JP4196501B2 - Steel for seamless steel pipe with high strength and excellent toughness - Google Patents

Steel for seamless steel pipe with high strength and excellent toughness Download PDF

Info

Publication number
JP4196501B2
JP4196501B2 JP32312699A JP32312699A JP4196501B2 JP 4196501 B2 JP4196501 B2 JP 4196501B2 JP 32312699 A JP32312699 A JP 32312699A JP 32312699 A JP32312699 A JP 32312699A JP 4196501 B2 JP4196501 B2 JP 4196501B2
Authority
JP
Japan
Prior art keywords
steel
toughness
temperature
fracture surface
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32312699A
Other languages
Japanese (ja)
Other versions
JP2001140032A (en
Inventor
邦夫 近藤
茂 中村
暢俊 村尾
俊治 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32312699A priority Critical patent/JP4196501B2/en
Publication of JP2001140032A publication Critical patent/JP2001140032A/en
Application granted granted Critical
Publication of JP4196501B2 publication Critical patent/JP4196501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、インライン熱処理により製造できる高強度で靱性に優れたシームレス鋼管用鋼に関する。
【0002】
【従来の技術】
高級油井管等に用いられるシームレス鋼管に対しては、高強度と靱性の両立が求められることが多い。この要求に対しては、従来は製管後にオフラインでの熱処理により調質し、結晶粒を微細化することにより対応してきた。しかし、近年シームレス鋼管の製造方法においても省プロセス化の要求が強まり、インライン熱処理化が検討されている。
【0003】
しかしながら、インライン熱処理では、オフライン熱処理のように冷却、加熱により生じる逆変態がなく、オフライン熱処理に比べて結晶粒が粗大になりやすいので、靭性の確保が困難であるという問題がある。その改善方法として、例えば、特開平08−13031号公報には、Nb、Tiを添加した低合金鋼を未再結晶域である低温度で、累積圧下率が50%以上となる熱間圧延をおこない、その後インラインで300℃以下まで加速冷却し、焼戻し処理をおこなう微細組織の低温靱性に優れた鋼板の製造法が開示されている。鋼板の製造のように低温圧延が可能な場合は、Nb、Tiを積極的に添加して、再結晶温度を上昇させることによって未再結晶加工割合を増加させることができるので、組織微細化に極めて有効である。
【0004】
ところが、シームレス鋼管の製造方法は、中実ビレットを穿孔し、ホローシェルの内側にマンドレルを挿入して圧延する方法が一般的であり、マンドレルとの摩擦係数、マンドレルの寿命、高温強度を考慮すると、鋼板のように低温圧延することは困難である。従ってシームレス鋼管の製造では再結晶温度域以上で仕上げ圧延を実施し、直ちに焼入れをおこなう加工熱処理が主流となっていて、上記のような鋼板の製造方法の適用は困難である。
【0005】
【発明が解決しようとする課題】
本発明の課題は、インライン熱処理により製造できる降伏応力が758MPa(110ksi)以上の高強度で靱性に優れたシームレス鋼管用鋼を提供することにある。
【0006】
【課題を解決するための手段】
シームレス鋼管のインライン熱処理プロセスにおいて有効な靭性改善方法として、本発明者は、TiNやMnSなどの介在物量を適切に低減することで、γ粒が比較的粗大な組織であっても、実用上十分な破面遷移温度を示す550MPa(80ksi)級の鋼を提示した(特願平10−114949号)。
【0007】
しかしながら、その成分系をベースとして強度を上げるためにC量を増加させ、かつ焼戻し温度を調整して、降伏応力758MPa以上の高強度の油井管とすると、破面遷移温度自体が高温側に移動するとともに、遷移温度からかなり離れた高温側でも脆性破面が残存する(以下、温度に対する延性破面率の変化率の低下と記す)問題があることが試験の結果判明した。
【0008】
図1は、シャルピー衝撃試験結果の一例を示す図である。この試験にオフライン熱処理材としては、焼入れ性が良好なTi−B鋼を用いた。インライン熱処理材には焼入れ性が良好であるためバラツキの少ないCr鋼を用いた。化学組成は以下の通りであった。
【0009】
オフライン熱処理材:質量%で、C:0.23%、Si:0.31%、Mn:1.3%、Cr:0.1%、Ti:0.02%、B:0.0014%、N:0.004、sol.Al:0.021%、P:0.028%、S:0.004%。
【0010】
インライン熱処理材:質量%で、C:0.23%、Si:0.3%、Mn:1.35%、Cr:0.2%、P:0.026%、S:0.001%、sol.Al:0.022%、N:0.006%。
【0011】
熱間圧延は、製管時の穿孔圧延を模擬して、1250℃に加熱後圧延を開始し、圧下率50〜78%、圧延仕上げ温度は950℃とした。
【0012】
インライン熱処理としては、実機の製造ラインを模擬して、圧延仕上げ後の鋼材を960℃に加熱、8分保持した後、直ちに水焼入れし、500℃で焼戻し処理をおこなった。また、オフライン熱処理としては、圧延後の常温の鋼材を920℃に加熱、水焼入れし、520℃で焼戻し処理を施した。このような処理により降伏応力が758MPa級になるように調整してシャルピー衝撃試験片を作製し、試験温度を−100〜100℃の温度範囲で種々変化させて試験を実施し、延性破面率を求めた。
【0013】
図1は、上記試験結果を試験温度と延性波面率との関係で整理した図である。図1から明らかなように、従来のプロセスであるオフライン熱処理材は、試験温度が−30〜−10℃になって、延性破面率が立ち上がりはじめると、急激に延性破面率が大きくなり(すなわち、温度に対する延性破面率の変化率が大きくなり)、延性破面率50%と80%の温度差は極めて小さい。しかしながら、特願平10−114949号で示した550MPa(80ksi)級の鋼のC量を高めて、さらに焼戻し温度を調整して758MPa級とした材料では、オフライン熱処理材と同等の破面遷移温度(vTrs:延性破面率50%となる温度)が得られているが、延性破面率の立ち上がり傾きは小さく(すなわち、温度に対する延性破面率の変化率が小さく)、延性破面率50%と80%の温度差は大きい。
【0014】
本発明者らは、50%破面遷移温度ではなく、80〜90%程度の延性破面率が得られる温度を十分低温にすることができ、インライン熱処理をおこなってもオフライン熱処理材と遜色のない衝撃特性が得られる化学組成について、鋭意検討をおこなった。その結果、下記の知見を得た。
【0015】
1)特願平10−114949号公報に示されている清浄化に関する基本思想を、Cが高い油井用鋼に適用すると確かに、破面遷移温度が低下して良好となるが、温度に対する延性破面率の変化率は改善されず、連動して吸収エネルギーの立ち上がりがゆるやかであるため、破面遷移温度よりかなり高温での吸収エネルギーの要求値が満たされない問題がある。これは、破面遷移温度からかなり離れた高い温度でも、粒界破壊を含む脆性破面が残存し、吸収エネルギーが低下するからであった。
【0016】
2)インライン熱処理をおこなうと、温度変化に対する延性破面率や吸収エネルギーの変化率が、オフライン熱処理材に比べて小さくなる主原因は、鋼中のNが影響している。したがって、Nの低減が有効である。
【0017】
3)Nの低減の代わりに、Pを0.01%以下に低減すると、温度変化に対する延性破面率や吸収エネルギーの変化率はやや大きくなるものの、全般的な遷移曲線の形態には影響を及ぼさないが、破面遷移温度自体を下げる効果がある。したがって、80〜90%の延性遷移温度で比較しても、オフライン熱処理材と同等の靭性が得られる。また、50%破面遷移温度では、オフライン熱処理材より格段に低温側にシフトして良好となる。
【0018】
4)精錬コストを下げるためにPまたはNを低減しない場合は、Tiの微量添加によりNを固定すれば、温度に対する延性破面率や吸収エネルギーの変化率を大きくすることができる。Tiに関しては本質的には靭性を低下させる元素であるが、Nは延性破面率や吸収エネルギーの温度に対する変化率を低下させる作用が顕著であるめ、それをTiで固定すれば微量のTi添加でも著しい効果が得られる。
【0019】
本発明は、これらの知見に基づきなされたもので、その要旨は以下の通りである。
【0020】
(1)質量%にて、C:0.15%〜0.35%、Si:0.1%〜1.5%、Mn:0.3%〜1.5%、P:0.015%〜0.025%、S:0.005%以下、Cr:0.05%〜1.5%、sol.Al:0.001%〜0.2%、N:0.003%未満、Ti:0.0082%以下、Mo:0〜1%、Nb:0〜0.005%、V:0〜0.5%、B:0〜0.003%、Ca:0〜0.01%、Mg:0〜0.01%、REM:0〜0.01%を含み、残部Feおよび不純物からなる、降伏応力が758MPa以上の高強度で靭性に優れたシームレス鋼管用鋼。
【0022】
(2)質量%にて、C:0.15%〜0.35%、Si:0.1%〜1.5%、Mn:0.3%〜1.5%、P:0.015%〜0.025%、S:0.005%以下、Cr:0.05%〜1.5%、 sol. Al:0.001%〜0.2%、Ti:0.003%〜0.015%の範囲内で、かつ「3.4×N%−0.002」%以下、N:0.003%〜0.015%、Mo:0〜1%、Nb:0〜0.005%、V:0〜0.5%、B:0〜0.003%、Ca:0〜0.01%、Mg:0〜0.01%、REM:0〜0.01%を含み、残部Feおよび不純物からなる、降伏応力が758MPa以上の高強度で靭性に優れたシームレス鋼管用鋼。
【0023】
【発明の実施の形態】
以下、本発明のシームレス鋼管用鋼の化学組成を規定した理由について詳しく説明する。なお、化学組成の%表示はすべて質量%を示す。
【0024】

