JPS62124226A - Heat treatment of metal tube - Google Patents

Heat treatment of metal tube

Info

Publication number
JPS62124226A
JPS62124226A JP26193385A JP26193385A JPS62124226A JP S62124226 A JPS62124226 A JP S62124226A JP 26193385 A JP26193385 A JP 26193385A JP 26193385 A JP26193385 A JP 26193385A JP S62124226 A JPS62124226 A JP S62124226A
Authority
JP
Japan
Prior art keywords
cooling
metal tube
temperature
heat treatment
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26193385A
Other languages
Japanese (ja)
Other versions
JPH027372B2 (en
Inventor
Keiichiro Mori
森 敬一郎
Hisami Sato
久美 佐藤
Tadakatsu Maruyama
忠克 丸山
Kyohei Murata
村田 杏坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26193385A priority Critical patent/JPS62124226A/en
Publication of JPS62124226A publication Critical patent/JPS62124226A/en
Publication of JPH027372B2 publication Critical patent/JPH027372B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deformation of easily bendable metal tube due to heat treatment cooling, by reducing temp. difference at each part of metal pipe at starting point of rapid cooling, while performing slow cooling for a prescribed time from the start of cooling, then carrying out conventional rapid cooling, in cooling metal tube after quenching. CONSTITUTION:Metal pipe such as steel tube having, especially thin wall thickness is heated to quenching temp., then slowly cooled for several sec to reduce temp. difference at each part of metal tube at starting point of rapid cooling. Condition of the slow cooling is <=4m<3>/m<2>.sec by exhibition of water quantity density of actual cooling water. Next, the metal tube subjected to slow cooling is conventionally and rapidly cooled and heat treatment of metal tube is finished. In this way, nonstress cooling of low strength - low rigidity metal tube becomes possible. Consequently, heat treatment cooling of steel tube, etc., which was conventionally not possible to be quenched and tempered is now made possible, and characteristic such as sour resistance of tube can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属管とくに各種鋼管の熱処理時の水冷にお
いて変形を生じさせない冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cooling method that does not cause deformation in water cooling during heat treatment of metal pipes, particularly various steel pipes.

(従来の技術) 近年サワー性の強い原油やガスの掘削チャンスが増え、
それらの輸送に用いられるラインパイプにも優れた耐サ
ワー特性を要求されることが多くなっている。従来は、
この種の・耐サワー性を求められるのはX60以上の比
較的高強度材が主であったのに対し、最近の傾向として
はより低強度側のラインパイプにおいても耐サワー特性
を要求されるケースが増えてきた。このような変化に対
応し、これまで熱間圧延のまま、もしくは簡単で製造さ
れていた低強度ラインパイプも、耐サワー特性保証の目
的で焼入れ焼もどしの熱処理を実施する必要が生じてき
た。低強度の鋼管は一般に熱間強度も低いため、熱処理
中に曲シの発生しやすい傾向にあり、とくに焼入れのた
めの水冷時には大きな曲りが生じやすい。
(Conventional technology) In recent years, opportunities to drill for sour crude oil and gas have increased.
Line pipes used for transporting these materials are increasingly required to have excellent sour resistance properties. conventionally,
This kind of sour resistance was mainly required for relatively high-strength materials of X60 or higher, but the recent trend is that sour resistance is also required for line pipes with lower strength. The number of cases is increasing. In response to these changes, it has become necessary for low-strength linepipes, which had previously been manufactured as hot-rolled or simply manufactured, to be heat-treated by quenching and tempering in order to guarantee sour resistance properties. Since low-strength steel pipes generally have low hot strength, they tend to bend easily during heat treatment, and in particular, large bends tend to occur during water cooling for quenching.

