Cは鋼の強度を高め、焼き入
れ性を増す効果を有する鋼の基本成分であるが、少なす
ぎるとその効果がなく、また多すぎると焼き割れを誘発
する原因となるため0.1〜0.35%とした。Si
は、脱酸剤が残存したものであるが、多すぎると耐硫化
物応力割れ性が低下するため、その上限を0.50%と
した。Mnは鋼の基本成分としてSの無害化のために必
須であり、焼き入れ性を高める点では有効な元素である
が、反面Mn自体は耐硫化物応力割れ性を大幅に低下さ
せるため、その添加量を0.1〜1.2%とした。
The production method of the present invention will be described below in detail. First, the reason why the present invention is limited to the above steel components will be described. C is a basic component of steel that has the effect of increasing the strength of the steel and increasing the hardenability, but if it is too small, it has no effect, and if it is too large, it causes quenching cracking. 0.35%. Si
Is the one in which the deoxidizing agent remains, but if it is too much, the sulfide stress cracking resistance is reduced. Mn is indispensable for detoxifying S as a basic component of steel, and is an effective element in terms of enhancing hardenability. However, Mn itself significantly reduces sulfide stress cracking resistance. The addition amount was 0.1 to 1.2%.

【0007】Sは、鋼に不可避の不純物であるがMnS
を形成して耐硫化物応力割れ性に有害であり、0.00
5%以下とした。Pは、粒界に偏析して耐硫化物応力割
れ性を大幅に低下させるため、その含有量を0.015
%以下とした。
S is an inevitable impurity in steel, but MnS
Is harmful to sulfide stress cracking resistance and 0.00
5% or less. P segregates at the grain boundaries and greatly reduces sulfide stress cracking resistance.
% Or less.

【0008】Moは、耐硫化物応力割れ性を高める作用
を有し、さらに焼き入れ性を向上させる効果も有する。
0.1%以下では効果がなく、0.8%を超えて添加し
ても効果が飽和するだけでなく、Mo2 Cが析出して靭
性が劣化するため、添加量を0.1〜0.8%とした。
Alは、Siと同様脱酸剤が残存したものである。多す
ぎると介在物を増加して耐硫化物応力割れ性を劣化させ
るので、その上限を0.1%とした。
Mo has the effect of increasing the resistance to sulfide stress cracking and has the effect of improving the hardenability.
If it is 0.1% or less, there is no effect. If it exceeds 0.8%, the effect is not only saturated, but also Mo 2 C precipitates and the toughness is deteriorated. 0.8%.
Al has a deoxidizing agent remaining like Si. If the content is too large, inclusions increase and the sulfide stress cracking resistance deteriorates, so the upper limit was made 0.1%.

【0009】Nbは、本発明の成分の中で最も重要な元
素である。熱間穿孔連続圧延により中空素管を製管した
後900℃〜Ar1 点の温度に降下した該素管を900
〜1000℃に加熱した場合のオーステナイト粒は、通
常の再加熱温度(最終仕上げ圧延後の焼き入れ温度の確
保のために必要な温度)では異常に粗大化する。Nb
は、このような圧延履歴を持ったオーステナイト粒の粗
大化を抑制する重要な元素である。少なすぎるとその効
果がなく、また多すぎてもその効果が飽和し、しかも非
常に高価であるので0.005〜0.1%とした。
[0009] Nb is the most important element in the components of the present invention. After making a hollow shell by hot piercing continuous rolling, the hollow shell was cooled to a temperature of 900 ° C. to Ar 1 point.
The austenite grains when heated to ~ 1000 ° C become abnormally coarse at the usual reheating temperature (the temperature required to secure the quenching temperature after the final finish rolling). Nb
Is an important element that suppresses the coarsening of austenite grains having such a rolling history. If the amount is too small, the effect is not obtained, and if the amount is too large, the effect is saturated and the cost is extremely high.

