JPH10280037A - Production of high strength and high corrosion-resistant seamless seamless steel pipe - Google Patents

Production of high strength and high corrosion-resistant seamless seamless steel pipe

Info

Publication number
JPH10280037A
JPH10280037A JP8945897A JP8945897A JPH10280037A JP H10280037 A JPH10280037 A JP H10280037A JP 8945897 A JP8945897 A JP 8945897A JP 8945897 A JP8945897 A JP 8945897A JP H10280037 A JPH10280037 A JP H10280037A
Authority
JP
Japan
Prior art keywords
less
steel pipe
strength
quenching
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8945897A
Other languages
Japanese (ja)
Inventor
Takahiro Kushida
隆弘 櫛田
Tomohiko Omura
朋彦 大村
Kunio Kondo
邦夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8945897A priority Critical patent/JPH10280037A/en
Publication of JPH10280037A publication Critical patent/JPH10280037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high strength and high corrosion resistant seamless steel pipe excellent in SSC resistance, having yield stress of a 110 to 155 ksi (758 to 1068 MPa) class and usable for oil wells and various equipment connected thereto. SOLUTION: In the final stage of hot piercing for a steel pipe contg., by weight, 0.20 to 0.35% C, 0.05 to 0.5% Si, 0.1 to 1.0% Mn, 0.3 to 1.2% Cr, 0.2 to 1.0 Mo, 0.005 to 0.5% sol.Al, 0.005 to 0.5% Ti, 0.0001 to 0.005% B and 0.1 to 0.5% Nb and furthermore contg., at need, V, W, Zr, Ca or the like, it is subjected to working of >=40% at 1000 to 1150 deg.C, is quenched from >=1000 deg.C directly as it is and is tempered. Moreover, the steel pipe having the above compsn. is reheated at 1000 to 1150 deg.C and is subjected to quenching and tempering.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油井用のケーシン
グやチュービング、掘削用のドリルパイプ、輸送用のラ
インパイプ、さらには化学プラント用配管などに用いら
れる強度および耐硫化物応力割れ性にすぐれた継目無鋼
管の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is excellent in strength and sulfide stress cracking resistance used in casings and tubing for oil wells, drill pipes for drilling, line pipes for transportation, and piping for chemical plants. And a method for manufacturing a seamless steel pipe.

【0002】[0002]

【従来の技術】近年のエネルギー事情の逼迫に伴い、こ
れまで敬遠されてきた硫化水素を多く含む原油や天然ガ
スが活用される情勢になってきており、それらの掘削、
輸送、貯蔵などが必要となってきた。その上、油井の深
井戸化、輸送効率の向上、さらには低コスト化のため
に、この分野で用いられる材料、とくに鋼管について
は、これまで以上に高強度化が要求されている。すなわ
ち、従来広く用いられていた降伏応力が80〜90 ksi(55
2〜621MPa)の鋼管に代わって、最近では110ksi(758MP
a)級が使用されるようになり、さらには125ksi(862MP
a)級以上の要求も高まりつつある。
2. Description of the Related Art With the recent tightening of the energy situation, crude oil and natural gas containing a large amount of hydrogen sulfide, which have been shunned so far, are being used.
Transport and storage have become necessary. In addition, in order to make oil wells deeper, improve transport efficiency, and reduce costs, materials used in this field, particularly steel pipes, are required to have higher strength than ever. That is, the yield stress conventionally used widely is 80 to 90 ksi (55 ksi).
Instead of steel pipe of 2-621MPa, recently 110ksi (758MPa)
a) grades are used and even 125ksi (862MP
a) There is a growing demand for higher grades.

【0003】一般に、鋼材は強度が増すほど応力腐食割
れに対し敏感になる。したがって、このような悪化する
環境下における使用材料の高強度化に対し、最も大きな
課題となるのは耐硫化物応力腐食割れ性(耐SSC性)
の改善である。この耐SSC性に対し、従来より検討さ
れ一般的に知られている対策は 1)約80%以上のマルテンサイトからなる組織とすること 2)高清浄度化 3)高温焼戻し 4)細粒組織とすること 5)高降伏比とすることであり、その他の手段としては 6)低Mn化(偏析の防止) 7)窒化物形成 8)Zr添加 などがある。
[0003] In general, as the strength of steel increases, it becomes more susceptible to stress corrosion cracking. Therefore, the greatest challenge in increasing the strength of the material used in such a deteriorating environment is the resistance to sulfide stress corrosion cracking (resistance to SSC).
It is an improvement. To counter this SSC resistance, the following measures have been generally studied and are generally known: 1) A structure consisting of about 80% or more martensite 2) High cleanliness 3) High temperature tempering 4) Fine grain structure 5) A high yield ratio is required. Other means include 6) low Mn (prevention of segregation) 7) nitride formation 8) Zr addition.

【0004】鋼を焼入れ焼戻しして同じ強度レベルに調
質する場合、不完全な焼入れ後低温で焼戻すよりも、十
分な焼入れをおこない高温で焼戻す方が、遥かにすぐれ
た靱性を持つ鋼材が得られことはよく知られている。上
記の1)と3)は、耐SSC性についても同じ傾向のあるこ
とを示している。SSCは、遅れ破壊と同様に水素脆化
の一種と考えられ、素地の靱性を高めることは割れ発生
の抑止に効果がある。また、割れの起点となる非金属介
在物はできるだけ少ない方がよく、その原因となるSや
Oはできるだけ少なくして、2)の高清浄度化を達成させ
る。4)の細粒組織については、強度が高くなるとその脆
性割れは結晶粒単位あるいは粒界単位で進展するので、
細粒化すると割れに対する抑止力が増す。その上、細粒
化そのものも強度上昇に寄与することから、耐SSC性
にすぐれた高強度材としては細粒化にとくに力点が置か
れてきた。
[0004] When quenching and tempering steel to the same strength level, a steel material having much better toughness is required to be sufficiently quenched and tempered at a high temperature than to be tempered at a low temperature after incomplete quenching. Is well known. The above 1) and 3) show that the SSC resistance has the same tendency. SSC is considered to be a kind of hydrogen embrittlement like delayed fracture, and increasing the toughness of the base is effective in suppressing cracking. It is preferable that the non-metallic inclusions that are the starting points of the cracks are as small as possible, and the S and O that are the causes of the non-metallic inclusions are as small as possible to achieve the high cleanliness of 2). Regarding the fine-grained structure of 4), when the strength increases, the brittle crack propagates in crystal grain units or grain boundary units.
Finer grains increase the deterrent to cracking. In addition, since grain refinement itself also contributes to an increase in strength, emphasis has been placed on grain refinement as a high-strength material having excellent SSC resistance.

【0005】細粒化の手法として一般に用いられるの
は、変態、加工変形、加工変形後の再結晶時の粒成長抑
止などである。鋳造後の鋼塊を熱間にて鋼管などに加工
する際、必然的に加工変形が加えられ、加工と再結晶の
繰り返しにより細粒化される。
[0005] As a method of grain refinement, transformation, working deformation, suppression of grain growth during recrystallization after working deformation and the like are generally used. When the cast steel ingot is hot and processed into a steel pipe or the like, it is inevitably deformed by processing, and is refined by repeated processing and recrystallization.

【0006】しかし、焼入れは変態点以上に加熱しなけ
ればならないので結晶粒成長が起きやすく、結晶を細粒
にしておくには、焼入れ時の加熱温度を低くすることが
望ましい。ところが、細粒であることも、焼入れ温度を
低くすることも、焼入れ性を大きく低下させる要因であ
り、通常の冷却手段では焼入れ時に80%以上がマルテン
サイトである組織を確保することが困難となってくる。
焼入れ性確保のため合金元素を多量に添加すれば、鋼の
加工性を悪くし、さらにコストアップの原因となる。そ
こで、Nbなど微細な炭窒化物を形成する元素を添加
し、再結晶時の粒成長抑止ばかりでなく、焼入れの加熱
時の粒成長を抑止する方法が採られることが多い。
However, since quenching requires heating to a temperature higher than the transformation point, crystal grain growth is likely to occur. To keep the crystals fine, it is desirable to lower the heating temperature during quenching. However, fine grains and lowering the quenching temperature are also factors that greatly reduce the quenchability, and it is difficult to secure a structure in which 80% or more is martensite during quenching with ordinary cooling means. It is becoming.
If a large amount of alloying elements is added to ensure hardenability, the workability of the steel is deteriorated, which further increases the cost. Therefore, a method is often adopted in which an element that forms fine carbonitrides such as Nb is added to suppress not only grain growth during recrystallization but also grain growth during quenching heating.

【0007】焼入れ焼戻しの熱処理においても、低温焼
入れ、二回焼入れあるいは誘導加熱による急速加熱焼入
れをおこなうことなど、細粒組織を得るための対策が以
前からおこなわれてきた。最近では、省エネルギーおよ
び工程簡略による低コスト化の観点から、添加元素と合
わせ、熱間の圧延加工終了時点の高温から直ちに焼入れ
をおこなう直接焼入れ法が検討されている。しかしなが
ら直接焼入れ法は、一旦冷却後再加熱して焼入れる通常
の方法に比較して、得られる製品の結晶粒径が大きくな
りがちである。その対策として、例えば、特開平5-2557
49号公報には細粒組織を得るために圧延途中で強制冷却
し、さらに圧下してからそのまま焼入れする方法、特開
平5-271772号公報にはMo、Nb、TiおよびBなどを
添加した鋼を熱間の穿孔後の圧延途中で一旦Ar3以下に
冷却して変態させた後、再度加熱して圧延をおこない直
接焼入れる方法、などの発明が開示されている。また、
PCT-WO-96/36742号公報には、NbとTiを複合添加
し、製管後に補熱してから直接焼入れる方法も提示され
ている。
In the heat treatment of quenching and tempering, measures for obtaining a fine grain structure have been taken for a long time, such as low-temperature quenching, double quenching or rapid heating quenching by induction heating. Recently, from the viewpoint of energy saving and cost reduction by simplification of the process, a direct quenching method in which quenching is performed immediately from a high temperature at the end of hot rolling together with an additional element has been studied. However, in the direct quenching method, the crystal grain size of the obtained product tends to be larger than that of the usual method of cooling and then reheating and quenching. As a countermeasure, for example,
No. 49 discloses a method of forcibly cooling during rolling in order to obtain a fine grain structure, further reducing and then quenching as it is, and Japanese Unexamined Patent Publication No. 5-271772 discloses a steel to which Mo, Nb, Ti and B are added. The invention discloses a method of cooling directly to Ar 3 or less during rolling after hot piercing, transforming, and then heating again to perform rolling and direct quenching. Also,
PCT-WO-96 / 36742 also discloses a method in which Nb and Ti are added in a complex manner, and after the pipe is made, the heat is supplemented and then directly quenched.

【0008】[0008]

【発明が解決しようとする課題】これまでに提示された
上記のような製造方法は、目標とする強度レベルすなわ
ち降伏応力のレベルは、90ksi(621MPa)が主であっ
た。しかし、110ksi(758MPa)を超えるようになってく
ると、これらの方法で必ずしも安定して十分な高強度と
耐SSC性が得られているとは言い難い。その上、工程
簡略化を目的とした直接焼入れの方法も、そこに至るま
でに冷却や加熱あるいは圧延加工など余分の工程を必要
とし、コストを大きく引き下げるほどの簡略化は、まだ
十分には達成されていないようである。
In the above-described manufacturing method presented so far, the target strength level, that is, the yield stress level is mainly 90 ksi (621 MPa). However, when the pressure exceeds 110 ksi (758 MPa), it is difficult to say that these methods are always stable and provide sufficient high strength and SSC resistance. In addition, the direct quenching method for the purpose of simplifying the process also requires extra steps such as cooling, heating, and rolling to reach the point, and the simplification that significantly reduces the cost is still sufficiently achieved. It doesn't seem to be.

【0009】本発明の課題は、耐SSC性がすぐれた降
伏応力が110〜155ksi(758〜1068MPa)級の、油井およ
びそれに関連した諸設備に使用できる高強度高耐食性鋼
管を、より合理的に製造する方法の提供にある。
An object of the present invention is to provide a high-strength, high-corrosion-resistant steel pipe which has excellent SSC resistance and a yield stress of 110 to 155 ksi (758 to 1068 MPa) class and which can be used in oil wells and related facilities. It is to provide a manufacturing method.

【0010】なお、高強度継目無し鋼管に関しAPI(米
国石油協会)規格がある。これにはC110級ないしはそ
れ以上の規格は設定されていないが、ここでは、その規
格の延長上にあるものとして、強度に応じC110級{降
伏応力110〜125ksi(758〜862MPa)}、C125級{降伏
応力125〜140ksi(862〜965MPa}およびC140級{降伏
応力140〜155ksi(965〜1068MPa)}と仮称することと
し、本発明はこれら高強度の鋼管の製造方法を対象とす
る。
[0010] There is an API (American Petroleum Institute) standard for high-strength seamless steel pipe. No C110 or higher standard is set for this, but here C110 class {yield stress 110-125 ksi (758-862 MPa)}, C125 class {Yield stress of 125 to 140 ksi (862 to 965 MPa) and C140 grade {Yield stress of 140 to 155 ksi (965 to 1068 MPa)}}, and the present invention is directed to a method of manufacturing these high-strength steel pipes.

【0011】[0011]

【課題を解決するための手段】本発明者らは、降伏応力
が110ksiを超え、しかも耐SSC性のすぐれた高強度
の継目無し鋼管をより低コストで製造するための方法に
関し、種々の検討を進めた。
SUMMARY OF THE INVENTION The present inventors have made various studies on a method for producing a high-strength seamless steel pipe having a yield stress exceeding 110 ksi and having excellent SSC resistance at a lower cost. Advanced.

【0012】結晶組織の微細化は、前述のように耐SS
C性向上に必須とされるが、検討の結果は、降伏応力が
110ksi(758MPa)を超える材料になってくると、多少
粗粒になったとしても、十分に焼入れをおこない高温で
焼戻す方が耐SSC性の改善効果が大きいことが明らか
になった。
[0012] As described above, the refinement of the crystal structure is achieved by using the anti-SS
It is indispensable for improving the C property, but the result of the study shows that the yield stress
When the material exceeds 110 ksi (758 MPa), it is clear that even if the material becomes coarser, quenching sufficiently and tempering at a high temperature have a greater effect of improving SSC resistance.

【0013】焼戻しの温度としては、当面の実用化目標
とした降伏応力が125ksi(862MPa)を超える高強度材に
おいても650℃以上が望ましく、できれば680℃以上とす
べきであることもわかった。このような高温の焼戻しで
も十分な強度を確保するには、焼入れ性を向上させ、し
かも焼戻し軟化抵抗を増すCrやMoの多量添加が効果
的である。しかしながら、Crを多く添加すると硫化水
素(H2S)を含む酸性の水溶液中での腐食速度が増加
し、それに伴う吸蔵水素が増して、耐SSC性が劣化し
てくる。Moについては、多量の添加が針状のMoの炭
化物を析出させ、これがSSCの起点となる危険性があ
り、添加量を増すには限界がある。そこで、これらに代
わる強化元素をさらに検討した結果、0.1%を超えるN
bの含有が効果的であることを見出した。
It has also been found that the tempering temperature is preferably 650 ° C. or higher, and preferably 680 ° C. or higher, even for a high-strength material having a yield stress exceeding 125 ksi (862 MPa), which is the target of practical application for the time being. In order to secure sufficient strength even in such high-temperature tempering, it is effective to add a large amount of Cr or Mo that improves quenching properties and increases tempering softening resistance. However, when a large amount of Cr is added, the corrosion rate in an acidic aqueous solution containing hydrogen sulfide (H 2 S) increases, and the amount of occluded hydrogen increases, thereby deteriorating the SSC resistance. Regarding Mo, a large amount of Mo precipitates needle-like carbides of Mo, which may be a starting point of SSC, and there is a limit in increasing the amount of Mo. Therefore, as a result of further study of strengthening elements in place of these, it was found that N
It has been found that the content of b is effective.

【0014】Nbの添加は、結晶粒の成長抑止、すなわ
ち結晶組織微細化に有効であることが知られている。N
b添加による細粒化は、通常0.01%程度の少量の添加で
十分な効果を発揮し、多く含有させてもその効果は飽和
してしまうので、0.1%までの添加とするのが普通であ
る。ところが0.1%を超えるNbを添加し、その上で100
0℃以上の温度から焼入れをおこなうと、高温で焼戻し
しても焼戻し後の強度を維持でき、しかも耐SSC性が
きわめてすぐれた高強度の鋼管用材料が得られたのであ
る。
It is known that the addition of Nb is effective for suppressing the growth of crystal grains, that is, for refining the crystal structure. N
In the grain refinement by the addition of b, a sufficient effect is usually exerted by adding a small amount of about 0.01%, and the effect is saturated even if a large amount is added. Therefore, the addition is usually up to 0.1%. . However, more than 0.1% of Nb was added, and
When quenching is performed at a temperature of 0 ° C. or higher, a high-strength steel pipe material that can maintain the strength after tempering even when tempered at a high temperature and has extremely excellent SSC resistance is obtained.

【0015】Nbをこのように通常より多量に添加する
ことにより得られる効果について、必ずしも明らかでは
ないが次のようないくつかの理由が考えられる。
The effect obtained by adding Nb in a larger amount than usual is not necessarily clear, but may be due to the following several reasons.

【0016】SSCは水素脆化の一種であり、硫化水素
環境での腐食により生じた水素原子が、鋼に侵入するこ
とによって生じる。この水素脆化に関与する水素は、常
温程度の温度で鋼中を拡散し得る「拡散性」水素であ
り、割れ発生の起点となる危険性の大きい応力集中部
に、この水素が拡散してきて水素濃度が高くなると割れ
発生の限界応力が低下し、SSC感受性が高くなる。
SSC is a type of hydrogen embrittlement, and occurs when hydrogen atoms generated by corrosion in a hydrogen sulfide environment enter steel. Hydrogen involved in this hydrogen embrittlement is “diffusible” hydrogen that can diffuse in steel at a temperature of about room temperature, and this hydrogen diffuses into a stress concentration portion where there is a high risk of starting cracking. As the hydrogen concentration increases, the critical stress for crack generation decreases and the SSC sensitivity increases.

【0017】鋼中の転位や、炭化物、窒化物などの微細
析出物は、拡散性水素のトラップサイトとして作用す
る。ここでいうトラップサイトとは、拡散ができないほ
ど強力に水素を固定するのではなく、鋼中に固溶してい
る水素が、その部分に存在する方がより安定であり、鋼
の素地の水素濃度レベルよりは相対的に濃度が高くなる
局所的部分のことである。鋼はその組成が同じであれ
ば、硫化水素水環境での表面における腐食の進行はほぼ
同じであり、それにより発生する水素量も同じである。
発生した水素は、一部は鋼中に侵入し他は水中など外部
へ逃げていく。その場合、鋼の素地の水素濃度が低けれ
ば鋼中に取り込まれる比率が増し、高ければその比率は
減少する。転位や析出物など水素のトラップサイトが多
い鋼では、その部分に水素が偏在するので、侵入した水
素量が同じであれば、鋼の素地としての水素濃度は低く
なる。したがって、転位や微細析出物の多い鋼、すなわ
ち転位や微細析出物によって強化を計る高強度鋼では、
腐食量が同じなら低強度鋼に比較して鋼全体の水素取り
込み量が多くなる傾向にある。鋼全体として水素量が多
ければ、応力集中部へ凝集する水素が多くなり、その部
位の水素濃度がより高くなりやすいので耐SSC性は低
下する。
Fine precipitates such as dislocations, carbides and nitrides in the steel act as trap sites for diffusible hydrogen. The term "trap site" used here does not mean that hydrogen is fixed so strongly that it cannot be diffused, but that hydrogen in solid solution in steel is more stable when present in that part. It is a local portion where the density is relatively higher than the density level. If the steel has the same composition, the progress of corrosion on the surface in the aqueous hydrogen sulfide environment is almost the same, and the amount of hydrogen generated thereby is also the same.
Some of the generated hydrogen enters the steel and others escape to the outside such as underwater. In that case, if the hydrogen concentration of the steel base is low, the ratio incorporated into the steel increases, and if it is high, the ratio decreases. In steel having many hydrogen trap sites such as dislocations and precipitates, hydrogen is unevenly distributed in that portion, and therefore, if the amount of invaded hydrogen is the same, the hydrogen concentration as a steel base becomes low. Therefore, in steels with many dislocations and fine precipitates, that is, high-strength steels that are strengthened by dislocations and fine precipitates,
If the amount of corrosion is the same, the amount of hydrogen uptake in the steel as a whole tends to increase as compared with low-strength steel. If the amount of hydrogen in the steel as a whole is large, the amount of hydrogen agglomerated in the stress concentration portion increases, and the hydrogen concentration in that portion tends to be higher, so that the SSC resistance decreases.

【0018】焼戻し温度を高くすれば、焼入れ時のマル
テンサイト変態によって導入された大量の転位が次第に
消失していく。高温焼戻しが耐SSC性を向上させる理
由の一つは、この拡散性水素のトラップサイトである転
位の減少によると推測される。一般に、焼戻し温度の上
昇は強度を大幅に低下させるが、Nbを多量に含有させ
ると、高温の焼戻しによる強度低下が抑制できるのであ
る。強度低下の抑制は主として微細な炭化物の析出によ
るとされており、析出物の分散状態や形態が、Nbの多
量添加により変化したものと考えられる。
When the tempering temperature is increased, a large amount of dislocations introduced by martensitic transformation during quenching gradually disappear. One of the reasons that the high temperature tempering improves the SSC resistance is presumed to be due to the reduction of dislocations, which are trap sites for diffusible hydrogen. Generally, an increase in the tempering temperature significantly lowers the strength, but when Nb is contained in a large amount, a decrease in the strength due to high-temperature tempering can be suppressed. It is believed that the reduction in strength is mainly due to the precipitation of fine carbides, and it is considered that the dispersion state and form of the precipitates have been changed by the addition of a large amount of Nb.

【0019】微細析出物は、通常上述のように転位と同
様水素のトラップサイトとなるが、Nbを0.1%より多
く添加した材料を調べてみると、他の元素の場合に比較
し、水素吸蔵量が少ない。すなわち、Nbの多量添加に
よる析出物の分散状態や形態の変化は、その水素のトラ
ップサイトとしての作用を減退させる効果もあると推定
された。このように、Nbの0.1%以上の添加は、強度
を大幅に低下させることなく高温の焼戻しを可能にし、
その上、できた析出物も水素吸蔵能力が小さく、鋼への
水素吸収を低減させるので、耐SSC性のすぐれた高強
度鋼管を得るためにきわめて効果的なのである。
Although fine precipitates usually become trap sites for hydrogen as in the case of dislocations as described above, a study of materials to which Nb is added in an amount of more than 0.1% shows that hydrogen storage is smaller than that of other elements. The amount is small. That is, it was presumed that a change in the dispersion state or form of the precipitate due to the addition of a large amount of Nb also had an effect of reducing the action of the hydrogen as a trap site. As described above, the addition of 0.1% or more of Nb enables high-temperature tempering without significantly reducing the strength,
In addition, the formed precipitates have a low hydrogen storage capacity and reduce the absorption of hydrogen into the steel, so that they are extremely effective for obtaining high-strength steel pipes having excellent SSC resistance.

【0020】このようなNb添加の効果は、熱間圧延の
最終過程において、1000〜1150℃の温度域の断面減少率
を40%以上とする加工を施すことによって、さらに向上
することも確認された。熱間圧延の最終過程の加工は、
このようにNb量が多い場合、Nbの析出物の分散状態
に大きく影響するとともに、結晶組織の微細化にも有効
に作用し、好結果をもたらす。
It has also been confirmed that the effect of the addition of Nb can be further improved by performing a process of reducing the cross-sectional reduction rate in the temperature range of 1000 to 1150 ° C. to 40% or more in the final step of hot rolling. Was. The final process of hot rolling is
When the amount of Nb is large as described above, it greatly affects the dispersion state of Nb precipitates, and also effectively acts to refine the crystal structure, resulting in good results.

【0021】以上のような知見に基づき、さらにその効
果を十分発揮できる条件の限界を明らかにして、本発明
を完成させた。本発明の要旨は次のとおりである。
Based on the above findings, the present invention has been completed by clarifying the limits of conditions under which the effect can be sufficiently exerted. The gist of the present invention is as follows.

【0022】(1) 熱間で穿孔および圧延して鋼管形状に
成形後そのまま直接焼入れし、焼戻しをおこなって、所
要強度に調質する継目無し鋼管の製造方法であって、重
量%で、 C:0.20〜0.35%、 Si:0.05〜0.5%、 Mn:0.1〜1%、 P:0.025%以下、 S:0.01%以下、 Cr:0.3〜1.2%、 Mo:0.2〜1%、 sol.Al:0.005〜0.5%、 Ti:0.005〜0.5%、 B:0.0001〜0.005%、 Nb:0.1〜0.5%、 V:0.5%以下、 W:1%以下、 Zr:0.5%以下、 Ca:0.01%以下、 Ni:0.1%以下、 N:0.01%以下、 O:0.01%以下 を含み、残部はFeおよび不可避的不純物からなる鋼の
ビレットを、熱間穿孔および圧延する際の最終の仕上げ
圧延段階において、1000〜1150℃の温度範囲にて40%以
上の加工を施した後、1000℃以上の温度から直接焼入れ
し、その後焼戻すことを特徴とする、758〜1068MPaの降
伏応力を有する高強度高耐食性継目無し鋼管の製造方
法。
(1) A method for producing a seamless steel pipe which is hot pierced and rolled, formed into a steel pipe shape, directly quenched as it is, and then tempered to temper to a required strength. : 0.20 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, P: 0.025% or less, S: 0.01% or less, Cr: 0.3 to 1.2%, Mo: 0.2 to 1%, sol.Al: 0.005 to 0.5%, Ti: 0.005 to 0.5%, B: 0.0001 to 0.005%, Nb: 0.1 to 0.5%, V: 0.5% or less, W: 1% or less, Zr: 0.5% or less, Ca: 0.01% or less, Ni: 0.1% or less, N: 0.01% or less, O: 0.01% or less, with the balance being 1000% in the final finishing rolling step in hot piercing and rolling a steel billet composed of Fe and unavoidable impurities. After performing processing of 40% or more in the temperature range of ~ 1150 ° C, quenching directly from a temperature of 1000 ° C or more and then tempering Wherein, the method of producing a high strength and high corrosion resistance seamless steel pipe having a yield stress of 758~1068MPa.

【0023】(2) 焼入れ焼戻しにより所要強度に調質す
る、継目無し鋼管の製造方法であって、重量%で、 C:0.20〜0.35%、 Si:0.05〜0.5%、 Mn:0.1〜1%、 P:0.025%以下、 S:0.01%以下、 Cr:0.3〜1.2%、 Mo:0.2〜1%、 sol.Al:0.005〜0.5%、 Ti:0.005〜0.5%、 B:0.0001〜0.005%、 Nb:0.1〜0.5%、 V:0.5%以下、 W:1%以下、 Zr:0.5%以下、 Ca:0.01%以下、 Ni:0.1%以下、 N:0.01%以下、 O:0.01%以下 を含み、残部はFeおよび不可避的不純物からなる化学
組成の鋼管を、1000〜1150℃に加熱して焼入れをおこな
い、その後焼戻すことを特徴とする、758〜1068MPaの降
伏応力を有する高強度高耐食性継目無し鋼管の製造方
法。
(2) A method for producing a seamless steel pipe which is tempered to a required strength by quenching and tempering, wherein C: 0.20 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1% by weight. P: 0.025% or less, S: 0.01% or less, Cr: 0.3 to 1.2%, Mo: 0.2 to 1%, sol. Al: 0.005 to 0.5%, Ti: 0.005 to 0.5%, B: 0.0001 to 0.005%, Nb: 0.1-0.5%, V: 0.5% or less, W: 1% or less, Zr: 0.5% or less, Ca: 0.01% or less, Ni: 0.1% or less, N: 0.01% or less, O: 0.01% or less A steel pipe having a chemical composition consisting of Fe and unavoidable impurities is heated to 1000 to 1150 ° C., quenched, and then tempered, and has a high strength and high corrosion resistance with a yield stress of 758 to 1068 MPa. No steel pipe manufacturing method.

【0024】(3) 熱間穿孔および圧延する際の最終の仕
上げ圧延段階において、1000〜1150℃の温度範囲にて40
%以上の加工を施した後、400℃以下まで10℃/s以上
で冷却した鋼管を用いることを特徴とする、上記(2)の7
58〜1068MPaの降伏応力を有する高強度高耐食性継目無
し鋼管の製造方法。
(3) In the final finishing rolling step in hot piercing and rolling, the temperature range of 1000 to 1150 ° C.
(2) above, characterized by using a steel pipe which has been worked at a rate of at least
A method for producing a high-strength, high-corrosion-resistant seamless steel pipe having a yield stress of 58 to 1068 MPa.

【0025】[0025]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

1、化学組成 以下の化学組成の「%」は、すべて重量%である。 1. Chemical composition "%" in the following chemical composition is all% by weight.

【0026】C:0.20〜0.35%、Cは焼入れによる強度
を確保するために必要な元素である。その含有量は0.20
%未満では焼入れ硬さが不足し、焼戻し後に必要とする
高強度が得られない。0.35%を超えると炭化物が増加
し、耐SSC性が低下してくるので、0.20〜0.35%とす
る。Cの上限は、望ましくは0.30%までである。
C: 0.20 to 0.35%, C is an element necessary for securing strength by quenching. Its content is 0.20
%, The quenching hardness is insufficient, and the high strength required after tempering cannot be obtained. If it exceeds 0.35%, the amount of carbides increases and the SSC resistance decreases, so the content is set to 0.20 to 0.35%. The upper limit of C is desirably up to 0.30%.

【0027】Si:0.05〜0.5%、Siは鋼の脱酸に必
要な元素であり、焼戻軟化抵抗を高め耐SSC性を向上
させる元素であるが、過剰に含有すると鋼を脆化させ
る。脱酸と耐SSC性の向上の目的からは、0.05%以上
の含有が必要であるが、0.5%を超えると靭性が低下
し、かえって耐SSC性を低下させるので、0.05〜0.5
%とする。なお上限は望ましくは0.3%である。
Si: 0.05-0.5%, Si is an element necessary for deoxidation of steel, and is an element which enhances temper softening resistance and improves SSC resistance. However, excessive Si content makes the steel brittle. For the purpose of deoxidation and improvement of SSC resistance, the content of 0.05% or more is necessary. However, if it exceeds 0.5%, the toughness is reduced and the SSC resistance is reduced.
%. The upper limit is desirably 0.3%.

【0028】Mn:0.1〜1%、Mnは、Sによる熱間脆
性を抑止するために必要な元素であり、また、焼入れ性
向上効果もある。それらの目的からは0.1%以上の含有
が必要であるが、1.0%を超えると靭性が低下し、とく
に耐SSC性を低下させるので、0.1〜0.5%とする。M
nの上限は望ましくは0.3%である。
Mn: 0.1-1%, Mn is an element necessary for suppressing hot brittleness due to S, and has an effect of improving hardenability. For these purposes, the content of 0.1% or more is necessary, but if it exceeds 1.0%, the toughness is reduced, and particularly the SSC resistance is reduced. M
The upper limit of n is desirably 0.3%.

【0029】Cr:0.3〜1.2%、Crは焼入れ性を確保
して強度を上昇させるとともに耐SSC性を向上させ
る。本発明の目標とする降伏応力110ksi(758MPa)以上
の鋼にするには、0.3%未満では焼入れ性改善効果が不
十分であり、1.2%を超えると硫化水素を含む環境にお
いて腐食速度が増加し、それに伴う吸蔵水素濃度の増加
を招いて耐SSC性を劣化させるので、0.3〜1.2%とす
る。望ましくは、0.5〜0.8%である。
Cr: 0.3 to 1.2%, Cr secures hardenability, increases strength and improves SSC resistance. In order to obtain a steel having a yield stress of 110 ksi (758 MPa) or more, which is the target of the present invention, if less than 0.3%, the effect of improving hardenability is insufficient, and if it exceeds 1.2%, the corrosion rate increases in an environment containing hydrogen sulfide. In addition, the concentration of occluded hydrogen is increased, thereby deteriorating the SSC resistance. Desirably, it is 0.5 to 0.8%.

【0030】Mo:0.2〜1%、MoはCrと同様、焼入
れ性を向上させるとともに、焼戻し軟化抵抗を高める効
果がある。焼戻し温度を高くできれば耐SSC性が向上
する。Moの含有量は0.2%未満ではその効果が充分で
ない。しかし、1%を超えると針状のMo炭化物が析出
し、これは応力集中係数が高くSSCの起点となって耐
SSC性を悪くするため、0.2〜1%とする。望ましく
は、0.3〜0.8%である。
Mo: 0.2 to 1%, Mo has the effect of improving the hardenability and the tempering softening resistance, like Cr. If the tempering temperature can be increased, the SSC resistance improves. If the content of Mo is less than 0.2%, the effect is not sufficient. However, if it exceeds 1%, acicular Mo carbides precipitate, and this has a high stress concentration coefficient and becomes a starting point of SSC, thereby deteriorating SSC resistance. Desirably, it is 0.3 to 0.8%.

【0031】sol.Al(酸可溶Al):0.005〜0.5% Alは鋼の脱酸に必要な元素である。鋳片の健全性を十
分確保するための溶湯への添加の結果、sol.Alとして
鋼中に含有されるが、0.005%未満では鋳片に欠陥が残
る。しかし、0.5%超えると、介在物が多くなって靱性
が低下する。また、油井管用継目無鋼管ではその管端に
接続用のネジを切ることが多いが、Alが多いとネジ切
り部に欠陥が発生しやすくなる。したがって、sol.Al
の含有量は0.005〜0.5%とする。
Sol. Al (acid-soluble Al): 0.005 to 0.5% Al is an element necessary for deoxidizing steel. As a result of addition to the molten metal to ensure sufficient soundness of the slab, the slab is contained in the steel as sol.Al, but if less than 0.005%, defects remain in the slab. However, if it exceeds 0.5%, the inclusions increase and the toughness decreases. Further, in a seamless steel pipe for an oil country tubular good, a thread for connection is often cut at the pipe end. However, if there is a large amount of Al, a defect easily occurs in a threaded portion. Therefore, sol.Al
Is 0.005 to 0.5%.

【0032】Ti:0.005〜0.5% Tiは鋼中の不純物であるNをTiNとして固定する目
的で添加する。また、N固定に必要とするより過剰のT
iは、炭化物となって微細に析出し、焼戻し軟化抵抗を
高める効果がある。Nの固定は、BNの形成を抑止し、
Bを固溶状態に維持して十分に焼入性を高めるためであ
る。0.005%未満ではその効果が十分得られず、0.5%を
超えると靱性を劣化させる悪影響が現れるので、Tiの
含有量は0.005〜0.5%とした。
Ti: 0.005 to 0.5% Ti is added for the purpose of fixing N, which is an impurity in steel, as TiN. Also, the excess T required for fixing N
i has the effect of increasing the temper softening resistance by becoming finely precipitated as carbides. Fixing N suppresses the formation of BN,
This is for maintaining B in a solid solution state and sufficiently improving hardenability. If it is less than 0.005%, the effect cannot be sufficiently obtained, and if it exceeds 0.5%, a bad effect of deteriorating toughness appears. Therefore, the content of Ti is set to 0.005 to 0.5%.

【0033】B:0.0001〜0.005% Bは微量で焼入性を向上させ、特に厚肉材の耐SSC性
を改善する。0.0001%未満ではその焼入れ性向上効果は
得られず、0.005%を超えると靱性および耐SSC性が
大きく低下するので、Bの含有量は0.0001〜0.005%と
する。
B: 0.0001 to 0.005% B improves the hardenability in a trace amount, and particularly improves the SSC resistance of thick materials. If it is less than 0.0001%, the effect of improving the hardenability is not obtained, and if it exceeds 0.005%, the toughness and SSC resistance are greatly reduced, so the B content is made 0.0001 to 0.005%.

【0034】Nb:0.1〜0.5%、Nbは本発明におい
て、もっとも重要な役割を果たす元素である。すなわ
ち、加熱時の粒成長を抑えて高温からの焼入れを可能に
し、焼入れ後の焼戻し軟化抵抗を著しく高め、高温の焼
戻し温度においても十分な強度を維持することを実現さ
せるのである。このような効果を得るには、少なくとも
0.1%以上の含有が必要であり、0.1%未満では、耐SS
C性に望ましい高温焼戻(650℃以上)後に、高強度を
確保することが困難である。
Nb: 0.1-0.5%, Nb is an element that plays the most important role in the present invention. That is, quenching from a high temperature is made possible by suppressing grain growth during heating, the tempering softening resistance after quenching is significantly increased, and sufficient strength is maintained even at a high tempering temperature. To achieve this effect, at least
0.1% or more must be contained, and if less than 0.1%, SS resistance
It is difficult to ensure high strength after high-temperature tempering (650 ° C. or higher), which is desirable for C properties.

【0035】一方、0.5%を超えると靱性が低下するこ
とに加え、所要強度に調整するための焼戻し温度がA1
変態点を超えてしまうことがある。したがって、含有範
囲を0.1〜0.5%に限定する。望ましいのは0.2〜0.4%で
ある。
On the other hand, if it exceeds 0.5%, the toughness is reduced, and the tempering temperature for adjusting to the required strength is A 1
It may exceed the transformation point. Therefore, the content range is limited to 0.1 to 0.5%. Desirable is 0.2-0.4%.

【0036】V:0.5%以下、Vは添加しなくてもよい
が、焼戻し時に微細な炭化物として析出して焼戻し軟化
抵抗を高めるので、必要により含有させる。とくにNb
とともに含有させると耐SSC性が向上する。添加によ
りその効果を発揮させるには、少なくとも0.005%以上
の含有が望ましい。ただし添加しすぎると靱性が低下す
るので、多くても0.5%までとする。
V: 0.5% or less, V may not be added, but is added if necessary because it precipitates as fine carbides during tempering and increases tempering softening resistance. Especially Nb
When added together, SSC resistance is improved. In order to exhibit the effect by addition, the content is preferably at least 0.005% or more. However, if added too much, the toughness is reduced, so the content should be at most 0.5%.

【0037】W:1.0%以下、Wは添加しなくてもよい
が、Moと同様焼入れ性を向上し、焼戻し軟化抵抗を高
める効果があるので、必要により含有させる。添加によ
りその効果を発揮させるには、少なくとも0.005%以上
の含有が望ましい。しかし、1.0%を超える含有は効果
が飽和するばかりでなく、偏析して耐SSC性を悪くす
ることがあるので、その含有量は1.0%までとする。
W: 1.0% or less, W may not be added, but has the effect of improving the hardenability and increasing the temper softening resistance as in the case of Mo. In order to exhibit the effect by addition, the content is preferably at least 0.005% or more. However, if the content exceeds 1.0%, not only the effect is saturated, but also segregation may deteriorate the SSC resistance, so the content is limited to 1.0%.

【0038】Zr:0.5%以下、Zrは高価な元素でも
あり、添加しなくてもよいが、含有させると降伏応力を
上昇させ、結果として耐SSC性が向上する。これは局
部降伏時の加工硬化を小さくする効果によると解釈され
る。明らかな効果を得るためには、少なくとも0.005%
の含有が望ましいが、多すぎると介在物が増加し靱性を
悪くするようになるので、添加する場合、含有量の上限
は0.5%とする。
Zr: 0.5% or less, Zr is an expensive element and does not need to be added. However, when Zr is contained, the yield stress increases, and as a result, SSC resistance improves. This is interpreted to be due to the effect of reducing work hardening at the time of local yielding. At least 0.005% for a clear effect
Is desirable, but if it is too large, inclusions increase and the toughness deteriorates, so when adding, the upper limit of the content is 0.5%.

【0039】Ca:0.01%以下、Caは添加しなくても
よいが、耐SSC性を向上させることがあるので、必要
により含有させる。これは鋼中のSと反応し硫化物を形
成することによって、その介在物の形状を改善し、割れ
の起点の応力集中源となることを回避させる効果による
と考えられる。含有させる場合、その効果を得るために
は少なくとも0.0001%以上の含有が望ましいが、多すぎ
ると鋼表面に地疵などの欠陥を生ずることがあるので、
多くとも0.01%までとする。
Ca: 0.01% or less, Ca may not be added, but may be added if necessary because it may improve SSC resistance. This is considered to be due to the effect of improving the shape of the inclusion by reacting with S in the steel to form a sulfide, thereby preventing the inclusion from becoming a stress concentration source at the starting point of cracking. When it is contained, the content is preferably at least 0.0001% or more in order to obtain the effect, but if it is too much, defects such as ground flaws may occur on the steel surface,
The maximum is 0.01%.

【0040】不可避的不純物:Feおよび上記の各合金
成分以外の不可避的不純物の混入は、鋼の性能を悪くす
るので少なければ少ないほどよい。とくに上限を規制す
ることが必要な元素としては、Sは硫化物系介在物を形
成して耐食性を悪くし、耐SSC性も劣化させるので0.
01%以下とし、Pは強度が上昇すると耐SSC性を大き
く劣化させるようになるので0.025%以下とすべきであ
る。Niは本発明の組成範囲の鋼では耐SSC性を悪く
するので0.1%以下に規制する。また、NおよびOはい
ずれも靱性および耐SSC性を低下させるので、ともに
0.01%以下とする。
Inevitable impurities: The inclusion of inevitable impurities other than Fe and the above-described alloy components deteriorates the performance of steel, so the smaller the better, the better. Particularly, as an element for which the upper limit needs to be regulated, S forms sulfide-based inclusions, thereby deteriorating corrosion resistance and deteriorating SSC resistance.
P should be set to 0.01% or less, and P should be set to 0.025% or less, because the SSC resistance is greatly deteriorated when the strength is increased. Ni is restricted to 0.1% or less because steel having the composition range of the present invention deteriorates SSC resistance. In addition, since both N and O decrease toughness and SSC resistance,
It shall be 0.01% or less.

【0041】2、製造条件 熱間加工、すなわち穿孔からそれに引き続く圧延におけ
る、ビレットの加熱温度は、通常1100〜1300℃である
が、本発明の方法の場合、析出するNbCの分散状態を
制御するという観点から高い方が好ましい。ただし、高
温にすることは加熱設備や加工設備の面で制限されるの
で、望ましい温度は1150〜1250℃である。
2. Manufacturing Conditions The heating temperature of the billet in hot working, that is, in the subsequent rolling from the piercing, is usually 1100 to 1300 ° C. In the case of the method of the present invention, the dispersion state of the precipitated NbC is controlled. A higher one is preferable from the viewpoint of. However, setting the temperature to a high temperature is limited in terms of heating equipment and processing equipment. Therefore, a desirable temperature is 1150 to 1250 ° C.

【0042】熱間圧延の最終段階において、1000〜1150
℃の温度範囲での断面圧縮率を40%以上とする。これ
は、1150℃に至るまでの加工度の大小は、加工後直ちに
再結晶が進むため、結晶組織の微細化には効果が少な
く、1000℃を下回る温度での加工は、Nbを多量に添加
する本発明の鋼の場合、焼入れ後の硬さのばらつきや、
冷却後の鋼管の変形を大きくするおそれがあるからであ
る。またこの温度範囲での断面圧縮率が40%未満の加工
は、細粒の組織が得られず耐SSC性が不十分となる。
In the final stage of hot rolling, 1000 to 1150
The cross-sectional compression ratio in the temperature range of ° C is 40% or more. This is because the degree of processing up to 1150 ° C is less effective in refining the crystal structure because recrystallization proceeds immediately after processing, and a large amount of Nb is added at processing below 1000 ° C. In the case of the steel of the present invention, and the variation in hardness after quenching,
This is because there is a possibility that the deformation of the steel pipe after cooling may be increased. On the other hand, when the cross-sectional compression ratio in this temperature range is less than 40%, fine grained structure cannot be obtained and the SSC resistance becomes insufficient.

【0043】圧延の最終段階を終えた後、直ちに焼入れ
る。この場合の焼入れ温度は、1000℃以上とする。焼入
れの上限温度はとくには定めないが、1150℃以下での加
工が40%以上必要なので、自ずから限界がある。1000℃
を下回る温度からの焼入れは、耐SSC性のよいものが
得にくい。これは、NbCなどの析出物の分散状態が好
ましくないことや、十分な焼入れ状態が得られないこと
による。この焼入れ温度は、望ましくは1050℃以上であ
る。
After finishing the final stage of rolling, it is quenched immediately. In this case, the quenching temperature is 1000 ° C. or higher. The upper limit temperature of quenching is not particularly defined, but processing at 1150 ° C or lower requires 40% or more, so there is a limit naturally. 1000 ℃
Quenching at a temperature lower than the above is difficult to obtain a material having good SSC resistance. This is because the dispersion state of precipitates such as NbC is not preferable, and a sufficient quenched state cannot be obtained. The quenching temperature is desirably 1050 ° C. or higher.

【0044】1000℃以上からの焼入れは、上記の圧延後
直ちにおこなう直接焼入れがよいが、一旦(650℃以
下、ないしは室温程度まで)冷却された鋼管を1000〜11
50℃に再加熱して、焼入れをおこなってもほぼ同様な効
果が得られる。ここでの焼入れの再加熱温度は、温度が
高くなりすぎると結晶粒が粗大化するので1150℃までと
する。なおこの場合、本発明で定める化学組成としたビ
レットを用いて製管した鋼管であればよいが、熱間圧延
の最終段階にて、1000〜1150℃の温度範囲での断面圧縮
率を40%以上とし、その後400℃までの冷却を10℃/s
以上の冷却速度とすれば、さらに効果的に耐SSC性を
向上させることができる。これは、NbCなどの析出物
の形態をより好ましい状態にできるためである。圧延後
の冷却速度が速くなりすぎ、焼入れ状態となってもその
効果は変わらないが、不均一な冷却により鋼管が変形す
ることもあるので、冷却速度は焼きが入らない程度にと
どめることが好ましい。なお、望ましい冷却速度は20℃
/s以上である。
For quenching from 1000 ° C. or more, direct quenching immediately after the above-mentioned rolling is preferable, but once cooled (below 650 ° C. or about room temperature), the steel pipe is cooled to 1000 to 11 ° C.
Almost the same effect can be obtained by reheating to 50 ° C. and quenching. Here, the reheating temperature for quenching is set to 1150 ° C. if the temperature is too high, the crystal grains become coarse. In this case, a steel pipe manufactured using a billet having a chemical composition defined in the present invention may be used, but in the final stage of hot rolling, the cross-sectional compression ratio in a temperature range of 1000 to 1150 ° C. is 40%. After that, cool down to 400 ° C at 10 ° C / s
With the above cooling rate, the SSC resistance can be more effectively improved. This is because the form of the precipitate such as NbC can be made more preferable. Even if the cooling rate after rolling becomes too fast and the quenched state does not change, the effect does not change, but since the steel pipe may be deformed due to uneven cooling, it is preferable to keep the cooling rate to a degree that quenching does not occur. . The preferred cooling rate is 20 ° C
/ S or more.

【0045】焼戻し条件は、所定の強度に調整するとい
う目的からとくには定めないが、上述のような条件にて
焼入れが完了した場合、所要強度に調整し、かつすぐれ
た耐SSC性を得るには650℃以上の焼戻しが必要にな
る。しかし、より好ましいのは、680℃以上の焼戻し温
度で所要強度が得られるようにすることである。
The tempering conditions are not particularly defined for the purpose of adjusting the strength to a predetermined value. However, when the quenching is completed under the above-described conditions, the tempering condition is adjusted to the required strength and the excellent SSC resistance is obtained. Requires tempering at 650 ° C or higher. However, it is more preferable that the required strength be obtained at a tempering temperature of 680 ° C. or higher.

【0046】[0046]

【実施例】【Example】

〔実施例1〕表1に示す化学組成の鋼を150kgの真空溶
解炉を用いて溶製した。鋼記号A〜D、E〜H、Iと
J、KとL、およびM〜Oは、それぞれ同一溶解チャン
スに分湯したものであり、特定の合金元素を鋳込み直前
に添加して組成を調整している。得られた鋳塊を鍛造
し、厚さ50mm、幅80mm、長さ250mmの圧延用ビレットと
した。これらのビレットを、鋼管の加工工程ないしは仕
上げ圧延の加工度の条件に合わせて、1250℃に加熱し、
50%の粗圧延加工後、1150℃を下回る温度域にて、仕上
げ圧延し、圧延後直ちに焼入れをおこなった。ここで、
各鋼試料とも圧延終了時の温度、すなわち焼入れ温度が
1020〜1050℃となるようにした。焼入れ後、成分および
所要強度に応じて温度を変化させ焼戻した。これらの鋼
試料ごとの試験条件は、表2にまとめて示す。
Example 1 Steel having the chemical composition shown in Table 1 was melted using a 150 kg vacuum melting furnace. Steel symbols A to D, E to H, I and J, K and L, and M to O are melted at the same melting chance, respectively, and the composition is adjusted by adding a specific alloy element immediately before casting. doing. The obtained ingot was forged to form a billet for rolling having a thickness of 50 mm, a width of 80 mm and a length of 250 mm. These billets are heated to 1250 ° C in accordance with the conditions of the steel pipe processing process or the finish rolling process,
After the rough rolling of 50%, finish rolling was performed in a temperature range lower than 1150 ° C, and quenching was performed immediately after the rolling. here,
For each steel sample, the temperature at the end of rolling, that is, the quenching temperature,
The temperature was set at 1020 to 1050 ° C. After quenching, tempering was performed by changing the temperature according to the components and the required strength. The test conditions for each of these steel samples are summarized in Table 2.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】得られた各鋼板試料板から、圧延方向に平
行にJIS-14B号試験片を採取し、引張り強度を測定し
た。また、耐SSC性の評価は、NACE TM-0117 Metod A
に準拠した方法でおこなった。すなわち、試料の板厚
中心部から圧延方向に平行に、直径6.35mm、長さ25.4mm
の平行部を有する丸棒試験片を採取し、1気圧の硫化水
素で飽和した5%酢酸+5%食塩の水溶液中における定荷
重試験である。負荷応力は実降伏応力の80%、温度は25
℃にて、720時間荷重を印加した状態で試験を継続し、
その間に破断しなかった場合を、耐SSC性良好と判定
した。
A JIS-14B test piece was sampled from each of the obtained steel sheet samples in parallel with the rolling direction, and the tensile strength was measured. The SSC resistance was evaluated by NACE TM-0117 Metod A
The method was performed in accordance with That is, 6.35 mm in diameter and 25.4 mm in length, parallel to the rolling direction from the center of the sample thickness.
Is a constant load test in an aqueous solution of 5% acetic acid + 5% salt saturated with hydrogen sulfide at 1 atm. Load stress is 80% of actual yield stress, temperature is 25
At ℃, continue the test with the load applied for 720 hours,
When the sample did not break during that time, it was determined that the SSC resistance was good.

【0050】試験結果を表2に合わせて示す。ここで、
試番1〜4、または試番5〜8は、Nbの含有量の影響を
比較したものであるが、試番1または試番5は、Nb含有
量が本発明の定める範囲よりも低く、所要強度を得るた
めには焼戻し温度を十分高くすることができず、耐SS
C性がよくない。また試番4または試番8は、Nb含有量
が本発明範囲より多すぎる場合であるが、所要強度にす
るには、焼戻し温度がAc1変態点を超えてしまい、これ
もまた耐SSC性悪くする原因となっている。試番10、
12、13、および15は、C量、Cr量またはMo量などが
本発明で定める範囲から逸脱しており、製造条件は熱間
圧延の仕上げ過程にて40%以上の加工および1000℃以上
の高温からの焼入れとし、焼戻し後所要強度が得られて
も、耐SSC性は不十分である。また、試番17〜20、ま
たは試番21〜24は、仕上げ圧延の1150℃を下回る温度範
囲での圧下率を変えた効果を見たものである。鋼の組成
としては、いずれも本発明範囲に入るものであるが、圧
延加工度が40%を下回る試番17、または21は、いずれも
耐SSC性がよくない結果となっている。これらの結果
の比較から分かるように、本発明の定める方法にて製造
された場合、いずれもすぐれた耐SSC性を示してい
る。
The test results are shown in Table 2. here,
Test Nos. 1 to 4 or Test Nos. 5 to 8 compare the effect of the Nb content, but in Test No. 1 or Test No. 5, the Nb content is lower than the range defined by the present invention, The tempering temperature cannot be raised sufficiently to obtain the required strength,
C property is not good. Test No. 4 or Test No. 8 is the case where the Nb content is too large than the range of the present invention. However, in order to obtain the required strength, the tempering temperature exceeds the Ac 1 transformation point, which is also the SSC resistance. It's causing it to get worse. Test number 10,
12, 13, and 15, the amount of C, the amount of Cr, or the amount of Mo, etc., deviates from the range specified by the present invention, and the manufacturing conditions are 40% or more processing in the finishing process of hot rolling and 1000 ° C or more. Even if quenching is performed at a high temperature and the required strength is obtained after tempering, the SSC resistance is insufficient. Test Nos. 17 to 20 and Test Nos. 21 to 24 show the effect of changing the rolling reduction in a temperature range lower than 1150 ° C. in finish rolling. Although the steel composition falls within the scope of the present invention, any of Test Nos. 17 and 21 in which the rolling degree is less than 40% results in poor SSC resistance. As can be seen from the comparison of these results, when manufactured by the method defined by the present invention, all of them show excellent SSC resistance.

【0051】〔実施例2〕表1に示した組成の鋼によ
り、実施例1と同様、厚さ50mm、幅80mm、長さ250mmの
圧延用ビレットを用いて、鋼管の加工工程ないしは仕上
げ圧延の加工度の条件に合わせて、1250℃加熱、50%の
粗圧延加工後、1150℃を下回る温度域にて、70%または
50%の圧下率の仕上げ圧延をおこない、1020℃以上の温
度で圧延終了後室温にまで放冷した。400℃までのまで
の平均冷却速度は、一部を除き、いずれも約20℃/sで
あった。得られた鋼板を再加熱し、焼入れ焼戻しをおこ
なった。これらの熱処理の温度条件を表3に示す。
[Example 2] In the same manner as in Example 1, a steel pipe having the composition shown in Table 1 was used to form a steel pipe in a processing step or finish rolling using a 50 mm thick, 80 mm wide, and 250 mm long billet for rolling. After heating at 1250 ° C and rough rolling at 50% according to the conditions of workability, 70% or less at the temperature range below 1150 ° C
Finish rolling was performed at a rolling reduction of 50%, and after the rolling was completed at a temperature of 1020 ° C. or more, it was allowed to cool to room temperature. The average cooling rate up to 400 ° C. was about 20 ° C./s, except for a part. The obtained steel sheet was reheated and quenched and tempered. Table 3 shows the temperature conditions for these heat treatments.

【0052】[0052]

【表3】 [Table 3]

【0053】熱処理後の板試片から、実施例1と同様に
して引張り強度を測定し、耐SSC性を評価した。結果
も表3に合わせて示す。試番25〜40は、実施例1の試番
1〜16が直接焼入れで試作されたものであるのに対し、
同じ材料を再加熱して焼入れたものである。これから分
かるように、再加熱した場合でも、本発明で定める化学
組成範囲にあるものは、高温からの焼入れ、および高温
の焼戻しによって、すぐれた耐SSC性が得られること
がわかる。また、試番41〜44、または試番45〜48は、本
発明範囲に入る化学組成の鋼により、加熱温度を変えて
焼入れ、焼戻しをおこなったものであるがあるが、焼入
れの加熱温度が高すぎ、または低すぎて本発明範囲を逸
脱する場合、耐SSC性はよくないことが明らかであ
る。なお、試番49および50は、圧延後の冷却を保温して
緩冷したものであるが、結果がやや不安定となる。
From the heat-treated plate specimen, the tensile strength was measured in the same manner as in Example 1, and the SSC resistance was evaluated. The results are also shown in Table 3. Test numbers 25 to 40 are the test numbers of Example 1.
Whereas 1 to 16 are prototypes made by direct quenching,
The same material is reheated and quenched. As can be seen, even when reheated, those having the chemical composition range defined by the present invention can obtain excellent SSC resistance by quenching from a high temperature and tempering at a high temperature. Test Nos. 41 to 44 or Test Nos. 45 to 48 are quenched and tempered by changing the heating temperature with steel having a chemical composition falling within the range of the present invention. If it is too high or too low to deviate from the scope of the invention, it is clear that the SSC resistance is not good. In the test numbers 49 and 50, the cooling after rolling was performed while keeping the temperature low, and the result was slightly unstable.

【0054】[0054]

【発明の効果】本発明によれば、耐SSC性がすぐれた
降伏応力が110〜155ksi(758〜1068MPa)級の、油井お
よびそれに関連した諸設備に使用できる高強度高耐食性
継目無し鋼管が、Nbを多めに添加し、高温から焼入れ
るという簡易な手段により、圧延直後の直接焼入れ、ま
たは再加熱焼入れで容易に製造可能となり、これらの鋼
管を高い生産性で安価に提供することができる。
According to the present invention, a high-strength, high-corrosion-resistant seamless steel pipe having excellent SSC resistance and a yield stress of 110 to 155 ksi (758 to 1068 MPa), which can be used in oil wells and related facilities, is provided. By a simple means of adding a large amount of Nb and quenching from a high temperature, it can be easily manufactured by direct quenching immediately after rolling or reheating quenching, and these steel pipes can be provided at high productivity and at low cost.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱間で穿孔および圧延して鋼管形状に成形
後そのまま直接焼入れし、焼戻しをおこなって所要強度
に調質する継目無し鋼管の製造方法であって、重量%
で、 C:0.20〜0.35%、 Si:0.05〜0.5%、 Mn:0.1〜1%、 P:0.025%以下、 S:0.01%以下、 Cr:0.3〜1.2%、 Mo:0.2〜1%、 sol.Al:0.005〜0.5%、 Ti:0.005〜0.5%、 B:0.0001〜0.005%、 Nb:0.1〜0.5%、 V:0.5%以下、 W:1.0%以下、 Zr:0.5%以下、 Ca:0.01%以下、 Ni:0.1%以下、 N:0.01%以下、 O:0.01%以下を含み、残
部はFeおよび不可避的不純物からなる鋼のビレット
を、熱間穿孔および圧延する際の最終の仕上げ圧延段階
において、1000〜1150℃の温度範囲にて40%以上の加工
を施した後、そのまま1000℃以上の温度から直接焼入れ
し、その後焼戻すことを特徴とする、758〜1068MPaの降
伏応力を有する高強度高耐食性継目無し鋼管の製造方
法。
1. A method for producing a seamless steel pipe which is hot pierced and rolled, formed into a steel pipe shape, directly quenched as it is, and tempered to temper to a required strength.
C: 0.20 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, P: 0.025% or less, S: 0.01% or less, Cr: 0.3 to 1.2%, Mo: 0.2 to 1%, sol .Al: 0.005 to 0.5%, Ti: 0.005 to 0.5%, B: 0.0001 to 0.005%, Nb: 0.1 to 0.5%, V: 0.5% or less, W: 1.0% or less, Zr: 0.5% or less, Ca: 0.01 %, Ni: 0.1% or less, N: 0.01% or less, O: 0.01% or less, with the balance being the final finishing rolling step when hot-piercing and rolling a steel billet composed of Fe and inevitable impurities. , Which is characterized by having a yield stress of 758 to 1068MPa, characterized in that it is directly quenched from a temperature of 1000 ° C or higher after being subjected to processing of 40% or more in a temperature range of 1000 to 1150 ° C and then tempered. Manufacturing method of high strength and high corrosion resistance seamless steel pipe.
【請求項2】焼入れ焼戻しにより所要強度に調質する継
目無し鋼管の製造方法であって、重量%で、 C:0.20〜0.35%、 Si:0.05〜0.5%、 Mn:0.1〜1%、 P:0.025%以下、 S:0.01%以下、 Cr:0.3〜1.2%、 Mo:0.2〜1%、 sol.Al:0.005〜0.5%、 Ti:0.005〜0.5%、 B:0.0001〜0.005%、 Nb:0.1〜0.5%、 V:0.5%以下、 W:1.0%以下、 Zr:0.5%以下、 Ca:0.01%以下、 Ni:0.1%以下、 N:0.01%以下、 O:0.01%以下を含み、残
部はFeおよび不可避的不純物からなる化学組成の鋼管
を、1000〜1150℃に加熱して焼入れをおこない、その後
焼戻すことを特徴とする、758〜1068MPaの降伏応力を有
する高強度高耐食性継目無し鋼管の製造方法。
2. A method for producing a seamless steel pipe which is tempered to a required strength by quenching and tempering, wherein C: 0.20 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, P : 0.025% or less, S: 0.01% or less, Cr: 0.3 to 1.2%, Mo: 0.2 to 1%, sol. Al: 0.005 to 0.5%, Ti: 0.005 to 0.5%, B: 0.0001 to 0.005%, Nb: 0.1 to 0.5%, V: 0.5% or less, W: 1.0% or less, Zr: 0.5% or less, Ca: 0.01% or less, Ni: 0.1% or less, N: 0.01% or less, O: 0.01% or less, and the balance Is a high-strength, high-corrosion-resistant seamless steel pipe having a yield stress of 758-1068 MPa, characterized in that a steel pipe having a chemical composition comprising Fe and unavoidable impurities is heated to 1000-1150 ° C., quenched, and then tempered. Manufacturing method.
【請求項3】熱間穿孔および圧延する際の最終の仕上げ
圧延段階において、1000〜1150℃の温度範囲にて40%以
上の加工を施した後、400℃以下まで10℃/s以上で冷
却した鋼管を用いることを特徴とする、請求項2の758
〜1068MPaの降伏応力を有する高強度高耐食性継目無し
鋼管の製造方法。
3. In the final finishing rolling step in hot piercing and rolling, after performing processing of 40% or more in a temperature range of 1000 to 1150 ° C., cooling to 400 ° C. or less at 10 ° C./s or more. 758. The 758 according to claim 2, wherein a steel pipe is used.
A method for producing a high-strength, high-corrosion-resistant seamless steel pipe having a yield stress of up to 1068 MPa.
JP8945897A 1997-04-08 1997-04-08 Production of high strength and high corrosion-resistant seamless seamless steel pipe Pending JPH10280037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8945897A JPH10280037A (en) 1997-04-08 1997-04-08 Production of high strength and high corrosion-resistant seamless seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8945897A JPH10280037A (en) 1997-04-08 1997-04-08 Production of high strength and high corrosion-resistant seamless seamless steel pipe

Publications (1)

Publication Number Publication Date
JPH10280037A true JPH10280037A (en) 1998-10-20

Family

ID=13971269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8945897A Pending JPH10280037A (en) 1997-04-08 1997-04-08 Production of high strength and high corrosion-resistant seamless seamless steel pipe

Country Status (1)

Country Link
JP (1) JPH10280037A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044297A2 (en) * 2007-07-06 2009-04-09 Tenaris Connections Ag Steels for sour service environments
WO2010113953A1 (en) * 2009-03-30 2010-10-07 住友金属工業株式会社 Method for producing seamless steel pipe
US7846274B2 (en) * 2001-03-29 2010-12-07 Sumitomo Metal Industries, Ltd. High strength steel pipe for an air bag
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8007603B2 (en) 2005-08-04 2011-08-30 Tenaris Connections Limited High-strength steel for seamless, weldable steel pipes
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US9188252B2 (en) 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
CN105385948A (en) * 2015-11-06 2016-03-09 天津钢管集团股份有限公司 Manufacturing method for seamless pipe with yield strength higher than 690 MPa of self-elevating drilling platform
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
EP2447386A4 (en) * 2009-06-24 2016-06-15 Jfe Steel Corp High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
WO2019188740A1 (en) * 2018-03-26 2019-10-03 日本製鉄株式会社 Steel material suitable for use in acidic environments
WO2019188869A1 (en) * 2018-03-27 2019-10-03 日本製鉄株式会社 Steel material suitable for use in sour environment
US10844669B2 (en) 2009-11-24 2020-11-24 Tenaris Connections B.V. Threaded joint sealed to internal and external pressures
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN115386808A (en) * 2022-09-28 2022-11-25 延安嘉盛石油机械有限责任公司 Corrosion-resistant oil casing pipe and preparation method and application thereof
US11833561B2 (en) 2017-01-17 2023-12-05 Forum Us, Inc. Method of manufacturing a coiled tubing string
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846274B2 (en) * 2001-03-29 2010-12-07 Sumitomo Metal Industries, Ltd. High strength steel pipe for an air bag
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8007603B2 (en) 2005-08-04 2011-08-30 Tenaris Connections Limited High-strength steel for seamless, weldable steel pipes
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
WO2009044297A3 (en) * 2007-07-06 2009-07-02 Tenaris Connections Ag Steels for sour service environments
EA018884B1 (en) * 2007-07-06 2013-11-29 Тенарис Коннекшнс Лимитед Steels for sour service environments
WO2009044297A2 (en) * 2007-07-06 2009-04-09 Tenaris Connections Ag Steels for sour service environments
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
WO2010113953A1 (en) * 2009-03-30 2010-10-07 住友金属工業株式会社 Method for producing seamless steel pipe
US8696834B2 (en) 2009-03-30 2014-04-15 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing seamless pipes
EA019610B1 (en) * 2009-03-30 2014-04-30 Сумитомо Метал Индастриз, Лтд. Method for producing seamless steel pipe
EP2447386A4 (en) * 2009-06-24 2016-06-15 Jfe Steel Corp High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
US10844669B2 (en) 2009-11-24 2020-11-24 Tenaris Connections B.V. Threaded joint sealed to internal and external pressures
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9188252B2 (en) 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
CN105385948A (en) * 2015-11-06 2016-03-09 天津钢管集团股份有限公司 Manufacturing method for seamless pipe with yield strength higher than 690 MPa of self-elevating drilling platform
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11833561B2 (en) 2017-01-17 2023-12-05 Forum Us, Inc. Method of manufacturing a coiled tubing string
WO2019188740A1 (en) * 2018-03-26 2019-10-03 日本製鉄株式会社 Steel material suitable for use in acidic environments
JPWO2019188740A1 (en) * 2018-03-26 2021-02-25 日本製鉄株式会社 Steel material suitable for use in sour environment
WO2019188869A1 (en) * 2018-03-27 2019-10-03 日本製鉄株式会社 Steel material suitable for use in sour environment
JPWO2019188869A1 (en) * 2018-03-27 2021-02-25 日本製鉄株式会社 Steel material suitable for use in sour environment
US11174539B2 (en) 2018-03-27 2021-11-16 Nippon Steel Corporation Steel material suitable for use in sour environment
CN115386808A (en) * 2022-09-28 2022-11-25 延安嘉盛石油机械有限责任公司 Corrosion-resistant oil casing pipe and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JPH10280037A (en) Production of high strength and high corrosion-resistant seamless seamless steel pipe
JP4305681B2 (en) Seamless steel pipe manufacturing method
JPH1150148A (en) Production of high strength and high corrosion resistance seamless steel pipe
JP4945946B2 (en) Seamless steel pipe and manufacturing method thereof
AU2015291875B2 (en) Low alloy oil-well steel pipe
JP4379550B2 (en) Low alloy steel with excellent resistance to sulfide stress cracking and toughness
JPWO2007023806A1 (en) Seamless steel pipe for line pipe and manufacturing method thereof
JP2000178682A (en) Steel for oil well excellent in sulfide stress corrosion cracking resistance
JP6103156B2 (en) Low alloy oil well steel pipe
JP2000256783A (en) High strength steel for oil well excellent in toughness and sulfide stress corrosion cracking resistance and its production
WO2015190377A1 (en) Low alloy steel pipe for oil well
CN111286682B (en) Low-alloy ultrahigh-strength steel and heat treatment process thereof
JP2000063940A (en) Production of high strength steel excellent in sulfide stress cracking resistance
JPH09249935A (en) High strength steel material excellent in sulfide stress cracking resistance and its production
JP6461672B2 (en) Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering
JP6468302B2 (en) Material for steel pipe for high strength oil well and method for producing steel pipe for high strength oil well using the material
JP2002060893A (en) Oil-well steel having excellent sulfide stress corrosion cracking resistance, and its manufacturing method
JP2000017389A (en) Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JP4134377B2 (en) Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking
JPH09111344A (en) Production of high strength and low yield ratio seamless steel pipe
JPH1161254A (en) Production of high strength high corrosion resistance seamless steel tube
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP3362565B2 (en) Manufacturing method of high strength and high corrosion resistant seamless steel pipe