JP2017206720A - Method of manufacturing seamless steel pipe - Google Patents

Method of manufacturing seamless steel pipe Download PDF

Info

Publication number
JP2017206720A
JP2017206720A JP2016098213A JP2016098213A JP2017206720A JP 2017206720 A JP2017206720 A JP 2017206720A JP 2016098213 A JP2016098213 A JP 2016098213A JP 2016098213 A JP2016098213 A JP 2016098213A JP 2017206720 A JP2017206720 A JP 2017206720A
Authority
JP
Japan
Prior art keywords
steel pipe
seamless steel
quenching
manufacturing
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016098213A
Other languages
Japanese (ja)
Other versions
JP6720686B2 (en
Inventor
洋輔 竹田
Yosuke Takeda
洋輔 竹田
桂一 近藤
Keiichi Kondo
桂一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016098213A priority Critical patent/JP6720686B2/en
Publication of JP2017206720A publication Critical patent/JP2017206720A/en
Application granted granted Critical
Publication of JP6720686B2 publication Critical patent/JP6720686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a seamless steel pipe having a structure that has a high martensite fraction up to the center portion of the thickness even for a thick-walled steel pipe.SOLUTION: The method of manufacturing a seamless steel pipe includes a step (step S1) of manufacturing a raw pipe by hot working a material, and a step of quenching the raw pipe at least once (steps S2-1, S2-2, S2-3). After the hot working (step S1) and before the final quenching (step S2-3) of the at least one quenching step, the method further includes a step (step S2) of removing the oxided scale of the raw pipe.SELECTED DRAWING: Figure 1

Description

本発明は、継目無鋼管の製造方法に関し、より詳しくは、油井管の材料、又は油井管同士を繋ぐカップリングの材料として好適な継目無鋼管の製造方法に関する。   The present invention relates to a method for manufacturing a seamless steel pipe, and more particularly to a method for manufacturing a seamless steel pipe suitable as a material for an oil well pipe or a coupling material for connecting oil well pipes.

近年、世界的に高温・高圧の井戸環境が増加してきており、その高圧に耐えられるように油井管の厚肉化が求められている。具体的には、油井管本体の肉厚が1インチ(25.4mm)を超えるサイズになっている。これに伴って、油井管本体同士を繋ぐカップリングの加工前素管であるカップリング素管の肉厚が2インチ(50.8mm)を超えるサイズになっている。   In recent years, high-temperature and high-pressure well environments are increasing worldwide, and it is required to increase the thickness of oil well pipes to withstand the high pressure. Specifically, the wall thickness of the oil well pipe body is a size exceeding 1 inch (25.4 mm). In connection with this, the thickness of the coupling element pipe which is the element pipe before processing of the coupling which connects oil well pipe main bodies exceeds 2 inches (50.8 mm).

油井管用継目無鋼管に関する代表的な規格の一つであるAPI規格には、耐サワー油井管に関して、焼入れ後、焼入れ前の組織のマルテンサイト分率を90%以上にすることが規定されている。しかし、肉厚が2インチを超えるような厚肉の鋼管では、肉厚中央部においてマルテンサイト分率が90%以上の組織を得ることは困難である。   The API standard, which is one of the typical standards for seamless steel pipes for oil well pipes, stipulates that the martensite fraction of the structure before quenching and before quenching should be 90% or more for sour resistant well pipes. . However, with a thick steel pipe having a wall thickness exceeding 2 inches, it is difficult to obtain a structure having a martensite fraction of 90% or more at the center of the wall thickness.

国際公開第2016/035316号には、40mm以上の肉厚を有し、優れた耐SSC性と、高い強度とを有し、肉厚方向の強度ばらつきが少ない肉厚油井用鋼管が開示されている。同文献には、Mn含有量を1.0%以下、Cr含有量を2.0%以下に抑え、代わりに、C含有量を0.40%以上、Mo含有量を1.15%よりも高く含有させることで、耐SSC性を維持しながら、焼入れ性を高めることができると記載されている。また、焼入れ温度を925〜1100℃にすることで、Mo炭化物が十分に固溶して、焼入れ性が顕著に高まると記載されている。   International Publication No. 2016/035316 discloses a steel pipe for thick oil wells having a wall thickness of 40 mm or more, excellent SSC resistance, high strength, and less strength variation in the thickness direction. Yes. In the same document, the Mn content is controlled to 1.0% or less and the Cr content is controlled to 2.0% or less. Instead, the C content is 0.40% or more and the Mo content is more than 1.15%. It is described that the hardenability can be enhanced while maintaining the SSC resistance by containing a high amount. In addition, it is described that by setting the quenching temperature to 925 to 1100 ° C., Mo carbides are sufficiently dissolved, and the hardenability is significantly increased.

Maria Jose Canioet.al, "High Strength Low Alloy Steel for HPHT Wells", Offshore Technology Conference-Asia, 25-28 March 2014の図3には、肉厚が59.6mmの鋼管において、肉厚中央部までマルテンサイト分率が95%以上の組織が得られていることが記載されている。   Fig. 3 of Maria Jose Canioet.al, "High Strength Low Alloy Steel for HPHT Wells", Offshore Technology Conference-Asia, 25-28 March 2014. It is described that a structure having a site fraction of 95% or more is obtained.