Cは、鋼管の強度を確保するために必要な元素で、0.15%未満では焼入れ性が不足して必要とする強度を確保することが難しい。一方、0.35%を超えると焼入れ時に割れが発生すると共に、靱性の劣化が大きい。したがって、C含有量は、0.15%〜0.35%とした。
【0025】
Si
Siは、鋼の脱酸を目的として含有させる。また、焼戻し軟化抵抗を高めて強度上昇にも寄与する。これらの効果を得るためには、0.1%以上含有させることが必要であり、一方1.5%を超えて含有させると、靭性の低下もたらす。したがって、Si含有量は0.1〜1.5%とした。
【0026】
Mn
Mnは、鋼の焼入れ性を増し、鋼管の強度確保に有効な成分である。含有量が0.3%以下では、焼入れ性の不足によって強度および靱性ともに満足できる製品を製造することができない。一方で、1.5%を超えて含有させると、偏析が増えて靱性を低下させる。したがって、Mn含有量は、0.3〜1.5%とした。
【0027】

Pは不純物として鋼中に不可避的に存在するが、本発明鋼においては衝撃特性や製造コストを左右する重要な元素である。N含有量を低減しない場合は、靭性を確保するために0.015%未満と十分に低減する必要がある。
【0028】
Nを低減する場合や微量Tiの添加をおこなう場合は、精錬コスト高となる低P化は必要でなく、0.015〜0.025%の範囲内であっても靭性が確保できる。
【0029】