金属管とくに鋼管の冷却に関しては、すでに多くの提案
があシ、いずれも冷却に伴なう変形の防止と均一さを妨
げずに焼入れ冷却能力を高めることによる生産性向上が
配慮されている。例えば特公昭53−32097号公報
では、鋼管を回転させながら搬送し、その外周方向から
鋼管に対して接線方向に流体ジェット流を多数かつ均一
に噴射して均一冷却する装置が提案されている。また特
公昭56−19370号公報では円周方向に等間隔に配
列した多数のノズルから鋼管の進行方向に対して45°
ないし80°の方向に暴状噴流を当てて均一に冷却する
方法と装置が示されている。これらの提案は通常の鋼管
の冷却において一定の効果を与えるものではあるが、先
に述べた低強度ラインパイプなどの熱間強度が低く、と
くに肉厚の薄い鋼管に適用する場合には十分満足のいく
結果を得られるものではない。
Regarding the cooling of metal pipes, especially steel pipes, many proposals have already been made, all of which take into consideration the prevention of deformation caused by cooling and the improvement of productivity by increasing the quenching cooling capacity without interfering with uniformity. For example, Japanese Patent Publication No. 53-32097 proposes an apparatus that uniformly cools a steel pipe by transporting it while rotating and uniformly spraying a large number of fluid jet streams tangentially to the steel pipe from the outer circumferential direction. Furthermore, in Japanese Patent Publication No. 56-19370, a large number of nozzles arranged at equal intervals in the circumferential direction are
A method and apparatus for uniform cooling by applying a violent jet in a direction of 80° to 80° is disclosed. Although these proposals have a certain effect on cooling ordinary steel pipes, they are not fully satisfactory when applied to steel pipes with low hot strength, especially thin walls, such as the low-strength line pipes mentioned earlier. It's not something you can get good results from.

低強度の金属管冷却時に曲シの発生しやすい理由は、高
強度材であれは高い剛性で十分吸収し得る程度の応力不
均一によっても、熱間強度の低い金属管は容易に変形し
てしまうことによるものと考えられる。冷却中に金属管
の部位により応力不均一を生じる原因は、金属管の冷却
速度が鋼管の部位によって異なることによって発生し、
その冷却速度の変動は、金属管表面(伝熱面)の粗さや
ミルスケール付着状況などの不均一に、主として起因す
るものである。このような金属管表面のミクロ的な不均
一性に原因する冷却速度のバラツキを抑制して金属管の
変形を防止する効果的な方法に関しては、これまでに提
案されていないのが実情である。
The reason why bends tend to occur when cooling low-strength metal pipes is that even though high-strength materials have uneven stress that can be sufficiently absorbed by their high rigidity, metal pipes with low hot strength are easily deformed. This is thought to be due to putting it away. The cause of uneven stress in different parts of the metal tube during cooling is that the cooling rate of the metal pipe differs depending on the part of the steel pipe.
The fluctuation in the cooling rate is mainly caused by the unevenness of the metal tube surface (heat transfer surface), such as the roughness and the state of mill scale adhesion. The reality is that no effective method has been proposed to date to prevent the deformation of metal tubes by suppressing variations in cooling rate caused by microscopic non-uniformity on the surface of metal tubes. .

(発明が解決しようとする問題点) 前述の通り、広い意味で熱処理される金属管の表面特性
は、表面粗さ、ミルスケールの付着状態、ミルスケール
の表面状態その他がバラツキを有し、特に、金属管の熱
間強度が低い場合や肉厚が薄い等によりその剛性が低い
場合に、該金属管を水で冷却する時大きな変形を生ずる
原因となる。
(Problems to be Solved by the Invention) As mentioned above, in a broad sense, the surface characteristics of metal tubes that are heat treated include variations in surface roughness, adhesion state of mill scale, surface condition of mill scale, etc. If the hot strength of the metal tube is low or if its rigidity is low due to a thin wall thickness, etc., this may cause large deformation when the metal tube is cooled with water.

本発明はこのように曲が9易い金属管の熱処理冷却によ
る変形を防止することを目的としている。
The object of the present invention is to prevent the deformation of such easily curved metal tubes due to heat treatment and cooling.

又本発明は熱間強度が低く且つ剛性の弱い金属管の冷却
に伴なう変形を防止することができ、通常の金属管の無
歪冷却法としても有効である。
Further, the present invention can prevent deformation caused by cooling of metal tubes having low hot strength and low rigidity, and is also effective as a strain-free cooling method for ordinary metal tubes.

(問題点を解決するための手段) 本発明は上述の如き諸問題点を有利に解決したものであ
り、その要旨とするところは、(1)  金属管を所定
の焼入温度に加熱し冷却する熱処理方法において、前記
冷却を冷却開始から数秒間緩冷却を行りて強冷却開始点
における金属管各部の温度差を小さくし、次いで通常の
強冷却を行うことを特徴とする金属管゛の熱処理方法。
(Means for Solving the Problems) The present invention advantageously solves the problems described above, and its gist is as follows: (1) heating a metal tube to a predetermined quenching temperature and cooling it; In the heat treatment method of the metal tube, the cooling is performed for several seconds after the start of cooling to reduce the temperature difference between the various parts of the metal tube at the starting point of strong cooling, and then normal strong cooling is performed. Heat treatment method.

(2)金属管を所定の焼入温度に加熱し冷却する熱処理
方法において、狭面にミルスケールの付着した金属管の
場合、冷却の開始0.5〜3秒間でその伝熱面温度が加
熱温度から450℃〜650℃となるように、またミル
スケールの除去した金属管の場合、冷却の開始0.5〜
3秒間でその伝熱面温度が加熱温度から550℃〜70
0℃となるように、緩冷却を行りて強冷却開始点におけ
る金属管各部の温度差を小さくし、次いでその温度から
通常の強冷却を行うことを特徴とする金属管の熱処理方
法である。
(2) In a heat treatment method in which a metal tube is heated to a predetermined quenching temperature and then cooled, in the case of a metal tube with mill scale attached to its narrow surface, the heat transfer surface temperature increases within 0.5 to 3 seconds from the start of cooling. The temperature should be 450°C to 650°C, and in the case of metal pipes with mill scale removed, the start of cooling should be 0.5 to 650°C.
The heat transfer surface temperature changes from the heating temperature to 550℃ to 70℃ in 3 seconds.
This is a heat treatment method for a metal tube, which is characterized by performing slow cooling to reduce the temperature difference between each part of the metal tube at the starting point of strong cooling to 0°C, and then performing normal strong cooling from that temperature. .

以下本発明を図面に基づいて具体的に説明する。The present invention will be specifically explained below based on the drawings.

まず、金属管の表面条件に起因する冷却後の変形につい
て説明する。高温金属を冷却する時、最初に、膜沸騰熱
伝達が生じ、次いで遷移沸騰熱伝達から核沸騰熱伝達を
経由して対流熱伝達で常温まで冷却される。これを模式
的に示したのが、冷却曲線と呼ばれる第1図でおる。第
1図中に示したクエンチ点と呼ばれる伝熱面温度は蒸気
膜が安定して存在できず、蒸気膜が崩壊する温度と関連
がある。
First, deformation after cooling due to surface conditions of the metal tube will be explained. When cooling a high-temperature metal, film boiling heat transfer occurs first, then transition boiling heat transfer, nucleate boiling heat transfer, and convection heat transfer cool the metal to room temperature. This is schematically shown in Figure 1, which is called a cooling curve. The heat transfer surface temperature called the quench point shown in FIG. 1 is related to the temperature at which the vapor film cannot exist stably and the vapor film collapses.

すなわち、焼入時の冷却速度は、均一ではなく同一条件
で水冷を行なっても、クエンチ点以上の温度域は比較的
徐冷となり、クエンチ点をすぎると、急激に冷却が加速
される。しかもクエンチ点が前述したように伝熱面の表
面条件によって変動する。
That is, the cooling rate during quenching is not uniform, and even if water cooling is performed under the same conditions, cooling is relatively slow in the temperature range above the quench point, and cooling is rapidly accelerated beyond the quench point. Furthermore, the quench point varies depending on the surface conditions of the heat transfer surface, as described above.

一般に、表面が粗いとクエンチ点は上昇する。Generally, the rougher the surface, the higher the quench point.

換言すると冷却が促進する。逆に、表面が滑かであると
、クエンチ点は降下し、冷却が遅延する。
In other words, cooling is promoted. Conversely, a smooth surface will lower the quench point and retard cooling.

金属管の部位によって冷却曲線のクエンチ点が異なる場
合、冷却の比較的初期に大きな温度差が生ずる。この温
度差に基ずく熱応力おるいは、この温度域に存在する変
態点に関連する変態応力等によって、変形が生じ冷却後
も残存する。
If the quench point of the cooling curve differs depending on the part of the metal tube, a large temperature difference will occur at a relatively early stage of cooling. Thermal stress based on this temperature difference or transformation stress related to the transformation point existing in this temperature range causes deformation and remains even after cooling.

つまり、膜沸騰領域からの金属管の冷却において発生す
る変形は高温域における温度差、特にクエンチ点の不揃
いに起因するのである。
In other words, the deformation that occurs when the metal tube is cooled from the film boiling region is caused by temperature differences in the high temperature region, particularly by uneven quench points.

従って、このような冷却特性を示す実用金属管の冷却に
おいて金属管の各部位における冷却曲線を揃える冷却方
法を具現化することが、極めて重要な意味をもつ。
Therefore, in cooling a practical metal tube exhibiting such cooling characteristics, it is extremely important to realize a cooling method that aligns the cooling curves at each part of the metal tube.

金属管の冷却の初期において冷却水が十分供給される場
合には、第2図に示した通υ、クエンチ点以降の冷却は
非常に促進され、まだ蒸気膜が崩壊せずクエンチ点に達
していない部位との温度差が著しく大きくなる(図中A
、Bはクエンチ点を示す)。したがって冷却開始後一定
期間内は、部分的にクエンチ点を高めに引き上げる恐れ
のある強冷却をさけて緩冷却にすることによシ、第2図
中に示したクエンチ点到達時の温度差ΔTをΔT1から
ΔT2に減少させることができる( BD=ΔT1゜B
C−ΔTz)。しかる後に緩冷却から強冷却に移れば各
部位全体を、均一に、遷移沸騰から核沸騰熱伝達に移行
させることができ、金属管各部の冷却条件のバラツキを
著しく小さくできるため、変形も激減する。
If sufficient cooling water is supplied at the beginning of the cooling of the metal tube, the cooling after the quench point will be greatly accelerated as shown in Figure 2, and the vapor film will not collapse and the quench point will not be reached yet. The temperature difference with the area where there is no
, B indicates the quench point). Therefore, for a certain period of time after the start of cooling, by avoiding strong cooling that may partially raise the quench point and performing slow cooling, the temperature difference ΔT at the time of reaching the quench point shown in Figure 2 is achieved. can be reduced from ΔT1 to ΔT2 (BD=ΔT1゜B
C-ΔTz). After that, by moving from slow cooling to strong cooling, each part can uniformly transition from transition boiling to nucleate boiling heat transfer, and the variation in cooling conditions of each part of the metal tube can be significantly reduced, resulting in a drastic reduction in deformation. .

ここでいう緩冷却の条件は、上述のごとくクエンチ点を
部分的に引き上げる恐れのない冷却条件であシ、実際的
な冷却水の水型密度で表わせば、4m”/m”・min
を越えない範囲を意味する。
The slow cooling conditions here are cooling conditions that do not raise the quench point partially as mentioned above, and if expressed in terms of practical cooling water density, it is 4 m"/m" min.
means a range not exceeding

ま九、金属管の各部位のクエンチ点をそろえるもうひと
つの方法は伝熱面を粗面化することである。粗面の突起
が伝熱面に対する蒸気膜厚さよりも大きくすることが望
ましく、前記突起が蒸気膜を突き破シ、冷却水と直接接
触させると、その突起を核として蒸気膜の崩壊が促進さ
れ、クエンチ点が上昇する。例えばショツトブラスト等
でミルスケールを除去すると表面が清浄化されかつ突起
が均一に形成されるので、各部位のクエンチ点温度が揃
い前述の方法と組合せると更に効果的である。
Another way to align the quench points of each part of the metal tube is to roughen the heat transfer surface. It is desirable that the protrusions on the rough surface be larger than the thickness of the steam film on the heat transfer surface, and when the protrusions break through the steam film and come into direct contact with cooling water, the collapse of the vapor film is promoted using the protrusions as nuclei. , the quench point increases. For example, if mill scale is removed by shot blasting or the like, the surface will be cleaned and protrusions will be formed uniformly, so the quench point temperature of each part will be the same, and it will be more effective to combine it with the above-mentioned method.

本発明等の研究によれば、実用的な20〜45℃の水温
の冷却水の場合、実用金属のクエンチ点温度は伝熱面の
条件によって変化するが、500℃〜850℃の範囲内
であった。
According to the research of the present invention, in the case of cooling water with a practical water temperature of 20 to 45 degrees Celsius, the quench point temperature of practical metals varies depending on the conditions of the heat transfer surface, but is within the range of 500 degrees Celsius to 850 degrees Celsius. there were.

それ故、被冷却金属の熱間強度や剛性により、冷却初期
の緩冷却温度範囲は異なるが、ミルスケールの付着した
状態では伝熱面温度を450C〜650″Cまで、また
ミルスケールを除去し粗面化した状態では550’C〜
700uまで低下させて、その後強冷却するとよいこと
が確認された。
Therefore, the slow cooling temperature range at the initial stage of cooling differs depending on the hot strength and rigidity of the metal to be cooled, but when mill scale is attached, the heat transfer surface temperature can be set to 450C to 650"C, and when mill scale is removed, 550'C ~ in roughened state
It was confirmed that it is good to lower the temperature to 700u and then strongly cool it.

実用熱処理金属管で、ミルスケールの付着した状態では
、クエンチ点温度の下限はほぼsoo℃であるから、伝
熱面温度を450C以下に緩冷却する必要はなく、伝熱
面温度650℃以上から急冷すると熱間強度が低く剛性
の弱い金属管の場合、曲り25;す微(冷り早≠;11
1七りとふ端ζ虚訪シh今 咄たミルスケールを除去し
、粗面化した状態ではクエンチ点温度の下限はほぼ60
0℃であるから伝熱面温度を550℃以下に緩冷却する
必要はなく、伝熱面温度700℃以上から急冷すると熱
間強度が低く剛性の弱い金属管は、曲りが大きく効果が
小さいことも確認された。
In a practical heat-treated metal tube with mill scale attached, the lower limit of the quench point temperature is approximately soo℃, so there is no need to slowly cool the heat transfer surface temperature to 450C or less, and it is not necessary to cool the heat transfer surface temperature from 650℃ or higher. In the case of metal pipes with low hot strength and low rigidity when rapidly cooled, the bending will be 25;
1. When mill scale is removed and the surface is roughened, the lower limit of the quench point temperature is approximately 60.
Since the temperature is 0°C, there is no need to slowly cool the heat transfer surface temperature to 550°C or less, and if the heat transfer surface temperature is rapidly cooled from 700°C or higher, metal tubes with low hot strength and low rigidity will be bent greatly and the effect will be small. was also confirmed.

実際上の緩冷却の程度については、種々の実験の結果、
ミルスケールの付着した状態では冷却開始から0.5s
ec乃至3sec間で伝熱面温度が加熱温度から450
℃〜650℃に低下する冷却条件がよく、またミルスケ
ールを除去し、粗面化した状態では0.5sec乃至3
 see間で伝熱面温度が加熱温度から550℃〜70
0℃に低下する冷却条件がよい。こうすることにより、
冷却初期の緩冷却は伝熱面の温度を実測することなく、
時間によりて管理でき、実際的である。緩冷却時間が0
.5sec以下の場合、各部位の温度不揃いが生じその
後、急冷すると大きな曲がりを生ずることがある。
As for the actual degree of slow cooling, as a result of various experiments,
0.5s from the start of cooling when mill scale is attached
The heat transfer surface temperature decreases from the heating temperature to 450°C within ec to 3sec.
Cooling conditions that lower the temperature from ℃ to 650℃ are good, and when mill scale is removed and the surface is roughened, the cooling time is 0.5 sec to 3 sec.
The heat transfer surface temperature is between 550℃ and 70℃ from the heating temperature.
Cooling conditions that lower the temperature to 0°C are preferred. By doing this,
Slow cooling at the initial stage of cooling is performed without actually measuring the temperature of the heat transfer surface.
It is time-manageable and practical. Slow cooling time is 0
.. If the time is 5 seconds or less, the temperature of each part will be uneven, and if it is rapidly cooled thereafter, a large bend may occur.

緩冷却時間が3110以上の場合、肉厚内部の温度も低
下し、特に、焼入れ等の熱処理冷却においては、厚い表
層が完全焼入組織にならない場合があり不適当である。
When the slow cooling time is 3110 degrees or more, the temperature inside the wall thickness also decreases, and especially in heat treatment cooling such as quenching, the thick surface layer may not become a completely quenched structure, which is unsuitable.

(作用) シームレス鋼管の焼入れを例に具体的に述べる。(effect) This will be explained specifically using quenching of seamless steel pipes as an example.

最近、サワー性の強い原油やガスの掘削が進み、原油や
ガスの輸送に用いられる低強度ラインパイプ等について
も焼入れ一焼戻し熱処理を施すことが要求されるように
なっている。これ等の鋼管は従来は、熱間圧延のままあ
るいは簡単で製造されていたものであるが、耐サワー性
の観点から焼入れ一焼戻し熱処理が要求されるようにな
って来たものである。
Recently, drilling for crude oil and gas with strong sour properties has progressed, and it has become necessary to perform quenching and tempering heat treatment on low-strength line pipes and the like used for transporting crude oil and gas. These steel pipes have conventionally been manufactured as hot-rolled or simply manufactured, but from the viewpoint of sour resistance, quenching and tempering heat treatment is now required.

これ等の熱間強度が低く且つ肉厚も薄く鋼管の剛性が通
常の鋼管と比較して非常に低い場合、従来の冷却初期か
ら強冷却する焼入方法では、冷却に伴なう曲が9が大き
く、既存の焼戻し炉に装入できない。あるいは焼戻し炉
内の搬送がうまく行かず、作業トラブルが発生し、焼入
れ一焼戻し熱処理低強度ラインパイプの生産性が非常に
悪く、コストも大幅に上昇している。又、従来の焼入れ
作業では、冶金学的観点から800℃〜500℃間を可
及的強冷却することが推奨されている。
In cases where the hot strength is low, the wall thickness is thin, and the rigidity of the steel pipe is very low compared to normal steel pipes, the conventional quenching method of strong cooling from the initial stage of cooling will cause the bending due to cooling to is large and cannot be charged into existing tempering furnaces. Alternatively, transportation within the tempering furnace is not successful, causing work troubles, resulting in very low productivity of quenching and tempering heat-treated low-strength line pipes, and significantly increasing costs. In addition, in conventional hardening operations, it is recommended from a metallurgical point of view to cool as intensely as possible between 800°C and 500°C.

それに対し、本発明による条件で、前段緩冷却して鋼管
の伝熱面温度を揃え、冷却面中の最低クエンチ点温度近
傍から急冷することによシ、焼入変形が激減し、殆んど
真直に近い鋼管が得られる。
In contrast, under the conditions of the present invention, by performing slow cooling in the first stage to equalize the temperature of the heat transfer surface of the steel pipe, and rapidly cooling from near the lowest quench point temperature on the cooling surface, quenching deformation is drastically reduced and almost A nearly straight steel pipe can be obtained.

本発明の冷却方法により、焼入変形の問題は解消し、低
強度−低剛性鋼管の焼入れ一焼戻し熱処理が安定してで
きるようになった。
By the cooling method of the present invention, the problem of quenching deformation has been solved, and the quenching-tempering heat treatment of low-strength, low-rigidity steel pipes can now be performed stably.

(実施例) 第3図に示すようにパイプ1進行方向に多数のブロック
Q1〜Q1oより構成される鋼管外面冷却装置(特公昭
56−19370号公報)で、下記の低強度シームレス
ラインパイプ材を用いて本発明を適用し、その結果を第
−表に示す。第1図中2は・にイブ1の搬送装置、3の
矢印はパイプ1の進行方向を示す。
(Example) As shown in Fig. 3, the following low-strength seamless line pipe material was The results are shown in Table 1. In FIG. 1, 2 indicates the conveying device for the pipe 1, and the arrow 3 indicates the direction of movement of the pipe 1.

供試材 (1)規 格 API −5LB (2)4?l 、l”  140.3φX4.5tX1
1.80OLなお、この実施例の強冷開始温度について
はパイプの表面に熱電対を埋め込んで温度を測定したが
、通常は時間コントロールで強冷却開始温度をコントロ
ールするものである。
Test material (1) Standard API -5LB (2) 4? l, l” 140.3φX4.5tX1
1.80OLAlthough the strong cooling start temperature in this example was measured by embedding a thermocouple in the surface of the pipe, the strong cooling start temperature is usually controlled by time control.