国際公開第2016/035316号International Publication No. 2016/035316

Maria Jose Canioet.al, "High Strength Low Alloy Steel for HPHT Wells", Offshore Technology Conference-Asia, 25-28 March 2014Maria Jose Canioet.al, "High Strength Low Alloy Steel for HPHT Wells", Offshore Technology Conference-Asia, 25-28 March 2014

国際公開第2016/035316号では、化学組成を限定することで焼入れ性を確保しているが、化学組成を限定せずに焼入れ性を向上できる方法が好ましい。   In International Publication No. 2016/035316, the hardenability is ensured by limiting the chemical composition, but a method that can improve the hardenability without limiting the chemical composition is preferable.

Maria Jose Canioet.al, "High Strength Low Alloy Steel for HPHT Wells", Offshore Technology Conference-Asia, 25-28 March 2014には、熱処理方法についての具体的な開示はない。   Maria Jose Canioet.al, “High Strength Low Alloy Steel for HPHT Wells”, Offshore Technology Conference-Asia, 25-28 March 2014, does not specifically disclose the heat treatment method.

本発明の目的は、厚肉の鋼管であっても、肉厚中央部までマルテンサイト分率の高い組織を有する継目無鋼管の製造方法を得ることである。   An object of the present invention is to obtain a method for producing a seamless steel pipe having a structure with a high martensite fraction up to the center of the wall thickness, even for a thick steel pipe.

本発明の一実施形態による継目無鋼管の製造方法は、素材を熱間加工して素管を製造する工程と、前記素管を1回以上焼入れする工程とを備える。前記熱間加工後であって、前記1回以上焼入れする工程のうちの最終の焼入れよりも前に、前記素管の酸化スケールを除去する工程をさらに備える。   The manufacturing method of the seamless steel pipe by one Embodiment of this invention comprises the process of hot-working a raw material and manufacturing a raw pipe, and the process of quenching the said raw pipe once or more. The method further includes a step of removing the oxide scale of the raw tube after the hot working and before the final quenching in the step of quenching at least once.

本発明によれば、厚肉の鋼管であっても、肉厚中央部までマルテンサイト分率の高い組織を有する継目無鋼管が得られる。   According to this invention, even if it is a thick-walled steel pipe, the seamless steel pipe which has a structure | tissue with a high martensite fraction to the thickness center part is obtained.

図1は、本発明の一実施形態による継目無鋼管の製造方法のフロー図である。FIG. 1 is a flowchart of a method for manufacturing a seamless steel pipe according to an embodiment of the present invention. 図2は、焼入れの前にスケール除去工程を実施した継目無鋼管の表層部の断面顕微鏡写真である。FIG. 2 is a cross-sectional photomicrograph of the surface layer portion of a seamless steel pipe that has been subjected to a scale removal step before quenching. 図3は、焼入れの前にスケール除去工程を実施しなかった継目無鋼管の表層部の断面顕微鏡写真である。FIG. 3 is a cross-sectional photomicrograph of the surface layer portion of a seamless steel pipe that has not been subjected to the scale removal step before quenching. 図4は、焼入れ時の素管の冷却曲線である。FIG. 4 is a cooling curve of the raw tube during quenching. 図5は、焼入れ前にスケール除去工程を実施した継目無鋼管のロックウェル硬さの分布である。FIG. 5 is a distribution of Rockwell hardness of a seamless steel pipe that has been subjected to a scale removal step before quenching. 図5は、焼入れ前にスケール除去工程を実施しなかった継目無鋼管のロックウェル硬さの分布である。FIG. 5 is a distribution of Rockwell hardness of seamless steel pipes that were not subjected to the scale removal step before quenching.

以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

図1は、本発明の一実施形態による継目無鋼管の製造方法のフロー図である。本実施形態による製造方法は、素材を熱間加工して素管を製造する工程(ステップS1)と、素管を1回以上焼入れする工程(ステップS2−1、S2−2、及びS2−3)とを備えている。本実施形態による製造方法は、熱間加工(ステップS1)後であって、最終の焼入れ(ステップS2−3)よりも前に、素管の酸化スケールを除去する工程(ステップS3)をさらに備えている。   FIG. 1 is a flowchart of a method for manufacturing a seamless steel pipe according to an embodiment of the present invention. The manufacturing method according to the present embodiment includes a step of manufacturing a raw tube by hot working a material (step S1) and a step of quenching the raw tube one or more times (steps S2-1, S2-2, and S2-3). ). The manufacturing method according to the present embodiment further includes a step (step S3) of removing the oxide scale of the raw tube after the hot working (step S1) and before the final quenching (step S2-3). ing.