【0010】Tiは、鋼から完全には除去できない成分
であるNをTiNとして固定しBの焼き入れ性向上効果
を発揮させるために直接焼き入れ工程では必須の元素で
ある。さらにTi酸化物を形成してPを粒内に存在せし
め、粒界への偏析量を低減する効果も有する。少なすぎ
るとこの効果が発揮されず、またN固定のためには原子
モル比で等しい3.4N以上の添加が必要である。しか
し多すぎると焼き戻し時にTiCが大量に析出して靭性
を著しく阻害するため0.005〜0.1%で且つTi
≧3.4Nとした。Nは、鋼に不可避的に含まれるが、
多すぎると結果としてTi添加量が多くなるため最大
0.008%とした。
[0010] Ti is an essential element in the direct quenching step in order to fix N, which is a component that cannot be completely removed from steel, as TiN and to exert the effect of improving the hardenability of B. Further, it has the effect of forming Ti oxide to allow P to be present in the grains, thereby reducing the amount of segregation at the grain boundaries. If the amount is too small, this effect is not exhibited, and addition of 3.4N or more in the same atomic molar ratio is necessary for fixing N. However, if it is too large, a large amount of TiC precipitates during tempering and significantly impairs toughness.
≧ 3.4N. N is inevitably contained in steel,
If the amount is too large, the amount of Ti added will increase as a result.

【0011】Bは、微量で焼き入れ性を格段に向上させ
る元素であり、且つ耐硫化物応力割れ性を低下させるこ
とがない。通常Moを除く焼き入れ性向上元素は一方で
耐硫化物応力割れ性を低下させる作用を有する。従っ
て、焼き入れ後の組織をマルテンサイトにするために極
めて有効で且つ耐硫化物応力割れ性を低下させないBは
本発明に必須の元素である。少なすぎると効果が十分で
なく、また多すぎるとB複合析出物が形成され耐硫化物
応力割れ性を低下させるので、その添加量を0.000
5〜0.0030%とした。
B is an element which significantly improves the hardenability in a very small amount and does not lower the sulfide stress cracking resistance. On the other hand, the hardenability improving element except Mo usually has an effect of reducing sulfide stress cracking resistance. Therefore, B, which is extremely effective for turning the structure after quenching into martensite and does not reduce the resistance to sulfide stress cracking, is an essential element in the present invention. If the amount is too small, the effect is not sufficient. If the amount is too large, a B composite precipitate is formed and the sulfide stress cracking resistance is reduced.
5 to 0.0030%.

【0012】本発明は上記の成分組成の他にCr,V,
Co,Zr,希土類元素,Caを必要に応じて選択的に
添加する。Crは、焼き入れ性を向上させマルテンサイ
トを形成させる効果を発するが、反面多量に添加すると
耐硫化物応力割れ性を低下させる。0.1%以下では添
加効果がなく、1.5%を超えて添加すると耐硫化物応
力割れ性の低下が顕著になるのでCr添加量を0.1〜
1.5%とした。Vは、強化元素として有効であるが微
量では効果がなく、多量に添加すると靭性を劣化するの
で0.01〜0.1%の添加量とした。Coは湿潤硫化
水素環境で鋼表面に堅牢な皮膜形成を行わせ水素侵入量
を低減することで耐硫化物応力割れ性を向上させる効果
を有する。微量では効果が顕著でなく、また多量に添加
しても効果が飽和し高価な元素であることから0.05
〜0.5%の添加量とした。Zrは、Zr酸化物を形成
してPを粒内に存在せしめ、粒界への偏析量を低減する
効果を有する。少なすぎるとこの効果が発揮されず、ま
た多量に添加するとZr酸化物が多量に形成され割れの
起点となることが懸念されるため0.001〜0.1%
の添加量とした。希土類元素およびCaは、介在物の形
態を球状化させて無害化する有効な元素である。少なす
ぎるとその効果がなく、また多すぎると介在物を増加し
て耐硫化物応力割れ性を低下させるので各々0.001
〜0.05%,0.001〜0.02%とした。
[0012] The present invention, in addition to the above component composition, Cr, V,
Co, Zr, rare earth elements, and Ca are selectively added as needed. Cr has the effect of improving the hardenability and forming martensite, but when added in large amounts, it reduces the sulfide stress cracking resistance. If it is less than 0.1%, there is no effect of addition, and if it exceeds 1.5%, the sulfide stress cracking resistance is significantly reduced.
1.5%. V is effective as a strengthening element, but has no effect in a very small amount, and if added in a large amount, the toughness is deteriorated. Therefore, V was added in an amount of 0.01 to 0.1%. Co has the effect of improving the sulfide stress cracking resistance by forming a robust film on the steel surface in a wet hydrogen sulfide environment and reducing the amount of hydrogen penetration. The effect is not remarkable in a small amount, and the effect is saturated even if added in a large amount.
0.5% was added. Zr has the effect of forming a Zr oxide to cause P to be present in the grains, thereby reducing the amount of segregation at the grain boundaries. If the amount is too small, this effect is not exhibited, and if it is added in a large amount, it is feared that a large amount of Zr oxide is formed and becomes a starting point of cracking, so 0.001 to 0.1%
Was added. Rare earth elements and Ca are effective elements that make the form of inclusions spherical and harmless. If the amount is too small, the effect is not obtained. If the amount is too large, inclusions are increased and the sulfide stress cracking resistance is reduced.
-0.05%, 0.001-0.02%.