Sは、MnSを形成したり、CaやREMと結合してオキシサルファイドを形成して介在物として鋼中に存在する。その含有量が多いと靭性が低下するので0.005%以下に抑える必要がある。
【0030】
Cr
Crは、必要な焼入性と焼戻し軟化抵抗を確保するために含有させる。含有量が0.05%未満では、焼入れ性のほかに焼戻し軟化抵抗を高める効果が得られないので0.05%以上とする必要がある。しかし、1.5%を超えると靭性が低下するので上限は1.5%とする。
【0031】
sol.Al
Alは脱酸のために必須の元素であり、sol.Alで0.001%以上は含有させなければ、脱酸不足によって鋼質の劣化を招く。しかし、0.2%を超えて含有させると、靭性の低下を招くため好ましくない。したがって、sol.Al含有量は、0.001%〜0.2%とした。
【0032】

Nは、不純物で高温延性を低下させると同時に衝撃試験における延性破面率の温度に対する変化率を低下させる。その作用は、インライン熱処理をおこなって結晶粒が大きい場合に特に顕著である。したがって、Nは低ければ低い方がよい。しかし、低N化は低P化と同様に精錬時間が長くなったり、特別の精錬設備が必要となったりするので、N含有量はP含有量やTi添加の有無により下記のように調整する。
【0033】
精錬設備や精錬コストの観点からPを0.015%未満に低減できない場合は、Nを0.003%未満に低減するか、後述するように微量のTiを添加して鋼中のNを固定すると、延性破面率の温度に対する変化率を大きくすることができるので、破面遷移温度自体があまり低温側に移動しなくても、所定の延性破面率、吸収エネルギーを確保できる。
【0034】
Pを0.015%未満に低減して靭性を確保する場合は、N含有量を極めて低く抑える必要はなく0.15%以下で十分な靭性が確保できる。
【0035】
Ti
Pを0.015%未満に低減して遷移温度カーブを低温側にシフトさせて靭性を改善する場合には、Tiは含有させる必要はない。しかし、溶接熱影響部の靱性改善や連続鋳造性を改善するためにTiを含有させてもよいが、過剰に含有させると低P化した場合の効果が小さくなり、また鋼中のNを固定して生成するTiNが多くなると、靭性を大きく低下させるので、含有させる場合のTi含有量の上限は0.015%とした。
【0036】
Nを0.003%未満に低減する場合は、Tiを含有させる必要はない。しかしながら、溶接熱影響部の靱性改善や連続鋳造時の表面割れを改善する目的で含有させることができるが、Tiが0.0082%以上となると、過剰のTiが焼戻し時にTiCとして析出して強度バラツキが大きくなるので、低N化の場合のTiの上限は0.0082%とした。
【0037】
また、Nを0.003%以上の含有量に許容し、延性破面率の温度に対する変化率を改善する場合は、0.003〜0.015%のTiが必要である。ただし、Nと結びつかない過剰Tiが多くなると、TiCを生成して強度バラツキが発生するようになる。したがって、過剰Tiを0.002%以下とする必要があり、そのためにはTiは、「3.4×N%−0.002」%以下を満たす必要がある。
【0038】
Mo
Moは必要により含有させる元素で、厚肉の鋼管の場合にさらに焼入性および焼戻し軟化抵抗を高めて高温焼戻しが必要な場合に含有させるのがよい。含有させる場合、その含有量が0.05%未満では前記効果が得られないので、0.05%以上とするのが望ましい。しかし、1%を超えると靭性劣化が著しくなるので1%以下とする。
【0039】
Nb
Nbは、いわゆる制御圧延によって製造される鋼材においては必須の添加元素であるが、本発明においては制御圧延を基本的に利用しないため含有させる必要性はない。しかし、Nbは強度を高めるのに有効であるが、0.01%を超えると1000℃以上の高温で圧延を終了した場合には、析出強化を通して靱性を著しく損なったり、鋼管の部位によるバラツキの原因になる。このために、含有させる場合は、0.005%以下とするのがよい。
【0040】

Vは、析出強化によって強度を高めるが、比較的靱性への悪影響が小さく、強度アップのため必要により含有させる。また、焼戻し軟化抵抗のほかに焼入れ性も向上させる効果もある。含有させてこれらの効果を得るためには0.05%以上とするのが望ましい。しかし、0.5%を超えると靭性が大きく劣化するので0.5%以下とした。
【0041】

Bは、厚肉の鋼管を製造する場合焼入れ性が不足している場合に含有させると良好な焼入れ性を確保することができる。含有させる場合、0.0003%以上が好ましいが、0.003%を超えて含有させると、焼戻し後にM236タイプの炭化物の生成を促進して靭性が低下するので上限は0.003%とした。
【0042】
Ca、Mg
Ca、Mgは、必要により含有させる元素で、鋼中のSと反応して溶鋼中で硫酸化物を生成する。この硫酸化物は、MnSなどと異なり、圧延加工によって圧延方向に伸びることがなく、圧延後も球状である。このため、機械的性質の異方性を改善し、特に圧延直角方向の衝撃性質を向上させる。また、延伸した介在物の先端等を割れの起点とする水素誘起割れを抑制する作用もある。これらの効果得る場合に含有させればよいが、含有量が0.01%を超えると、清浄度の低下によって母材の靭性が低下するので、上限を0.01%とするのがよい。
【0043】
REM(希土類元素)
REMは、組織の微細化や、Sを固定して靭性を改善する作用があり、必要により含有させるが、0.01%を超えるとかえって靱性が低下するので含有させる場合は0.01%以下とするのがよい。
【0044】
【実施例】
表1に示す化学組成の22種の鋼を、試験用の容量150kgの真空溶解炉にて溶製した。丸鋳型に鋳造して得られた150kgインゴットを鍛造後、実機のインラインでの加工熱処理を模擬した圧延を実施した。加工熱処理条件を以下に示す。
【0045】
鍛造材加熱温度(製管法におけるビレット加熱に対応):1250℃
圧延(穿孔圧延に対応):加工度70%、仕上げ温度1050℃、圧延後20秒後に950℃の炉に10分間挿入、その後直ちに水焼入れを実施。さらに、焼戻しによって強度が758MPaグレードになるように調整。
【0046】
【表1】

Figure 0004196501
【0047】
製造した各鋼板からは、JIS4号シャルピー試験片および丸棒引っ張り試験片を、それぞれ長手方向が圧延方向と平行になるよう採取して、シャルピー衝撃試験と引っ張り試験に供した。
【0048】
引張り試験片は1枚の圧延材の先端部、中央部および後端部の場所で表層各4本、中心部各4本の合わせて24本採取した。降伏強度、引張り強度は24本の平均とし、また、強度バラツキを評価するために、24本の引張り強度の標準偏差を求めた。その結果は表2に示す通りであった。
【0049】
【表2】
Figure 0004196501
【0050】
さらに、延性破面率が50%になる温度(T50)、同じく80%になる温度(T80)と、その温度差(T80−T50)も求め、表2に併せて示す。
【0051】
表2から明らかなように、本発明例の極低N化した鋼番5、7および8や、微量Ti含有鋼の鋼番9〜11および13〜15ではT80−T50が小さくなるので、良好な靭性が得られる。また、本発明例では強度バラツキも小さく押さえられていることが分かる。
【0052】
一方、比較例においては、表2に示すように鋼番16は低P(請求項1に記載の鋼)であるが、NおよびTi含有量が本発明で規定する範囲外であり、鋼番17はPは高目、極低Nであり(請求項2に記載の鋼)、Tiを過剰に含有しており靱性は良好であるものの強度バラツキが大きく、実用に耐えない。
【0053】
鋼番18〜21は、P、Nは高目で請求項3記載の鋼に対応するが、鋼番18ではTi無添加、鋼番19はTiが少なすぎてT80−T50が大きくて靱性が劣っている。鋼番20では、数式で規定する量よりも多いTiを含有しているので、靱性は良好であるものの強度のバラツキが問題である。また、鋼番21は、数式で規定する範囲内のTiを含有しているがその絶対量が多過ぎ、靭性が低下している。鋼番22は、P含有量が規定範囲より多く、靭性が低下している。
【0054】
【発明の効果】
本発明によれば、高強度で靱性に優れたシームレス鋼管をインライン熱処理で生産できるので、高生産効率および省エネルギーにより、安価に鋼管を供給できる。
【図面の簡単な説明】
【図1】延性破面率とシャルピー衝撃試験温度との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel for seamless steel pipes that can be manufactured by in-line heat treatment and has high strength and excellent toughness.
[0002]
[Prior art]
In many cases, seamless steel pipes used for high grade oil well pipes are required to have both high strength and toughness. Conventionally, this requirement has been dealt with by tempering by off-line heat treatment after pipe making and refining the crystal grains. However, in recent years, there has been an increasing demand for process saving in seamless steel pipe manufacturing methods, and in-line heat treatment has been studied.
[0003]
However, the in-line heat treatment has a problem that there is no reverse transformation caused by cooling and heating unlike the off-line heat treatment, and the crystal grains tend to be coarser than the off-line heat treatment, so that it is difficult to ensure toughness. As an improvement method, for example, Japanese Patent Application Laid-Open No. 08-13031 discloses hot rolling in which a low alloy steel added with Nb and Ti is not recrystallized at a low temperature and the cumulative reduction ratio is 50% or more. A method of manufacturing a steel sheet excellent in low-temperature toughness of a fine structure in which tempering is performed, followed by in-line accelerated cooling to 300 ° C. or less and tempering is disclosed. When cold rolling is possible as in the production of steel sheets, Nb and Ti can be positively added, and the recrystallization temperature can be increased by increasing the recrystallization temperature. It is extremely effective.
[0004]
However, the seamless steel pipe manufacturing method is generally a method of drilling a solid billet, inserting a mandrel inside the hollow shell and rolling, and considering the friction coefficient with the mandrel, the life of the mandrel, and the high temperature strength, It is difficult to cold-roll like a steel plate. Therefore, in the manufacture of seamless steel pipes, the heat treatment that performs finish rolling at a temperature higher than the recrystallization temperature range and immediately quenches has become the mainstream, and it is difficult to apply the steel sheet manufacturing method as described above.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a steel for seamless steel pipes, which has a yield strength of 758 MPa (110 ksi) or more and excellent toughness that can be produced by in-line heat treatment.
[0006]
[Means for Solving the Problems]
As an effective toughness improvement method in the in-line heat treatment process of seamless steel pipes, the present inventors have adequately reduced the amount of inclusions such as TiN and MnS, so that practically sufficient γ grains can be obtained even in a relatively coarse structure. 550 MPa (80 ksi) grade steel exhibiting an appropriate fracture surface transition temperature was proposed (Japanese Patent Application No. 10-114949).
[0007]
However, if the C content is increased to increase the strength based on the component system, and the tempering temperature is adjusted to obtain a high strength oil well pipe having a yield stress of 758 MPa or more, the fracture surface transition temperature itself moves to the high temperature side. At the same time, the test results revealed that there is a problem that a brittle fracture surface remains on the high temperature side that is far from the transition temperature (hereinafter referred to as a decrease in the rate of change of the ductile fracture surface ratio with respect to temperature).
[0008]
FIG. 1 is a diagram illustrating an example of a Charpy impact test result. Ti-B steel with good hardenability was used as an off-line heat treatment material for this test. As the in-line heat treatment material, Cr steel having a small variation was used because of its good hardenability. The chemical composition was as follows:
[0009]
Offline heat treatment material:% by mass, C: 0.23%, Si: 0.31%, Mn: 1.3%, Cr: 0.1%, Ti: 0.02%, B: 0.0014%, N: 0.004, sol. Al: 0.021%, P: 0.028%, S: 0.004%.
[0010]
In-line heat treatment material:% by mass, C: 0.23%, Si: 0.3%, Mn: 1.35%, Cr: 0.2%, P: 0.026%, S: 0.001%, sol.Al: 0.022%, N: 0.006%.
[0011]
Hot rolling simulated piercing and rolling at the time of pipe making, and started rolling after heating to 1250 ° C., with a rolling reduction of 50 to 78% and a rolling finishing temperature of 950 ° C.
[0012]
As the in-line heat treatment, the production line of the actual machine was simulated, the rolled steel material was heated to 960 ° C., held for 8 minutes, immediately quenched with water, and tempered at 500 ° C. Moreover, as an off-line heat processing, the normal temperature steel materials after rolling were heated to 920 degreeC, water-quenched, and the tempering process was performed at 520 degreeC. The Charpy impact test piece is prepared by adjusting the yield stress to be 758 MPa class by such treatment, and the test is performed by changing the test temperature in a temperature range of −100 to 100 ° C. Asked.
[0013]
FIG. 1 is a diagram in which the above test results are organized by the relationship between the test temperature and the ductile wavefront ratio. As is clear from FIG. 1, the offline heat treatment material, which is a conventional process, suddenly increases the ductile fracture surface ratio when the test temperature reaches −30 to −10 ° C. and the ductile fracture surface ratio starts to rise ( That is, the rate of change of the ductile fracture surface ratio with respect to temperature increases), and the temperature difference between the ductile fracture surface ratio of 50% and 80% is extremely small. However, a material having a C-level of 550 MPa (80 ksi) grade steel shown in Japanese Patent Application No. 10-114949 is increased, and the tempering temperature is further adjusted to a 758 MPa grade material. (VTrs: temperature at which the ductile fracture surface ratio is 50%) is obtained, but the rising slope of the ductile fracture surface ratio is small (that is, the change rate of the ductile fracture surface ratio with respect to temperature is small), and the ductile fracture surface ratio is 50. The temperature difference between% and 80% is large.
[0014]
The present inventors can sufficiently reduce the temperature at which a ductile fracture surface ratio of about 80 to 90% is obtained instead of the 50% fracture surface transition temperature, and even if in-line heat treatment is performed, it is inferior to the offline heat treatment material. We have intensively studied the chemical composition that can provide the impact characteristics that are not. As a result, the following knowledge was obtained.
[0015]
1) When the basic idea regarding cleaning shown in Japanese Patent Application No. 10-114949 is applied to steel for oil wells with a high C, the fracture surface transition temperature is lowered and improved, but the ductility to temperature Since the rate of change of the fracture surface rate is not improved and the rise of absorbed energy is moderately linked, there is a problem that the required value of absorbed energy at a temperature considerably higher than the fracture surface transition temperature is not satisfied. This is because a brittle fracture surface including grain boundary fracture remains and the absorbed energy decreases even at a high temperature far from the fracture surface transition temperature.
[0016]
2) When in-line heat treatment is performed, N in steel is the main cause for the ductile fracture surface rate and the rate of change of absorbed energy to be smaller than those of offline heat-treated materials. Therefore, reduction of N is effective.
[0017]
3) If P is reduced to 0.01% or less instead of reducing N, the ductile fracture surface rate and the rate of change of absorbed energy with respect to temperature change will be slightly increased, but the overall transition curve shape will be affected. Although not exerted, it has the effect of lowering the fracture surface transition temperature itself. Therefore, even when compared at a ductile transition temperature of 80 to 90%, toughness equivalent to that of an off-line heat-treated material can be obtained. Further, at the 50% fracture surface transition temperature, the temperature is significantly improved by shifting to a lower temperature side than the off-line heat-treated material.
[0018]
4) In the case where P or N is not reduced in order to reduce the refining cost, if N is fixed by adding a small amount of Ti, the ductile fracture surface rate and the rate of change of absorbed energy with respect to temperature can be increased. Ti is essentially an element that lowers toughness, but N has a remarkable effect of lowering the ductile fracture surface ratio and the rate of change of absorbed energy with respect to temperature. Even when added, a remarkable effect can be obtained.
[0019]
The present invention has been made based on these findings, and the gist thereof is as follows.
[0020]
(1) In mass%, C: 0.15% to 0.35%, Si: 0.1% to 1.5%, Mn: 0.3% to 1.5%, P: 0.015% -0.025% , S: 0.005% or less, Cr: 0.05% -1.5%, sol.Al: 0.001% -0.2%, N: less than 0.003% , Ti: 0.0082% or less , Mo: 0 to 1%, Nb: 0 to 0.005 %, V: 0 to 0.5%, B: 0 to 0.003%, Ca: 0 to 0.01%, Mg : Steel for seamless steel pipes including 0 to 0.01%, REM: 0 to 0.01%, consisting of the balance Fe and impurities and having a high yield strength and toughness with a yield stress of 758 MPa or more .
[0022]
(2) By mass%, C: 0.15% to 0.35%, Si: 0.1% to 1.5%, Mn: 0.3% to 1.5%, P: 0.015% -0.025%, S: 0.005% or less, Cr: 0.05% -1.5%, sol. Al: 0.001% -0.2%, Ti: 0.003% -0.015 %, And “3.4 × N% −0.002”% or less, N: 0.003% to 0.015%, Mo: 0 to 1%, Nb: 0 to 0.005%, V: 0 to 0.5%, B: 0 to 0.003%, Ca: 0 to 0.01%, Mg: 0 to 0.01%, REM: 0 to 0.01%, the balance Fe and Steel for seamless steel pipes with high strength and excellent toughness with yield stress of 758 MPa or more, consisting of impurities .
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason which prescribed | regulated the chemical composition of steel for seamless steel pipes of this invention is demonstrated in detail. In addition, all the% display of a chemical composition shows the mass%.
[0024]
C
C is an element necessary for ensuring the strength of the steel pipe. If it is less than 0.15%, it is difficult to ensure the required strength due to insufficient hardenability. On the other hand, if it exceeds 0.35%, cracks occur during quenching and the toughness is greatly deteriorated. Therefore, the C content is set to 0.15% to 0.35%.
[0025]
Si
Si is contained for the purpose of deoxidation of steel. It also contributes to an increase in strength by increasing the temper softening resistance. In order to acquire these effects, it is necessary to make it contain 0.1% or more. On the other hand, if it contains more than 1.5%, toughness will be reduced. Therefore, the Si content is set to 0.1 to 1.5%.
[0026]
Mn
Mn increases the hardenability of the steel and is an effective component for securing the strength of the steel pipe. When the content is 0.3% or less, a product that satisfies both strength and toughness cannot be produced due to insufficient hardenability. On the other hand, when it contains exceeding 1.5%, segregation will increase and toughness will fall. Therefore, the Mn content is set to 0.3 to 1.5%.
[0027]
P
P is unavoidably present in steel as an impurity, but in the steel of the present invention, P is an important element that affects impact characteristics and production cost. If the N content is not reduced, it is necessary to sufficiently reduce it to less than 0.015% in order to ensure toughness.
[0028]
When N is reduced or when a small amount of Ti is added, it is not necessary to reduce P, which increases the refining cost, and toughness can be ensured even within a range of 0.015 to 0.025%.
[0029]
S
S forms MnS or combines with Ca or REM to form oxysulfide and exists in steel as inclusions. If the content is large, the toughness decreases, so it is necessary to keep it to 0.005% or less.
[0030]
Cr
Cr is contained in order to ensure the necessary hardenability and temper softening resistance. If the content is less than 0.05%, the effect of increasing the temper softening resistance in addition to the hardenability cannot be obtained. However, if it exceeds 1.5%, the toughness decreases, so the upper limit is made 1.5%.
[0031]
sol.Al
Al is an indispensable element for deoxidation. If 0.001% or more is not contained in sol.Al, steel quality is deteriorated due to insufficient deoxidation. However, if the content exceeds 0.2%, the toughness is lowered, which is not preferable. Therefore, the sol.Al content is set to 0.001% to 0.2%.
[0032]
N
N lowers the high temperature ductility due to impurities, and at the same time lowers the rate of change of the ductile fracture surface ratio with respect to temperature in the impact test. The effect is particularly remarkable when in-line heat treatment is performed and the crystal grains are large. Therefore, N should be as low as possible. However, low N requires a long refining time and requires special refining equipment as well as low P, so the N content is adjusted as follows depending on the P content and the presence or absence of Ti addition. .
[0033]
If P cannot be reduced to less than 0.015% from the viewpoint of refining equipment and refining costs, N can be reduced to less than 0.003%, or a small amount of Ti can be added to fix N in steel as will be described later. Then, since the rate of change of the ductile fracture surface ratio with respect to the temperature can be increased, a predetermined ductile fracture surface ratio and absorbed energy can be ensured even if the fracture surface transition temperature itself does not move to a low temperature side.
[0034]
When toughness is ensured by reducing P to less than 0.015%, it is not necessary to keep the N content very low, and sufficient toughness can be secured at 0.15% or less.
[0035]
Ti
In the case where P is reduced to less than 0.015% and the transition temperature curve is shifted to the low temperature side to improve toughness, Ti need not be contained. However, Ti may be included to improve the toughness and continuous castability of the weld heat-affected zone, but if it is excessively contained, the effect of lowering P will be reduced, and N in the steel will be fixed. When the amount of TiN produced increases, the toughness is greatly reduced. Therefore, the upper limit of the Ti content in the case of inclusion is set to 0.015%.
[0036]
When N is reduced to less than 0.003%, it is not necessary to contain Ti. However, it can be contained for the purpose of improving the toughness of the weld heat affected zone and improving the surface cracking during continuous casting. However, when Ti is 0.0082% or more, excessive Ti precipitates as TiC during tempering and strength. Since the variation becomes large, the upper limit of Ti when N is reduced is set to 0.0082%.
[0037]
Further, when N is allowed to be a content of 0.003% or more and the rate of change of ductile fracture surface ratio with respect to temperature is improved, 0.003 to 0.015% of Ti is necessary. However, when excessive Ti that cannot be combined with N increases, TiC is generated and strength variation occurs. Therefore, the excess Ti needs to be 0.002% or less, and for that purpose, Ti needs to satisfy “3.4 × N% −0.002”% or less.
[0038]
Mo
Mo is an element that is included as necessary. In the case of a thick-walled steel pipe, it is preferable that Mo be added when the hardenability and temper softening resistance are further increased and high-temperature tempering is required. When it is contained, if the content is less than 0.05%, the above effect cannot be obtained. Therefore, the content is desirably 0.05% or more. However, if it exceeds 1%, the toughness deteriorates remarkably, so 1% or less.
[0039]
Nb
Nb is an essential additive element in steel materials manufactured by so-called controlled rolling, but in the present invention, Nb is not required to be contained because it basically does not use controlled rolling. However, Nb is effective in increasing the strength, but if it exceeds 0.01%, when the rolling is finished at a high temperature of 1000 ° C. or higher, the toughness is remarkably impaired through precipitation strengthening, or variation due to the location of the steel pipe Cause. For this reason, when it contains, it is good to set it as 0.005% or less .
[0040]
V
V increases the strength by precipitation strengthening, but has a relatively small adverse effect on toughness, and is added as necessary to increase the strength. In addition to temper softening resistance, there is an effect of improving hardenability. In order to obtain these effects when contained, the content is preferably 0.05% or more. However, if it exceeds 0.5%, the toughness deteriorates greatly, so it was made 0.5% or less.
[0041]
B
B can secure good hardenability when it is contained when hardenability is insufficient when producing a thick steel pipe. When it is contained, the content is preferably 0.0003% or more. However, if the content exceeds 0.003%, the formation of M 23 C 6 type carbide is promoted after tempering and the toughness is lowered, so the upper limit is 0.003%. It was.
[0042]
Ca, Mg
Ca and Mg are elements to be contained as necessary, and react with S in steel to generate a sulfate in molten steel. Unlike MnS and the like, this sulfate does not extend in the rolling direction by rolling and is spherical after rolling. For this reason, the anisotropy of the mechanical properties is improved, and particularly the impact properties in the direction perpendicular to the rolling direction are improved. In addition, it also has an effect of suppressing hydrogen-induced cracking starting from the tip of the elongated inclusion. If these effects are obtained, the content may be contained. However, if the content exceeds 0.01%, the toughness of the base material is lowered due to the decrease in cleanliness, so the upper limit is preferably made 0.01%.
[0043]
REM (rare earth element)
REM has the effect of improving the toughness by refining the structure and fixing S, and if necessary, it is contained, but if it exceeds 0.01%, the toughness is lowered, so if it is contained, 0.01% or less It is good to do.
[0044]
【Example】
Twenty-two kinds of steels having chemical compositions shown in Table 1 were melted in a vacuum melting furnace having a test capacity of 150 kg. After forging a 150 kg ingot obtained by casting into a round mold, rolling was performed simulating in-line thermomechanical heat treatment. The thermomechanical conditions are shown below.
[0045]
Forging heating temperature (corresponding to billet heating in pipe making method): 1250 ° C
Rolling (corresponding to piercing and rolling): processing degree 70%, finishing temperature 1050 ° C., 20 seconds after rolling, inserted into a furnace at 950 ° C. for 10 minutes, and immediately followed by water quenching. Furthermore, the strength is adjusted to 758 MPa grade by tempering.
[0046]
[Table 1]
Figure 0004196501
[0047]
From each manufactured steel sheet, JIS No. 4 Charpy test piece and round bar tensile test piece were sampled so that the longitudinal direction was parallel to the rolling direction, and subjected to Charpy impact test and tensile test.
[0048]
A total of 24 tensile test specimens were collected, including 4 on each surface layer and 4 on each central part at the positions of the front end, center, and rear end of one rolled material. The yield strength and the tensile strength were averaged from 24 pieces, and the standard deviation of the 24 pieces of tensile strength was determined in order to evaluate the strength variation. The results were as shown in Table 2.
[0049]
[Table 2]
Figure 0004196501
[0050]
Further, a temperature at which the ductile fracture surface ratio becomes 50% (T50), a temperature at which the ductile fracture surface ratio becomes 80% (T80), and a temperature difference (T80-T50) are also obtained and are shown in Table 2.
[0051]
As is apparent from Table 2, since T80-T50 is small in steel Nos. 5 , 7 and 8 with the extremely low N of the examples of the present invention and steel Nos. 9 to 11 and 13 to 15 of the trace amount Ti-containing steel, it is good. Toughness is obtained. Moreover, it turns out that intensity variation is suppressed small also in the example of this invention.
[0052]
On the other hand, in the comparative example, as shown in Table 2, the steel number 16 is low P (steel according to claim 1), but the N and Ti contents are outside the range defined in the present invention. No. 17 is high and extremely low N (steel according to claim 2), and contains excessive Ti and good toughness, but has great strength variation and cannot be practically used.
[0053]
Steel Nos. 18 to 21 correspond to the steel according to claim 3 with high P and N, but with steel No. 18 no Ti addition, Steel No. 19 has too little Ti, T80-T50 is large and toughness is Inferior. Steel No. 20 contains a larger amount of Ti than the amount specified by the mathematical formula, so that the toughness is good, but the strength variation is a problem. Moreover, although the steel number 21 contains Ti within the range prescribed | regulated by numerical formula, the absolute amount is too much and toughness has fallen. Steel No. 22 has a P content greater than the specified range and has reduced toughness.
[0054]
【The invention's effect】
According to the present invention, since a seamless steel pipe having high strength and excellent toughness can be produced by in-line heat treatment, the steel pipe can be supplied at low cost with high production efficiency and energy saving.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a ductile fracture surface ratio and a Charpy impact test temperature.

Claims (2)

質量%にて、C:0.15%〜0.35%、Si:0.1%〜1.5%、Mn:0.3%〜1.5%、P:0.015%〜0.025%、S:0.005%以下、Cr:0.05%〜1.5%、sol.Al:0.001%〜0.2%、N:0.003%未満、Ti:0.0082%以下、Mo:0〜1%、Nb:0〜0.005%、V:0〜0.5%、B:0〜0.003%、Ca:0〜0.01%、Mg:0〜0.01%、REM:0〜0.01%を含み、残部Feおよび不純物からなることを特徴とする、降伏応力が758MPa以上の高強度で靭性に優れたシームレス鋼管用鋼。In mass%, C: 0.15% to 0.35%, Si: 0.1% to 1.5%, Mn: 0.3% to 1.5%, P: 0.015% to 0.00%. 025%, S: 0.005% or less, Cr: 0.05% to 1.5%, sol. Al: 0.001% to 0.2%, N: less than 0.003%, Ti: 0.0082 % Or less, Mo: 0 to 1%, Nb: 0 to 0.005 %, V: 0 to 0.5%, B: 0 to 0.003%, Ca: 0 to 0.01%, Mg: 0 to 0% A steel for seamless steel pipes with high yield strength and excellent toughness with a yield stress of 758 MPa or more, comprising 0.01%, REM: 0 to 0.01%, and the balance being Fe and impurities. 質量%にて、C:0.15%〜0.35%、Si:0.1%〜1.5%、Mn:0.3%〜1.5%、P:0.015%〜0.025%、S:0.005%以下、Cr:0.05%〜1.5%、sol.Al:0.001%〜0.2%、Ti:0.003%〜0.015%の範囲内で、かつ「3.4×N%−0.002」%以下、N:0.003%〜0.015%、Mo:0〜1%、Nb:0〜0.005%、V:0〜0.5%、B:0〜0.003%、Ca:0〜0.01%、Mg:0〜0.01%、REM:0〜0.01%を含み、残部Feおよび不純物からなることを特徴とする、降伏応力が758MPa以上の高強度で靭性に優れたシームレス鋼管用鋼。In mass%, C: 0.15% to 0.35%, Si: 0.1% to 1.5%, Mn: 0.3% to 1.5%, P: 0.015% to 0.00%. 025%, S: 0.005% or less, Cr: 0.05% to 1.5%, sol.Al: 0.001% to 0.2%, Ti: 0.003% to 0.015% And not more than “3.4 × N% −0.002”%, N: 0.003% to 0.015%, Mo: 0 to 1%, Nb: 0 to 0.005 %, V: 0 -0.5%, B: 0-0.003%, Ca: 0-0.01%, Mg: 0-0.01%, REM: 0-0.01%, the balance consisting of Fe and impurities A steel for seamless steel pipes having a high strength and toughness with a yield stress of 758 MPa or more .
JP32312699A 1999-11-12 1999-11-12 Steel for seamless steel pipe with high strength and excellent toughness Expired - Fee Related JP4196501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32312699A JP4196501B2 (en) 1999-11-12 1999-11-12 Steel for seamless steel pipe with high strength and excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32312699A JP4196501B2 (en) 1999-11-12 1999-11-12 Steel for seamless steel pipe with high strength and excellent toughness

Publications (2)

Publication Number Publication Date
JP2001140032A JP2001140032A (en) 2001-05-22
JP4196501B2 true JP4196501B2 (en) 2008-12-17

Family

ID=18151387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32312699A Expired - Fee Related JP4196501B2 (en) 1999-11-12 1999-11-12 Steel for seamless steel pipe with high strength and excellent toughness

Country Status (1)

Country Link
JP (1) JP4196501B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048810B2 (en) * 2001-10-22 2006-05-23 Exxonmobil Upstream Research Company Method of manufacturing hot formed high strength steel
JP4635764B2 (en) * 2005-07-25 2011-02-23 住友金属工業株式会社 Seamless steel pipe manufacturing method
CN105568128A (en) * 2015-12-21 2016-05-11 南阳汉冶特钢有限公司 Novel low-cost S275JR/J0 low alloy steel plate and production method thereof
BR112018007744B1 (en) * 2016-02-16 2021-09-21 Nippon Steel Corporation STAINLESS STEEL TUBE AND ITS MANUFACTURING METHOD
CN114855072A (en) * 2022-03-11 2022-08-05 包头钢铁(集团)有限责任公司 Manufacturing method of hot-rolled seamless steel tube for rare earth microalloying machining
CN115369327B (en) * 2022-09-15 2023-11-28 包头钢铁(集团)有限责任公司 Rare earth microalloying low-temperature structural pipe and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001140032A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
US8617462B2 (en) Steel for oil well pipe excellent in sulfide stress cracking resistance
JPH10280037A (en) Production of high strength and high corrosion-resistant seamless seamless steel pipe
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3959667B2 (en) Manufacturing method of high strength steel pipe
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP3812168B2 (en) Manufacturing method of seamless steel pipe for line pipe with excellent strength uniformity and toughness
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP4196501B2 (en) Steel for seamless steel pipe with high strength and excellent toughness
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JP2579094B2 (en) Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JPH09111344A (en) Production of high strength and low yield ratio seamless steel pipe
JPH07331381A (en) Seamless steel tube having high strength and high toughness and its production
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JPH09111343A (en) Production of high strength and low yield ratio seamless steel pipe
JP2003129180A (en) Pearlitic rail superior in toughness and ductility, and manufacturing method therefor
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH0920961A (en) Production of seamless pipe for low temperature use
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
JPH11302785A (en) Steel for seamless steel pipe
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP2525961B2 (en) Manufacturing method of high toughness seamless steel pipe with fine grain structure
JP3059993B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure
JP3249210B2 (en) Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4196501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees