JPH09249935A - High strength steel material excellent in sulfide stress cracking resistance and its production - Google Patents

High strength steel material excellent in sulfide stress cracking resistance and its production

Info

Publication number
JPH09249935A
JPH09249935A JP5650996A JP5650996A JPH09249935A JP H09249935 A JPH09249935 A JP H09249935A JP 5650996 A JP5650996 A JP 5650996A JP 5650996 A JP5650996 A JP 5650996A JP H09249935 A JPH09249935 A JP H09249935A
Authority
JP
Japan
Prior art keywords
steel material
stress cracking
sulfide stress
steel
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5650996A
Other languages
Japanese (ja)
Inventor
Takahiro Kushida
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5650996A priority Critical patent/JPH09249935A/en
Publication of JPH09249935A publication Critical patent/JPH09249935A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel material (particularly a seamless steel tube) com posed of inexpensive low alloy steel and having high strength and excellent sulfide stress cracking resistance and its production. SOLUTION: The high strength steel material excellent in sulfide stress cracking resistance is composed of a low alloy steel of 0.20-0.60% C (carbon) content and has a metallic structure consisting of 1-10% volume fraction of retained austenite and the balance essentially martensite. Particularly, proof stress in this steel material is >=77.3kgf/mm<2> , and further, the cracking critical stress (σ th) in the NACE TM 0177 bath is regulated to a value not lower than actual yield stress. As to the method of manufacturing this steel material, a low alloy steel of 0.20-0.60% C (carbon) content is hot-worked, hardened, and then tempered at a temp. exceeding the Ac1 transformation point. In this method, it is preferable that hardening is carried out by means of direct hardening from hot working and tempering is performed at a temp. in the region between a temp. higher than the Ac1 transformation point and (Ac1 transformation point + 30 deg.C).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高強度鋼材でし
かも耐硫化物応力割れ性に優れた鋼材、特に、従来の低
合金鋼材とは金属組織の上で異なり、耐硫化物応力割れ
性に著しく優れた鋼材およびその製造方法に関するもの
である。本発明の鋼材は、硫化物を含有する腐食性環境
下で原油、天然ガス等の採取、輸送等に使用される継目
無し鋼管として特に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel having a high strength and excellent sulfide stress cracking resistance, particularly, a metallographic structure different from that of a conventional low alloy steel, and is excellent in sulfide stress cracking resistance. The present invention relates to a remarkably excellent steel material and a manufacturing method thereof. The steel material of the present invention is particularly suitable as a seamless steel pipe used for collecting and transporting crude oil, natural gas and the like under a corrosive environment containing sulfide.

【0002】[0002]

【従来の技術】従来、耐硫化物応力割れ性の要求される
低合金高強度鋼の金属組織としては、マルテンサイト組
織を前提に検討されてきた。例えば、特開昭52−66815
号公報に開示される発明では、焼入れ時のマルテンサイ
ト組織率を90%以上と規定している。また、特開平5−
271772号公報で提案されている「油井管の製造法」の発
明も、焼戻し処理を Ac1変態点以下で行ってマルテンサ
イト率を90%以上にすることを特徴としている。なお、
このような鋼では、マルテンサイト以外の組織は、ほと
んどベイナイトである。
2. Description of the Related Art Heretofore, a martensitic structure has been considered as a metallographic structure of a low alloy high strength steel required to have resistance to sulfide stress cracking. For example, JP-A-52-66815
In the invention disclosed in the publication, the martensite structure ratio during quenching is specified to be 90% or more. In addition, JP-A-5-
The invention of the "method for producing oil country tubular goods" proposed in Japanese Patent No. 271772 is also characterized in that the martensite ratio is 90% or more by performing tempering treatment at an Ac 1 transformation point or lower. In addition,
In such steels, the structure other than martensite is mostly bainite.

【0003】その上でさらに耐硫化物応力割れ性を高め
るために、細粒化、直接焼入、成分改良等の手段が検討
されている。たとえば、特開昭54−117311号公報では、
加熱速度を規定することにより焼入れ前のオーステナイ
ト粒径を細かくする手法が開示されている。また、特開
昭62−30846 号公報では、熱間圧延後のオーステナイト
粒の形状と熱間圧延後の直接焼入れが開示されている。
さらに、特開昭55−69246 号公報ではCuとWの添加、特
開昭62−253720号公報では、Mn、PおよびMoの含有量を
規定した発明が開示されている。
Further, in order to further improve the sulfide stress cracking resistance, means such as grain refinement, direct quenching, and component improvement have been studied. For example, in Japanese Patent Laid-Open No. 54-117311,
A method is disclosed in which the austenite grain size before quenching is made fine by defining the heating rate. Further, JP-A-62-30846 discloses the shape of austenite grains after hot rolling and direct quenching after hot rolling.
Further, JP-A-55-69246 discloses an invention in which Cu and W are added, and JP-A-62-253720 discloses an invention in which the contents of Mn, P and Mo are specified.

【0004】これらの鋼はいずれも焼戻しを Ac1変態点
以下で行うものである。即ち、焼戻し時にオーステナイ
ト化せず、焼戻し後に残留オーステナイトが生じさせな
いことを前提としたものである。従来、このように残留
オーステナイトの生成を極力避けていたのは、下記の点
が懸念されていたからである。
All of these steels are tempered below the Ac 1 transformation point. That is, it is based on the premise that austenite is not formed during tempering and residual austenite is not generated after tempering. Conventionally, the formation of retained austenite has been avoided as much as possible because the following points have been a concern.

【0005】残留オーステナイトが生成すると、通常
の焼入れ−焼戻し材では強度が著しく低下して所定の強
度が得られないこと。
When retained austenite is formed, the strength of ordinary quench-tempered materials is significantly reduced, and a predetermined strength cannot be obtained.

【0006】残留オーステナイト自身が腐食して硫化
物応力割れの起点となること、 残留オーステナイトが水素のトラップサイトとして作
用し吸蔵水素濃度を高めること。
[0006] The retained austenite itself corrodes and becomes a starting point of sulfide stress cracking, and the retained austenite acts as a hydrogen trap site to increase the stored hydrogen concentration.

【0007】他方、特開昭58−161720号公報では、金属
組織をベイナイトとして耐硫化物応力割れ性を高める方
法が開示されている。また、日本金属学会会報、第21
巻、第16号(1982)、441 頁には、ベイナイト組織の種類
によってはマルテンサイト組織よりも耐硫化物応力割れ
性に優れることがあると報告されている。
On the other hand, Japanese Patent Application Laid-Open No. 58-161720 discloses a method of increasing the resistance to sulfide stress cracking by using bainite as a metal structure. Also, the Japan Institute of Metals, Bulletin, 21st
Vol. 16, No. 16 (1982), p. 441, it is reported that, depending on the type of bainite structure, it may be superior in sulfide stress cracking resistance to martensite structure.

【0008】上述のようなこれまでに開発された技術に
よって、例えば、耐硫化物応力割れ性の要求される高強
度低合金油井管では、C110 級〔YS≧110ksi(77.3kgf
/mm2) 〕まで実用化されている。現在はC125 級〔YS
≧125ksi(87.9kgf/mm2) 〕以上の高強度高耐食低合金油
井管が望まれているが、従来の焼戻しマルテンサイト組
織を主体とする鋼で、C110 級を超える高強度のもので
は、優れた耐応力腐食割れ性を持たせることは困難であ
る。
With the above-developed technology, for example, in the case of a high strength low alloy oil country tubular good which requires sulfide stress crack resistance, C110 grade [YS ≧ 110 ksi (77.3 kgf
/ mm 2 )]. Currently C125 grade [YS
≥125 ksi (87.9 kgf / mm 2 )] or higher high strength and high corrosion resistance low alloy oil country tubular goods are desired, but conventional steel mainly composed of tempered martensite structure and high strength exceeding C110 grade, It is difficult to provide excellent stress corrosion cracking resistance.

【0009】なお、油井管の国際規格にはAPI(米国
石油協会)の5CTがあるが、その中にC110 級は規格
化されていない。その規格の中で「C」が耐食グレード
を意味するが、YS≧90ksi (63.3kgf/mm2) 以上のC90
まで規格化されているだけであり、C110 級以上は、油
井管メーカー各社の標準として取り扱われている。しか
し、ここでは説明の便宜上、鋼管の強度レベルを示すた
めにC110 、C125 、C140 等を用いることとする。
The international standard for oil country tubular goods is API (American Petroleum Institute) 5CT, but the C110 class is not standardized therein. In the standard, "C" means corrosion resistant grade, but C90 of YS ≧ 90ksi (63.3kgf / mm 2 ) or more
It is only standardized up to this point, and C110 class and above are handled as the standard of each oil country tubular manufacturer. However, here, for convenience of explanation, C110, C125, C140 and the like are used to indicate the strength level of the steel pipe.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、安価
な低合金鋼材であって、高強度で、かつ耐硫化物応力割
れ性に優れる鋼材を提供すること、および、例えば、油
井管用継目無し鋼管の製造にも適した上記鋼材の製造方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive low alloy steel material having high strength and excellent resistance to sulfide stress cracking, and for example, a joint for oil country tubular goods. An object of the present invention is to provide a method for manufacturing the above-mentioned steel material, which is also suitable for manufacturing a steel pipe without a steel pipe.

【0011】さらに具体的には、例えば、耐力(YS)
が 77.3 kgf/mm2 (110 ksi) 以上の強度レベル、即ち、
前述のC110 級以上で、NACE TM 0177浴(0.5 %酢酸+
5%食塩、1気圧硫化水素飽和、25℃)中の割れ発生限
界応力(σth)が耐力の80%以上の耐硫化物応力割れ
性を有する高強度鋼材とその安価な製造方法を提供する
ことにある。
More specifically, for example, yield strength (YS)
Is 77.3 kgf / mm 2 (110 ksi) or higher, that is,
Above C110 grade, NACE TM 0177 bath (0.5% acetic acid +
To provide a high-strength steel material having a sulfide stress cracking resistance of which cracking limit stress (σth) in 5% sodium chloride, 1 atm hydrogen sulfide saturation, 25 ° C) is 80% or more of proof stress, and an inexpensive manufacturing method thereof. It is in.

【0012】[0012]

【課題を解決するための手段】本発明は下記(1) の鋼
材、および(2) のその製造方法を要旨とする。
The gist of the present invention is the following steel material (1) and its manufacturing method (2).