【0013】次に熱間穿孔連続圧延の圧延条件について
説明する。上記のような成分組成の鋼は転炉、電気炉等
の溶解炉であるいはさらに真空脱ガス処理を経て溶製さ
れ、連続鋳造法または造塊分塊法で鋼片を製造する。鋼
片は、直ちにあるいは一旦冷却された後1150℃以上
の温度に加熱する。加熱温度は殆どの成分とりわけNb
を固溶させるために十分高くしておかねばならない。1
150℃以上ではほぼ固溶し、また熱間加工上問題が生
じないのでその加熱温度は1150℃以上とした。
Next, the rolling conditions of the hot piercing continuous rolling will be described. The steel having the above composition is melted in a melting furnace such as a converter or an electric furnace or further subjected to a vacuum degassing process, and a steel slab is manufactured by a continuous casting method or an ingot lump method. The slab is heated immediately or after cooling once to a temperature of 1150 ° C. or higher. The heating temperature depends on most components, especially Nb
Must be high enough to form a solid solution. 1
At a temperature of 150 ° C. or higher, a solid solution is almost formed and no problem occurs in hot working.

【0014】高温度に加熱された鋼片は熱間穿孔連続圧
延機に搬送され、目的の外径、肉厚に圧延されて中空素
管に粗成形する。その後900℃〜Ar1 点の温度に降
下した該素管は900〜1000℃に加熱して仕上げ温
度がAr3 点+50℃以上で熱間仕上げ圧延を施して得
られた仕上げ鋼管を、Ar3 点以上の温度から急冷する
焼き入れ処理を施す。図1はこの圧延で製造された鋼管
の直接焼き入れ処理後のオーステナイト粒度におよぼす
Nbの影響を示したものである。すなわち直接焼き入れ
後のオーステナイト粒度は、Nbが添加されないか、添
加量0.005%未満では著しく粗大化し、ASTM
No.1程度となるが、0.005%を超えて添加すると
ASTM No.6〜7となる。従ってオーステナイト粒
の粗大化を防止するにはNbが0.005〜0.1%必
要である。このようなNbの影響については、本発明者
らは次のように推測している。すなわちNbが添加され
ないか、0.005%以下の添加では、熱間穿孔連続圧
延工程の後段で該素管が900℃〜Ar1 点の温度に降
下し、その後Ac3 点以上の温度に加熱される場合、熱
管穿孔連続圧延工程での最終過程が比較的低温で小圧下
のもとでは、再加熱過程で、オーステナイト粒間の歪み
の不均一から粒界移動が起こり、いわゆる異常粒成長と
なる。Nbの0.005%以上の添加は、このような圧
延履歴を持ったオーステナイト粒の成長粗大化を抑制す
る重要な働きをする。すなわち、Nbは再熱過程の前に
および再熱過程でNb(CN)として析出しオーステナ
イト粒の粗大化を抑制する重要な効果を発揮している。
The slab heated to a high temperature is conveyed to a continuous hot piercing mill, rolled to a desired outer diameter and thickness, and roughly formed into a hollow shell. Then the plain tube is finished steel pipe finishing temperature was heated to 900 to 1000 ° C. is obtained by performing hot finish rolling at Ar 3 point + 50 ℃ or more drops to a temperature of 900 ° C. to Ar 1 point, Ar 3 A quenching process of rapidly cooling from a temperature above the point is performed. FIG. 1 shows the effect of Nb on the austenite grain size after the direct quenching treatment of the steel pipe manufactured by this rolling. That is, the austenite grain size after direct quenching is remarkably coarse when Nb is not added, or when the added amount is less than 0.005%, the ASTM
No. However, if it exceeds 0.005%, ASTM No. 6 to 7. Therefore, 0.005 to 0.1% of Nb is required to prevent the austenite grains from becoming coarse. The present inventors presume the influence of Nb as follows. That is, if Nb is not added, or if the addition is 0.005% or less, the raw tube falls to a temperature of 900 ° C. to Ar 1 point after the hot piercing continuous rolling step, and then is heated to a temperature of Ac 3 points or more. In the case where the final step in the continuous tube rolling process is relatively low temperature and under small pressure, grain boundary migration occurs due to non-uniform strain between austenite grains in the reheating process, so-called abnormal grain growth and Become. Addition of 0.005% or more of Nb has an important function of suppressing the growth and coarsening of austenite grains having such a rolling history. That is, Nb precipitates as Nb (CN) before and during the reheating process, and has an important effect of suppressing the coarsening of austenite grains.