これによると冷却前段の緩冷却時間が0.5sae以下
では、強冷開始温度が高く、その後の各部位の冷却曲線
が異なるために、曲がりが大きいが、緩冷却時間を約0
.5s@c以上にし、ミルスケールの付着した状態では
伝熱面温度を約650℃以下に、またミルスケールを除
去し、粗面化した状態では伝熱面温度を約700℃以下
にすると、曲がりが急激に減少する。しかし緩冷却時間
を約3sec以上とすると、ミルスケールの付着した状
態では伝熱面温度を450℃以下に、またミルスケール
を除去し、粗面化した状態では、伝熱面温度を550℃
以下になり、しかも光層部のかなり厚い部分の温度が低
下し、マルテンサイト組織が得られなかった。以上の理
由から冷却前段の緩冷却時間は0.5sec〜3 a@
e間、強冷開始温度は、ミルスケールの付着した状態で
は450℃〜650℃、ミルスケールを除去し粗面化し
た状態では550℃〜700℃となるような前段緩冷却
条件を選ぶとよいことが確認された。
According to this, when the slow cooling time in the first stage of cooling is 0.5 sae or less, the strong cooling start temperature is high and the subsequent cooling curves for each part are different, so the curve is large, but the slow cooling time is about 0.
.. 5s@c or more, and when the heat transfer surface temperature is reduced to about 650℃ or less when mill scale is attached, and when the heat transfer surface temperature is reduced to about 700℃ or less when the mill scale is removed and the surface is roughened, the bending decreases rapidly. However, if the slow cooling time is about 3 seconds or more, the temperature of the heat transfer surface will be lower than 450℃ when mill scale is attached, and the temperature of the heat transfer surface will be lower than 550℃ when the mill scale is removed and the surface is roughened.
Moreover, the temperature of the considerably thicker portion of the optical layer decreased, and a martensitic structure could not be obtained. For the above reasons, the slow cooling time in the first stage of cooling is 0.5 sec to 3 a@
During step e, it is recommended to select conditions such that the strong cooling start temperature is 450°C to 650°C when mill scale is attached, and 550°C to 700°C when the mill scale is removed and the surface is roughened. This was confirmed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、低強度−低剛性金
属管の無歪冷却法が確立され、例えば、前述の通シ、従
来は、焼入れ一焼戻し熱処理の不可能であった鋼管等の
熱処理冷却が可能となり、耐サワー性等の・!イブの特
性向上に大いに役立つ。
As explained above, according to the present invention, a distortion-free cooling method for low-strength and low-rigidity metal tubes has been established. Heat treatment cooling is now possible, sour resistance etc.! Great for improving Eve's characteristics.

また通常の金属管の熱処理冷却における無歪化冷却法が
具現化し、工業的に大きな効果を発揮する。
In addition, a strain-free cooling method for heat treatment cooling of ordinary metal tubes has been realized, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための高温金属の冷却過程を
示す模式図、第2図は本発明を説明するための金属管の
冷却過程を示す図、第3図は本発明を適用する焼入装置
のブロックダイヤグラムである。 1:/4’イブ、      2:パイプ搬送装置、3
:ノ9イデ進行方向、 Q:水冷装置。 第1図 一二命去p時刻 ;そ五ρ時間
Fig. 1 is a schematic diagram showing the cooling process of high-temperature metal to explain the present invention, Fig. 2 is a diagram showing the cooling process of a metal tube to explain the present invention, and Fig. 3 is a schematic diagram showing the cooling process of a metal tube to explain the present invention. It is a block diagram of the quenching device. 1: /4' Eve, 2: Pipe conveyance device, 3
:No9ide direction of travel, Q:Water cooling device. Figure 1 12 Death p time; 5 ρ time

Claims (2)

【特許請求の範囲】[Claims] (1)金属管を所定の焼入温度に加熱し冷却する熱処理
方法において、前記冷却を冷却開始から数秒間緩冷却を
行って強冷却開始点における金属管各部の温度差を小さ
くし、次いで通常の強冷却を行うことを特徴とする金属
管の熱処理方法。
(1) In a heat treatment method in which a metal tube is heated to a predetermined quenching temperature and then cooled, the cooling is performed slowly for several seconds after the start of cooling to reduce the temperature difference between each part of the metal tube at the starting point of strong cooling, and then A method for heat treatment of metal tubes, characterized by performing intense cooling.
(2)金属管を所定の焼入温度に加熱し冷却する熱処理
方法において、表面にミルスケールの付着した金属管の
場合、冷却の開始0.5〜3秒間でその伝熱面温度が加
熱温度から450℃〜650℃となるように、またミル
スケールの除去した金属管の場合、冷却の開始0.5〜
3秒間でその伝熱面温度が加熱温度から550℃〜70
0℃となるように、緩冷却を行って強冷却開始点におけ
る金属管各部の温度差を小さくし、次いでその温度から
通常の強冷却を行うことを特徴とする金属管の熱処理方
法。
(2) In a heat treatment method in which a metal tube is heated to a predetermined quenching temperature and then cooled, in the case of a metal tube with mill scale attached to its surface, the heat transfer surface temperature changes to the heating temperature within 0.5 to 3 seconds from the start of cooling. to 450°C to 650°C, and in the case of metal pipes with mill scale removed, start cooling from 0.5°C to 650°C.
The heat transfer surface temperature changes from the heating temperature to 550℃ to 70℃ in 3 seconds.
A method for heat treatment of a metal tube, characterized by performing slow cooling to reduce the temperature difference between the various parts of the metal tube at the starting point of strong cooling to 0° C., and then performing normal strong cooling from that temperature.
JP26193385A 1985-11-21 1985-11-21 Heat treatment of metal tube Granted JPS62124226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26193385A JPS62124226A (en) 1985-11-21 1985-11-21 Heat treatment of metal tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26193385A JPS62124226A (en) 1985-11-21 1985-11-21 Heat treatment of metal tube

Publications (2)

Publication Number Publication Date
JPS62124226A true JPS62124226A (en) 1987-06-05
JPH027372B2 JPH027372B2 (en) 1990-02-16

Family

ID=17368710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26193385A Granted JPS62124226A (en) 1985-11-21 1985-11-21 Heat treatment of metal tube

Country Status (1)

Country Link
JP (1) JPS62124226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206720A (en) * 2016-05-16 2017-11-24 新日鐵住金株式会社 Method of manufacturing seamless steel pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321178A (en) 2006-05-30 2007-12-13 Sumitomo Metal Ind Ltd Method for cooling steel tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478316A (en) * 1977-12-03 1979-06-22 Kawasaki Steel Co Quenching of steel pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478316A (en) * 1977-12-03 1979-06-22 Kawasaki Steel Co Quenching of steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206720A (en) * 2016-05-16 2017-11-24 新日鐵住金株式会社 Method of manufacturing seamless steel pipe

Also Published As

Publication number Publication date
JPH027372B2 (en) 1990-02-16

Similar Documents

Publication Publication Date Title
US7308812B2 (en) Process for producing seamless steel pipe
CN102482727B (en) Method for manufacturing thick-walled seamless steel pipe
JP3159372B2 (en) Mold and quenching method
JPS62124226A (en) Heat treatment of metal tube
JPS59143028A (en) Cooler for metallic strip in continuous heat treating furnace
JPH03240919A (en) Production of steel wire for wiredrawing
JP3453990B2 (en) Cooling method for continuous casting bloom
JP3777076B2 (en) Thick steel plate cooling method
JPH06145793A (en) Method for preventing decarburization of seamless steel tube
JPS58151418A (en) Method and device for carrying out steel heat treatment
JPS6314815A (en) Production of steel pipe for line pipe having low maximum hardness and yield ratio
JPS6343446B2 (en)
JPH052728B2 (en)
CA1066595A (en) Method of quenching and tempering large-diameter thin-wall steel pipe and apparatus therefor
JP2002038219A (en) Method for producing martensitic stainless steel tube
JPH0143815B2 (en)
JPS5944367B2 (en) Water quenching continuous annealing method
JPS59166624A (en) High frequency induction refining of pipe
JPS63134633A (en) Cooling method for steel pipe
SU1168619A1 (en) Method of producing thermally strengthened welded thick-wall pipes
JPH1017934A (en) Manufacture of martensitic stainless steel tube
JPH01176037A (en) Heat treatment of welded steel pipe
JPS62185830A (en) Method for preventing longitudinal bend of small-diameter pipe material
JPH04210422A (en) Production of high strength steel tube
JPS58117832A (en) Production of seamless steel pipe of low-carbon equivalent component type having high strength and toughness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees