JP2007321178A - Method for cooling steel tube - Google Patents

Method for cooling steel tube Download PDF

Info

Publication number
JP2007321178A
JP2007321178A JP2006150248A JP2006150248A JP2007321178A JP 2007321178 A JP2007321178 A JP 2007321178A JP 2006150248 A JP2006150248 A JP 2006150248A JP 2006150248 A JP2006150248 A JP 2006150248A JP 2007321178 A JP2007321178 A JP 2007321178A
Authority
JP
Japan
Prior art keywords
steel pipe
cooling
cooling water
steel tube
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006150248A
Other languages
Japanese (ja)
Inventor
Hajime Osako
大迫  一
Junji Nakada
順司 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006150248A priority Critical patent/JP2007321178A/en
Priority to CNA2007800274724A priority patent/CN101490286A/en
Priority to PCT/JP2007/061004 priority patent/WO2007139158A1/en
Priority to MX2008015180A priority patent/MX2008015180A/en
Priority to EP07744417.2A priority patent/EP2039786B1/en
Publication of JP2007321178A publication Critical patent/JP2007321178A/en
Priority to US12/292,922 priority patent/US20090183805A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B2045/0227Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cooling a steel tube in which glow deflection generated when quenching a thin steel tube having e.g. ≤0.07 (t/D) ratio of thickness to outer diameter, can effectively be restrained without lowering the producing efficiency. <P>SOLUTION: The inner surface of the steel tube 2 is cooled by spraying cooling water into the inner part while rotating the steel tube 2 set horizontally in the circumferential direction and also, the outer surface thereof is cooled by flowing down the plane-like cooling waters 5a,5b from the upper part onto the outer surface along the axial direction of the steel tube 2. At this time, the cooling of the outer surface is performed by flowing down the plane-like cooling waters 5a,5b to almost symmetrical two positions 4a,4b centering the most upper part of the steel tube 2, respectively. Then, the flow of the cooling water 5a which flows down to the position at the upstream side in the rotating direction of the steel tube 2, is more than that of the cooling water 5b which flows down to the position at the downstream side in the rotating direction, and the ratio of the thickness to the outer diameter of the steel tube to be cooled, is ≤0.07 and also, the cooling of the inner surface is started by preceding ≥7 sec before the cooling of the outer surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄肉鋼管を焼入れする際に生じる曲がりを効果的に抑制することができる鋼管の冷却方法に関する。   The present invention relates to a method for cooling a steel pipe that can effectively suppress bending that occurs when quenching a thin-walled steel pipe.

周知のように、鋼管を焼入れする際には、その冷却むら等に起因して曲がり(鋼管の軸方向についての湾曲であり、本明細書では「焼曲がり」という)が発生することがある。特に、外径(D)に対する肉厚(t)の比(t/D)が、例えば0.07以下程度と小さい薄肉鋼管を焼入れする際には、品質不良と判断される大きな焼曲がりが生じ易い。このため、従来より、この焼曲がりを抑制することができる鋼管の冷却方法に係る発明が、多数提案されている。   As is well known, when a steel pipe is quenched, bending (curving in the axial direction of the steel pipe, referred to as “bending” in this specification) may occur due to uneven cooling. In particular, when a thin steel pipe having a small thickness (t / D) ratio (t / D) to the outer diameter (D) of, for example, about 0.07 or less is quenched, a large bending that is judged as a poor quality occurs. easy. For this reason, many inventions related to a method for cooling a steel pipe that can suppress this bending have been proposed.

例えば特許文献1には、管の外面冷却の初期段階では緩冷却を行うことにより管の表面各部の温度差を小さくしてから通常の強冷却を行うことによって焼曲がりを抑制する冷却方法(熱処理方法)に係る発明が開示されている。   For example, Patent Document 1 discloses a cooling method (heat treatment) that suppresses bending by performing normal strong cooling after reducing the temperature difference of each part of the surface of the tube by performing gentle cooling at the initial stage of cooling the outer surface of the tube. Invention) is disclosed.

また、特許文献2には、管内へ噴流水をその一端から吹込むとともに、この管の外面側をそのほぼ全長にわたりノズルから噴射させる噴流水の衝突により冷却する方法において、内面噴流水の吐出端側ほど、外面冷却の噴射水量を大とするか、外面冷却の冷却開始時期を早めるか、あるいは外面冷却の冷却終了時期を遅らせることにより、管全体を均一に、かつ短時間で冷却する発明が開示されている。
特公平2−7372号公報 特公昭61−4896号公報
Further, in Patent Document 2, in a method of blowing jet water into one end of a pipe from one end and cooling the outer surface side of the pipe by jet water which is jetted from a nozzle over almost the entire length, a discharge end of inner surface jet water is disclosed. An invention that cools the entire pipe uniformly and in a short time by increasing the amount of jet water for external surface cooling, increasing the cooling start timing of external cooling, or delaying the cooling end timing of external cooling toward the side It is disclosed.
Japanese Patent Publication No.2-7372 Japanese Patent Publication No. 61-4896

しかしながら、特許文献1により開示された発明では、冷却の初期段階に緩冷却を行う必要があるとともに管の外面冷却のみを行うため、必然的に冷却時間が長くなり、管の製造効率が低下する。   However, in the invention disclosed in Patent Document 1, since it is necessary to perform slow cooling in the initial stage of cooling and only the outer surface of the pipe is cooled, the cooling time is inevitably increased, and the manufacturing efficiency of the pipe is reduced. .

また、特許文献2により開示された発明では、管の軸方向について外面冷却の噴射水の水量や噴射するタイミングを異ならせる必要があるため、装置の構成や制御が複雑化する。また、管全体を均一に冷却できることは開示されているものの、焼曲がりを抑制できるか否かについては具体的に開示されていない。特に、冷却対象として例示されている鋼管の比(t/D)は約0.075(=8.6/114)(特許文献2の2頁右欄13行参照)については、開示も示唆もされていない。   Further, in the invention disclosed in Patent Document 2, since it is necessary to vary the amount of water for jetting outer surface cooling and the timing of jetting in the axial direction of the pipe, the configuration and control of the apparatus are complicated. Further, although it is disclosed that the entire tube can be cooled uniformly, it is not specifically disclosed whether or not the bending can be suppressed. In particular, the ratio (t / D) of the steel pipe exemplified as the object to be cooled is about 0.075 (= 8.6 / 114) (see Patent Document 2, page 2, right column, line 13). It has not been.

本発明者らは、上述した課題を解決するために鋭意検討を重ねた結果、鋼管の内外面をともに冷却する冷却方法において、(a)鋼管外面の冷却は、鋼管の最上部を中心として略対称の2つの位置にそれぞれ平面状の冷却水を流下させることにより行われ、鋼管の回転方向上流側の位置に流下させる冷却水の流量を、回転方向下流側の位置に流下させる冷却水の流量以上とし、(b)冷却する鋼管の外径に対する肉厚の比は0.07以下であるとともに、さらに、(c)鋼管内面の冷却を鋼管外面の冷却よりも7秒以上先行して開始することにより、比(t/D)が0.07以下の薄肉鋼管であっても、鋼管の製造効率を低下させることなく効果的に焼曲がりを抑制できることを知見して、本発明を完成した。   As a result of intensive studies in order to solve the above-mentioned problems, the inventors of the present invention have a cooling method in which both the inner and outer surfaces of the steel pipe are cooled. (A) The cooling of the outer surface of the steel pipe is substantially centered on the uppermost portion of the steel pipe. The flow rate of the cooling water is caused to flow down to the position on the upstream side in the rotation direction of the steel pipe, and the flow rate of the cooling water to flow down to the position on the downstream side in the rotation direction. (B) The ratio of the wall thickness to the outer diameter of the steel pipe to be cooled is 0.07 or less, and (c) the cooling of the inner surface of the steel pipe is started 7 seconds or more before the cooling of the outer surface of the steel pipe. As a result, even if it is a thin-walled steel pipe having a ratio (t / D) of 0.07 or less, it has been found that it is possible to effectively suppress the bending without reducing the manufacturing efficiency of the steel pipe, and the present invention has been completed.

本発明は、水平に配置される鋼管を周方向に回転させながら、鋼管内に冷却水を噴射することにより鋼管内面の冷却を行うとともに、鋼管の軸方向に沿って鋼管外面に平面状の冷却水を上方から流下させることにより鋼管外面の冷却を行う鋼管の冷却方法であって、鋼管外面の冷却は、鋼管の最上部を中心として略対称の2つの位置にそれぞれ平面状の冷却水を流下させることにより行われ、鋼管の回転方向上流側の位置に流下させる冷却水の流量を、回転方向下流側の位置に流下させる冷却水の流量以上とし、冷却する鋼管の外径に対する肉厚の比は0.07以下であるとともに、鋼管内面の冷却を鋼管外面の冷却よりも7秒以上先行して開始することを特徴とする鋼管の冷却方法である。   The present invention cools the inner surface of the steel pipe by injecting cooling water into the steel pipe while rotating the steel pipe arranged in the circumferential direction, and at the same time, cools the outer surface of the steel pipe along the axial direction of the steel pipe. A cooling method for a steel pipe that cools the outer surface of the steel pipe by flowing water from above, and the cooling of the outer surface of the steel pipe flows down to two substantially symmetrical positions around the uppermost portion of the steel pipe. The ratio of the wall thickness to the outer diameter of the steel pipe to be cooled is set so that the flow rate of the cooling water flowing down to the upstream position in the rotation direction of the steel pipe is equal to or higher than the flow rate of cooling water flowing down to the downstream position in the rotation direction. Is 0.07 or less, and the cooling of the inner surface of the steel pipe is started 7 seconds or more before the cooling of the outer surface of the steel pipe.

本発明に係る鋼管の冷却方法により、比(t/D)が例えば0.07以下の薄肉鋼管を焼入れする際に生じる焼曲がりを、鋼管の製造効率を低下させることなく効果的に抑制することができるようになる。   By the steel pipe cooling method according to the present invention, the bending that occurs when quenching a thin steel pipe having a ratio (t / D) of, for example, 0.07 or less is effectively suppressed without reducing the manufacturing efficiency of the steel pipe. Will be able to.

本発明に係る鋼管の冷却方法を実施するための最良の形態を、添付図面を適宜参照しながら、詳細に説明する。
図1は、本実施の形態の鋼管の冷却方法を実施するための冷却装置1の構成を模式的に示す縦断面図である。
The best mode for carrying out the method for cooling a steel pipe according to the present invention will be described in detail with reference to the accompanying drawings as appropriate.
FIG. 1 is a longitudinal sectional view schematically showing a configuration of a cooling device 1 for carrying out the steel pipe cooling method of the present embodiment.

図1に示すように、本実施の形態に係る冷却装置1は、水平に配置された鋼管2を支持するとともに周方向へ回転させるための回転ローラ3、3と、鋼管2の一端側に配置され、鋼管2の内部に冷却水を噴射するための内面冷却用ノズル(図示せず)と、鋼管2の上方に配置され、鋼管2の軸方向に沿って鋼管2の外周面の最上部を中心として略対象となる2つの位置4a、4bにそれぞれ平面状の冷却水5a、5bを流下させるための吐出口6a、6bを有する外面冷却用ノズル7とを備える。   As shown in FIG. 1, the cooling device 1 according to the present embodiment supports a horizontally disposed steel pipe 2 and rotates rollers 3 and 3 for rotating in the circumferential direction, and is disposed on one end side of the steel pipe 2. An inner surface cooling nozzle (not shown) for injecting cooling water into the inside of the steel pipe 2, and an uppermost portion of the outer peripheral surface of the steel pipe 2 along the axial direction of the steel pipe 2. An outer surface cooling nozzle 7 having discharge ports 6a and 6b for flowing down the planar cooling waters 5a and 5b is provided at two positions 4a and 4b, which are substantially targets as the center.

本実施の形態に係る冷却方法によって内外面を冷却される鋼管2は、品質上問題となるような大きな焼曲がりを生じ易い、外径Dに対する肉厚tの比(t/D)が0.07以下である薄肉の鋼管である。本実施の形態の冷却方法は、低強度で曲がりを生じ易い低炭素鋼からなるラインパイプの内外面の冷却や、あるいは、API規格のX60グレード(例えば、質量%で、(a)C:0.06%、Si:0.26%、Mn:1.24%、P:0.013%、S:0.001%、Cr:0.16%、V:0.06%、残部Fe及び不純物、Ceq:0.311%、又は、(b)C:0.06%、Si:0.40%、Mn:1.60%、P:0.020%、S:0.003%、Cu:0.30%、Ni:0.50%、Cr:0.28%、Mo:0.23%、V:0.08%、残部Fe及び不純物、Ceq:0.498%)以下のラインパイプの内外面の冷却に、特に好適に用いることができる。   In the steel pipe 2 whose inner and outer surfaces are cooled by the cooling method according to the present embodiment, the ratio of the wall thickness t to the outer diameter D (t / D) is likely to be large, which causes a problem of quality. It is a thin-walled steel pipe that is 07 or less. The cooling method according to the present embodiment can cool the inner and outer surfaces of a line pipe made of low-carbon steel that is low in strength and easily bends, or API standard X60 grade (for example, in mass%, (a) C: 0. 0.06%, Si: 0.26%, Mn: 1.24%, P: 0.013%, S: 0.001%, Cr: 0.16%, V: 0.06%, balance Fe and impurities Ceq: 0.311%, or (b) C: 0.06%, Si: 0.40%, Mn: 1.60%, P: 0.020%, S: 0.003%, Cu: 0.30%, Ni: 0.50%, Cr: 0.28%, Mo: 0.23%, V: 0.08%, balance Fe and impurities, Ceq: 0.498%) It can be particularly suitably used for cooling the inner and outer surfaces.

本実施の形態に係る冷却方法は、特に20m以上の長尺材の鋼管2に対して、焼曲がりの発生を効果的に抑制できるので、特に好適である。
本実施の形態に係る冷却装置1によって鋼管2を冷却するに際しては、はじめに、回転ローラ3、3を矢印方向へ回転させることにより鋼管2を周方向に回転させる。そして、図示しない内面冷却ノズルから冷却水を噴射することにより鋼管2の内面の冷却を開始してから、外面冷却用ノズル7の吐出口6a、6bからそれぞれ冷却水5a、5bを鋼管2の外周面へ向けて流下させることにより鋼管2の外面の冷却を開始する。
The cooling method according to the present embodiment is particularly suitable because it can effectively suppress the occurrence of bending, particularly for a long steel pipe 2 of 20 m or longer.
When the steel pipe 2 is cooled by the cooling device 1 according to the present embodiment, first, the steel pipe 2 is rotated in the circumferential direction by rotating the rotary rollers 3 and 3 in the arrow direction. Then, cooling of the inner surface of the steel pipe 2 is started by spraying cooling water from an inner surface cooling nozzle (not shown), and then the cooling water 5a and 5b are respectively discharged from the discharge ports 6a and 6b of the outer surface cooling nozzle 7 to the outer periphery of the steel pipe 2. The cooling of the outer surface of the steel pipe 2 is started by flowing down toward the surface.

この際、鋼管2の回転速度が30rpm未満であると、鋼管2の周方向への焼入れ状態が変動し易くなり、一方、鋼管2の回転速度を80rpm超とするには設備が大型化及び複雑化して設備コストが嵩むので、鋼管2の回転速度は30rpm以上80rpm以下であることが望ましい。   At this time, if the rotational speed of the steel pipe 2 is less than 30 rpm, the quenching state in the circumferential direction of the steel pipe 2 tends to fluctuate. On the other hand, the equipment is increased in size and complexity in order to make the rotational speed of the steel pipe 2 exceed 80 rpm. Therefore, it is desirable that the rotation speed of the steel pipe 2 is 30 rpm or more and 80 rpm or less.

また、内面冷却ノズルから鋼管2の内面へ噴射する冷却水量が2000t/hr未満であると冷却能力が不足し、一方、6500t/hr超とするには設備が大型化・複雑化して設備コストが嵩むので、内面冷却ノズルから鋼管2の内面へ噴射する冷却水量は2000t/hr以上6500t/hr以下であることが望ましい。   Further, if the amount of cooling water injected from the inner surface cooling nozzle to the inner surface of the steel pipe 2 is less than 2000 t / hr, the cooling capacity is insufficient. On the other hand, if the amount exceeds 6500 t / hr, the equipment becomes larger and complicated, resulting in a lower equipment cost. Therefore, the amount of cooling water sprayed from the inner surface cooling nozzle to the inner surface of the steel pipe 2 is desirably 2000 t / hr or more and 6500 t / hr or less.

また、本実施の形態の冷却方法では、鋼管2の内面の冷却を、鋼管2の外面の冷却よりも7秒以上先行して開始する。この理由を説明する。
図2は、鋼管2の内面及び外面を冷却した場合における鋼管2の表面温度、降伏応力YS及び軸方向応力szを数値計算によって算出した結果を示すグラフであり、図2(a)は鋼管2の内面及び外面の冷却を同時に開始した場合(内面先行0秒)の結果を示し、図2(b)は鋼管2の内面冷却のみを行った場合(内面先行∞秒)の結果を示す。なお、図2(a)及び図2(b)にグラフで示す結果は、鋼管2の外径:412.3mm、肉厚:8.30mm、長さ:30m、材質:低炭素鋼、内面冷却ノズルから鋼管2の内面へ噴射する冷却水量:5400m/hr、外面冷却用ノズル7から鋼管2の外面へ噴射する冷却水量:2700m/hr、及び、鋼管2の回転数:65rpmの条件で、求めた。
In the cooling method of the present embodiment, the cooling of the inner surface of the steel pipe 2 is started 7 seconds or more before the cooling of the outer surface of the steel pipe 2. The reason for this will be explained.
FIG. 2 is a graph showing the results of numerical calculation of the surface temperature, yield stress YS and axial stress sz of the steel pipe 2 when the inner and outer surfaces of the steel pipe 2 are cooled, and FIG. FIG. 2 (b) shows the result when only cooling of the inner surface of the steel pipe 2 is performed (internal lead ∞ seconds). 2A and 2B, the results shown in the graph are as follows: the outer diameter of the steel pipe 2: 412.3 mm, the wall thickness: 8.30 mm, the length: 30 m, the material: low carbon steel, the inner surface cooling cooling water is sprayed from the nozzle to the inner surface of the steel pipe 2: 5400 m 3 / hr, the amount of cooling water injected from the outer surface cooling nozzle 7 to the outer surface of the steel pipe 2: 2700 m 3 / hr, and, rotational speed steel 2: 65rpm conditions Asked.

図2(a)にグラフで示すように、鋼管Pの内外面の冷却を同時に開始すると、冷却開始後の初期段階、すなわち鋼管2の表面温度が550℃以上である段階における鋼管2の熱膨張及び収縮によって生じる軸方向応力(図2(a)のグラフにおいて記号Aで示す領域における軸方向応力)や、鋼管2の表面温度が550℃未満に低下してからのベイナイト変態やマルテンサイト変態等の影響も加わって生じる軸方向応力(図2(a)のグラフにおいて記号Bで示す領域における軸方向応力)について、その絶対値|sz|が降伏応力の絶対値|YS|よりも大きくなる点が存在する。   2A, when the cooling of the inner and outer surfaces of the steel pipe P is started simultaneously, the thermal expansion of the steel pipe 2 in the initial stage after the start of cooling, that is, the stage where the surface temperature of the steel pipe 2 is 550 ° C. or higher. And axial stress caused by shrinkage (axial stress in the region indicated by symbol A in the graph of FIG. 2A), bainite transformation and martensitic transformation after the surface temperature of the steel pipe 2 drops below 550 ° C. The absolute value | sz | is greater than the absolute value | YS | of the yield stress with respect to the axial stress generated by the influence of the stress (axial stress in the region indicated by symbol B in the graph of FIG. 2A). Exists.

これに対し、図2(b)にグラフで示すように、鋼管2の内面冷却のみを行うと、冷却開始から終了まで、すなわち鋼管2の表面温度が常温に低下するまでの間において、常に軸方向応力の絶対値|sz|<降伏応力の絶対値|YS|となる。   On the other hand, as shown in the graph of FIG. 2 (b), when only the inner surface cooling of the steel pipe 2 is performed, the axis is always maintained from the start to the end of cooling, that is, until the surface temperature of the steel pipe 2 decreases to room temperature. The absolute value of directional stress | sz | <the absolute value of yield stress | YS |.

この理由は、瞬時においては平面状の冷却水5a、5bが流下した部分しか冷却されない外面冷却に比較して、内面冷却では鋼管2の全周にわたって略均一に冷却可能であるので、鋼管2に温度むらを生じ難く、軸方向応力szのバラツキが小さくなるためと考えられる。   The reason for this is that, compared to the outer surface cooling in which only the portions where the planar cooling waters 5a and 5b flow down are instantaneously cooled, the inner surface cooling can be performed substantially uniformly over the entire circumference of the steel pipe 2, so It is considered that temperature unevenness hardly occurs and variation in axial stress sz becomes small.

さらに、図2(a)及び図2(b)にグラフで示す結果を得るために設定した諸条件と同様の条件で、実際に鋼管2の冷却試験を行った結果、内面及び外面の同時冷却を行った場合には大きな焼曲がりが発生したのに対し、内面冷却のみを行った場合には問題となる大きな焼曲がりは発生しなかった。   Furthermore, as a result of actually performing a cooling test of the steel pipe 2 under the same conditions as those set for obtaining the results shown in the graphs in FIGS. 2A and 2B, simultaneous cooling of the inner surface and the outer surface is performed. In the case of performing the heat treatment, a large bending occurred, whereas in the case where only the inner surface cooling was performed, a large bending causing a problem did not occur.

以上説明した図2(a)及び図2(b)にグラフにより示す結果、及び冷却試験の結果から、鋼管2の焼曲がりは軸方向応力|sz|>降伏応力の絶対値|YS|となると発生すると考えられる。したがって、鋼管2の焼曲がりを抑制するには、常に|sz|<|YS|の関係が成り立つようにして、鋼管2を冷却すればよい。なお、図2(b)に示す内面冷却のみを行うことによっても|sz|<|YS|の関係は常に成り立つが、内面冷却のみでは鋼管2に対する単位時間当りの冷却能力が不足して冷却時間が長時間化し、これにより、鋼管2の製造効率が低下したり、あるいは鋼管2からの復熱の影響等を受けて鋼管2を十分に冷却できない。   From the results shown in the graphs of FIGS. 2A and 2B described above and the results of the cooling test, the bending of the steel pipe 2 becomes the axial stress | sz |> the absolute value of yield stress | YS |. It is thought to occur. Therefore, in order to suppress the bending of the steel pipe 2, the steel pipe 2 may be cooled so that the relationship | sz | <| YS | always holds. Note that the relationship | sz | <| YS | is always established by performing only the inner surface cooling shown in FIG. 2B. However, the cooling capacity per unit time for the steel pipe 2 is insufficient due to the inner surface cooling alone. As a result, the manufacturing efficiency of the steel pipe 2 decreases, or the steel pipe 2 cannot be sufficiently cooled due to the effect of recuperation from the steel pipe 2.

そこで、本実施の形態では、製造効率の低下防止等の観点から鋼管2の内面のみならず外面も冷却するが、少なくとも、鋼管2の表面温度が550℃以上である冷却の初期段階において|sz|<|YS|の関係を成立させるために、鋼管2の内面冷却を外面冷却に先行させることが有効である。具体的には、この先行時間を7秒以上とすることにより、鋼管2の冷却過程の略全てにおいて|sz|<|YS|の関係を維持することができる。   Therefore, in the present embodiment, not only the inner surface of the steel pipe 2 but also the outer surface is cooled from the viewpoint of preventing reduction in production efficiency, etc. | at least in the initial stage of cooling when the surface temperature of the steel pipe 2 is 550 ° C. or higher. In order to establish the relationship | <| YS |, it is effective to precede the inner surface cooling of the steel pipe 2 before the outer surface cooling. Specifically, by setting the preceding time to 7 seconds or more, the relationship | sz | <| YS | can be maintained in almost all the cooling processes of the steel pipe 2.

以上説明した理由により、本実施の形態では、鋼管2の内面の冷却を、鋼管2の外面の冷却よりも7秒以上先行して開始すること、すなわち内面冷却用ノズルから冷却水を噴射し始めるタイミングを、外面冷却用ノズル6a、6bから冷却水5a、5bを流下させ始めるタイミングよりも7秒以上早めることによって、|sz|<|YS|の関係を冷却過程の略全てにおいて維持し、これにより、鋼管2の焼曲がりを効果的かつ確実に抑制することができるようになる。   For the reason described above, in the present embodiment, the cooling of the inner surface of the steel pipe 2 is started 7 seconds or more before the cooling of the outer surface of the steel pipe 2, that is, the cooling water starts to be injected from the inner surface cooling nozzle. The timing | sz | <| YS | is maintained in substantially all of the cooling process by making the timing 7 seconds or more earlier than the timing at which the cooling water 5a, 5b starts to flow down from the outer surface cooling nozzles 6a, 6b. Thereby, the bending of the steel pipe 2 can be effectively and reliably suppressed.

なお、この先行時間を30秒超とすると、鋼管2の冷却に長時間を要し操業能率が低下するので、この先行時間は30秒以下とすることが望ましい。
ここで、鋼管2の外面の冷却効率を高めるためには、吐出口6a、6bからそれぞれ流下させる冷却水5a、5bの流量を双方とも大きくすることが考えられる。しかし、冷却水5a、5bの流量を双方とも大きくし過ぎると、鋼管2の外面であって冷却水5a、5bがそれぞれ流下する位置4a、4bの間の外面に溜まる水膜の厚みが必要以上に増加し、冷却水の有効利用率(鋼管2の冷却に真に寄与する冷却水の割合)が低下するとともに、鋼管2の回転方向への冷却水の流れがむしろ悪化する。
If the preceding time is more than 30 seconds, it takes a long time to cool the steel pipe 2 and the operation efficiency is lowered. Therefore, the preceding time is preferably 30 seconds or less.
Here, in order to increase the cooling efficiency of the outer surface of the steel pipe 2, it is conceivable to increase both the flow rates of the cooling waters 5a and 5b flowing down from the discharge ports 6a and 6b, respectively. However, if both the flow rates of the cooling waters 5a and 5b are excessively increased, the thickness of the water film accumulated on the outer surface of the steel pipe 2 and between the positions 4a and 4b where the cooling waters 5a and 5b flow down is more than necessary. As a result, the effective utilization rate of the cooling water (the ratio of the cooling water that truly contributes to the cooling of the steel pipe 2) decreases, and the flow of the cooling water in the rotational direction of the steel pipe 2 rather deteriorates.

また、鋼管2の回転方向の上流側の位置4aに流下させる冷却水5a、すなわち吐出口6aから流下させる冷却水5aの大部分は、鋼管2の外面に沿って回転方向に流れるのに対し、回転方向の下流側の位置4bに流下させる冷却水5b、すなわち吐出口6bから流下させる冷却水5bは、鋼管2の回転方向に逆らって流れる部分もあるものの、その多くが流下した直後に下方に流れ落ちてしまう。つまり、鋼管2の外面の冷却能力に対する寄与度としては、冷却水5aのほうが冷却水5bよりも大きい。   Further, the cooling water 5a that flows down to the upstream side position 4a in the rotation direction of the steel pipe 2, that is, most of the cooling water 5a that flows down from the discharge port 6a flows in the rotation direction along the outer surface of the steel pipe 2. The cooling water 5b that flows down to the position 4b on the downstream side in the rotation direction, that is, the cooling water 5b that flows down from the discharge port 6b has a portion that flows against the rotation direction of the steel pipe 2, but immediately after most of it flows down. It will flow down. That is, as the degree of contribution to the cooling capacity of the outer surface of the steel pipe 2, the cooling water 5a is larger than the cooling water 5b.

そこで、本実施の形態では、流下させる冷却水全体としては、鋼管2の回転方向上流側の位置4aに流下させる冷却水5aの流量を、鋼管2の回転方向下流側の位置4bに流下させる冷却水5bの流量以上となるように設定する。   Therefore, in the present embodiment, as the entire cooling water to be flowed down, the cooling water 5a flowed to the position 4a on the upstream side in the rotation direction of the steel pipe 2 is cooled to flow to the position 4b on the downstream side in the rotation direction of the steel pipe 2. It sets so that it may become more than the flow volume of water 5b.

これにより、鋼管2の外面に沿って回転方向へ流れる冷却水の量を多くすることができるとともに、鋼管2の外面であって冷却水5a、5bがそれぞれ流下する位置4a、4bの間に溜まる水膜を適切な厚みとすることができ、これにより、鋼管2の外面の冷却効率をより一層高めることができる。   As a result, the amount of cooling water flowing in the rotation direction along the outer surface of the steel pipe 2 can be increased, and the outer surface of the steel pipe 2 is accumulated between the positions 4a and 4b where the cooling water 5a and 5b flow down. The water film can be set to an appropriate thickness, whereby the cooling efficiency of the outer surface of the steel pipe 2 can be further enhanced.

さらに、二列の冷却水5a、5bが鋼管2と衝突する位置4a,と、鋼管2の中心とがなす角度θが12度未満であると、鋼管2の表面に水膜を形成される領域が極端に狭まり、一方、角度θが95度超となるには鋼管2の外径が極端に大きいことを意味し現実的でなくなるので、この角度θは12°以上95度以下であることが望ましい
このようにして、本実施の形態により、比(t/D)が例えば7.0%以下の薄肉鋼管Pを焼入れする際に生じる焼曲がりを、鋼管の製造効率を低下させることなく、同一ロット中での最大全長曲がりを、例えば21mm/10m以下と効果的に抑制することができるようになる。
Further, when the angle θ formed by the position 4a where the two rows of cooling water 5a and 5b collide with the steel pipe 2 and the center of the steel pipe 2 is less than 12 degrees, a region where a water film is formed on the surface of the steel pipe 2 On the other hand, when the angle θ exceeds 95 degrees, it means that the outer diameter of the steel pipe 2 is extremely large and is not practical. Therefore, it is desirable that the angle θ is 12 ° or more and 95 ° or less. Thus, according to the present embodiment, the bending that occurs when quenching a thin steel pipe P with a ratio (t / D) of, for example, 7.0% or less, in the same lot without reducing the manufacturing efficiency of the steel pipe. The maximum full length bend can be effectively suppressed to 21 mm / 10 m or less, for example.

さらに、本発明を、実施例を参照しながらより具体的に説明する。
図1に示す冷却装置1を用いて、表1に示す外径D、肉厚t、比(t/D)及び長さを有する、API規格のX60グレード(質量%で、C:0.06%、Si:0.26%、Mn:1.24%、P:0.013%、S:0.001%、Cr:0.16%、V:0.06%、残部Fe及び不純物、Ceq:0.311%)の鋼管2を、60rpmの回転速度で回転させながら、同じく表1に示す内面流量、外面総流量、内面先行時間、外面冷却水の間隔及び角度θで、冷却した。
Furthermore, the present invention will be described more specifically with reference to examples.
Using the cooling device 1 shown in FIG. 1, the API standard X60 grade (mass%, C: 0.06) having the outer diameter D, the wall thickness t, the ratio (t / D) and the length shown in Table 1. %, Si: 0.26%, Mn: 1.24%, P: 0.013%, S: 0.001%, Cr: 0.16%, V: 0.06%, balance Fe and impurities, Ceq The steel pipe 2 of 0.311%) was cooled at the rotational speed of 60 rpm, and was cooled at the inner surface flow rate, the outer surface total flow rate, the inner surface leading time, the outer surface cooling water interval, and the angle θ as shown in Table 1.

また、これとは別に、鋼管2の外面に流下させる冷却水を一列として、鋼管2の冷却を行った。
そして、冷却後の鋼管2に生じる焼曲がり量(mm/10m,同一熱処理ロット中、曲りが最大であったパイプについて、全長糸張りで曲り量(mm)を測定し、それを10m当たりの曲り量に換算した値)と、シャルピー衝撃試験における最高遷移温度vts(鋼管の周方向4箇所で測定した最高値)とを測定した。
Separately from this, the steel pipe 2 was cooled with a row of cooling water flowing down to the outer surface of the steel pipe 2.
And the amount of bending (mm / 10m, the bending amount in the same heat treatment lot in the same heat treatment lot was measured in the steel pipe 2 after cooling. The value converted into a quantity) and the maximum transition temperature vts in the Charpy impact test (maximum values measured at four locations in the circumferential direction of the steel pipe) were measured.

そして、曲がり量が10mm以下であるものを◎とし、曲がり量が10mm超20mm以下であるものを○とし、曲がり量が20mm超30mm以下であるものを△とし、曲がり量が30mm超であるものを×とした。一方、最高遷移温度vtsが−40℃以下であるものを○とし、最高遷移温度vtsが−40℃超0℃以下であるものを△とし、最高遷移温度vtsが0℃超であるものを×とした。そして、総合評価は、これら二種の評価のうちで悪いものの評価に合わせた。   And, when the bending amount is 10 mm or less, ◎, when the bending amount is more than 10 mm and less than 20 mm, ○, when the bending amount is more than 20 mm and less than 30 mm, Δ, and when the bending amount is more than 30 mm Was marked with x. On the other hand, the case where the maximum transition temperature vts is −40 ° C. or lower is marked as “◯”, the case where the maximum transition temperature vts is above −40 ° C. and below 0 ° C. is marked as Δ, and the case where the maximum transition temperature vts is above 0 ° C. It was. And comprehensive evaluation matched the evaluation of a bad thing among these two types of evaluation.

結果を表1にあわせて示す。   The results are shown in Table 1.

Figure 2007321178
Figure 2007321178

表1における実施例1〜7は、本発明が規定する条件を全て満足する本発明例である。これらの総合評価は○又は◎となっており、比(t/D)が例えば0.07以下の薄肉鋼管を焼入れする際に生じる焼曲がりを、鋼管の製造効率を低下させることなく効果的に抑制することができることがわかる。   Examples 1 to 7 in Table 1 are examples of the present invention that satisfy all of the conditions defined by the present invention. These comprehensive evaluations are ○ or ◎, and the bending that occurs when quenching a thin steel pipe having a ratio (t / D) of, for example, 0.07 or less can be effectively performed without reducing the manufacturing efficiency of the steel pipe. It turns out that it can suppress.

これに対し、比較例1は、一列の冷却水を流下させることにより外面冷却を行うとともに内面冷却と外面冷却とを同時に開始するために、焼曲がり量が過大であるとともに遷移温度が−30℃と不芳であった。   On the other hand, Comparative Example 1 performs outer surface cooling by flowing a row of cooling water and simultaneously starts inner surface cooling and outer surface cooling. Therefore, the amount of bending is excessive and the transition temperature is −30 ° C. It was unsatisfactory.

比較例2、3、5、7は、一列の冷却水を流下させることにより外面冷却を行うために、遷移温度が−30℃と不芳であった。
比較例4は、二列の冷却水を流下させることにより外面冷却を行うが、内面冷却と外面冷却とを同時に開始するために、焼曲がり量が過大である。
In Comparative Examples 2, 3, 5, and 7, since the outer surface was cooled by flowing down a row of cooling water, the transition temperature was unsatisfactory at −30 ° C.
Although the comparative example 4 performs outer surface cooling by flowing down two rows of cooling water, since the inner surface cooling and the outer surface cooling are started at the same time, the amount of bending is excessive.

比較例6、8は、内面冷却を外面冷却よりも先行させる時間が5秒、4秒と短いので、遷移温度が−30℃と不芳であった。   In Comparative Examples 6 and 8, the transition time was unsatisfactory at −30 ° C. because the time for the inner surface cooling to precede the outer surface cooling was as short as 5 seconds and 4 seconds.

実施の形態の鋼管の冷却方法を実施するための冷却装置の構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the structure of the cooling device for enforcing the cooling method of the steel pipe of embodiment. 鋼管の内面及び外面を冷却した場合における鋼管の表面温度、降伏応力YS及び軸方向応力szを数値計算によって算出した結果を示すグラフであり、図2(a)は鋼管の内面及び外面の冷却を同時に開始した場合(内面先行0秒)の結果を示し、図2(b)は鋼管の内面冷却のみを行った場合(内面先行∞秒)の結果を示す。FIG. 2A is a graph showing the results of numerical calculation of the surface temperature of the steel pipe, the yield stress YS, and the axial stress sz when the inner and outer surfaces of the steel pipe are cooled, and FIG. 2A shows the cooling of the inner and outer surfaces of the steel pipe. FIG. 2B shows the result when only the inner surface cooling of the steel pipe is performed (inner surface leading ∞ seconds).

Claims (1)

水平に配置される鋼管を周方向に回転させながら、鋼管内に冷却水を噴射することにより鋼管内面の冷却を行うとともに、鋼管の軸方向に沿って鋼管外面に平面状の冷却水を上方から流下させることにより鋼管外面の冷却を行う鋼管の冷却方法であって、
前記鋼管外面の冷却は、鋼管の最上部を中心として略対称の2つの位置にそれぞれ平面状の冷却水を流下させることにより行われ、鋼管の回転方向上流側の位置に流下させる冷却水の流量を、回転方向下流側の位置に流下させる冷却水の流量以上とし、
冷却する鋼管の外径に対する肉厚の比は0.07以下であるとともに、
前記鋼管内面の冷却を前記鋼管外面の冷却よりも7秒以上先行して開始すること
を特徴とする鋼管の冷却方法。
While rotating the steel pipe arranged horizontally in the circumferential direction, the cooling water is injected into the steel pipe to cool the inner surface of the steel pipe, and the planar cooling water is applied to the outer surface of the steel pipe along the axial direction of the steel pipe from above. A cooling method of a steel pipe that cools the outer surface of the steel pipe by flowing down,
The cooling of the outer surface of the steel pipe is performed by flowing down the planar cooling water at two substantially symmetrical positions around the uppermost part of the steel pipe, and the flow rate of the cooling water flowing down to the upstream position in the rotation direction of the steel pipe. Is greater than or equal to the flow rate of the cooling water flowing down to the position downstream in the rotational direction,
The ratio of the wall thickness to the outer diameter of the steel pipe to be cooled is 0.07 or less,
The method for cooling a steel pipe, wherein the cooling of the inner surface of the steel pipe is started at least 7 seconds before the cooling of the outer surface of the steel pipe.
JP2006150248A 2006-05-30 2006-05-30 Method for cooling steel tube Pending JP2007321178A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006150248A JP2007321178A (en) 2006-05-30 2006-05-30 Method for cooling steel tube
CNA2007800274724A CN101490286A (en) 2006-05-30 2007-05-30 Cooling method of steel pipe
PCT/JP2007/061004 WO2007139158A1 (en) 2006-05-30 2007-05-30 Cooling method of steel pipe
MX2008015180A MX2008015180A (en) 2006-05-30 2007-05-30 Cooling method of steel pipe.
EP07744417.2A EP2039786B1 (en) 2006-05-30 2007-05-30 Cooling method of thin-walled steel pipe
US12/292,922 US20090183805A1 (en) 2006-05-30 2008-12-01 Cooling method of a steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150248A JP2007321178A (en) 2006-05-30 2006-05-30 Method for cooling steel tube

Publications (1)

Publication Number Publication Date
JP2007321178A true JP2007321178A (en) 2007-12-13

Family

ID=38778676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150248A Pending JP2007321178A (en) 2006-05-30 2006-05-30 Method for cooling steel tube

Country Status (6)

Country Link
US (1) US20090183805A1 (en)
EP (1) EP2039786B1 (en)
JP (1) JP2007321178A (en)
CN (1) CN101490286A (en)
MX (1) MX2008015180A (en)
WO (1) WO2007139158A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071537B2 (en) * 2010-09-02 2012-11-14 住友金属工業株式会社 Method of quenching steel pipe and method of manufacturing steel pipe using the same
CN101962707B (en) * 2010-10-28 2012-05-30 攀钢集团钢铁钒钛股份有限公司 Method for producing 42CrMo steel seamless steel tube
CN103146901B (en) * 2013-03-27 2015-11-18 湖北新冶钢有限公司 Steel pipe water quenching method
JP6436473B2 (en) 2014-06-30 2018-12-12 トピー工業株式会社 Heat treatment system and heat treatment method
CN104775079A (en) * 2015-03-24 2015-07-15 天津市精成伟业机器制造有限公司 Marine highly weldable, large caliber, thick wall and high steel grade seamless steel pipe and preparation technology thereof
CN107262700A (en) * 2017-08-03 2017-10-20 新兴铸管股份有限公司 Cast tube cooling system
CN109295294A (en) * 2018-09-27 2019-02-01 烟台鲁宝钢管有限责任公司 A kind of method and dedicated unit mitigating steel pipe heat treatment curvature
CN111229845B (en) * 2020-01-15 2020-12-29 燕山大学 Large-scale shell ring annular cooling device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310126A (en) * 1994-03-23 1995-11-28 Sumitomo Metal Ind Ltd Cooling of tubular body and quenching apparatus
JPH08319516A (en) * 1995-05-23 1996-12-03 Sumitomo Metal Ind Ltd Method for cooling tubular body and cooler therefor
JPH08333636A (en) * 1995-06-06 1996-12-17 Sumitomo Metal Ind Ltd Method for cooling long sized steel tube and quenching apparatus thereof
JPH1121628A (en) * 1997-07-01 1999-01-26 Sumitomo Metal Ind Ltd Method and equipment for cooling steel tube
JPH11269548A (en) * 1998-03-24 1999-10-05 Sumitomo Metal Ind Ltd Method and device for cooling inner and outer surface of steel tube
JP2000008125A (en) * 1998-06-22 2000-01-11 Sumitomo Metal Ind Ltd Long size steel tube cooling
JP2006152393A (en) * 2004-11-30 2006-06-15 Sumitomo Metal Ind Ltd Steel tube cooling method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852427A (en) 1981-09-25 1983-03-28 Nippon Kokan Kk <Nkk> Quenching method of metallic pipe
JPS62124226A (en) 1985-11-21 1987-06-05 Nippon Steel Corp Heat treatment of metal tube
JPH01121628A (en) * 1987-11-04 1989-05-15 Matsushita Electric Ind Co Ltd Ignition heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310126A (en) * 1994-03-23 1995-11-28 Sumitomo Metal Ind Ltd Cooling of tubular body and quenching apparatus
JPH08319516A (en) * 1995-05-23 1996-12-03 Sumitomo Metal Ind Ltd Method for cooling tubular body and cooler therefor
JPH08333636A (en) * 1995-06-06 1996-12-17 Sumitomo Metal Ind Ltd Method for cooling long sized steel tube and quenching apparatus thereof
JPH1121628A (en) * 1997-07-01 1999-01-26 Sumitomo Metal Ind Ltd Method and equipment for cooling steel tube
JPH11269548A (en) * 1998-03-24 1999-10-05 Sumitomo Metal Ind Ltd Method and device for cooling inner and outer surface of steel tube
JP2000008125A (en) * 1998-06-22 2000-01-11 Sumitomo Metal Ind Ltd Long size steel tube cooling
JP2006152393A (en) * 2004-11-30 2006-06-15 Sumitomo Metal Ind Ltd Steel tube cooling method

Also Published As

Publication number Publication date
EP2039786A1 (en) 2009-03-25
US20090183805A1 (en) 2009-07-23
MX2008015180A (en) 2009-02-11
EP2039786A4 (en) 2010-04-07
WO2007139158A1 (en) 2007-12-06
CN101490286A (en) 2009-07-22
EP2039786B1 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP2007321178A (en) Method for cooling steel tube
CN101376134B (en) Method for producing martensitic stainless steel seamless steel pipe
TW200909095A (en) Method and apparatus for cooling hot forged part, and method for manufacturing hot-forged part
JP2011025282A (en) Equipment and method for cooling thick steel plate
JP2006152393A (en) Steel tube cooling method
JP3127822B2 (en) Manufacturing method of seamless stainless steel pipe made of duplex stainless steel
JP6634908B2 (en) Continuous casting method
WO2011151995A1 (en) Method for suppressing surface indentation flaw in element tube for seamless steel tube
CN101376135A (en) Method for producing improved stainless steel seamless steel pipe
JP6841028B2 (en) Continuous steel casting method
WO2014054287A1 (en) Method for manufacturing heavy wall steel pipe
JP2005279691A (en) Secondary cooling method for continuously cast slab
US20170349965A1 (en) Method of quenching steel pipe, apparatus for quenching steel pipe, method of manufacturing steel pipe and facility for manufacturing steel pipe
JP3189732B2 (en) Cooling method for hot steel sheet and cooling device for hot steel sheet
WO2015079639A1 (en) Method for manufacturing round billet
JPH0689398B2 (en) Duplex Stainless Steel Pipe Making Method
JP2005052881A (en) Method for continuously casting steel
JP2018536089A (en) Austenitic stainless steel with excellent orange peel resistance and method for producing the same
JPH05185131A (en) Production of seamless stainless steel pipe
JP6841118B2 (en) Heat treatment method for steel pipe
JP2001323324A (en) Method for producing hot rolled steel sheet excellent in surface property
JP2000084612A (en) Controlled cooling method for hot rolled steel plate
JP2000343107A (en) Method of manufacturing high-alloy seamless steel pipe
JP4452254B2 (en) Manufacturing method of hot-rolled steel sheet
JP4804995B2 (en) Manufacturing method of hot-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206