【0015】さらに図2に示すようにオーステナイト粒
度が6番以上であれば耐硫化物応力割れ性は高い水準に
なる。このような900℃〜Ar1 点の温度に降下した
中空素管を900〜1000℃に加熱するのは、900
℃以下では熱間最終仕上げ圧延後の焼き入れ温度が確保
できず、また1000℃以上では場合によっては粒成長
を起こすこともあるので900〜1000℃の温度に限
定した。
Further, as shown in FIG. 2, when the austenite grain size is 6 or more, the sulfide stress cracking resistance is at a high level. Heating such a hollow shell dropped to a temperature of 900 ° C. to Ar 1 point to 900 to 1000 ° C.
If it is lower than 900C, the quenching temperature after the hot final finish rolling cannot be secured, and if it is higher than 1000C, the grain growth may occur in some cases, so the temperature was limited to 900 to 1000C.

【0016】焼き入れ後マルテンサイト組織にするため
には焼き入れ開始温度をAr3 点以上とする必要があ
り、仕上げ圧延温度が低くなるとこの条件が満足できな
いのでAr3 点+50℃とした。仕上げ圧延は通常、鋼
管の寸法を調整するために行うのであり、特に方法は特
定しないが、この工程で再加熱中に形成されたスケール
が除去され、焼き戻し工程では殆どスケールが形成され
ないので、通常の再加熱焼き入れ法と比較して良好な表
面肌の鋼管が得られることも本法の利点である。
[0016] The quenching starting temperature to the martensite structure after quenching needs to Ar 3 point or more, and the Ar 3 point + 50 ℃ Since this condition is not satisfied when the finish rolling temperature is lowered. Finish rolling is usually performed to adjust the dimensions of the steel pipe, and the method is not particularly specified.However, scale formed during reheating in this step is removed, and almost no scale is formed in the tempering step. It is also an advantage of the present method that a steel pipe having a good surface texture can be obtained as compared with the ordinary reheating quenching method.

【0017】さらに、本発明において焼き入れ後の鋼組
織を90%以上のマルテンサイトにする必要がある。耐
硫化物応力割れ性に最も大きな影響をおよぼす要因は組
織であり、本発明の重要な要件の1つである。図3は耐
硫化物応力割れ性とマルテンサイト率の関係を示すが、
マルテンサイト率が90%より低くなると耐硫化物応力
割れ性が急激に低下する。一方強度も急に低下する。従
って、焼き入れ後の組織を90%以上のマルテンサイト
と限定した。なおマルテンサイト率はC量と硬さから知
ることができる。一般に、マルテンサイトにするために
は焼き入れ時の冷却速度を早くするか、鋼の焼き入れ性
を高める必要がある。通常、焼き入れ装置の冷却能と鋼
管の肉厚で決まる冷却速度を前提として鋼の焼き入れ性
を高めてマルテンサイトを得る必要がある。鋼組成の限
定理由の項で述べたようにMoとC以外の焼き入れ性を
高めるMn,Crといった元素は耐硫化物応力割れ性を
低下させるのでTi添加でNを固定し、Bを添加してM
n量を低減することが肝要である。
Further, in the present invention, the steel structure after quenching needs to be 90% or more of martensite. The factor that has the greatest effect on sulfide stress cracking resistance is the structure, which is one of the important requirements of the present invention. FIG. 3 shows the relationship between the sulfide stress cracking resistance and the martensite ratio.
When the martensite ratio is lower than 90%, the sulfide stress cracking resistance sharply decreases. On the other hand, the strength also drops sharply. Therefore, the structure after quenching was limited to 90% or more of martensite. The martensite ratio can be known from the C content and the hardness. Generally, in order to form martensite, it is necessary to increase the cooling rate during quenching or to enhance the hardenability of steel. Generally, it is necessary to obtain martensite by increasing the hardenability of steel on the premise of a cooling rate determined by the cooling capacity of the quenching device and the wall thickness of the steel pipe. As described in the section on the reasons for limiting the steel composition, elements other than Mo and C, such as Mn and Cr, which enhance the hardenability lower the sulfide stress cracking resistance. Therefore, N is fixed by adding Ti, and B is added. M
It is important to reduce the amount of n.