[熱間加工工程]
素材を熱間加工して素管を製造する(ステップS1)。素材は例えば、連続鋳造によって製造されたビレットである。素管は、周知の熱間加工によって製造することができる。熱間加工は例えば、穿孔圧延や熱間押出である。穿孔圧延は例えば、マンネスマン法である。熱間押出は例えば、ユジーンセジュルネ法である。本実施形態による製造方法は、肉厚が50mm以上の厚肉の素管に、特に好適に用いることができる。
[Hot working process]
A raw tube is manufactured by hot working the material (step S1). The material is, for example, a billet manufactured by continuous casting. The blank tube can be manufactured by well-known hot working. Hot working is, for example, piercing-rolling or hot extrusion. The piercing and rolling is, for example, the Mannesmann method. Hot extrusion is, for example, the Eugene Sejurnee method. The manufacturing method according to the present embodiment can be particularly suitably used for a thick tube having a wall thickness of 50 mm or more.

素材の化学組成は特に限定しないが、製造しようとする継目無鋼管が油井管である場合、例えばAPI 5CT規格に準拠したものを用いることができる。具体的には、例えば同規格のT95グレードの継目無鋼管では、その化学組成は、質量%で、C:0.45%以下、Mn:1.90%以下、P:0.030%以下、S:0.030%以下、Si:0.45%以下であり、同規格のC110グレードでは、その化学組成は、質量%で、C:0.35%以下、Mn:1.20%以下、Mo:0.25〜1.00%、Cr:0.40〜1.50%、Ni:0.99%以下、P:0.020%以下、S:0.005%以下である。なお、本実施形態による製造方法は、Cr:0.4〜1.5%、Mo:0.25〜1.00%を含有する素材に対して、特に好適に用いることができる。   The chemical composition of the material is not particularly limited, but when the seamless steel pipe to be manufactured is an oil well pipe, for example, a pipe conforming to the API 5CT standard can be used. Specifically, for example, in the T95 grade seamless steel pipe of the same standard, the chemical composition is mass%, C: 0.45% or less, Mn: 1.90% or less, P: 0.030% or less, S: 0.030% or less, Si: 0.45% or less, and in the C110 grade of the same standard, the chemical composition is mass%, C: 0.35% or less, Mn: 1.20% or less, Mo: 0.25 to 1.00%, Cr: 0.40 to 1.50%, Ni: 0.99% or less, P: 0.020% or less, S: 0.005% or less. In addition, the manufacturing method by this embodiment can be used especially suitably with respect to the raw material containing Cr: 0.4-1.5% and Mo: 0.25-1.00%.

[焼入れ工程]
製造した素管を1回以上焼入れする(ステップS2−1、S2−2、及びS2−3)。図1の例では3回の焼入れを実施しているが、焼入れの回数は1回又は2回であってもよいし、4回以上であってもよい。一般的に、焼入れの回数を増やすことで、結晶粒をより微細にすることができる。
[Quenching process]
The manufactured raw tube is quenched once or more (steps S2-1, S2-2, and S2-3). In the example of FIG. 1, quenching is performed three times, but the number of times of quenching may be one or two times, or may be four times or more. Generally, the crystal grains can be made finer by increasing the number of times of quenching.

焼入れは、オーステナイト領域の温度(Ar点以上の温度)からマルテンサイト変態開始温度(Ms点)以下の温度まで急冷する熱処理である。最初の焼入れ(ステップS2−1)は、熱間加工後の高温の素管を、Ar点以上の温度からそのまま急冷する、いわゆる直接焼入れであってもよいし、熱間加工後の高温の素管を補熱炉でAc点以上の温度に均熱してから急冷する、いわゆるインライン焼入れであってもよい。あるいは、一旦冷却した素管をAc点以上の温度に再加熱してから急冷する、いわゆる再加熱焼入れであってもよい。2回目以降の焼入れ(ステップS2−2及びS2−3)は、必然的に再加熱焼入れになる。 Quenching is a heat treatment that rapidly cools from the temperature of the austenite region (temperature of Ar 3 point or higher) to the temperature of the martensite transformation start temperature (Ms point) or lower. The first quenching (step S2-1) may be a so-called direct quenching in which a high-temperature raw tube after hot working is rapidly cooled as it is from a temperature of three or more points of Ar, or a high temperature after hot working. So-called in-line quenching may be used in which the raw tube is soaked in an auxiliary heating furnace to a temperature of Ac 3 or higher and then rapidly cooled. Alternatively, so-called reheating and quenching may be used, in which the elementary tube once cooled is reheated to a temperature of Ac 3 point or higher and then rapidly cooled. The second and subsequent quenching (steps S2-2 and S2-3) inevitably involves reheating and quenching.

急冷を開始する温度(以下、焼入れ開始温度という。)は、上述のようにAr点以上である。焼入れ開始温度がAr点よりも低いと、急冷開始時にオーステナイト以外の組織が含まれ、マルテンサイト分率の高い組織が得られなくなる。一方、焼入れ開始温度が高すぎると、オーステナイト粒が成長し、微細な組織が得られなくなる。焼入れ開始温度の下限は、好ましくはAr点+50℃である。焼入れ開始温度の上限は、好ましくは1000℃である。 The temperature at which rapid cooling is started (hereinafter referred to as quenching start temperature) is Ar 3 or higher as described above. When the quenching start temperature is lower than the Ar 3 point, a structure other than austenite is included at the start of quenching, and a structure with a high martensite fraction cannot be obtained. On the other hand, if the quenching start temperature is too high, austenite grains grow and a fine structure cannot be obtained. The lower limit of the quenching start temperature is preferably Ar 3 points + 50 ° C. The upper limit of the quenching start temperature is preferably 1000 ° C.

焼入れの冷却速度が小さい場合、又は冷却停止温度がMs点よりも高い場合、素管がAr点からMs点の間の温度に滞在する時間が長くなり、拡散変態が進行してマルテンサイト分率の高い組織が得られなくなる。冷却方法は、素管の化学組成や寸法にも依存するが、好ましくは水冷(シャワー水冷や水槽への浸漬)である。冷却速度は、水冷の場合、冷却水の流量や水温によって調整することができる。冷却停止温度は、Ms点以下であればよいが、好ましくはマルテンサイト変態終了温度(Mf点)以下である。冷却停止温度は、室温以下であってもよい。 When the quenching cooling rate is low, or when the cooling stop temperature is higher than the Ms point, the time during which the raw tube stays at the temperature between the Ar 3 point and the Ms point becomes long, and the diffusion transformation proceeds and the martensite component A high rate organization cannot be obtained. The cooling method depends on the chemical composition and dimensions of the raw tube, but is preferably water cooling (shower water cooling or immersion in a water bath). In the case of water cooling, the cooling rate can be adjusted by the cooling water flow rate and the water temperature. The cooling stop temperature may be equal to or lower than the Ms point, but is preferably equal to or lower than the martensitic transformation end temperature (Mf point). The cooling stop temperature may be room temperature or lower.

焼入れを複数回実施する場合、それぞれの条件を変えてもよい。継目無鋼管の組織は、最終の焼入れ(ステップS2−3)の条件に大きく依存する。そのため、少なくとも最終の焼入(ステップS2−3)では、素管を十分に大きな冷却速度で冷却することが好ましい。換言すれば、焼入れを複数回実施する場合、最終以外の焼入れの冷却速度は、比較的小さくてもよい。   When quenching is performed a plurality of times, the respective conditions may be changed. The structure of the seamless steel pipe greatly depends on the conditions of the final quenching (step S2-3). Therefore, at least in the final quenching (step S2-3), it is preferable to cool the raw tube at a sufficiently high cooling rate. In other words, when quenching is performed a plurality of times, the cooling rate of quenching other than the final quenching may be relatively small.

[スケール除去工程]
本実施形態による製造方法では、熱間加工(ステップS1)後であって、最終の焼入れ(ステップS2−3)よりも前に、素管の酸化スケールを除去する(ステップS3)。
[Scale removal process]
In the manufacturing method according to the present embodiment, after the hot working (step S1) and before the final quenching (step S2-3), the oxide scale of the element tube is removed (step S3).

図1の例では、スケール除去工程(ステップS3)は、最終の焼入れ(ステップS2−3)の直前、すなわち、2回目の焼入れ(ステップS2−2)と最終の焼入れ(ステップS2−3)との間に実施している。しかし、スケール除去工程(ステップS3)は、熱間加工(ステップS1)と最初の焼入れ(ステップS2−1)との間に実施してもよいし、最初の焼入れ(ステップS2−1)と2回目の焼入れ(ステップS2−2)との間に実施してもよい。また、スケール除去工程を2回以上実施してもよい。   In the example of FIG. 1, the scale removal step (step S3) is performed immediately before the final quenching (step S2-3), that is, the second quenching (step S2-2) and the final quenching (step S2-3). It is carried out during However, the scale removal step (step S3) may be performed between the hot working (step S1) and the first quenching (step S2-1), or the first quenching (step S2-1) and 2 You may implement between this hardening (step S2-2). Moreover, you may implement a scale removal process twice or more.

酸化スケールの除去方法は、特に限定せず、周知の方法を用いることができる。酸化スケールは、機械的に除去してもよいし、酸等の薬品によって化学的に除去してもよい。機械的に除去する方法としては、ショットブラストや、高圧流体を吹き付ける方法、表面を研削する方法等が挙げられる。酸化スケールの除去方法は、好ましくはショットブラストである。   The method for removing the oxide scale is not particularly limited, and a known method can be used. The oxide scale may be removed mechanically or chemically with a chemical such as an acid. Examples of the mechanical removal method include shot blasting, a method of spraying a high-pressure fluid, and a method of grinding the surface. The method for removing the oxide scale is preferably shot blasting.

酸化スケールは、完全に除去する必要はないが、目視で金属光沢が確認できる程度まで除去しておくことが好ましい。   Although it is not necessary to completely remove the oxide scale, it is preferable to remove it to such an extent that the metallic luster can be visually confirmed.

以上の肯定によって、継目無鋼管が製造される。最終の焼入れ(ステップS2−3)後、必要に応じて、さらに焼戻しを実施してもよい。焼戻しは例えば、焼入れされた素管を、400℃〜Ac点以下の温度に加熱することで実施する。焼戻しを実施することで、継目無鋼管の靱性を向上させることができる。 By the above affirmation, a seamless steel pipe is manufactured. After the final quenching (step S2-3), tempering may be further performed as necessary. Tempering is carried out, for example, by heating the quenched pipe to a temperature of 400 ° C. to Ac 1 point or less. By performing tempering, the toughness of the seamless steel pipe can be improved.

[本実施形態の効果]
本実施形態による製造方法では、熱間加工(ステップS1)後であって、最終の焼入れ(ステップS2−3)よりも前に、素管の酸化スケールを除去する(ステップS3)。酸化スケールを除去することによって、その後の焼入れの際、素管の熱伝導率が向上する。そのため、厚肉の素管であっても、肉厚中央部まで速やかに冷却される。これによって、肉厚中央部の組織がAr点からMs点の間の温度に滞在する時間が減少し、マルテンサイト分率の高い組織が得られる。
[Effect of this embodiment]
In the manufacturing method according to the present embodiment, after the hot working (step S1) and before the final quenching (step S2-3), the oxide scale of the element tube is removed (step S3). By removing the oxide scale, the thermal conductivity of the blank tube is improved during the subsequent quenching. Therefore, even if it is a thick-walled raw tube, it is quickly cooled to the thickness center part. As a result, the time during which the structure at the center of the thickness stays at the temperature between the Ar 3 point and the Ms point is reduced, and a structure having a high martensite fraction is obtained.

図2及び図3は、継目無鋼管の表層部の断面顕微鏡写真である。これらの継目無鋼管は、熱間加工後、2回の再加熱焼入れを実施して製造された。焼入れは、いずれも加熱した素管を水槽に浸漬することで実施した。このとき、槽内の冷却水を管軸方向に15〜70m/sで流動させた。図2は2回目の焼入れの前にスケール除去工程を実施した継目無鋼管の写真であり、図3はスケール除去工程を実施しなかった継目無鋼管の写真である。   2 and 3 are cross-sectional micrographs of the surface layer portion of the seamless steel pipe. These seamless steel pipes were manufactured by performing reheating and quenching twice after hot working. Quenching was performed by immersing the heated raw tube in a water tank. At this time, the cooling water in the tank was flowed at 15 to 70 m / s in the tube axis direction. FIG. 2 is a photograph of a seamless steel pipe that has been subjected to the scale removal process before the second quenching, and FIG. 3 is a photograph of a seamless steel pipe that has not been subjected to the scale removal process.

図2に示すように、2回目の焼入れの前にスケール除去工程を実施した継目無鋼管においても、母材10の表面に酸化スケール20が形成されている。この酸化スケール20は、2回目の焼入れ熱処理時に形成されたものと考えられる。   As shown in FIG. 2, the oxide scale 20 is formed on the surface of the base material 10 even in the seamless steel pipe that has been subjected to the scale removal step before the second quenching. This oxide scale 20 is considered to have been formed during the second quenching heat treatment.

図3に示すように、スケール除去工程を実施しなかった継目無鋼管の酸化スケール30は、スケール31と32との二層構造を有する。スケール31は、母材10とスケール32との間に形成され、多孔質である。スケール32は、継目無鋼管の最表層に形成され、比較的緻密である。スケール31は熱間加工で形成されたものと考えられ、スケール32はその後の焼入れ工程で形成されたものと考えられる。なお、スケール31及び32は、焼入れ時の冷却水の流量を大きくしても殆ど除去されなかった。   As shown in FIG. 3, the oxide scale 30 of the seamless steel pipe that has not been subjected to the scale removal step has a two-layer structure of scales 31 and 32. The scale 31 is formed between the base material 10 and the scale 32 and is porous. The scale 32 is formed on the outermost layer of the seamless steel pipe and is relatively dense. The scale 31 is considered to be formed by hot working, and the scale 32 is considered to be formed in the subsequent quenching process. The scales 31 and 32 were hardly removed even when the flow rate of the cooling water at the time of quenching was increased.

これらの酸化スケールの化学組成を電子線マイクロアナライザによって分析した。その結果、スケール31には、CrやMoが濃化していることが分かった。詳細は明らかではないが、CrやMoを含有する母材を熱間加工した場合、多孔質なスケール31が形成されやすくなる可能性がある。   The chemical composition of these oxide scales was analyzed with an electron microanalyzer. As a result, it was found that the scale 31 was enriched with Cr and Mo. Although details are not clear, when a base material containing Cr or Mo is hot-worked, the porous scale 31 may be easily formed.

スケール31は多孔質であるため、スケール32よりも熱伝導率はさらに低い。そのため、スケール31を除去しておくことが、継目無鋼管の熱伝導率の向上に有効である。本実施形態による製造方法では、熱間加工(ステップS1)後であって、最終の焼入れ(ステップS2−3)よりも前に素管の酸化スケールを除去する。そのため、最終の焼入れの前には、少なくともスケール31は除去されている。したがって、最終の焼入れの際、肉厚中央部まで速やかに冷却することができる。   Since the scale 31 is porous, its thermal conductivity is lower than that of the scale 32. Therefore, removing the scale 31 is effective for improving the thermal conductivity of the seamless steel pipe. In the manufacturing method according to the present embodiment, after the hot working (step S1), the oxide scale of the raw tube is removed before the final quenching (step S2-3). Therefore, at least the scale 31 is removed before the final quenching. Therefore, at the time of the final quenching, it is possible to quickly cool to the thickness central portion.

図2と図3との比較から、図3のスケール32は、図2のスケール20よりも厚いことが分かる。これは、焼入れを繰り返すことによって、酸化スケールの厚さが増加していくことを示唆している。酸化スケールの厚さが増加すると、熱抵抗が増加する。そのため、焼入れを複数回実施する場合には、最終の焼入れの直前にスケール除去処理を実施することがより好ましい。   From a comparison between FIG. 2 and FIG. 3, it can be seen that the scale 32 of FIG. 3 is thicker than the scale 20 of FIG. This suggests that the thickness of the oxide scale increases with repeated quenching. As the oxide scale thickness increases, the thermal resistance increases. Therefore, when performing quenching a plurality of times, it is more preferable to perform the scale removal process immediately before the final quenching.

以上、本実施形態による継目無鋼管の製造方法及びその効果について説明した。本実施形態による継目無鋼管の製造方法によれば、厚肉の鋼管であっても、肉厚中央部までマルテンサイト分率の高い組織を有する継目無鋼管が得られる。   In the above, the manufacturing method and effect of the seamless steel pipe by this embodiment were demonstrated. According to the method for manufacturing a seamless steel pipe according to the present embodiment, a seamless steel pipe having a structure with a high martensite fraction up to the center of the thickness can be obtained even for a thick steel pipe.

以下、実施例によって本発明をより具体的に説明する。本発明は、これらの実施例に限定されない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.

表1に示す化学組成を有する鋼を熱間加工し、外径265.0mm、肉厚52.6mm、長さ420mmの素管を複数製造した。   Steels having the chemical composition shown in Table 1 were hot-worked to produce a plurality of elementary tubes having an outer diameter of 265.0 mm, a wall thickness of 52.6 mm, and a length of 420 mm.

これらの素管に対して、再加熱焼入れを実施した。具体的には、素管を910℃で120分保持した後、4分間水槽に浸漬した。冷却水の水温は、浸漬前の温度で約25℃であった。槽内の冷却水は、管軸方向に15〜70m/sで流動させた。後述する硬さ測定は、流速が20m/s程度となる箇所からサンプルを採取して測定した。   These elementary tubes were re-heated and quenched. Specifically, the raw tube was held at 910 ° C. for 120 minutes and then immersed in a water bath for 4 minutes. The water temperature of the cooling water was about 25 ° C. before immersion. The cooling water in the tank was made to flow at 15 to 70 m / s in the tube axis direction. The hardness measurement described later was measured by collecting a sample from a location where the flow rate was about 20 m / s.

焼入れした素管の内外面にショットブラストを実施し、目視で金属光沢が確認できる程度までスケールを除去した。スケールを除去した素管を、1回目と同じ条件で再加熱焼入れして継目無鋼管を製造した。   Shot blasting was performed on the inner and outer surfaces of the quenched pipe, and the scale was removed to such an extent that the metallic luster could be confirmed visually. The raw pipe from which the scale was removed was reheated and quenched under the same conditions as the first time to produce a seamless steel pipe.

比較例として、スケール除去処理を実施せずに継目無鋼管を製造した。スケール除去処理を実施しない以外は、上記と同じ条件とした。   As a comparative example, a seamless steel pipe was manufactured without carrying out the scale removal treatment. The conditions were the same as above except that the scale removal process was not performed.

各素管の肉厚中央部に熱電対を埋め込み、2回目の焼入れ時の温度の時間変化を測定した。結果を図4に示す。図4において、実線はスケールを除去した素管(実施例)の冷却曲線であり、破線はスケールを除去しなかった素管(比較例)の冷却曲線である。図4から、スケールを除去した素管の方が冷却速度が大きくなっていることを確認できる。   A thermocouple was embedded in the center of the wall of each element tube, and the change with time in temperature during the second quenching was measured. The results are shown in FIG. In FIG. 4, the solid line is a cooling curve of the raw pipe (example) from which the scale has been removed, and the broken line is a cooling curve of the raw pipe (comparative example) from which the scale has not been removed. From FIG. 4, it can be confirmed that the cooling rate is higher in the raw pipe from which the scale has been removed.

各継目無鋼管を切断し、断面のロックウェル硬さを肉厚方向に沿って、ASTM E18に準拠して測定した。ロックウェル硬さは、継目無鋼管の周方向に90°間隔で4カ所測定した。結果を図5及び図6に示す。図5はスケール除去工程を実施した継目無鋼管(実施例)のロックウェル硬さの分布であり、図6はスケール除去工程を実施しなかった継目無鋼管(比較例)のロックウェル硬さの分布である。   Each seamless steel pipe was cut and the Rockwell hardness of the cross section was measured along the thickness direction in accordance with ASTM E18. The Rockwell hardness was measured at four locations at 90 ° intervals in the circumferential direction of the seamless steel pipe. The results are shown in FIGS. FIG. 5 shows the distribution of Rockwell hardness of the seamless steel pipe (Example) subjected to the scale removal process, and FIG. 6 shows the Rockwell hardness of the seamless steel pipe (Comparative Example) where the scale removal process was not performed. Distribution.

API 5CTには、焼入れ後、焼入れ前の組織のマルテンサイト分率を90%以上にすることが規定されている。マルテンサイト分率は、ロックウェル硬さHRCとC含有量との関係から見積もることができ、API 5CTでは、焼入れまま材のロックウェル硬さHRCが下記の式(1)を満たすことが要求されている。
HRC≧58×[C]+27…(1)
ここで、HRCは継目無鋼管のロックウェル硬さであり、[C]には前記継目無鋼管のC含有量が質量%で代入される。また、「焼入れまま」とは、最終の焼入れ後、焼戻し前の状態を意味する。
API 5CT stipulates that the martensite fraction of the structure after quenching and before quenching is 90% or more. The martensite fraction can be estimated from the relationship between the Rockwell hardness HRC and the C content, and API 5CT requires the as-quenched material to satisfy the following formula (1). ing.
HRC ≧ 58 × [C] +27 (1)
Here, HRC is the Rockwell hardness of the seamless steel pipe, and the C content of the seamless steel pipe is substituted into [C] by mass%. Further, “as-quenched” means a state after final quenching and before tempering.

図5に示すように、スケール除去工程を実施した継目無鋼管では、肉厚中央部までマルテンサイト分率が90%以上の組織が得られている。一方、図6に示すように、スケール除去工程を実施しなかった継目無鋼管では、肉厚中央部付近でマルテンサイト分率が90%未満になった。   As shown in FIG. 5, in the seamless steel pipe subjected to the scale removal step, a structure having a martensite fraction of 90% or more is obtained up to the center of the wall thickness. On the other hand, as shown in FIG. 6, in the seamless steel pipe that was not subjected to the scale removal step, the martensite fraction was less than 90% in the vicinity of the thickness center.

本実施形態による継目無鋼管の製造方法によれば、厚肉の鋼管であっても、肉厚中央部までマルテンサイト分率の高い組織を有する継目無鋼管が得られることが確認された。   According to the method for manufacturing a seamless steel pipe according to the present embodiment, it was confirmed that a seamless steel pipe having a structure with a high martensite fraction up to the center of the thickness can be obtained even with a thick steel pipe.

以上、本発明の実施の形態を説明した。上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。   The embodiment of the present invention has been described above. The above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

符合の説明Explanation of sign

10 母材
20,30,31,32 酸化スケール
10 Base material 20, 30, 31, 32 Oxidation scale

Claims (6)

素材を熱間加工して素管を製造する工程と、
前記素管を1回以上焼入れする工程とを備え、
前記熱間加工後であって、前記1回以上焼入れする工程のうちの最終の焼入れよりも前に、前記素管の酸化スケールを除去する工程をさらに備える、継目無金属管の製造方法。
A process of manufacturing a raw pipe by hot-working the material;
Quenching the raw tube one or more times,
A method for producing a seamless metal tube, further comprising a step of removing the oxide scale of the raw tube after the hot working and before the final quenching in the step of quenching at least once.
請求項1に記載の継目無鋼管の製造方法であって、
前記素管が50mm以上の肉厚を有する、継目無鋼管の製造方法。
It is a manufacturing method of the seamless steel pipe according to claim 1,
A method for producing a seamless steel pipe, wherein the raw pipe has a thickness of 50 mm or more.
請求項1又は2に記載の継目無鋼管の製造方法であって、
前記素材が、質量%で、Cr:0.4〜1.5%、及びMo:0.25〜1.00%を含有する、継目無鋼管の製造方法。
A method for producing a seamless steel pipe according to claim 1 or 2,
The manufacturing method of the seamless steel pipe in which the said raw material contains Cr: 0.4-1.5% and Mo: 0.25-1.00% by the mass%.
請求項1〜3のいずれか一項に記載の継目無鋼管の製造方法であって、
下記の式(1)を満たす、継目無鋼管の製造方法。
HRC≧58×[C]+27…(1)
ここで、HRCは焼入れままの前記継目無鋼管の肉厚中央部で測定したロックウェル硬さであり、[C]には前記継目無鋼管のC含有量が質量%で代入される。
It is a manufacturing method of the seamless steel pipe according to any one of claims 1 to 3,
The manufacturing method of the seamless steel pipe which satisfy | fills following formula (1).
HRC ≧ 58 × [C] +27 (1)
Here, HRC is the Rockwell hardness measured at the thickness center of the seamless steel pipe as quenched, and the C content of the seamless steel pipe is substituted into [C] by mass%.
請求項1〜4のいずれか一項に記載の継目無鋼管の製造方法であって、
前記素管の酸化スケールを除去する工程は、前記素管をショットブラストすることによって実施する、継目無鋼管の製造方法。
It is a manufacturing method of the seamless steel pipe according to any one of claims 1 to 4,
The method for producing a seamless steel pipe, wherein the step of removing the oxide scale of the raw pipe is performed by shot blasting the raw pipe.
請求項1〜5のいずれか一項に記載の継目無鋼管の製造方法であって、
前記素管の酸化スケールを除去する工程は、前記1回以上焼入れする工程のうちの最終の焼入れの直前に実施する、継目無鋼管の製造方法。
It is a manufacturing method of the seamless steel pipe according to any one of claims 1 to 5,
The method for producing a seamless steel pipe, wherein the step of removing the oxide scale of the raw pipe is performed immediately before the final quenching in the step of quenching at least once.
JP2016098213A 2016-05-16 2016-05-16 Method for manufacturing seamless steel pipe Active JP6720686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016098213A JP6720686B2 (en) 2016-05-16 2016-05-16 Method for manufacturing seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016098213A JP6720686B2 (en) 2016-05-16 2016-05-16 Method for manufacturing seamless steel pipe

Publications (2)

Publication Number Publication Date
JP2017206720A true JP2017206720A (en) 2017-11-24
JP6720686B2 JP6720686B2 (en) 2020-07-08

Family

ID=60415254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098213A Active JP6720686B2 (en) 2016-05-16 2016-05-16 Method for manufacturing seamless steel pipe

Country Status (1)

Country Link
JP (1) JP6720686B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152814A (en) * 1976-06-14 1977-12-19 Nippon Steel Corp Thermo-mechanical treatment of seamless steel pipe
JPS6187824A (en) * 1984-09-13 1986-05-06 Nippon Steel Corp Uniform cooling method of high temperature metal pipe
JPS62124226A (en) * 1985-11-21 1987-06-05 Nippon Steel Corp Heat treatment of metal tube
JPS62185830A (en) * 1986-02-12 1987-08-14 Kawasaki Steel Corp Method for preventing longitudinal bend of small-diameter pipe material
JPH09249935A (en) * 1996-03-13 1997-09-22 Sumitomo Metal Ind Ltd High strength steel material excellent in sulfide stress cracking resistance and its production
CN102560057A (en) * 2012-02-22 2012-07-11 北京科大中冶技术发展有限公司 Heat treatment process method and system for hot rolled seamless steel tubes
US20140299235A1 (en) * 2013-04-08 2014-10-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
WO2015190377A1 (en) * 2014-06-09 2015-12-17 新日鐵住金株式会社 Low alloy steel pipe for oil well
WO2016035316A1 (en) * 2014-09-04 2016-03-10 新日鐵住金株式会社 Thick-walled steel pipe for oil well and method of manufacturing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152814A (en) * 1976-06-14 1977-12-19 Nippon Steel Corp Thermo-mechanical treatment of seamless steel pipe
JPS6187824A (en) * 1984-09-13 1986-05-06 Nippon Steel Corp Uniform cooling method of high temperature metal pipe
JPS62124226A (en) * 1985-11-21 1987-06-05 Nippon Steel Corp Heat treatment of metal tube
JPS62185830A (en) * 1986-02-12 1987-08-14 Kawasaki Steel Corp Method for preventing longitudinal bend of small-diameter pipe material
JPH09249935A (en) * 1996-03-13 1997-09-22 Sumitomo Metal Ind Ltd High strength steel material excellent in sulfide stress cracking resistance and its production
CN102560057A (en) * 2012-02-22 2012-07-11 北京科大中冶技术发展有限公司 Heat treatment process method and system for hot rolled seamless steel tubes
US20140299235A1 (en) * 2013-04-08 2014-10-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
WO2015190377A1 (en) * 2014-06-09 2015-12-17 新日鐵住金株式会社 Low alloy steel pipe for oil well
WO2016035316A1 (en) * 2014-09-04 2016-03-10 新日鐵住金株式会社 Thick-walled steel pipe for oil well and method of manufacturing same

Also Published As

Publication number Publication date
JP6720686B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
RU2707845C1 (en) Steel material and steel pipe for oil well
JP5252131B2 (en) Hardening method of steel pipe
JP5387799B1 (en) Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking
AU2015272617B2 (en) Low alloy steel pipe for oil well
JP5640762B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JP5880787B2 (en) Steel tube for low alloy oil well and manufacturing method thereof
JP5333700B1 (en) Low alloy oil well pipe steel with excellent resistance to sulfide stress cracking and method for producing low alloy oil well pipe steel
RU2650466C2 (en) Steel pipe for high-pressure fuel pipe and high-pressure fuel pipe comprising it
JP6146542B2 (en) Steel pipe for thick oil well and manufacturing method thereof
WO2018066689A1 (en) Steel material, steel pipe for oil wells, and method for producing steel material
JP5582307B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JP6583533B2 (en) Steel and oil well steel pipes
JP6747524B2 (en) Steel material and method for manufacturing steel material
JP6947012B2 (en) Steel materials, steel pipes for oil wells, and manufacturing methods for steel materials
JPWO2017141341A1 (en) Seamless steel pipe and manufacturing method thereof
JP2018035381A (en) Production method of stainless steel tube
JP2019112680A (en) Steel, steel pipe for oil well, and method for producing steel
CA3089461A1 (en) Steel pipe and method for producing steel pipe
JPH09241746A (en) Production of high strength duplex stainless steel tube
JP4392376B2 (en) Method for producing composite roll for hot rolling
JP6720686B2 (en) Method for manufacturing seamless steel pipe
AU2019251876A1 (en) Steel pipe and method for producing steel pipe
JP7277751B2 (en) Manufacturing method of stainless steel pipe
JP7200869B2 (en) Manufacturing method of stainless steel pipe
JP7323784B2 (en) Manufacturing method of stainless steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R151 Written notification of patent or utility model registration

Ref document number: 6720686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151