【0013】(1) C(炭素)含有量が 0.20 〜0.60%の
低合金鋼であって、残留オーステナイトの体積分率が 1
〜10%で残部が主にマルテンサイトからなる金属組織を
有することを特徴とする耐硫化物応力割れ性に優れた高
強度鋼材、とりわけ耐力が 77.3 kgf/mm2 以上で、かつ
NACE TM 0177 浴中の割れ発生限界応力 (σth) が耐力
の 80 %以上である耐硫化物応力割れ性に優れた高強度
鋼材。
(1) A low alloy steel having a C (carbon) content of 0.20 to 0.60% and a residual austenite volume fraction of 1
High strength steel material with excellent sulfide stress cracking resistance characterized by having a metallographic structure consisting mainly of martensite at ~ 10%, especially with a proof stress of 77.3 kgf / mm 2 or more, and
NACE TM 0177 High-strength steel with excellent sulfide stress cracking resistance with a critical crack initiation stress (σth) in the bath of 80% or more of the yield strength.

【0014】(2) C(炭素)含有量が0.20〜0.60%の低
合金鋼を熱間加工した後、焼入れし、その後に Ac1変態
点を超える温度で焼戻すことを特徴とする上記(1) の耐
硫化物応力割れ性に優れる高強度鋼材の製造方法。
(2) A low alloy steel having a C (carbon) content of 0.20 to 0.60% is hot worked, quenched, and then tempered at a temperature exceeding the Ac 1 transformation point. 1) A method for producing a high-strength steel material having excellent sulfide stress cracking resistance.

【0015】上記(2) の方法では、焼入れを熱間加工か
らの直接焼入れ法によって行い、焼戻しを Ac1変態点を
超え「 Ac1変態点+30℃」までの温度域で行うのが望ま
しい。また、直接焼入れの前に Ac3変態点以上で補熱す
る工程または/および直接焼入れと焼戻しとの間で「再
加熱−焼入れ」を行う工程を付加してもよい。
In the above method (2), it is desirable that the quenching is performed by a direct quenching method from hot working, and the tempering is performed in a temperature range exceeding the Ac 1 transformation point to "Ac 1 transformation point + 30 ° C". Further, a step of supplementing heat at the Ac 3 transformation point or higher before direct quenching and / or a step of “reheating-quenching” between direct quenching and tempering may be added.

【0016】本発明の対象となる低合金鋼は、Cの含有
量が0.20〜0.60%である外、各種の合金元素を組み合わ
せて含むことができる。望ましい低合金鋼としては、下
記の化学組成を有するものがある。
The low alloy steel to which the present invention is applied can contain not only the C content of 0.20 to 0.60% but also various alloy elements in combination. Preferred low alloy steels include those having the following chemical composition:

【0017】重量%で、 C:0.20〜0.60%、 Si:0.05〜3.0 %、 Mn:0.05〜1.0 %、 P:0.025 %以下、 S:0.01%以下、 sol.Al: 0.005〜0.50%、 Cr:0.1〜1.5 %、 Mo: 0.1〜1.5 %、 Nb : 0.005〜0.5 %、 Ti:0.005 〜0.5 %、 V:0 〜0.5 %、 B:0 〜0.01%、 W:0〜1.0 %、 Zr:0〜0.5 %、 Ca:0〜0.01%、 Ni:0.1 %以下、 N:0.01%以下、 O:0.01%以下、 Feおよび不可避不純物:残部% By weight, C: 0.20 to 0.60%, Si: 0.05 to 3.0%, Mn: 0.05 to 1.0%, P: 0.025% or less, S: 0.01% or less, sol.Al: 0.005 to 0.50%, Cr : 0.1 to 1.5%, Mo: 0.1 to 1.5%, Nb: 0.005 to 0.5%, Ti: 0.005 to 0.5%, V: 0 to 0.5%, B: 0 to 0.01%, W: 0 to 1.0%, Zr: 0-0.5%, Ca: 0-0.01%, Ni: 0.1% or less, N: 0.01% or less, O: 0.01% or less, Fe and unavoidable impurities: balance

【0018】[0018]

【発明の実施の形態】前述のように、従来、低合金鋼材
においては、残留オーステナイトの存在は強度低下と耐
硫化物応力割れ性の低下を招くとされていた。しかし、
オーステナイトそのものの硫化物応力割れ感受性は極め
て低い。例えば、オーステナイト単相組織の鋼材の水素
脆化感受性が低いことはよく知られている。従って、主
にマルテンサイト組織からなる低合金鋼であっても、適
正量の残留オーステナイトを存在させれば、それが耐硫
化物応力割れ性を改善するのに役立つ可能性がある。
DETAILED DESCRIPTION OF THE INVENTION As described above, in low alloy steel materials, the presence of retained austenite has conventionally been considered to cause a reduction in strength and a reduction in sulfide stress cracking resistance. But,
Austenite itself has extremely low susceptibility to sulfide stress cracking. For example, it is well known that a steel material having an austenite single-phase structure has low susceptibility to hydrogen embrittlement. Therefore, even in the case of a low alloy steel mainly composed of martensitic structure, if a proper amount of retained austenite is present, it may be useful for improving the sulfide stress crack resistance.

【0019】このような推定のもとに、本発明者は金属
組織面からの詳細な研究を行い、適正量の残留オーステ
ナイトの存在は、むしろ耐硫化物応力割れ性を改善する
ことを確認した。しかも、残留オーステナイトは、旧オ
ーステナイト粒界に優先的に生成するので、結果として
は粒界強度を高め、鋼材の強度の向上にも寄与すること
がわかった。本発明は、このような新しい知見に基づく
ものである。
Based on such an estimation, the present inventor conducted a detailed study from the viewpoint of the metallographic structure and confirmed that the presence of an appropriate amount of retained austenite rather improved the sulfide stress cracking resistance. . Moreover, it was found that the retained austenite is preferentially generated in the old austenite grain boundary, and as a result, the grain boundary strength is increased and the strength of the steel material is improved. The present invention is based on such a new finding.

【0020】焼入れ−焼戻し型の高強度鋼の硫化物応力
割れは、旧オーステナイト粒界割れを起点とする(旧オ
ーステナイトの「旧」は、言うまでもなく、マルテンサ
イト変態後であることを示すためのものである)。この
旧オーステナイト粒界割れを防ぐために採用されてきた
従来の方法が、誘導加熱やNi等の細粒化元素添加による
細粒化と、PやSの粒界偏析元素の低減である。これら
は結果としては粒界強度を高める手法と理解される。
Sulfide stress cracking of high-strength steel of the quenching-tempering type originates from the former austenite grain boundary crack (obviously, the "old" of the former austenite is to indicate that it is after the martensitic transformation). Things). The conventional methods that have been adopted to prevent the former austenite grain boundary cracking are grain refining by induction heating and addition of grain refining elements such as Ni, and reduction of grain boundary segregation elements such as P and S. As a result, these are understood to be methods for increasing the grain boundary strength.

【0021】これらの方法に加え、本発明者が新たに検
討した粒界強化の方法が、残留オーステナイトの利用で
ある。すなわち、オーステナイトの水素脆化感受性が低
いことを利用し、旧オーステナイト粒界にオーステナイ
トを析出させることによって旧オーステナイト粒界にお
ける硫化物応力割れを防止する手法である。より具体的
には、耐硫化物応力割れ性の高いオーステナイトを障壁
として利用して、旧オーステナイト粒界における硫化物
応力割れの進展を妨げるという考え方である。
In addition to these methods, the method of grain boundary strengthening newly investigated by the present inventors is utilization of retained austenite. That is, it is a method of preventing sulfide stress cracking in the austenite grain boundaries by precipitating austenite in the austenite grain boundaries by utilizing the low hydrogen embrittlement susceptibility of austenite. More specifically, the idea is to use austenite, which has a high resistance to sulfide stress cracking, as a barrier to prevent the progress of sulfide stress cracking in the former austenite grain boundaries.

【0022】先に述べたように、このような高強度鋼の
硫化物応力割れが粒界割れを起点とするので、粒界割れ
の防止が耐硫化物応力割れ性の改善につながる。
As described above, since the sulfide stress cracking of such high strength steel originates from the grain boundary cracking, the prevention of the grain boundary cracking leads to the improvement of the sulfide stress cracking resistance.

【0023】旧オーステナイト粒界においてオーステナ
イトを析出させ、かつ残留させる方法の一つが後述する
Ac1変態点を超える温度での焼戻しである。この焼戻し
によって、旧オーステナイト粒界に、優先的にオーステ
ナイトが析出する理由は、粒界における元素の拡散が速
いからである。幸いなことに、オーステナイト析出時
に、そのオーステナイト相の中に、Mn等の粒界偏析元素
を取り込むので、焼戻しマルテンサイト組織として残る
旧オーステナイト粒界が清浄化され、これによっても耐
硫化物応力割れ性が改善される。残留オーステナイトの
中に取り込まれた不純物元素は、オーステナイト自身の
硫化物応力割れ感受性が低いために、実質的に問題とは
ならない。
One of the methods for precipitating and retaining austenite at the former austenite grain boundaries will be described later.
It is tempering at a temperature above the Ac 1 transformation point. The reason why austenite is preferentially precipitated in the former austenite grain boundaries by this tempering is that the diffusion of elements in the grain boundaries is fast. Fortunately, during precipitation of austenite, grain boundary segregation elements such as Mn are incorporated into the austenite phase, so the former austenite grain boundaries that remain as a tempered martensite structure are cleaned, and this also contributes to sulfide stress stress cracking. Sex is improved. The impurity element taken into the retained austenite does not substantially pose a problem because the susceptibility of austenite itself to sulfide stress cracking is low.

【0024】このように、残留オーステナイトは耐硫化
物応力割れにとって望ましくないという従来の常識に反
して、高強度鋼において、旧オーステナイト粒界に残留
オーステナイトを析出させ、粒界自身を清浄化するとと
もに、旧オーステナイト粒界における硫化物応力割れの
進展防止を図ることで、耐硫化物応力割れ性を画期的に
高めることが可能となった。
Thus, contrary to the conventional wisdom that retained austenite is not desirable for sulfide stress cracking resistance, in high strength steel, retained austenite is precipitated at the former austenite grain boundary to clean the grain boundary itself. , It has become possible to dramatically improve sulfide stress cracking resistance by preventing the development of sulfide stress cracking at the former austenite grain boundaries.

【0025】なお、残留オーステナイトは水素のトラッ
プとして利用できるという報告もあるが、本発明者はそ
のような見解には賛同できない。何故ならば、湿潤硫化
水素環境において、腐食によって鋼中に侵入した水素
は、侵入時点では水素脆化を引き起こす拡散性水素だか
らである。すなわち、水素脆化に寄与しない状態である
非拡散水素として残留オーステナイトにトラップされる
前に、水素脆化である硫化物応力割れを引き起こしてし
まう。特に、湿潤硫化水素環境では、他の腐食環境に比
べても最大級の水素が侵入するので、残留オーステナイ
トの水素トラップとしての効果は全く充分でないと言え
る。
Although it has been reported that retained austenite can be used as a trap for hydrogen, the present inventor cannot agree with such a view. This is because, in a wet hydrogen sulfide environment, hydrogen that has penetrated into the steel by corrosion is diffusible hydrogen that causes hydrogen embrittlement at the time of penetration. That is, sulfide stress cracking, which is hydrogen embrittlement, is caused before trapped by retained austenite as non-diffusible hydrogen that does not contribute to hydrogen embrittlement. In particular, in the wet hydrogen sulfide environment, the maximum level of hydrogen invades compared with other corrosive environments, so it can be said that the effect of residual austenite as a hydrogen trap is not sufficient at all.

【0026】本発明の鋼材の優れた耐硫化物応力割れ性
は、粒界自身の清浄化と、旧オーステナイト粒界におけ
る硫化物応力割れの進展防止という残留オーステナイト
の作用、および残留オーステナイトが析出するほどの高
温焼戻しによるマルテンサイト組織の内部歪解消にあ
る。
The excellent resistance to sulfide stress cracking of the steel material of the present invention is due to the action of residual austenite to clean the grain boundaries themselves and prevent the development of sulfide stress cracks at the former austenite grain boundaries, and the retained austenite precipitates. It is to eliminate the internal strain of the martensite structure due to moderate high temperature tempering.

【0027】本発明鋼材の残留オーステナイトの量は、
体積分率で1%以上であることが必要である。これより
少ないと、上記の効果は発揮されない。なお、体積分率
で1%といっても焼戻し時には粒界に優先的に析出する
ので、旧オーステナイト粒界における残留オーステナイ
トの体積占有率は極めて高いものとなる。一方、残留オ
ーステナイトが体積分率で10%を超えると強度低下が著
しくなる。
The amount of retained austenite in the steel material of the present invention is
It is necessary that the volume fraction is 1% or more. If it is less than this, the above effect is not exhibited. It should be noted that even if the volume fraction is 1%, it preferentially precipitates at the grain boundaries during tempering, so the volume occupancy rate of the retained austenite at the former austenite grain boundaries becomes extremely high. On the other hand, if the retained austenite exceeds 10% in volume fraction, the strength is significantly reduced.

【0028】本発明鋼材の残留オーステナイト以外の組
織は、強度を確保するために主にマルテンサイト(焼戻
しマルテンサイト)とする。なお、ベイナイトやフェラ
イトのような組織が、体積分率で 20 %程度までは混在
していてもよい。
The structure of the steel material of the present invention other than the retained austenite is mainly martensite (tempered martensite) in order to secure the strength. A structure such as bainite or ferrite may be mixed up to a volume fraction of about 20%.

【0029】これまでに述べたような金属組織を持た
せ、強度と耐硫化物応力割れ性に優れた鋼材とするため
の素材鋼の化学組成は、種々あるが、望ましい例とし
て、前記のような合金成分を含む組成があげられる。以
下、合金元素の作用と望ましい含有量について説明す
る。合金成分の含有量についての%は重量%を意味す
る。
There are various chemical compositions of the raw material steel for imparting the metal structure as described above and making the steel material excellent in strength and sulfide stress cracking resistance. Examples of the composition include various alloy components. Hereinafter, the action of the alloying element and the desired content will be described. % With respect to the content of alloy components means% by weight.

【0030】I. 望ましい化学組成について C:Cは焼入れ性を高め、強度を向上させるために必須
の元素である。0.20%未満では焼入れ性が不足して高強
度が得られない。一方、0.60%を超えると焼き割れ感受
性が高くなる。従って、C含有量の適正範囲は、0.20〜
0.60%であるが、その望ましい上限は 0.40 %以下であ
る。
I. Desirable Chemical Composition C: C is an essential element for enhancing hardenability and strength. If it is less than 0.20%, the hardenability is insufficient and high strength cannot be obtained. On the other hand, if it exceeds 0.60%, the susceptibility to quench cracking increases. Therefore, the proper range of C content is 0.20-
Although it is 0.60%, the desirable upper limit is 0.40% or less.

【0031】Si:Siは、鋼の脱酸に有用な元素であり、
焼戻し軟化抵抗を高め耐硫化物応力割れ性を向上させる
元素でもある。また、焼戻し時に析出するオーステナイ
トを安定化させる作用もある。脱酸の目的からは、0.05
%以上の含有量が望ましい。さらに、残留オーステナイ
トの安定化の観点からは 1.5%以上が望ましい。ただ
し、3.0 %を超えると鋼材の靱性が低下する。
Si: Si is an element useful for deoxidizing steel,
It is also an element that enhances temper softening resistance and improves sulfide stress cracking resistance. It also has the effect of stabilizing the austenite that precipitates during tempering. For the purpose of deoxidation, 0.05
% Or more content is desirable. Furthermore, from the viewpoint of stabilizing retained austenite, 1.5% or more is desirable. However, if it exceeds 3.0%, the toughness of the steel material decreases.

【0032】Mn:Mnも鋼の脱酸に有用な元素である。脱
酸の目的からは0.05%以上が望ましく、また、Siと同様
に、焼戻し時に析出するオーステナイトを安定化させる
作用もある。他方、Mnが 1.0%を超えると靱性が低下す
るので、Mnの望ましい含有量は0.05〜1.0 %である。な
お、Mnの上限は 0.5%とするのが一層望ましい。
Mn: Mn is also an element useful for deoxidizing steel. For the purpose of deoxidation, 0.05% or more is desirable, and like Si, it also has a function of stabilizing austenite precipitated during tempering. On the other hand, if Mn exceeds 1.0%, the toughness decreases, so the desirable content of Mn is 0.05 to 1.0%. The upper limit of Mn is more preferably 0.5%.

【0033】P:Pは不純物として鋼中に不可避的に存
在するが、0.025 %を超えると粒界に偏析して特に高強
度鋼の耐硫化物応力割れ性を低下させるので、不純物と
して混入するとしても 0.025%以下に抑えるべきであ
る。勿論、その含有量は低ければ低いほど望ましい。
P: P is inevitably present in the steel as an impurity, but if it exceeds 0.025%, it segregates at the grain boundaries and particularly reduces the sulfide stress cracking resistance of high strength steel, so it is mixed as an impurity. However, it should be kept below 0.025%. Of course, the lower the content, the more desirable.

【0034】S:SもPと同様に不純物として鋼中に不
可避的に存在する。Sが0.01%を超えると、粒界に偏析
して特に高強度鋼では耐硫化物応力割れ性を低下させ
る。また、硫化物系の介在物を生成して耐硫化物応力割
れ性を低下させる。従って、不純物として混入するとし
ても 0.01 %以下とし、できるだけ低く抑えるのが望ま
しい。
S: S, like P, is inevitably present in the steel as an impurity. If S exceeds 0.01%, segregation occurs at grain boundaries, and particularly in high strength steel, sulfide stress cracking resistance decreases. Further, sulfide-based inclusions are generated to reduce sulfide stress cracking resistance. Therefore, even if it is mixed as an impurity, it is preferably 0.01% or less and kept as low as possible.

【0035】Cr:Crは、鋼の焼入れ性を高めて強度を上
昇させるとともに耐硫化物応力割れ性をも向上させる。
C125 〜140 級を前提とすると、0.3 %未満では必要な
焼入れ性向上効果が得られない。一方、Crが 1.5%を超
えると、硫化水素を含む環境においては腐食速度の増加
とそれに伴う吸蔵水素濃度の増加を招き、耐硫化物応力
割れ性を劣化させる。従って、Crの適正な含有量は 0.1
〜1.5 %であり、さらに望ましくは 0.3〜1.2 %であ
る。
Cr: Cr enhances the hardenability of steel to increase the strength and also the resistance to sulfide stress cracking.
Assuming C125-140 grade, if it is less than 0.3%, the required effect of improving hardenability cannot be obtained. On the other hand, if Cr exceeds 1.5%, in a hydrogen sulfide-containing environment, the corrosion rate increases and the stored hydrogen concentration increases, which deteriorates the sulfide stress cracking resistance. Therefore, the proper content of Cr is 0.1
˜1.5%, and more preferably 0.3 to 1.2%.

【0036】Mo:Moは、Crと同様に鋼の焼入れ性を向上
させ、高強度化に寄与するとともに、焼戻し軟化抵抗を
高めて耐硫化物応力割れ性を向上させる。C140 級とし
ては、0.2 %未満では不足である。一方、Moが 1.5%を
超えると、応力集中係数が高く応力腐食割れ性の起点と
なる針状のMo炭化物が析出するため、耐硫化物応力割れ
性が劣化する。従って、Moの適正含有量は 0.1〜1.5 %
であり、望ましくは 0.2〜1.0 %である。
Mo: Mo, like Cr, improves the hardenability of steel and contributes to higher strength, and also enhances temper softening resistance to improve sulfide stress cracking resistance. For C140 grade, less than 0.2% is insufficient. On the other hand, when Mo exceeds 1.5%, needle-like Mo carbide, which has a high stress concentration factor and is a starting point of stress corrosion cracking, is deposited, so that the sulfide stress cracking resistance is deteriorated. Therefore, the proper Mo content is 0.1-1.5%.
And preferably 0.2 to 1.0%.

【0037】V:Vは、添加しなくてもよいが、添加す
れば鋼の焼戻し軟化抵抗を上げ、また、細粒化に寄与し
て耐硫化物応力割れ性を向上させる。Mo添加材において
は、Vを添加しなくても充分な耐硫化物応力割れ性を有
するが、添加するとさらに耐硫化物応力割れ性を向上さ
せる。特に、直接焼入れによる焼戻し軟化抵抗向上効果
をより一層発揮させるのに有効である。Vを添加した鋼
に直接焼入れ−焼戻しのプロセスを適用すると、高温焼
戻し後においても 98.4 kgf/mm2 (140 ksi) 以上の高強
度を有する極めて焼戻し軟化抵抗の高い鋼が得られる。
V: V need not be added, but if added, it increases the temper softening resistance of the steel and contributes to grain refinement to improve sulfide stress cracking resistance. The Mo-added material has sufficient resistance to sulfide stress cracking even if V is not added, but addition of V further improves resistance to sulfide stress cracking. In particular, it is effective for further exerting the effect of improving the tempering softening resistance by direct quenching. When the direct quenching-tempering process is applied to a steel containing V, a steel having a high strength of 98.4 kgf / mm 2 (140 ksi) or more and having an extremely high temper softening resistance can be obtained even after high temperature tempering.

【0038】一方、V含有量が 0.5%を超えると、効果
が飽和するだけでなく、偏析によって耐硫化物応力割れ
性が劣化する。従って、Vを使用する場合でも含有量の
上限を 0.5%とすべきである。望ましいのは 0.1〜0.3
%である。
On the other hand, if the V content exceeds 0.5%, not only the effect is saturated, but also segregation deteriorates the sulfide stress cracking resistance. Therefore, even when V is used, the upper limit of the content should be 0.5%. 0.1-0.3 is preferred
%.

【0039】sol.Al:Al (アルミニウム) は、鋼の脱酸
に有効な元素である。sol.Alとしての含有量が 0.005%
未満ではその効果が小さい。ただし、0.50%を超えると
鋼中の介在物が多くなって靱性が低下する。なお、油井
管用継目無し鋼管にはその管端に接続用のネジを切るこ
とが多いが、Alが多いとネジ切り部に欠陥が発生しやす
くなる。以上の理由によりsol.Alの適正含有量は 0.005
〜0.50%である。
Sol.Al: Al (aluminum) is an element effective for deoxidizing steel. The content as sol.Al is 0.005%
If less than, the effect is small. However, if it exceeds 0.50%, the inclusions in the steel increase and the toughness decreases. It should be noted that a seamless steel pipe for oil well pipes is often provided with a connecting screw at its pipe end, but if there is a large amount of Al, defects are likely to occur in the threaded portion. For the above reasons, the proper content of sol.Al is 0.005.
~ 0.50%.

【0040】Ti:Tiは、鋼中の不純物であるNをTiNと
して固定する。鋼中にTiが含まれていれば、NはTiNと
して固定されているので直接焼入れの際に後述のB (ボ
ロン) がBNとして析出することがない。従って、Bは
焼入れ性に有効な状態で存在し、直接焼入れ時の焼入れ
性を向上させる。NをTiNとして固定する以上のTiは、
未再結晶温度域を高温まで広げて高温での加工歪みを部
分的に蓄積する作用を持つ。後述の「補熱」を行う場合
には、その補熱温度を低温に設定し一定時間かけると、
微細な再結晶を得ることができる。一定時間とは、後記
するように、補熱温度を 850〜1100℃とした場合、10秒
〜30分間である。また、固溶状態のTiは直接焼入れ後の
焼戻し時に微細に析出して焼戻し軟化抵抗を向上させる
ので、MoやVとともに高温での焼戻しを可能にする。0.
005 %未満ではその効果が小さく、0.50%を超えると靱
性を低下させるので、Tiを用いる場合には含有量を0.00
5 〜0.50%とすべきである。
Ti: Ti fixes N, which is an impurity in steel, as TiN. If Ti is contained in the steel, N is fixed as TiN, so that B (boron) described later does not precipitate as BN during direct quenching. Therefore, B exists in a state effective for hardenability and improves hardenability during direct quenching. Ti above N is fixed as TiN
It has the effect of expanding the non-recrystallization temperature range to high temperatures and partially accumulating processing strain at high temperatures. When performing "heat supplement" described later, if the supplement heat temperature is set to a low temperature and it takes a certain time,
Fine recrystallization can be obtained. As will be described later, the fixed time is 10 seconds to 30 minutes when the supplementary heating temperature is 850 to 1100 ° C. Further, solid solution Ti finely precipitates during tempering after direct quenching and improves temper softening resistance, so that it is possible to temper at high temperature together with Mo and V. 0.
If it is less than 005%, its effect is small, and if it exceeds 0.50%, the toughness deteriorates.
It should be 5 to 0.50%.

【0041】Nb:Nbは、鋼材の加工歪みを蓄積する温度
域を高温域まで広げる作用を持つので、低い補熱温度で
保持して微細な結晶粒を得るのに有効な元素である。そ
の効果はTiよりも強い。また、固溶したまま直接焼入れ
された鋼材中のNbは、その後の焼戻し時に微細に析出す
る。このためMo、WおよびTiとともに鋼の焼戻し軟化抵
抗を増大させ、耐硫化物応力割れ性を向上させる。含有
量が 0.005%未満ではその効果が顕著でなく、一方、0.
5 %を超えると靱性を低下させる。従って、Nbの適正含
有量は 0.005〜0.5 %である。
Nb: Nb has an effect of expanding the temperature range in which the working strain of the steel material is accumulated to the high temperature range, and is an element effective for holding at a low supplementary heating temperature to obtain fine crystal grains. Its effect is stronger than Ti. Further, Nb in the steel material directly quenched as a solid solution is finely precipitated during the subsequent tempering. Therefore, it increases the temper softening resistance of the steel together with Mo, W and Ti, and improves the sulfide stress cracking resistance. If the content is less than 0.005%, the effect is not remarkable, while on the other hand,
If it exceeds 5%, the toughness decreases. Therefore, the proper Nb content is 0.005 to 0.5%.

【0042】W:Wは、Moと同様に鋼の焼入れ性を向上
させ、高強度化を可能にするとともに、焼戻し軟化抵抗
を高めて耐硫化物応力割れ性を向上させる元素である。
Mo含有鋼では、Wを添加しなくても十分な焼戻し軟化抵
抗を有するが、MoとともにWを添加することで耐硫化物
応力割れ性を一層改善することができる。ただし、Wの
含有量が 1.0%を超えると効果が飽和するだけでなく、
偏析によって耐応力腐食割れ性が劣化する。
W: W is an element which, like Mo, improves the hardenability of steel and enables higher strength, and also increases the resistance to temper softening and improves the resistance to sulfide stress cracking.
Mo-containing steel has a sufficient temper softening resistance without adding W, but by adding W together with Mo, the sulfide stress cracking resistance can be further improved. However, if the W content exceeds 1.0%, not only will the effect be saturated, but
The segregation deteriorates the stress corrosion cracking resistance.

【0043】Zr:Zrを含有する鋼は、引張試験の際の降
伏点伸びが増加し、結果として耐硫化物応力割れ性が向
上する。Zrは高価な元素でもあり、添加しなくても十分
な耐硫化物応力割れ性を有するが、添加するとさらに耐
硫化物応力割れ性が向上する。一方、Zrの含有量が 0.5
%を超えると介在物が多くなって靱性が低下する。
Zr: Zr-containing steel has an increased yield point elongation during a tensile test, resulting in improved sulfide stress cracking resistance. Zr is also an expensive element and has sufficient resistance to sulfide stress cracking even if it is not added. However, Zr further improves resistance to sulfide stress cracking. On the other hand, the Zr content is 0.5
If it exceeds%, the inclusions increase and the toughness decreases.

【0044】B (ボロン) :Bは微量で鋼の焼入れ性を
向上させる元素であり、特に厚肉材の焼入れ性を改善し
て耐硫化物応力割れ性を高めることに効果的な元素であ
るが、薄肉材においては添加しなくても充分な耐硫化物
応力割れ性が得られる。添加する場合は、その効果が顕
著になる 0.0001 %以上の含有量とするのがよい。ただ
し、0.010 %を超えると、鋼の靱性および耐硫化物応力
割れ性が低下するので、含有量の上限は 0.010%とすべ
きである。
B (Boron): B is an element that improves the hardenability of steel in a small amount, and is an element that is particularly effective in improving the hardenability of thick-walled materials and enhancing the resistance to sulfide stress cracking. However, in a thin material, sufficient sulfide stress cracking resistance can be obtained without addition. When added, the content is preferably 0.0001% or more where the effect becomes remarkable. However, if it exceeds 0.010%, the toughness and resistance to sulfide stress cracking of steel deteriorate, so the upper limit of the content should be 0.010%.

【0045】Ca:Caは、鋼中のSと反応して硫化物を形
成することによって介在物の形状を改善し、耐硫化物応
力割れ性を向上させる。Sの含有量によってその効果の
度合いが異なり、また、脱酸が充分でないとかえって耐
硫化物応力割れ性が低下することがある。したがって、
添加するか否かを適宜選択できる元素である。添加する
場合はその含有量は 0.001〜0.01%とすることが望まし
い。0.001 %未満では効果が明瞭に現れないからであ
り、また過剰の含有は靱性および耐硫化物応力割れ性を
低下させ、かつ鋼材の表面欠陥の原因になる。
Ca: Ca reacts with S in steel to form sulfides, thereby improving the shape of inclusions and improving sulfide stress cracking resistance. The degree of the effect varies depending on the content of S, and if the deoxidation is not sufficient, the resistance to sulfide stress cracking may decrease. Therefore,
It is an element that can be appropriately selected whether to add. When added, its content is preferably 0.001 to 0.01%. This is because if it is less than 0.001%, the effect is not clearly exhibited, and if it is contained excessively, the toughness and sulfide stress cracking resistance are deteriorated and the surface defects of the steel material are caused.

【0046】Ni:残留オーステナイト生成の観点から
は、Niを添加した鋼がしばしば検討されているが、硫化
水素を含む環境では、Niを含有する低合金鋼においては
孔食による耐硫化物応力割れの劣化が顕著である。従っ
て、不純物として含有される場合でも0.1 %以下に抑え
るべきである。
Ni: From the viewpoint of retained austenite formation, a steel containing Ni is often studied. However, in an environment containing hydrogen sulfide, in a low alloy steel containing Ni, sulfide-resistant stress cracking due to pitting corrosion is caused. Is significantly degraded. Therefore, even if it is contained as an impurity, it should be kept to 0.1% or less.

【0047】N (窒素) :Nは不純物として鋼に存在
し、靱性および耐硫化物応力割れ性を低下させるので
0.01 %以下とした。精錬技術上、Nを0にすることは
できないが、できるだけ少ない方がよい。
N (Nitrogen): N is present as an impurity in steel and reduces toughness and sulfide stress cracking resistance.
It was set to 0.01% or less. Due to refining technology, N cannot be set to 0, but it is better to reduce N as much as possible.

【0048】O (酸素) :Oも不純物として鋼に不可避
的に存在し、靱性と耐硫化物応力割れ性を低下させる。
許容上限を 0.01 %として可及的に低く抑えるのが望ま
しい。
O (oxygen): O is also unavoidably present in steel as an impurity, and reduces toughness and sulfide stress cracking resistance.
It is desirable to keep the upper limit of 0.01% and keep it as low as possible.

【0049】II. 本発明鋼材の製造方法について 本発明鋼材は、残留オーステナイトが体積分率で1〜10
%の組織を持つことを大きな特徴とする。このような組
織を持ち、かつ高強度の鋼材を製造する方法の一つが、
前記(2) の方法である。以下、その方法を工程順に説明
する。
II. Method for Manufacturing Steel of the Present Invention In the steel of the present invention, retained austenite has a volume fraction of 1 to 10
The main feature is to have a% organization. One of the methods of producing a high-strength steel material having such a structure is
The method of (2) above. Hereinafter, the method will be described in the order of steps.

【0050】1.溶解、鋳造および熱間加工 溶解と鋳造は、通常の低合金鋼材の製造方法で行えばよ
い。ただし、前記のP、S、Ni、NおよびOのような不
純物を極力少なくする精錬を行う。鋳造はインゴット鋳
造でも連続鋳造でも差し支えない。
1. Melting, casting and hot working Melting and casting may be carried out by an ordinary method for producing a low alloy steel material. However, refining is performed to minimize impurities such as P, S, Ni, N, and O described above. Casting may be ingot casting or continuous casting.

【0051】2.熱間加工(鍛造、穿孔、圧延等) 鋳造後は、鍛造、圧延のような熱間加工が施される。な
お、連続鋳造によって得たスラブをそのまま圧延して板
にしてもよく、また継目無し鋼管の製造では、連続鋳造
で得たビレットをそのまま穿孔してもよい。
2. Hot working (forging, piercing, rolling, etc.) After casting, hot working such as forging and rolling is performed. The slab obtained by continuous casting may be rolled into a plate as it is, and in the production of a seamless steel pipe, the billet obtained by continuous casting may be punched as it is.

【0052】継目無し鋼管の場合は、上記の穿孔工程の
後、マンドレルミルやプラグミルを使用して圧延が行わ
れる。板材の場合は、スラブを粗圧延し、仕上圧延する
という工程になる。以下、継目無し鋼管の製造方法を例
として、望ましい加工条件を説明する。
In the case of a seamless steel pipe, rolling is performed using a mandrel mill or a plug mill after the above boring step. In the case of a plate material, the slab is roughly rolled and finish-rolled. Hereinafter, desirable processing conditions will be described by taking a method for manufacturing a seamless steel pipe as an example.

【0053】ビレット加熱温度 加熱温度は、穿孔機にて熱間穿孔できる温度であればよ
い。最適温度は材質によって異なり、高温延性と高温強
度を考慮して決める。通常は、1100℃から1300℃の間に
加熱する。加熱法はガス加熱炉または誘導加熱等のいず
れでも良い。しかし、酸化スケールが厚くなると表面傷
の原因となるので無酸化雰囲気とすることが望ましい。
高能率のビレット加熱を実現するためには、ビレット長
さはなるべく長尺とした方がよく、加熱炉の出口に切断
機を設置して切断した後に穿孔機に導入してもよい。
Billet Heating Temperature The heating temperature may be any temperature at which hot punching can be performed by a punching machine. The optimum temperature depends on the material, and is determined by taking hot ductility and high temperature strength into consideration. Usually, heating is performed between 1100 ° C and 1300 ° C. The heating method may be either a gas heating furnace or induction heating. However, it is preferable to use a non-oxidizing atmosphere because thick oxide scale causes surface scratches.
In order to realize highly efficient billet heating, it is preferable that the billet length be as long as possible, and a cutting machine may be installed at the exit of the heating furnace and then introduced into the punching machine.

【0054】穿孔条件 穿孔は中実のビレットに熱間で貫通穴を開け、鋼管の基
本形状を製造する工程である。穿孔方法は傾斜圧延法や
プレス穿孔法等、その方法には制約はない。なお、表面
温度が低下すると、穿孔時に傷が発生しやすくなるの
で、穿孔機の直前に補助加熱装置、例えば、誘導加熱装
置等を設置してもよい。
Punching condition Punching is a process for manufacturing a basic shape of a steel pipe by hot forming a through hole in a solid billet. There are no restrictions on the piercing method such as the inclined rolling method and the press piercing method. Note that when the surface temperature decreases, scratches are likely to occur at the time of punching, so an auxiliary heating device, such as an induction heating device, may be installed immediately before the punching machine.

【0055】最終圧延条件 ここでいう最終圧延あるいは最終仕上圧延とは、マンド
レルミルによる加工とサイザーによる加工を組み合わせ
たものを指す。鋼管の仕上圧延は、穿孔機の後段に配置
された最終圧延機によって行われる。この段階の圧延は
低温域での加工となるので、加工熱処理においては重要
である。即ち、最終仕上圧延後に、直接焼入れ、または
「補熱+直接焼入れ」を実施する場合は、断面圧縮率に
して 40%以上の加工度が望ましい。この加工によって
再結晶による細粒化効果が得られる。また、細粒化の観
点からは、加工度以外に仕上温度も重要である。1050℃
を超える仕上温度では再結晶粒が粗大となるので1050℃
以下が望ましい。一方、低温仕上ほど微細な再結晶粒が
得られるが、生産能率が低下するので 800℃以上が望ま
しい。
Final Rolling Conditions Final rolling or final finishing rolling as referred to herein means a combination of processing by a mandrel mill and processing by a sizer. The finish rolling of the steel pipe is performed by a final rolling mill arranged at the subsequent stage of the punching machine. Rolling at this stage is a work in a low temperature range, and is therefore important in thermomechanical treatment. That is, in the case where direct quenching or "compensation heat + direct quenching" is carried out after the final finish rolling, a workability of 40% or more in terms of cross-section compression rate is desirable. By this processing, a grain refining effect due to recrystallization can be obtained. Further, from the viewpoint of making the particles fine, the finishing temperature is important in addition to the workability. 1050 ℃
Refinishing grains become coarse at finishing temperatures above 1050 ° C.
The following is desirable. On the other hand, finer recrystallized grains can be obtained by finishing at a lower temperature, but the production efficiency decreases, so 800 ° C or higher is desirable.

【0056】3.熱処理 3-1. 焼入れ 焼入れ方法としては、 熱間加工後に一旦冷却した鋼材を焼入れ温度に加熱
して急冷する方法、 熱間加工後にそのまま急冷する「直接焼入れ法」、 直接焼入れの前に補熱工程を加える方法、 直接焼入れと焼戻しの間で、再加熱−焼入れを1回
以上行う方法、 直接焼入れの前に補熱を行い、かつ直接焼入れと焼
戻しの間で、再加熱−焼入れを1回以上行う方法、があ
り、そのいずれでも採用できる。
3. Heat treatment 3-1. Quenching As the quenching method, the steel material once cooled after hot working is heated to the quenching temperature and rapidly cooled, the "direct quenching method" in which it is rapidly cooled after hot working, and supplementary heat is applied before direct quenching. Method of adding process, method of performing reheating-quenching once or more between direct quenching and tempering, supplementary heat before direct quenching, and reheating-quenching once between direct quenching and tempering There is a method of performing the above, and any of them can be adopted.

【0057】の方法で熱間圧延後に一旦冷却した鋼材
を再加熱して焼入れする場合、その加熱温度は Ac3変態
点以上とする。また、の熱間加工後に直ちに直接焼入
れする場合は、熱間加工の仕上がり温度を Ar3変態点以
上とし、オーステナイト状態から急冷する。いずれの場
合も適当な冷却媒体(水、油、ガス等)で冷却してマル
テンサイト組織とする。なお、直接焼入れ法は、エネル
ギー節約および工程短縮という生産合理化に寄与するだ
けでなく、細粒化等、鋼材の質の改善にも役立つ。
When the steel material once cooled after hot rolling by the method of (1) is reheated and quenched, the heating temperature is set to the Ac 3 transformation point or higher. Further, in the case of directly quenching immediately after the hot working, the finish temperature of the hot working is set to the Ar 3 transformation point or higher, and the austenite state is rapidly cooled. In any case, the martensite structure is obtained by cooling with a suitable cooling medium (water, oil, gas, etc.). The direct quenching method not only contributes to energy saving and process rationalization such as process shortening, but also helps to improve the quality of steel materials such as grain refinement.

【0058】の方法で、直接焼入れ後に1回以上の
「再加熱−焼入れ」を行う場合の加熱温度も Ac3変態点
以上とする。焼入れ時に粗粒化を防ぐ観点からは、再加
熱−焼入れでは Ac3変態点+200 ℃以下、直接焼入れで
は1100℃以下に加熱温度を抑えるのが望ましい。
[0058] In the method of, of one or more times directly after quenching - heating temperature and Ac 3 transformation point or more in the case of performing a "re-heating quenching". From the viewpoint of preventing coarsening during quenching, it is desirable to control the heating temperature to an Ac 3 transformation point of + 200 ° C or less in reheating-quenching and to 1100 ° C or less in direct quenching.

【0059】特に、前述の化学組成の鋼を直接焼入れす
ると、焼戻し軟化抵抗が高まるために、高温焼戻しによ
って残留オーステナイトが生成しても、目標とするC12
5 級以上の高強度を維持することができる利点がある。
また、その高温焼戻しによって、マルテンサイト組織の
歪みが解消されるために、焼戻しマルテンサイト組織の
耐硫化物応力割れ性が著しく向上する。
In particular, when the steel having the above-mentioned chemical composition is directly quenched, the resistance to temper softening increases, so that even if residual austenite is produced by high temperature tempering, the target C12
There is an advantage that high strength of 5th grade or higher can be maintained.
Further, due to the high temperature tempering, the strain of the martensitic structure is eliminated, so that the sulfide stress cracking resistance of the tempered martensitic structure is significantly improved.

【0060】の方法における「補熱」とは、熱間加工
後、直接焼入れするまでの間に、再結晶を進行させるた
めオンラインで加熱することをいう。この補熱を行う
と、その間に再結晶を生じ、オーステナイト結晶粒が著
しく細粒になり、結果として耐硫化物応力割れ性が著し
く向上する。補熱の温度は 850〜1100℃、時間は10秒か
ら30分程度が望ましい。
The "supplementary heat" in the method (1) means online heating for promoting recrystallization after hot working and before direct quenching. When this supplementary heat is applied, recrystallization occurs during that time, the austenite crystal grains become extremely fine, and as a result, the resistance to sulfide stress cracking is significantly improved. The temperature of supplementary heat is preferably 850 to 1100 ° C, and the time is preferably 10 seconds to 30 minutes.

【0061】前記の再加熱−焼入れを1回以上(通
常、2回までで十分である)行うことによっても、直接
焼入れのままよりさらに細粒化が可能であり、耐硫化物
応力腐食割れ性はより一層向上する。特に、前記のよう
に細粒組織をもたらす直接焼入れ後に再焼入れを加える
と、結晶粒はより微細化し、その効果の到達レベルは一
層高いものとなる。
By performing the above-mentioned reheating-quenching once or more (usually, up to two times is sufficient), it is possible to further reduce the grain size as compared with direct quenching, and the sulfide stress corrosion cracking resistance is improved. Will be even better. In particular, when the re-quenching is added after the direct quenching that produces the fine grain structure as described above, the crystal grains become finer, and the achievement level of the effect becomes higher.

【0062】3−2. 焼戻し 最終製品である鋼材 (鋼管、鋼板等) の金属組織を、体
積分率で 1〜10%の残留オーステナイトものとするため
には、焼戻し温度を Ac1変態点を超えるようにしなけれ
ばならない。 Ac1変態点以下の温度での焼戻しでは、粒
界に残留オーステナイトが生成しないからである。ま
た、残留オーステナイト量を10%以下とするためには、
焼戻し温度は Ac1変態点+30℃を超えないようにするの
が望ましい。
3-2. Tempering In order to make the metal structure of the final product steel material (steel pipe, steel plate, etc.) into retained austenite having a volume fraction of 1 to 10%, the tempering temperature is set to the Ac 1 transformation point. You have to exceed it. This is because retained austenite does not form at grain boundaries in tempering at a temperature below the Ac 1 transformation point. Further, in order to reduce the amount of retained austenite to 10% or less,
It is desirable that the tempering temperature does not exceed the Ac 1 transformation point + 30 ° C.

【0063】なお、焼戻しは製品の性能を決定する重要
な処理であるので十分な均熱性が要求される。ばらつき
は±10℃、さらに±5℃が望ましい。これによって、降
伏応力(YS)及び引張強さ(TS)の変動を±5kgf/
mm2 以下に抑えることができる。焼戻しの時間は、30秒
から1時間程度でよい。
Since tempering is an important process that determines the performance of the product, sufficient soaking property is required. The variation is preferably ± 10 ° C, more preferably ± 5 ° C. As a result, fluctuations in yield stress (YS) and tensile strength (TS) are ± 5 kgf /
It can be suppressed to mm 2 or less. The tempering time may be about 30 seconds to 1 hour.

【0064】残留オーステナイトを含む組織は、等温変
態処理によっても得られる。これは焼入れ後の鋼材を A
c3変態点以上に加熱してオーステナイト化した後、塩浴
にて300 〜600 ℃前後まで急冷して、そこでベイナイト
変態を起こさせてから冷却(水冷あるいは油冷)してオ
ーステナイトを残留させるというものである。通常の水
焼入れあるいは油焼入れに比べれば塩浴設備が必要な
上、生産性が落ちるという難点はあるが、残留オーステ
ナイトの安定性の観点からは望ましい熱処理方法であ
る。本発明鋼材の製造には、この等温変態処理も利用で
きる。
The structure containing retained austenite can also be obtained by the isothermal transformation treatment. This is the steel material after quenching
c After heating to a transformation point of 3 or higher to austenite, it is rapidly cooled to around 300 to 600 ℃ in a salt bath, where it undergoes bainite transformation and is then cooled (water or oil cooled) to leave austenite. It is a thing. Compared with normal water quenching or oil quenching, it requires a salt bath facility and has the drawback of decreasing productivity, but it is a desirable heat treatment method from the viewpoint of the stability of retained austenite. This isothermal transformation treatment can also be used to manufacture the steel material of the present invention.

【0065】本発明はC110 級以上の高強度高耐食鋼材
とその製造方法の提供を主たる目的とするが、本発明を
C110 級を下回る低強度油井管に適用することは当然可
能である。一般に高強度になるほど耐硫化物応力割れ性
が劣化するので、低強度で耐硫化物応力割れ性に優れた
鋼材の製造は比較的簡単である。本発明の実施において
も、C、Cr、Mo、V等の強化元素を増減や添加の省略に
よって、目標とするそれぞれの強度範囲の鋼材を自由に
製造することができる。
The main purpose of the present invention is to provide a high-strength and high-corrosion-resistant steel material having a C110 grade or higher and a method for producing the same, but it is naturally possible to apply the present invention to a low-strength oil country tubular good below C110 grade. Generally, the higher the strength is, the more the sulfide stress cracking resistance deteriorates. Therefore, it is relatively easy to manufacture a steel material having low strength and excellent sulfide stress cracking resistance. Also in the practice of the present invention, it is possible to freely manufacture steel materials in the respective target strength ranges by increasing or decreasing or omitting addition of strengthening elements such as C, Cr, Mo, and V.

【0066】[0066]

【実施例】表1に示す化学組成の鋼を 150 kg 真空炉に
て溶製し鋳造して 120mm角×1mの鋳塊とし、それらを
鍛造して20mm厚×80mm幅×250 mm長のブロックにした。
これらを試験材として圧延から最終の焼戻しに到る各厚
板圧延条件を変化させて検討した。この厚板圧延条件
は、穿孔から仕上圧延に到る継目無し鋼管の加工条件に
も相当する。断面圧縮率は鋼管の圧延と鋼板の圧延でほ
ぼ同じである。その後、表2に示すように、鋼種および
焼入れ条件に応じて焼戻し温度を変化させた。
[Example] Steel having the chemical composition shown in Table 1 was melted and cast in a 150 kg vacuum furnace to form a 120 mm square × 1 m ingot, which was forged and a block 20 mm thick × 80 mm wide × 250 mm long I chose
Using these as test materials, various thick plate rolling conditions from rolling to final tempering were changed and examined. This thick plate rolling condition also corresponds to the working condition of the seamless steel pipe from perforation to finish rolling. The cross-section compressibility is almost the same for steel pipe rolling and steel plate rolling. Then, as shown in Table 2, the tempering temperature was changed according to the steel type and the quenching conditions.

【0067】〔焼入れ−焼戻しの工程〕 試番1〜4および20・・・・再加熱焼入れ+焼戻し 試番5〜8 ・・・・・・・直接焼入れ+焼戻し 試番9〜12、および17・・・補熱+直接焼入れ+焼戻し 試番13および14・・・・・・補熱+直接焼入れ+再加熱
焼入れ+焼戻し 試番15および16・・・・・・補熱+直接焼入れ+再加熱
焼入れ+再加熱焼入れ+焼戻し 試番18・・・・・・・・・・直接焼入れ+再加熱焼入れ
+焼戻し。
[Quenching-Tempering Process] Trials Nos. 1 to 4 and 20 ... Reheat Quenching + Tempering Trials No. 5 to 8 ... Direct Quenching + Tempering Trials Nos. 9 to 12 and 17・ ・ ・ Supplementary heat + direct quenching + tempering Trial Nos. 13 and 14 ・ ・ Supplementary heat + direct quenching + reheating quenching + tempering Trial Nos. 15 and 16 ・ Supplementary heat + direct quenching + re- Heat quenching + reheat quenching + tempering trial number 18 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Direct quenching + reheat quenching + tempering.

【0068】それぞれの補熱時間は5分、再加熱焼入れ
時の加熱時間は10分、焼戻し時間は20分とした。焼入れ
時の冷却媒体は水とした。試番19には「900 ℃×45分加
熱→塩浴冷却 (375 ℃×1hr保定) →油冷」の等温変態
処理を施した。
Each heating time was 5 minutes, the heating time during reheating and quenching was 10 minutes, and the tempering time was 20 minutes. The cooling medium during quenching was water. Sample No. 19 was subjected to an isothermal transformation treatment of "heating at 900 ° C for 45 minutes → cooling with salt bath (retention at 375 ° C for 1 hr) → oil cooling".

【0069】なお、熱間圧延前の加熱温度は1250℃と
し、1100℃以上での粗圧延加工度は50%、仕上温度 100
0 ℃、仕上圧延加工度 70 %とした。これらは全てに共
通の条件である。
The heating temperature before hot rolling was 1250 ° C., the degree of rough rolling at 1100 ° C. or higher was 50%, and the finishing temperature was 100%.
The degree of finish rolling was 70% at 0 ° C. These are common conditions for all.

【0070】[0070]

【表1】 [Table 1]

【0071】熱処理後の試験材から下記の耐応力腐食割
れ性試験片と同じサイズの試験片を切り出して引張試験
を行い、また、下記の耐硫化物応力割れ性の試験を実施
した。更に、残留オーステナイト量をX線法にて測定し
た。
A test piece having the same size as the stress corrosion cracking resistance test piece described below was cut out from the test material after the heat treatment, and a tensile test was carried out, and the following sulfide stress cracking resistance test was carried out. Further, the amount of retained austenite was measured by the X-ray method.

【0072】耐硫化物応力割れ性は、L方向(圧延方
向)から採取した丸棒型引張試験片(平行部6.35φ×2
5.4mm)にて評価した。負荷応力は母材の実降伏応力の8
0%とした。試験溶液は、NACE TM 0177-90 (Test Meth
od by National Association ofCorrosion Engineers)
に規定されるNACE TM 0177浴(0.5%酢酸+5%食塩水、
1気圧硫化水素飽和、25℃)とした。720 hrの試験期間
中に破断しなかったものを耐硫化物応力割れ性良好とし
た。これらの試験結果を表3に示す。
The resistance to sulfide stress cracking was measured by a round bar type tensile test piece (parallel part 6.35φ × 2) taken from the L direction (rolling direction).
5.4 mm). The load stress is 8 of the actual yield stress of the base metal.
0%. The test solution is NACE TM 0177-90 (Test Meth
od by National Association of Corrosion Engineers)
NACE TM 0177 bath (0.5% acetic acid + 5% saline solution,
1 atmosphere of hydrogen sulfide saturated, 25 ° C). Those that did not break during the test period of 720 hr were regarded as good sulfide stress cracking resistance. Table 3 shows the test results.

【0073】[0073]

【表2】 [Table 2]

【0074】[0074]

【表3】 [Table 3]

【0075】表3に示すとおり、同じ鋼Aを用いた試番
1〜4においても、試番1は焼戻し温度が Ac1変態点以
下であるために残留オーステナイト量が0%であり、耐
硫化物応力割れ性が悪い。一方、試番4には、焼戻し温
度が高すぎて、結果として残留オーステナイト量が10%
を超えたので耐硫化物応力割れ性が低下している。鋼B
または鋼Cを用いた試番5〜8及び試番9〜12について
も同じことが言える。
As shown in Table 3, even in trial Nos. 1 to 4 using the same steel A, trial No. 1 has a residual austenite amount of 0% because the tempering temperature is the Ac 1 transformation point or lower, and thus the sulfurization resistance is low. The stress cracking property is poor. On the other hand, in trial No. 4, the tempering temperature was too high, and as a result, the amount of retained austenite was 10%.
Since, the resistance to sulfide stress cracking is deteriorated. Steel B
The same can be said for trial numbers 5 to 8 and trial numbers 9 to 12 using steel C.

【0076】焼戻し温度あるいは焼入れ条件によらず、
残留オーステナイト量が1〜10%の範囲にあるものは、
いずれも耐力(YS)がすべて 77.3 kgf/mm2 (110 ks
i) を超える高強度になっている。しかも、耐力の 80
%の応力負荷でも割れを発生しない優れた耐硫化物応力
割れ性を示している。
Regardless of tempering temperature or quenching conditions,
If the retained austenite amount is in the range of 1 to 10%,
All yield strength (YS) is 77.3 kgf / mm 2 (110 ks
Higher strength than i). Moreover, 80
It exhibits excellent resistance to sulfide stress cracking, which does not cause cracking even under a stress load of%.

【0077】試番21の鋼KはC量が0.19%と少ないため
に、残留オーステナイト量は 0.5%にすぎず、強度が目
標値(YS≧110ksi) に達していない。また、耐硫化物
応力割れ性も良くない。なお、試番20は、試験材の鋼J
のC含有量が高すぎるために焼入れの際に焼割れが発生
したので、引張試験と耐硫化物応力割れ性試験は中止し
た。
Since the C content of the steel K of trial No. 21 was as small as 0.19%, the residual austenite content was only 0.5% and the strength did not reach the target value (YS ≧ 110 ksi). Also, the sulfide stress cracking resistance is not good. In addition, trial number 20 is steel J of the test material.
Since the C content was too high and quench cracking occurred during quenching, the tensile test and the sulfide stress cracking resistance test were stopped.

【0078】[0078]

【発明の効果】これまで説明してきたように、残留オー
ステナイト組織を体積分率にして1〜10%含み、残りが
主として焼戻しマルテンサイト組織からなる組織を有す
る本発明鋼材は、耐硫化物応力割れ性に優れ、しかも高
強度である。この鋼材は、本発明の製造方法、即ち、再
加熱焼入れ、または直接焼入後に Ac1変態点を超える温
度で焼戻すことにより容易に、かつ低コストで製造でき
る。本発明により、硫化物を含むきびしい腐食環境で使
用される油井管等としてきわめて好適な鋼材が安価にか
つ高い生産性で提供できる。
As described above, the steel material of the present invention having a structure containing a retained austenite structure in a volume fraction of 1 to 10% and the remainder mainly composed of a tempered martensite structure, is resistant to sulfide stress cracking. Excellent in strength and high strength. This steel material can be manufactured easily and at low cost by the manufacturing method of the present invention, that is, by reheating quenching or by direct quenching and then tempering at a temperature exceeding the Ac 1 transformation point. According to the present invention, a steel material extremely suitable as an oil country tubular good or the like used in a severe corrosive environment containing sulfide can be provided at low cost and with high productivity.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】C(炭素)含有量が 0.20 〜0.60重量%の
低合金鋼であって、残留オーステナイトの体積分率が 1
〜10%で残部が主にマルテンサイトからなる金属組織を
有することを特徴とする耐硫化物応力割れ性に優れた高
強度鋼材。
1. A low alloy steel having a C (carbon) content of 0.20 to 0.60% by weight and having a volume fraction of retained austenite of 1
A high-strength steel material excellent in sulfide stress cracking resistance, characterized by having a metal structure in which the balance is up to 10% and the balance is mainly martensite.
【請求項2】耐力が 77.3 kgf/mm2 以上で、かつ NACE
TM 0177 浴中の割れ発生限界応力 (σth) が耐力の 80
%以上である請求項1に記載の耐硫化物応力割れ性に優
れた高強度鋼材。
2. The yield strength is 77.3 kgf / mm 2 or more, and NACE
TM 0177 The crack initiation critical stress (σth) in the bath is 80
% Or more, the high-strength steel material excellent in sulfide stress cracking resistance according to claim 1.
【請求項3】下記の化学組成を有する請求項1または2
に記載の高強度鋼材。重量%で、 C:0.20〜0.60%、 Si:0.05〜3.0 %、 Mn:0.05〜1.0 %、 P:0.025 %以下、 S:0.01%以下、 sol.Al: 0.005〜0.50%、 Cr:0.1〜1.5 %、 Mo: 0.1〜1.5 %、 Nb : 0.005〜0.5 %、 Ti:0.005 〜0.5 %、 V:0 〜0.5 %、 B:0 〜0.01%、 W:0〜1.0 %、 Zr:0〜0.5 %、 Ca:0〜0.01%、 Ni:0.1 %以下、 N:0.01%以下、 O:0.01%以下、 Feおよび不可避不純物:残部
3. The method according to claim 1 or 2 having the following chemical composition.
High-strength steel material described in. % By weight, C: 0.20 to 0.60%, Si: 0.05 to 3.0%, Mn: 0.05 to 1.0%, P: 0.025% or less, S: 0.01% or less, sol.Al: 0.005 to 0.50%, Cr: 0.0. 1 to 1.5%, Mo: 0.1 to 1.5%, Nb: 0.005 to 0.5%, Ti: 0.005 to 0.5%, V: 0 to 0.5%, B: 0 to 0.01%, W: 0 to 1.0%, Zr: 0 ~ 0.5%, Ca: 0-0.01%, Ni: 0.1% or less, N: 0.01% or less, O: 0.01% or less, Fe and unavoidable impurities: balance
【請求項4】C(炭素)含有量が 0.20 〜0.60%の低合
金鋼を熱間加工した後、焼入れし、その後に Ac1変態点
を超える温度で焼戻すことを特徴とする請求項1、2ま
たは3に記載の耐硫化物応力割れ性に優れる高強度鋼材
の製造方法。
4. A low alloy steel having a C (carbon) content of 0.20 to 0.60% is hot worked, quenched, and then tempered at a temperature exceeding the Ac 1 transformation point. 2. The method for producing a high-strength steel material having excellent sulfide stress cracking resistance according to 2 or 3.
【請求項5】焼入れを熱間加工からの直接焼入れ法によ
って行い、焼戻しを Ac1変態点を超え「 Ac1変態点+30
℃」までの温度域で行う請求項4に記載の耐硫化物応力
割れ性に優れる高強度鋼材の製造方法。
5. Quenching is carried out by a direct quenching method starting from hot working, and tempering is performed at a temperature exceeding the Ac 1 transformation point and the “Ac 1 transformation point + 30.
The method for producing a high-strength steel material having excellent resistance to sulfide stress cracking according to claim 4, which is carried out in a temperature range up to "° C".
【請求項6】直接焼入れの前に鋼材を Ac3変態点以上の
温度で補熱する工程を含む請求項5に記載の耐硫化物応
力割れ性に優れる高強度鋼材の製造方法。
6. The method for producing a high-strength steel material excellent in sulfide stress cracking resistance according to claim 5, further comprising a step of supplementary heating of the steel material at a temperature of Ac 3 transformation point or higher before direct quenching.
【請求項7】直接焼入れと焼戻しとの間で、再加熱−焼
入れを1回以上行う請求項5または6に記載の耐硫化物
応力割れ性に優れる高強度鋼材の製造方法。
7. The method for producing a high-strength steel material having excellent resistance to sulfide stress cracking according to claim 5 or 6, wherein reheating-quenching is performed once or more between direct quenching and tempering.
JP5650996A 1996-03-13 1996-03-13 High strength steel material excellent in sulfide stress cracking resistance and its production Pending JPH09249935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5650996A JPH09249935A (en) 1996-03-13 1996-03-13 High strength steel material excellent in sulfide stress cracking resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5650996A JPH09249935A (en) 1996-03-13 1996-03-13 High strength steel material excellent in sulfide stress cracking resistance and its production

Publications (1)

Publication Number Publication Date
JPH09249935A true JPH09249935A (en) 1997-09-22

Family

ID=13029103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5650996A Pending JPH09249935A (en) 1996-03-13 1996-03-13 High strength steel material excellent in sulfide stress cracking resistance and its production

Country Status (1)

Country Link
JP (1) JPH09249935A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1228260A1 (en) * 1999-05-18 2002-08-07 The Atri Group Ltd. Iron-silicon alloy and alloy product, exhibiting improved resistance to hydrogen embrittlement and method of making the same
FR2847270A1 (en) * 2002-11-19 2004-05-21 Usinor Fabrication of an abrasion resistant steel sheet having a good flatness with a martensite or bainite or martensite-bainite structure and some retained austenite
FR2847272A1 (en) * 2002-11-19 2004-05-21 Usinor Fabrication of steel components or sheet resistant to abrasion but with improved ability for welding and thermal cutting
WO2006100891A1 (en) * 2005-03-24 2006-09-28 Sumitomo Metal Industries, Ltd. Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
JP2009174658A (en) * 2008-01-25 2009-08-06 Jfe Steel Corp Steel pipe for oil well use excellent in expandability and its manufacturing method
WO2010061882A1 (en) * 2008-11-26 2010-06-03 住友金属工業株式会社 Seamless steel pipe and method for manufacturing same
WO2013133076A1 (en) * 2012-03-07 2013-09-12 新日鐵住金株式会社 Method for producing high-strength steel material having excellent sulfide stress cracking resistance
WO2015011917A1 (en) * 2013-07-26 2015-01-29 新日鐵住金株式会社 Low-alloy steel pipe for oil well and production method therefor
EP2881485A4 (en) * 2012-07-31 2015-12-02 Baoshan Iron & Steel Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
CN105238994A (en) * 2015-11-25 2016-01-13 山东钢铁股份有限公司 Steels for train buffers and preparation method thereof
WO2016013205A1 (en) * 2014-07-25 2016-01-28 新日鐵住金株式会社 Low-alloy steel pipe for oil well
WO2016035316A1 (en) * 2014-09-04 2016-03-10 新日鐵住金株式会社 Thick-walled steel pipe for oil well and method of manufacturing same
WO2016059763A1 (en) * 2014-10-17 2016-04-21 新日鐵住金株式会社 Low alloy steel pipe for oil wells
CN107002201A (en) * 2014-12-12 2017-08-01 新日铁住金株式会社 The manufacture method of pipe for oil well use low-alloy steel and low-alloy steel oil well pipe
JP2017206720A (en) * 2016-05-16 2017-11-24 新日鐵住金株式会社 Method of manufacturing seamless steel pipe
WO2022102441A1 (en) * 2020-11-11 2022-05-19 日本製鉄株式会社 Steel material suitable for use in sour environment
WO2022145071A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1228260A4 (en) * 1999-05-18 2003-01-02 Atri Group Ltd Iron-silicon alloy and alloy product, exhibiting improved resistance to hydrogen embrittlement and method of making the same
EP1228260A1 (en) * 1999-05-18 2002-08-07 The Atri Group Ltd. Iron-silicon alloy and alloy product, exhibiting improved resistance to hydrogen embrittlement and method of making the same
AU2003290188B2 (en) * 2002-11-19 2009-01-08 Industeel France Method for making an abrasion resistant steel plate and plate obtained
FR2847270A1 (en) * 2002-11-19 2004-05-21 Usinor Fabrication of an abrasion resistant steel sheet having a good flatness with a martensite or bainite or martensite-bainite structure and some retained austenite
FR2847272A1 (en) * 2002-11-19 2004-05-21 Usinor Fabrication of steel components or sheet resistant to abrasion but with improved ability for welding and thermal cutting
WO2004048619A1 (en) * 2002-11-19 2004-06-10 Industeel Creusot Method for making an abrasion resistant steel plate and plate obtained
WO2004048620A1 (en) * 2002-11-19 2004-06-10 Industeel Creusot Method for making an abrasion resistant steel plate and plate obtained
US7713362B2 (en) 2002-11-19 2010-05-11 Industeel Creusot Method for making an abrasion resistant steel plate and plate obtained
CN100348738C (en) * 2002-11-19 2007-11-14 工业钢克鲁梭公司 Method for making an abrasion resistant steel plate and plate obtained
CN100350061C (en) * 2002-11-19 2007-11-21 工业钢克鲁梭公司 Method for making an abrasion resistant steel plate and plate obtained
US7459041B2 (en) 2002-11-19 2008-12-02 Industeel Creusot Method for making an abrasion-resistant steel plate
EA011363B1 (en) * 2005-03-24 2009-02-27 Сумитомо Метал Индастриз, Лтд. Steel for oil well pipe and method for manufacturing thereof
JP2006265657A (en) * 2005-03-24 2006-10-05 Sumitomo Metal Ind Ltd Steel for oil well pipe having excellent sulfide stress crack resistance and method for manufacturing seamless steel tube for oil well
AU2006225855B2 (en) * 2005-03-24 2009-08-27 Nippon Steel Corporation Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
WO2006100891A1 (en) * 2005-03-24 2006-09-28 Sumitomo Metal Industries, Ltd. Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
JP4609138B2 (en) * 2005-03-24 2011-01-12 住友金属工業株式会社 Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe
US8617462B2 (en) 2005-03-24 2013-12-31 Nippon Steel & Sumitomo Metal Corporation Steel for oil well pipe excellent in sulfide stress cracking resistance
JP2009174658A (en) * 2008-01-25 2009-08-06 Jfe Steel Corp Steel pipe for oil well use excellent in expandability and its manufacturing method
WO2010061882A1 (en) * 2008-11-26 2010-06-03 住友金属工業株式会社 Seamless steel pipe and method for manufacturing same
JP4475440B1 (en) * 2008-11-26 2010-06-09 住友金属工業株式会社 Seamless steel pipe and manufacturing method thereof
US8317946B2 (en) 2008-11-26 2012-11-27 Sumitomo Metal Industries, Ltd. Seamless steel pipe and method for manufacturing the same
WO2013133076A1 (en) * 2012-03-07 2013-09-12 新日鐵住金株式会社 Method for producing high-strength steel material having excellent sulfide stress cracking resistance
US10287645B2 (en) 2012-03-07 2019-05-14 Nippon Steel & Sumitomo Metal Corporation Method for producing high-strength steel material excellent in sulfide stress cracking resistance
AU2013228617B2 (en) * 2012-03-07 2015-07-30 Nippon Steel Corporation Method for producing high-strength steel material having excellent sulfide stress cracking resistance
EP2881485A4 (en) * 2012-07-31 2015-12-02 Baoshan Iron & Steel Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
US9994926B2 (en) 2012-07-31 2018-06-12 Baoshan Iron & Steel Co., Ltd. High-hardness, high-toughness, wear-resistant steel plate and manufacturing method thereof
EA029884B1 (en) * 2013-07-26 2018-05-31 Ниппон Стил Энд Сумитомо Метал Корпорейшн Low alloy oil well steel pipe and method for manufacturing same
JP5880787B2 (en) * 2013-07-26 2016-03-09 新日鐵住金株式会社 Steel tube for low alloy oil well and manufacturing method thereof
CN105492642A (en) * 2013-07-26 2016-04-13 新日铁住金株式会社 Low-alloy steel pipe for oil well and production method therefor
WO2015011917A1 (en) * 2013-07-26 2015-01-29 新日鐵住金株式会社 Low-alloy steel pipe for oil well and production method therefor
AU2014294435B2 (en) * 2013-07-26 2017-07-06 Nippon Steel Corporation Low alloy oil well steel pipe and method for manufacturing same
WO2016013205A1 (en) * 2014-07-25 2016-01-28 新日鐵住金株式会社 Low-alloy steel pipe for oil well
AU2015291875B2 (en) * 2014-07-25 2018-12-20 Nippon Steel Corporation Low alloy oil-well steel pipe
JPWO2016013205A1 (en) * 2014-07-25 2017-06-01 新日鐵住金株式会社 Low alloy oil well steel pipe
WO2016035316A1 (en) * 2014-09-04 2016-03-10 新日鐵住金株式会社 Thick-walled steel pipe for oil well and method of manufacturing same
JPWO2016035316A1 (en) * 2014-09-04 2017-04-27 新日鐵住金株式会社 Steel pipe for thick oil well and manufacturing method thereof
AU2015310346B2 (en) * 2014-09-04 2018-12-20 Nippon Steel Corporation Thick-walled steel pipe for oil well and method of manufacturing same
WO2016059763A1 (en) * 2014-10-17 2016-04-21 新日鐵住金株式会社 Low alloy steel pipe for oil wells
AU2015331943B2 (en) * 2014-10-17 2018-04-19 Nippon Steel Corporation Low alloy oil-well steel pipe
CN107075636A (en) * 2014-10-17 2017-08-18 新日铁住金株式会社 Low-alloy Oil Well Pipe
RU2664500C1 (en) * 2014-10-17 2018-08-17 Ниппон Стил Энд Сумитомо Метал Корпорейшн Low-alloy steel petroleum tube
JPWO2016059763A1 (en) * 2014-10-17 2017-04-27 新日鐵住金株式会社 Low alloy oil well steel pipe
CN107002201A (en) * 2014-12-12 2017-08-01 新日铁住金株式会社 The manufacture method of pipe for oil well use low-alloy steel and low-alloy steel oil well pipe
CN105238994A (en) * 2015-11-25 2016-01-13 山东钢铁股份有限公司 Steels for train buffers and preparation method thereof
JP2017206720A (en) * 2016-05-16 2017-11-24 新日鐵住金株式会社 Method of manufacturing seamless steel pipe
WO2022102441A1 (en) * 2020-11-11 2022-05-19 日本製鉄株式会社 Steel material suitable for use in sour environment
JPWO2022102441A1 (en) * 2020-11-11 2022-05-19
WO2022145071A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Similar Documents

Publication Publication Date Title
JP6677310B2 (en) Steel materials and steel pipes for oil wells
JP4379550B2 (en) Low alloy steel with excellent resistance to sulfide stress cracking and toughness
JP3562353B2 (en) Oil well steel excellent in sulfide stress corrosion cracking resistance and method for producing the same
EP1862561B9 (en) Oil well seamless pipe having excellent sulfide stress cracking resistance and method for manufacturing an oil well seamless steel pipe
JP3116156B2 (en) Method for producing steel pipe with excellent corrosion resistance and weldability
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
JP3758508B2 (en) Manufacturing method of duplex stainless steel pipe
JPH1150148A (en) Production of high strength and high corrosion resistance seamless steel pipe
CA3042120C (en) Medium-manganese steel product for low-temperature use and method for the production thereof
JPH10280037A (en) Production of high strength and high corrosion-resistant seamless seamless steel pipe
JP2000256783A (en) High strength steel for oil well excellent in toughness and sulfide stress corrosion cracking resistance and its production
JPH09249935A (en) High strength steel material excellent in sulfide stress cracking resistance and its production
WO2017169811A1 (en) High-strength steel material and production method therefor
JP2000063940A (en) Production of high strength steel excellent in sulfide stress cracking resistance
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
WO2021206080A1 (en) Martensitic stainless seamless steel pipe
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JPH09111344A (en) Production of high strength and low yield ratio seamless steel pipe
JP3362565B2 (en) Manufacturing method of high strength and high corrosion resistant seamless steel pipe
JP3622499B2 (en) Steel pipe manufacturing method
JPH1161254A (en) Production of high strength high corrosion resistance seamless steel tube
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPH11286720A (en) Manufacture of high strength steel product excellent in sulfide stress cracking resistance
JPH04358026A (en) Production of seamless low alloy steel tube having fine-grained structure