【0018】焼き入れ処理が終了した後、所望の強度に
調整するために焼き戻しを行う。Ac1 点を超えると再
オーステナイト化した部分が低温変態生成物となり耐硫
化物応力割れ性を低下させるので焼き戻し温度はAc1
点以下とした。
After the quenching process is completed, tempering is performed to adjust the strength to a desired value. Tempering temperature since reaustenitization portion lowers the resistance to sulfide stress cracking becomes low-temperature transformation product exceeds Ac 1 points Ac 1
Points or less.

【0019】以上の製造条件で得られる油井用鋼管は高
強度で且つ耐硫化物応力割れ性に優れており且つ安価で
あり、過酷な条件下での油井開発に大いに役立つことが
できる。
The steel pipe for oil well obtained under the above manufacturing conditions is high in strength, excellent in sulfide stress cracking resistance and inexpensive, and can be greatly useful for oil well development under severe conditions.

【0020】[0020]

【実施例】次に本発明の実施例について説明する。転炉
で溶製し連続鋳造を経て製造された鋼片を熱間穿孔連続
圧延後再加熱し、その後熱間最終仕上げ圧延を行って直
接焼き入れ、焼き戻しを行って鋼管を製造し、耐硫化物
応力割れ性を評価した。耐硫化物応力割れ性はNACE
TM0177−90Aに準拠した定荷重試験を行い、
720時間の試験時間内に破断しない最大応力を求め、
これを材料の降伏強度で除した値、Rs値で表示した。
表1に使用した鋼の化学成分を、表2に製造条件と降伏
強度およびRs値を示す。表2の結果より、本発明によ
って製造された油井用鋼管のRsは比較法では0.4
0.7と低下しているのに対し、0.9以上で耐硫化物
応力割れ性が極めて優れていることがわかる。なお、比
較法の鋼5は油焼入れ(他の鋼は水中焼入れ)を行った
ため、マルテンサイト率が80%と低くなっている。
Next, an embodiment of the present invention will be described. The steel slab produced through continuous casting and smelting in a converter is hot-pierced and continuously rolled, then reheated, then subjected to hot final finishing rolling, directly quenched, and tempered to produce a steel pipe. The sulfide stress cracking properties were evaluated. Sulfide stress cracking resistance is NACE
Perform a constant load test based on TM0177-90A,
Determine the maximum stress that does not break within the test time of 720 hours,
The value was divided by the yield strength of the material, and the value was represented by the Rs value.
Table 1 shows the chemical composition of the steel used, and Table 2 shows the manufacturing conditions, yield strength, and Rs value. From the results in Table 2, the Rs of the steel pipe for oil well manufactured according to the present invention is 0.4 to 0.4 in the comparative method.
It can be seen that the sulfide stress cracking resistance is extremely excellent when the ratio is 0.9 or more, while it is decreased to 0.7. Note that the ratio
Comparative steel 5 was oil quenched (other steels were quenched in water)
Therefore, the martensite ratio is as low as 80%.

【0021】[0021]

【表1】 [Table 1]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】以上のように本発明によれば、鋼成分を
特定し、熱間圧延条件を調整して、鋼組織を改善するこ
とにより、高強度で、しかも、硫化物腐食割れ抵抗の優
れた油井用鋼管を製造することができる。
As described above, according to the present invention, the steel composition is specified, the hot rolling conditions are adjusted, and the steel structure is improved, whereby high strength and sulfide corrosion cracking resistance can be obtained. An excellent oil well steel pipe can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Nb添加量とオーステナイト粒度との関係を示
す図。
FIG. 1 is a graph showing the relationship between the amount of Nb added and austenite grain size.

【図2】オーステナイト粒度と耐硫化物応力腐食割れ性
との関係を示す図。
FIG. 2 is a graph showing the relationship between austenite grain size and sulfide stress corrosion cracking resistance.

【図3】マルテンサイト割合と耐硫化物応力腐食割れ性
との関係を示す図。
FIG. 3 is a graph showing a relationship between a martensite ratio and sulfide stress corrosion cracking resistance.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で C :0.10〜0.35%、 Si:0.50%以下、 Mn:0.10〜1.2%、 S :0.005%以下、 P :0.015%以下、 Mo:0.10〜0.80%、 Al:0.1%以下、 Nb:0.005〜0.1%、 Ti:0.005〜0.1%で且つTi≧3.4N、 N :0.008%以下、 B :0.0005〜0.0030% を含有して残部が実質的にFeからなる鋼片を1150
℃以上に加熱した後、熱間穿孔連続圧延で中空素管に製
管して900℃〜Ar1 点に降下した該素管を、900
〜1000℃に加熱し、仕上げ温度がAr3 点+50℃
以上で熱間仕上げ圧延を施し、続いて該仕上げ鋼管をA
3 点以上の温度から急冷する焼き入れ処理を施して9
0%以上の割合のマルテンサイト組織とし、しかる後A
1 点以下の温度で焼き戻し処理を行うことを特徴とす
る耐硫化物応力割れ性に優れた油井用鋼管の製造法。
C: 0.10 to 0.35%, Si: 0.50% or less, Mn: 0.10 to 1.2%, S: 0.005% or less, P: 0. 015% or less, Mo: 0.10 to 0.80%, Al: 0.1% or less, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.1% and Ti ≧ 3. A steel slab containing 4N, N: 0.008% or less, B: 0.0005 to 0.0030%, and the balance substantially consisting of Fe is 1150.
After heating above ° C., the plain tube dropped to a 900 ° C. to Ar 1 point Seikan the hollow shell by hot piercing continuous rolling, 900
Heat to ~ 1000 ° C, finishing temperature is Ar 3 points + 50 ° C
The hot finish rolling is performed as described above.
r Quenching from 3 or more temperatures to 9
Martensite structure of 0% or more, and then A
c A method for producing a steel pipe for an oil well having excellent sulfide stress cracking resistance, wherein a tempering treatment is performed at a temperature of 1 point or less.
【請求項2】 質量%で C :0.10〜0.35%、 Si:0.50%以下、 Mn:0.10〜1.2%、 S :0.005%以下、 P :0.015%以下、 Mo:0.10〜0.80%、 Al:0.1%以下、 Nb:0.005〜0.1%、 Ti:0.005〜0.1%で且つTi≧3.4N、 N :0.008%以下、 B :0.0005〜0.0030% を含有し、さらに Cr:0.1〜1.5%、 V :0.01〜0.1%、 Co:0.05〜0.5%、 Zr:0.001〜0.1% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片を1150℃以上に加熱した後、熱間穿孔連
続圧延で中空素管に製管して900℃〜Ar1 点に降下
した該素管を900〜1000℃に加熱し、仕上げ温度
がAr3 点+50℃以上で熱間仕上げ圧延を施し、続い
て該仕上げ鋼管をAr3 点以上の温度から急冷する焼き
入れ処理を施して90%以上の割合のマルテンサイト組
織とし、しかる後Ac1 点以下の温度で焼き戻し処理を
行うことを特徴とする耐硫化物応力割れ性に優れた油井
用鋼管の製造法。
2. In mass%, C: 0.10 to 0.35%, Si: 0.50% or less, Mn: 0.10 to 1.2%, S: 0.005% or less, P: 0. 015% or less, Mo: 0.10 to 0.80%, Al: 0.1% or less, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.1% and Ti ≧ 3. 4N, N: 0.008% or less, B: 0.0005 to 0.0030%, Cr: 0.1 to 1.5%, V: 0.01 to 0.1%, Co: 0 0.05-0.5%, Zr: 0.001-0.1% A steel slab containing one or more of the following and substantially consisting of Fe is heated to 1150 ° C. or more, The hollow tube was formed into a hollow shell by continuous piercing and then heated to 900-1000 ° C. which had dropped to 900 ° C.-Ar 1 point, and the finishing temperature was 3 points Ar + 50 ° C. or less. Hot finish rolling above, followed by quenching the finished steel tube from a temperature of 3 points or more to a martensite structure of 90% or more, and then at a temperature of 1 point or less of Ac. A method for producing a steel pipe for oil wells having excellent resistance to sulfide stress cracking, characterized by performing a tempering treatment.
【請求項3】 質量%で C :0.10〜0.35%、 Si:0.50%以下、 Mn:0.10〜1.2%、 S :0.005%以下、 P :0.015%以下、 Mo:0.10〜0.80%、 Al:0.1%以下、 Nb:0.005〜0.1%、 Ti:0.005〜0.1%で且つTi≧3.4N、 N :0.008%以下、 B :0.0005〜0.0030% を含有し、さらに 希土類元素:0.001〜0.05%、 Ca:0.001〜0.02% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片を1150℃以上に加熱した後、熱間穿孔連
続圧延で中空素管に製管して900℃〜Ar1 点に降下
した該素管を900〜1000℃に加熱して、仕上げ温
度がAr3 点+50℃以上で熱間仕上げ圧延を施し、続
いて該仕上げ鋼管をAr3 点以上の温度から急冷する焼
き入れ処理を施して90%以上の割合のマルテンサイト
組織とし、しかる後Ac1 点以下の温度で焼き戻し処理
を行うことを特徴とする耐硫化物応力割れ性に優れた油
井用鋼管の製造法。
3. In mass%, C: 0.10 to 0.35%, Si: 0.50% or less, Mn: 0.10 to 1.2%, S: 0.005% or less, P: 0. 015% or less, Mo: 0.10 to 0.80%, Al: 0.1% or less, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.1% and Ti ≧ 3. 4N, N: 0.008% or less, B: 0.0005 to 0.0030%, rare earth element: 0.001 to 0.05%, Ca: 0.001 to 0.02% Alternatively, after heating a steel slab containing at least two kinds and substantially consisting of Fe to 1150 ° C. or higher, it is formed into a hollow shell by hot piercing continuous rolling and dropped to 900 ° C. to Ar 1 point. The raw tube is heated to 900 to 1000 ° C., subjected to hot finishing rolling at a finishing temperature of 3 points of Ar + 50 ° C. or higher, and then the finishing is performed. A quenching treatment of rapidly raising the raised steel pipe from a temperature of 3 points or more to a martensite structure of 90% or more, followed by a tempering treatment at a temperature of 1 point or less of Ac. A method for manufacturing oil well steel pipes with excellent material stress cracking properties.
【請求項4】 質量%で C :0.10〜0.35%、 Si:0.50%以下、 Mn:0.10〜1.2%、 S :0.005%以下、 P :0.015%以下、 Mo:0.10〜0.80%、 Al:0.1%以下、 Nb:0.005〜0.1%、 Ti:0.005〜0.1%で且つTi≧3.4N、 N :0.008%以下、 B :0.0005〜0.0030% を含有し、さらに Cr:0.1〜1.5%、 V :0.01〜0.1%、 Co:0.05〜0.5%、 Zr:0.001〜0.1% の1種または2種以上と、 希土類元素:0.001〜0.05%、 Ca:0.001〜0.02% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片を1150℃以上に加熱した後、熱間穿孔連
続圧延で中空素管に製管して900℃〜Ar1 点に降下
した該素管を900〜1000℃に加熱して、仕上げ温
度がAr3 点+50℃以上で熱間仕上げ圧延を施し、続
いて該仕上げ鋼管をAr3 点以上の温度から急冷する焼
き入れ処理を施して90%以上の割合のマルテンサイト
組織とし、しかる後Ac1 点以下の温度で焼き戻し処理
を行うことを特徴とする耐硫化物応力割れ性に優れた油
井用鋼管の製造法。
4. C: 0.10 to 0.35%, Si: 0.50% or less, Mn: 0.10 to 1.2%, S: 0.005% or less, P: 0. 015% or less, Mo: 0.10 to 0.80%, Al: 0.1% or less, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.1% and Ti ≧ 3. 4N, N: 0.008% or less, B: 0.0005 to 0.0030%, Cr: 0.1 to 1.5%, V: 0.01 to 0.1%, Co: 0 0.05 to 0.5%, Zr: 0.001 to 0.1%, or two or more rare earth elements: 0.001 to 0.05%, Ca: 0.001 to 0.02% After heating a steel slab containing one or more kinds and substantially the remainder of which is made of Fe to 1150 ° C. or more, it is formed into a hollow shell by hot piercing continuous rolling. Heating the 0 ° C. to Ar the plain tube drops to a point to 900 to 1000 ° C., the finishing temperature is subjected to hot finish rolling at Ar 3 point + 50 ℃ or higher, followed by the finishing steel pipe of three or more Ar An oil well with excellent sulfide stress cracking resistance, characterized by quenching from a temperature to a martensitic structure of 90% or more by applying a quenching treatment and then performing a tempering treatment at a temperature of 1 point or less of Ac. Method of manufacturing steel pipes.
JP3323145A 1991-12-06 1991-12-06 Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance Expired - Fee Related JP2579094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3323145A JP2579094B2 (en) 1991-12-06 1991-12-06 Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3323145A JP2579094B2 (en) 1991-12-06 1991-12-06 Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance

Publications (2)

Publication Number Publication Date
JPH05271772A JPH05271772A (en) 1993-10-19
JP2579094B2 true JP2579094B2 (en) 1997-02-05

Family

ID=18151587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3323145A Expired - Fee Related JP2579094B2 (en) 1991-12-06 1991-12-06 Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance

Country Status (1)

Country Link
JP (1) JP2579094B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036742A1 (en) * 1995-05-15 1996-11-21 Sumitomo Metal Industries, Ltd. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
AR023265A1 (en) * 1999-05-06 2002-09-04 Sumitomo Metal Ind HIGH RESISTANCE STEEL MATERIAL FOR AN OIL WELL, EXCELLENT IN THE CROCKING OF THE SULFIDE VOLTAGE AND METHOD TO PRODUCE A HIGH RESISTANCE STEEL MATERIAL.
JP2003041341A (en) 2001-08-02 2003-02-13 Sumitomo Metal Ind Ltd Steel material with high toughness and method for manufacturing steel pipe thereof
AR047467A1 (en) 2004-01-30 2006-01-18 Sumitomo Metal Ind STEEL TUBE WITHOUT SEWING FOR OIL WELLS AND PROCEDURE TO MANUFACTURE
JP4943325B2 (en) * 2005-06-10 2012-05-30 新日本製鐵株式会社 Expandable tubular oil well pipe with excellent toughness after pipe expansion and method for producing the same
JP4635764B2 (en) 2005-07-25 2011-02-23 住友金属工業株式会社 Seamless steel pipe manufacturing method
JP4180103B1 (en) 2008-01-09 2008-11-12 和夫 白▲崎▼ Disintegrating material, mounting table, incineration method, lost wax mold and mold collapse method
JP5088631B2 (en) * 2008-09-17 2012-12-05 新日本製鐵株式会社 Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method
KR101714913B1 (en) * 2015-11-04 2017-03-10 주식회사 포스코 Hot-rolled steel sheet having excellent resistance of hydrogen induced crack and sulfide stress crack for use in oil well and method for manufacturing the same
CN116904859B (en) * 2023-07-24 2024-05-14 延安嘉盛石油机械有限责任公司 Steel pipe for petroleum well and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177124A (en) * 1986-01-29 1987-08-04 Nippon Steel Corp Manufacture of steel pipe for thermal well having low rate of creep deformation
JPS6396215A (en) * 1986-10-09 1988-04-27 Sumitomo Metal Ind Ltd Production of tough steel pipe
JPH0250916A (en) * 1988-08-11 1990-02-20 Nippon Steel Corp Production of low alloy high tension seamless steel pipe having fine grained structure
JP2705284B2 (en) * 1990-06-19 1998-01-28 住友金属工業株式会社 Manufacturing method of high strength seamless steel pipe

Also Published As

Publication number Publication date
JPH05271772A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
JPH07197125A (en) Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JP2579094B2 (en) Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH09111344A (en) Production of high strength and low yield ratio seamless steel pipe
JPH06340946A (en) Non-tempered steel with high toughness and preparation thereof
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JP4196501B2 (en) Steel for seamless steel pipe with high strength and excellent toughness
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
JP2525961B2 (en) Manufacturing method of high toughness seamless steel pipe with fine grain structure
JPH11302785A (en) Steel for seamless steel pipe
JP3249210B2 (en) Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP3046183B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP3059993B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure
JP2556643B2 (en) Low Yield Ratio High Toughness Seamless Steel Pipe Manufacturing Method
JP2705946B2 (en) Manufacturing method of high strength steel sheet with excellent SSC resistance
JP3145515B2 (en) Manufacturing method of low yield ratio high toughness seamless steel pipe
JP3848397B2 (en) Manufacturing method of high-efficiency and highly uniform tough steel plate
JPH0250912A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP2567151B2 (en) Manufacturing method of oil well steel pipe with excellent SSC resistance
JP2564425B2 (en) Manufacturing method of high toughness 40kg class steel pipe with excellent SSC resistance
JPH0250915A (en) Production of low alloy high tension seamless steel pipe having fine grained structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees