JPH09111344A - Production of high strength and low yield ratio seamless steel pipe - Google Patents

Production of high strength and low yield ratio seamless steel pipe

Info

Publication number
JPH09111344A
JPH09111344A JP27033295A JP27033295A JPH09111344A JP H09111344 A JPH09111344 A JP H09111344A JP 27033295 A JP27033295 A JP 27033295A JP 27033295 A JP27033295 A JP 27033295A JP H09111344 A JPH09111344 A JP H09111344A
Authority
JP
Japan
Prior art keywords
temperature
steel pipe
rolling
yield ratio
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27033295A
Other languages
Japanese (ja)
Inventor
Akira Yagi
明 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27033295A priority Critical patent/JPH09111344A/en
Publication of JPH09111344A publication Critical patent/JPH09111344A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method or producing a high toughness seamless steel pipe having high strength and low yield ratio, furthermore excellent in SSC (suphide stress cracking) resistance or more over having a fine-grained structure by regulating the steel components and rolling-heat treating conditions. SOLUTION: A slab contd., by weight, 0.02 to 0.2% C, 0.01 to 0.5% Si, 0.15 to 2.5% Mn, <=0.02% P, <=0.01% S, 0.005 to 0.1% Al, <=0.01% N and 0.005 to 0.1% Ti and furthermore contg. one or >=two kinds among Cr, Mo, Ni, V, B, rare earth metals, Ca, Co and Cu according to necessity is formed into a hollow pipe stock by hot piercing continuous rolling, which is next subjected to finish rolling to produce a finished steel pipe. This steel pipe is subjected to quenching treatment of executing rapid cooling from the Ar3 point or above, is thereafter heated to between the Ac1 point and the Ac3 point, is rapidly cooled and is then subjected to tempering treatment of executing heating to the Ac1 point or below and executing cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高強度で且つ低降
伏比であるシームレス鋼管の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a seamless steel pipe having a high strength and a low yield ratio.

【0002】[0002]

【従来の技術】油井等の掘削用或いは石油や天然ガスを
搬送するラインパイプ等に使用されるシームレス鋼管
は、破壊に対する安全性を向上させる観点から、降伏比
の低い特性が要求される。熱延シームレス鋼管で低降伏
比鋼管とするには、圧延ままか、または圧延後オーステ
ナイト域まで再加熱し空冷する焼ならし処理を行い、組
織的にフェライト・パーライトの2層組織にする方法が
ある。しかしこのような方法ではいずれにおいてもAP
I−Xグレードの高強度は得られない。一方、高強度化
するために焼入れ−焼戻し処理をすると低降伏比が達成
できないという問題があった。
2. Description of the Related Art Seamless steel pipes used for excavation of oil wells or line pipes for transporting oil or natural gas are required to have a low yield ratio from the viewpoint of improving safety against fracture. In order to make a low yield ratio steel pipe with a hot-rolled seamless steel pipe, there is a method in which it is structurally made into a two-layer structure of ferrite and pearlite by performing a normalizing treatment that is as-rolled or reheated to the austenite region and air-cooled after rolling. is there. However, in any of these methods, AP
High strength of IX grade cannot be obtained. On the other hand, there is a problem that a low yield ratio cannot be achieved when quenching-tempering treatment is performed to increase strength.

【0003】この様な問題を解決するために、特開平2
−282427号公報には、常温でフェライトとパーラ
イトの混合組織を有する鋼をAc1 変態点+10℃から
Ac1 変態点+90℃の温度に加熱、保定後急速冷却処
理を施し、その後焼戻し処理をする最高硬さと降伏比の
低い高強度鋼管の製造法が開示されている。また、「材
料とプロセス」(No.3,Vol.4,1991 日本鉄鋼協会・第1
21回(春季)講演大会予稿 552)にはシームレス工程
で圧延されたNb−Mo系鋼管を、焼入(930℃×10min
水冷)処理材(ベイナイト主体組織)から2層温度域に
加熱・水冷−焼戻して低降伏比材を得ることが提示され
ている。さらに特開平3−64415号公報では、Ti
およびNbを含有する鋼片を穿孔圧延し、温度降下した
素管を再加熱して仕上圧延した後、焼き入れ、焼戻し処
理して細粒組織の高靭性シームレス鋼管の製造法が開示
されている。
In order to solve such a problem, Japanese Unexamined Patent Publication (Kokai) 2
In Japanese Patent No. 2824227, steel having a mixed structure of ferrite and pearlite at normal temperature is heated from a temperature of Ac 1 transformation point + 10 ° C. to a temperature of Ac 1 transformation point + 90 ° C., subjected to rapid cooling treatment after holding, and then tempered. A method for producing a high-strength steel pipe having a maximum hardness and a low yield ratio is disclosed. In addition, "Materials and Processes" (No.3, Vol.4, 1991 Japan Iron and Steel Institute, No. 1
For the 21st (Spring) Lecture Meeting Proposal 552), Nb-Mo steel pipe rolled in a seamless process was quenched (930 ° C x 10 min).
It has been proposed to obtain a low yield ratio material by heating from a (water cooling) treated material (main structure of bainite) to a two-layer temperature range, water cooling and tempering. Further, in Japanese Patent Laid-Open No. 3-64415, Ti
Disclosed is a method for producing a high-toughness seamless steel pipe having a fine grain structure by piercing-rolling a steel slab containing Nb and Nb, reheating a temperature-reduced raw pipe to finish rolling, and then quenching and tempering the steel pipe. .

【0004】[0004]

【発明が解決しようとする課題】しかし、熱間のシーム
レス圧延では、圧延後のオーステナイト結晶粒度がAS
TM No.1〜6とばらつきが大きいため、上記熱処理を
施しても強度、降伏比の安定したシームレス鋼管が得ら
れないという問題があった。本発明はこの様な問題を解
消するものであって、鋼成分や圧延・熱処理条件を制御
することにより安定した高強度で且つ低降伏比のシーム
レス鋼管の製造法を提供することを目的とする。
However, in hot seamless rolling, the austenite grain size after rolling is AS
Since there is a large variation between TM Nos. 1 to 6, there was a problem that a seamless steel pipe with stable strength and yield ratio could not be obtained even if the above heat treatment was performed. The present invention solves such a problem, and an object of the present invention is to provide a method for manufacturing a seamless steel pipe having stable high strength and low yield ratio by controlling steel components and rolling / heat treatment conditions. .

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、以下
の構成を要旨とする。重量%として、 C :0.02%〜0.20%、 Si:0.01%〜0.5%、 Mn:0.15%〜2.5%、 P :0.020%以下、 S :0.010%以下、 Al:0.005%〜0.1%、 Ti:0.005%〜0.1%、 N :0.01%以下、 を含有し、更に必要に応じて Cr:0.1%〜1.5%、 Mo:0.05%〜0.5%、 Ni:0.1%〜2.0%、 V :0.01%〜0.1% B :0.0003%〜0.0030% からなる第1群元素と、希土類元素:0.001%〜
0.05%、Ca:0.001%〜0.02%、Co:
0.05%〜0.5%、Cu:0.1%〜0.5%から
なる第2群元素であって、この両群より選ばれた少なく
とも一種を含有し、残部が実質的にFeよりなる鋼片
を、熱間穿孔連続圧延の最終過程で900〜700℃の
温度で圧下率3〜15%の加工を施し、Ar3 点−10
0℃〜Ar3 点+50℃の温度に降下させた中空素管
を、該素管温度より高い900〜1000℃の間に加熱
してから、仕上温度がAr3 点+50℃以上の熱間仕上
圧延を施し、得られた仕上鋼管をAr3 点以上の温度か
ら急冷する焼入れ処理を施した後、Ac1 〜Ac3 点間
の温度に加熱してから急却し、次いでAc1 点以下の温
度に加熱冷却する焼戻し処理を行うことを特徴とする高
強度で且つ低降伏比シームレス鋼管の製造法である。
That is, the gist of the present invention is as follows. As weight%, C: 0.02% to 0.20%, Si: 0.01% to 0.5%, Mn: 0.15% to 2.5%, P: 0.020% or less, S: 0.010% or less, Al: 0.005% to 0.1%, Ti: 0.005% to 0.1%, N: 0.01% or less, and, if necessary, Cr: 0. 1% to 1.5%, Mo: 0.05% to 0.5%, Ni: 0.1% to 2.0%, V: 0.01% to 0.1% B: 0.0003% ~ 0.0030% Group 1 element and rare earth element: 0.001% ~
0.05%, Ca: 0.001% to 0.02%, Co:
It is a second group element consisting of 0.05% to 0.5% and Cu: 0.1% to 0.5%, contains at least one selected from both groups, and the balance is substantially Fe. The resulting steel slab is processed at a reduction rate of 3 to 15% at a temperature of 900 to 700 ° C. in the final step of hot piercing continuous rolling, and Ar 3 point −10.
A hollow shell that has been lowered to a temperature of 0 ° C. to Ar 3 points + 50 ° C. is heated to a temperature of 900 to 1000 ° C., which is higher than the temperature of the shell, and then hot finishing at a finishing temperature of Ar 3 points + 50 ° C. or more. After rolling, the obtained finished steel pipe is subjected to a quenching treatment for quenching from a temperature of Ar 3 points or higher, then heated to a temperature between Ac 1 to Ac 3 points, and then suddenly cooled, and then the Ac 1 point or lower. A method for producing a seamless steel pipe having a high strength and a low yield ratio, which is characterized by performing a tempering treatment of heating and cooling to a temperature.

【0006】[0006]

【発明の実施の形態】以下本発明の製造法について詳細
に説明する。先ず、本発明において上記のような鋼成分
に限定した理由について説明する。C,Mnは、焼入れ
効果を増して強度を高め降伏点40〜60kgf/mm2 の高
張力鋼を安定して得るためおよび降伏比を低下させるた
め重要である。少な過ぎるとその効果がなく、多過ぎる
と焼割れの誘発および高硬度化し耐SSC性の低下をき
たすためそれぞれ0.02〜0.20%、0.15〜
2.5%とした。
BEST MODE FOR CARRYING OUT THE INVENTION The manufacturing method of the present invention will be described in detail below. First, the reason why the present invention is limited to the above steel components will be described. C and Mn are important in order to enhance the hardening effect to increase the strength, to stably obtain a high tensile strength steel having a yield point of 40 to 60 kgf / mm 2 and to reduce the yield ratio. If it is too small, the effect will not be obtained, and if it is too large, quench cracking will be induced and the hardness will become high, resulting in a decrease in SSC resistance.
It was set to 2.5%.

【0007】Siは、脱酸剤が残存したもので強度を高
めるためおよび降伏比を低下させる有効な成分である。
少な過ぎるとその効果がなく、多過ぎると介在物を増加
して耐SSC性を低下させるため0.01〜0.5%と
した。
Si is a residual deoxidizer and is an effective component for increasing the strength and decreasing the yield ratio.
If it is too small, the effect is not obtained, and if it is too large, inclusions increase and the SSC resistance decreases, so the content was made 0.01 to 0.5%.

【0008】Pは、粒界偏析を起こして加工の際き裂を
生じやすく有害な成分であり、また低温靭性の劣化をき
たすためその含有量を0.020%以下とした。Sは、
MnS系介在物を形成して熱間連続圧延で延伸し層状組
織を形成し、鋼の破壊伝播性能を改善する。少な過ぎる
とその効果がなく、多過ぎると介在物を増加して鋼の性
質を脆化するため0.01%とした。
[0008] P is a harmful component which tends to cause grain boundary segregation to cause cracks during processing, and since it causes deterioration of low temperature toughness, its content is set to 0.020% or less. S is
MnS-based inclusions are formed and stretched by hot continuous rolling to form a layered structure, which improves the fracture propagation performance of steel. If it is too small, the effect is not obtained, and if it is too large, inclusions increase and the properties of the steel become brittle, so the content was made 0.01%.

【0009】Alは、Siと同様脱酸剤が残存したもの
で、鋼中の不純物成分として含まれるNと結合して結晶
粒の成長を抑えて鋼の破壊伝播性能を改善する。少な過
ぎるとその効果がなく、多過ぎると介在物を増加して鋼
の性質を脆化するため0.005〜0.1%とした。
Al, like Si, has a deoxidizing agent remaining, and is combined with N contained as an impurity component in steel to suppress the growth of crystal grains and improve the fracture propagation performance of steel. If it is too small, the effect is not obtained, and if it is too large, inclusions increase and the properties of the steel become brittle, so the content was made 0.005 to 0.1%.

【0010】Tiは、シームレス圧延中の結晶粒径制御
元素として最も重要な元素である。Tiは、鋼中の不純
物成分として含まれるNと結合して、熱間圧延中の結晶
粒制御および熱間圧延後の結晶粒の成長を抑え鋼の破壊
伝播性能を改善すると共に、脱酸、脱窒の作用から後述
のBの焼入れ性を発揮させ強度を高める。少な過ぎると
その効果がなく、多過ぎるとTiCを析出して鋼を脆化
させるため0.005〜0.1%とした。Nは、後述の
Bの焼入れ性を低下させる有害な成分としてその含有量
を0.01%以下とした。
Ti is the most important element as a crystal grain size controlling element during seamless rolling. Ti combines with N, which is contained as an impurity component in the steel, to control the crystal grains during hot rolling and suppress the growth of crystal grains after hot rolling to improve the fracture propagation performance of the steel, as well as deoxidize, From the effect of denitrification, the hardenability of B described later is exerted to enhance the strength. If it is too small, the effect is not obtained, and if it is too large, TiC precipitates and the steel is embrittled, so the content was made 0.005 to 0.1%. The content of N is 0.01% or less as a harmful component that deteriorates the hardenability of B described later.

【0011】上記の成分組成の鋼で更に鋼の強度を高め
る場合Cr等の成分を必要に応じて選択的に添加する。
Cr,Mo,Ni,Vは、鋼の焼入れ性を増して、強度
を高めるために添加するものである。少な過ぎるとその
効果がなく、多過ぎてもその効果が飽和し、しかも非常
に高価であるため、それぞれについて上,下限を限定
し、Crは0.1〜1.5%、Moは0.05〜0.5
%、Niは0.1〜2.0%、Vは0.01〜0.1%
とした。またBは、焼入れ性を著しく向上せしめて強度
を高める。少な過ぎるとその効果がなく、多過ぎても効
果は変わらない一方、靭性や熱間加工性を劣化させるの
でその含有範囲を0.0003〜0.0030%とし
た。上記CrないしBの各元素は必要に応じて選択的に
添加すれば良い。
In the case of the steel having the above-mentioned composition, to further increase the strength of the steel, Cr and other components are selectively added as required.
Cr, Mo, Ni, and V are added to enhance the hardenability of steel and the strength. If the amount is too small, the effect will not be obtained, and if it is too large, the effect will be saturated, and since it will be very expensive, the upper and lower limits are limited for each, and Cr is 0.1 to 1.5% and Mo is 0. 05-0.5
%, Ni 0.1 to 2.0%, V 0.01 to 0.1%
And Further, B remarkably improves the hardenability and enhances the strength. If the amount is too small, the effect will not be obtained, and if the amount is too large, the effect will not change. On the other hand, the toughness and hot workability will be deteriorated, so the content range was made 0.0003 to 0.0030%. Each element of Cr to B may be selectively added as needed.

【0012】更に本発明は、近年のシームレス鋼管の使
用環境を鑑み上記の成分組成で構成される鋼の耐SSC
性を改善するために希土類元素,Ca,Co,Cu等の
成分を必要に応じて選択的に添加する。希土類元素、C
aは、介在物の形態を球状化させて無害化する有効な成
分である。少な過ぎるとその効果がなく、多過ぎると介
在物を増加して耐SSC性を低下させるので希土類元素
は0.001〜0.05%、Caは0.001〜0.0
2%とした。Co,Cuは、鋼中への水素侵入抑制効果
があり耐SSC性に有効に働く。少な過ぎるとその効果
がなく、多過ぎるとその効果が飽和するためCoは0.
05〜0.5%、Cuは0.1〜0.5%とした。
Further, in view of the use environment of the seamless steel pipe in recent years, the present invention further provides an SSC resistant steel having the above-mentioned composition.
In order to improve the properties, rare earth elements, Ca, Co, Cu and other components are selectively added as needed. Rare earth element, C
“A” is an effective component that makes the shape of the inclusion spherical and renders it harmless. If the amount is too small, there is no effect, and if the amount is too large, inclusions increase and SSC resistance decreases, so rare earth elements are 0.001 to 0.05%, and Ca is 0.001 to 0.0.
2%. Co and Cu have an effect of suppressing hydrogen invasion into the steel and effectively act on SSC resistance. If the amount is too small, the effect will not be obtained, and if the amount is too large, the effect will be saturated, so Co will be 0.
05-0.5%, Cu 0.1-0.5%.

【0013】次に熱間シームレス圧延条件を上記のよう
に限定した理由について説明する。上記のような成分組
成の鋼は転炉、電気炉等の溶解炉で或いは更に真空脱ガ
ス処理を経て溶製され、連続鋳造法又は造塊分塊法で鋼
片を製造する。鋼片は、直ちに或いは一旦冷却された後
高温に加熱し熱間穿孔圧延を行う。加熱温度は、熱間穿
孔圧延を容易にするため十分高くしておかなければなら
ない。本発明成分範囲内の鋼であれば1200℃以上の
温度で熱間穿孔加工してもなんら支障が生じないため、
その加熱温度は1000〜1250℃とした。
Next, the reason why the hot seamless rolling conditions are limited as described above will be explained. Steel having the above-described composition is melted in a melting furnace such as a converter or an electric furnace, or is further subjected to vacuum degassing treatment, and a steel slab is manufactured by a continuous casting method or an ingot agglomeration method. The steel slab is immediately or once cooled and then heated to a high temperature for hot piercing and rolling. The heating temperature must be sufficiently high to facilitate hot piercing and rolling. As long as the steel is within the range of the composition of the present invention, there is no problem even if hot drilling is performed at a temperature of 1200 ° C. or higher.
The heating temperature was 1000 to 1250 ° C.

【0014】熱間鋼片は穿孔圧延後熱間連続圧延機に搬
送され、目標の外径、肉厚に圧延されて中空素管に粗成
形する。この圧延は、製管された鋼管の材質、特に結晶
粒度、降伏比に大きな影響を及ぼす。図1および図2は
圧延直後のオーステナイト粒度を調べるため圧延後に急
冷処理した鋼管(表1 鋼 No.5の成分)のγ粒度と熱
間穿孔連続圧延の最終過程での圧延条件、再加熱開始温
度、再加熱炉温度との関係を示す。図に示すように圧延
直後のγ粒度は、各条件により、ASTM No.0〜8と
大きく変化する。
After hot rolling, the hot billet is conveyed to a hot continuous rolling mill, rolled to a target outer diameter and wall thickness, and roughly formed into a hollow shell. This rolling has a great influence on the material of the manufactured steel pipe, especially on the grain size and the yield ratio. Figures 1 and 2 show the γ grain size of steel pipes (compositions of steel No. 5 in Table 1) that have been quenched after rolling in order to investigate the grain size of austenite immediately after rolling, and the rolling conditions and the reheating start in the final process of hot-rolling continuous rolling. The relationship between the temperature and the reheating furnace temperature is shown. As shown in the figure, the γ grain size immediately after rolling greatly changes from ASTM No. 0 to 8 depending on each condition.

【0015】本発明等の研究によると、API Xグレ
ード級の高強度鋼の降伏比は、焼入れ処理前の結晶粒度
に影響され結晶粒径が比較的大きいほど降伏比は低下す
ること、そして、降伏比とラインパイプ材などで要求さ
れる低温靭性を満足するγ粒度はASTM No.3〜5と
する必要があることを突き止めた。また、ASTM No.
3〜5のγ粒度を得るには熱間穿孔連続圧延の最終過程
から再加熱で起こる歪誘起粒成長後の二次再結晶により
引き起こされるγ粒粗大化現象の利用が不可欠であるこ
とを見出だした。
According to the study of the present invention, the yield ratio of API X grade high-strength steel is affected by the grain size before quenching, and the yield ratio decreases as the grain size becomes relatively large. We have found that the γ grain size that satisfies the yield ratio and the low temperature toughness required for line pipe materials, etc. must be ASTM Nos. 3-5. Also, ASTM No.
In order to obtain a γ grain size of 3 to 5, it is essential to utilize the γ grain coarsening phenomenon caused by secondary recrystallization after strain-induced grain growth that occurs during reheating from the final process of hot-rolling continuous rolling. It started.

【0016】歪み誘起粒成長を利用したγ粒度制御は、
熱間穿孔連続圧延の最終過程での圧延条件、再加熱開始
温度、再加熱炉温度を以下のように規定することにより
可能となる。すなわち、熱間穿孔連続圧延の最終圧延で
の圧下温度は900℃超では加工により導入された歪み
エネルギーが回復、再結晶により低下するため歪み誘起
粒成長の駆動力が消失するため結晶粒径の粗大化が起こ
らず、鋼管の降伏比の低下を阻害する。よって、熱間穿
孔連続圧延の最終過程での圧下温度は900〜700℃
に限定する。
Γ grain size control utilizing strain-induced grain growth is
It becomes possible by defining the rolling conditions, the reheating start temperature, and the reheating furnace temperature in the final process of the hot piercing continuous rolling as follows. That is, when the reduction temperature in the final rolling of the hot piercing continuous rolling exceeds 900 ° C., the strain energy introduced by the working is recovered and the strain energy is reduced by recrystallization, so that the driving force for the strain-induced grain growth disappears and the grain size of the crystal grain is reduced. Coarsening does not occur and prevents the yield ratio of the steel pipe from decreasing. Therefore, the reduction temperature in the final process of hot-rolling continuous rolling is 900 to 700 ° C.
Limited to.

【0017】かかる熱間穿孔連続圧延において、圧下量
が0〜2%では歪み誘起粒成長の駆動力が不十分であ
り、15%以上では蓄積される歪みエネルギーが大きく
なり過ぎて圧下後或いはその後の再加熱過程で歪みエネ
ルギーを持たないγ粒の成長により歪み誘起粒成長の駆
動力が消失するため、結晶粒径の粗大化が起こらず鋼管
の降伏比の低下を阻害する。よって、熱間穿孔連続圧延
の最終過程での圧下量は3〜15%に限定した。
In such hot piercing continuous rolling, if the reduction amount is 0 to 2%, the driving force for the strain-induced grain growth is insufficient, and if it is 15% or more, the strain energy accumulated becomes too large and the strain energy is reduced or reduced. Since the driving force for strain-induced grain growth disappears due to the growth of γ grains having no strain energy in the reheating process, the grain size does not become coarse and the yield ratio of the steel pipe is prevented from lowering. Therefore, the amount of reduction in the final process of hot piercing continuous rolling was limited to 3 to 15%.

【0018】圧下後850℃〜Ar1 点の温度に降下し
た中空粗管は、再加熱されて仕上圧延されるが、この再
加熱開始温度は、Ar3 −100℃〜Ar3 −150℃
ではγ粒の急激な異常粗大化が起こり低温靭性が著しく
劣化し、また、Ar3 +50℃では歪み誘起粒成長の駆
動力が消失し適度なγ粒粗大化が起こらず、鋼管の降伏
比の低下を阻害する。よって、圧下後の再加熱開始温度
はAr3 −100℃〜Ar3 +50℃にする。一方、再
加熱温度は900℃未満ではγ粒の成長に不十分である
と共に熱間最終仕上圧延後の焼入れ温度が確保できず、
また1000℃を超えてはγ粒の急激な粗大化が起き、
低温靭性が著しく劣化すると共に鋼表面に多量の酸化ス
ケールが生じ鋼管の表面品位に悪影響を及ぼす。よっ
て、仕上圧延時の再加熱温度は900℃〜1000℃の
温度にする。
After the reduction, the hollow crude tube that has dropped to a temperature of 850 ° C. to Ar 1 point is reheated and finish-rolled. The reheating start temperature is Ar 3 -100 ° C. to Ar 3 -150 ° C.
In the case of Ar 3 + 50 ° C, the driving force for the strain-induced grain growth disappears and moderate γ grain coarsening does not occur, so that the yield ratio of the steel pipe increases. Inhibit the decline. Therefore, the reheating start temperature after the reduction is set to Ar 3 −100 ° C. to Ar 3 + 50 ° C. On the other hand, if the reheating temperature is less than 900 ° C., it is not sufficient for the growth of γ grains and the quenching temperature after the hot final finish rolling cannot be secured,
Moreover, when the temperature exceeds 1000 ° C, the γ grains are suddenly coarsened,
The low temperature toughness is significantly deteriorated and a large amount of oxide scale is generated on the steel surface, which adversely affects the surface quality of the steel pipe. Therefore, the reheating temperature during finish rolling is set to a temperature of 900 ° C to 1000 ° C.

【0019】900〜1000℃に加熱された中空素管
には仕上温度がAr3 点+50℃以上となる熱間最終仕
上圧延を施し、得られた仕上鋼管に焼入れ処理が施され
る。熱間最終仕上圧延後の冷却開始温度は、安定した十
分な焼入れ組織となり、必要とする強度、耐サワー性お
よび靭性を確保し、且つ焼入れ処理後に行うAc3 〜A
1 点からの急冷処理で得られる組織の均一性を確保す
る必要性からAr3 点+50℃以上とする。
The hollow shell heated to 900 to 1000 ° C. is subjected to hot final finish rolling at a finishing temperature of Ar 3 point + 50 ° C. or higher, and the obtained finished steel pipe is subjected to quenching treatment. The cooling start temperature after the hot final finish rolling has a stable and sufficient quenching structure, secures the required strength, sour resistance and toughness, and is Ac 3 to A after the quenching treatment.
The temperature is set to Ar 3 point + 50 ° C. or higher because it is necessary to secure the uniformity of the structure obtained by the quenching treatment from the c 1 point.

【0020】Ar3 点+50℃以上から急冷する焼入れ
処理を施した後、続いてAc3 〜Ac1 点に再加熱しそ
の後急冷処理を施す。この処理は、細粒組織の高強度且
つ低降伏比を得るための本発明上重要な工程である。再
加熱温度は、目標とする強度、降伏比に大きく影響す
る。この温度はAc3 〜Ac1 範囲であるならば特に限
定しないがAc1 点+50℃未満になると強度の著しい
低下をきたし、またAc3 点−50℃以上では降伏比が
高くなる傾向があるため、Ac1 点+50℃〜Ac3
−50℃の温度範囲とするのがが好ましい。直接焼入れ
時およびAc3 〜Ac1 点からの冷却速度は特に限定し
ないが空冷より速い速度とする。
After the quenching treatment for quenching from the Ar 3 point + 50 ° C. or higher, it is subsequently reheated to the Ac 3 to Ac 1 point and then subjected to the quenching treatment. This treatment is an important step in the present invention for obtaining high strength and low yield ratio of the fine grain structure. The reheating temperature greatly affects the target strength and yield ratio. This temperature is not particularly limited as long as it is in the Ac 3 to Ac 1 range, but if the Ac 1 point is lower than + 50 ° C., the strength is remarkably lowered, and if the Ac 3 point is −50 ° C. or higher, the yield ratio tends to be high. , Ac 1 point + 50 ° C. to Ac 3 point −50 ° C. is preferable. The cooling rate at the time of direct quenching and from the Ac 3 to Ac 1 point is not particularly limited, but it is faster than air cooling.

【0021】その後、Ac1 点以下の温度に加熱して冷
却する焼戻し処理を行う。焼戻し温度は、強度、耐サワ
ー性および靭性の安定化を確保するために行うもので、
Ac1 点以下であれば良い。その加熱方法については特
に限定しない。
After that, a tempering treatment is carried out by heating to a temperature below the Ac 1 point and cooling. The tempering temperature is used to ensure stability of strength, sour resistance and toughness,
It should be Ac 1 or less. The heating method is not particularly limited.

【0022】以上の製造条件で得られる鋼管は、γ粒の
ばらつきがなく、細粒組織で且つ高強度、低降伏比で耐
サワー性、靭性の諸特性を具備する必要のあるシームレ
ス鋼管に好適である。
The steel pipe obtained under the above manufacturing conditions is suitable for a seamless steel pipe which is required to have various characteristics of γ grains, a fine grain structure, high strength, low yield ratio, sour resistance, and toughness. Is.

【0023】[0023]

【実施例】表1に示す成分の溶鋼を転炉で精錬し、該溶
鋼を連続鋳造で鋳片とし、これを以下に示す条件で、シ
ームレス圧延−直接焼入れおよび引続きAc1 〜Ac3
点への加熱急冷する二相域処理、Ac1 以下の焼戻し処
理を施した。
EXAMPLE Molten steel having the components shown in Table 1 was refined in a converter, and the molten steel was cast into a slab, which was seamlessly rolled-directly quenched and subsequently Ac 1 to Ac 3 under the following conditions.
A two-phase region treatment of heating and quenching to a spot and a tempering treatment of Ac 1 or less were performed.

【0024】本発明の鋳片処理条件は以下の通りであ
る。 鋳片加熱温度 :1200℃ 熱間穿孔連続圧延の最終圧延:850℃×5% 再加熱開始温度 :Ar3 −75℃〜Ar3 +50℃ 最終仕上圧延温度 :850℃ 最終仕上圧下量 :20% 直接焼入れ温度 :900℃ 二相域加熱温度 :780〜860℃ 焼戻し温度 :600℃ また、比較例として下記の処理を施した。 加熱温度 :1200℃ 熱間穿孔連続圧延の最終圧延:950℃×5% 再加熱開始温度 :Ar3 +50℃ 最終仕上圧延温度 :850℃ 最終仕上圧下量 :20% 再加熱焼入れ温度 :950℃ 焼戻し温度 :600℃
The slab processing conditions of the present invention are as follows. Slab heating temperature: 1200 ° C. Final rolling of hot piercing continuous rolling: 850 ° C. × 5% Reheating start temperature: Ar 3 −75 ° C. to Ar 3 + 50 ° C. Final finishing rolling temperature: 850 ° C. Final finishing reduction amount: 20% Direct quenching temperature: 900 ° C. Two-phase region heating temperature: 780-860 ° C. Tempering temperature: 600 ° C. Further, the following treatment was performed as a comparative example. Heating temperature: 1200 ° C Final rolling of hot piercing continuous rolling: 950 ° C x 5% Reheating start temperature: Ar 3 + 50 ° C Final finishing rolling temperature: 850 ° C Final finishing reduction amount: 20% Reheating quenching temperature: 950 ° C Tempering Temperature: 600 ℃

【0025】上記処理によって得られたシームレス鋼管
の特性(降伏強度、降伏比、耐SCC性)を表2に示
す。耐SSC性は、NACE TM01−77に従った
荷重方式によるσth(Threshold Stress)を求めて評
価した。これから明らかのように本発明によって製造さ
れた鋼管は、高強度、低降伏比で耐サワー性が得られて
いることがわかる。
Table 2 shows the characteristics (yield strength, yield ratio, SCC resistance) of the seamless steel pipe obtained by the above treatment. The SSC resistance was evaluated by obtaining σth (Threshold Stress) by the loading method according to NACE TM01-77. As is apparent from the above, it is clear that the steel pipe manufactured according to the present invention has high strength, low yield ratio and sour resistance.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】上記のような本発明法によって製造され
た鋼管は、高強度降伏比であり、耐サワー性に優れ、劣
悪な油井環境において使用される。
The steel pipe manufactured by the method of the present invention as described above has a high strength yield ratio, excellent sour resistance, and is used in a poor oil well environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】急冷後のオーステナイト粒度に及ぼす再加熱開
始温度と熱間穿孔連続圧延の最終圧下率の影響を示す
図。
FIG. 1 is a diagram showing the influence of a reheating start temperature and a final reduction rate of hot-piercing continuous rolling on the austenite grain size after quenching.

【図2】急冷後のオーステナイト粒度に及ぼす圧下温度
と再加熱炉温度との影響を示す図。
FIG. 2 is a diagram showing the effects of a rolling temperature and a reheating furnace temperature on the austenite grain size after rapid cooling.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%として、 C :0.02%〜0.20%、 Si:0.01%〜0.5%、 Mn:0.15%〜2.5%、 P :0.020%以下、 S :0.010%以下、 Al:0.005%〜0.1%、 Ti:0.005%〜0.1%、 N :0.01%以下 を含有し、残部が実質的にFeよりなる鋼片を、熱間穿
孔連続圧延の最終過程で900〜700℃の温度で圧下
率3〜15%の加工を施し、Ar3 点−100℃〜Ar
3 点+50℃の温度に降下させた中空素管を、該素管温
度より高い900〜1000℃の間に加熱してから、仕
上温度がAr3 点+50℃以上の熱間仕上圧延を施し、
得られた仕上鋼管をAr3 点以上の温度から急冷する焼
入れ処理を施した後、Ac1 〜Ac3 点間の温度に加熱
してから急冷し、次いでAc1 点以下の温度に加熱冷却
する焼戻し処理を行うことを特徴とする高強度で且つ低
降伏比シームレス鋼管の製造方法。
1. As weight%, C: 0.02% to 0.20%, Si: 0.01% to 0.5%, Mn: 0.15% to 2.5%, P: 0.020. % Or less, S: 0.010% or less, Al: 0.005% to 0.1%, Ti: 0.005% to 0.1%, N: 0.01% or less, and the balance substantially. A steel slab made of Fe is processed at a temperature of 900 to 700 ° C. at a rolling reduction of 3 to 15% in the final step of hot piercing continuous rolling, and Ar 3 point −100 ° C. to Ar.
After heating the hollow shell lowered to a temperature of 3 points + 50 ° C between 900 to 1000 ° C higher than the shell temperature, hot finishing rolling is performed at a finishing temperature of Ar 3 points + 50 ° C or more,
The obtained finished steel pipe is quenched at a temperature of Ar 3 or higher, quenched, heated to a temperature between Ac 1 and Ac 3 and then rapidly cooled, and then heated and cooled to a temperature of Ac 1 or lower. A method for producing a high-strength, low-yield ratio seamless steel pipe, characterized by performing a tempering treatment.
【請求項2】 鋼片成分としてさらに、重量%として Cr:0.1%〜1.5%、 Mo:0.05%〜0.5%、 Ni:0.1%〜2.0%、 V :0.01%〜0.1% B :0.0003%〜0.0030% からなる群の元素より選ばれた少なくとも1種を含有す
ることを特徴とする請求項1記載の高強度で且つ低降伏
比シームレス鋼管の製造方法。
2. As a billet component, Cr: 0.1% to 1.5%, Mo: 0.05% to 0.5%, Ni: 0.1% to 2.0% in weight%. V: 0.01% -0.1% B: 0.0003% -0.0030% At least 1 sort (s) selected from the group of elements is contained, The high strength of Claim 1 characterized by the above-mentioned. And the manufacturing method of a low yield ratio seamless steel pipe.
【請求項3】 鋼片成分としてさらに、重量%として 希土類元素:0.001%〜0.05%、 Ca:0.001%〜0.02%、 Co:0.05%〜0.5%、 Cu:0.1%〜0.5% からなる群の元素より選ばれた少なくとも1種を含有す
ることを特徴とする請求項1或いは2記載の高強度で且
つ低降伏比シームレス鋼管の製造方法。
3. As a billet component, further as a weight% rare earth element: 0.001% to 0.05%, Ca: 0.001% to 0.02%, Co: 0.05% to 0.5% And Cu: containing at least one element selected from the group consisting of 0.1% to 0.5%, and manufacturing a high-strength, low-yield ratio seamless steel pipe according to claim 1 or 2. Method.
JP27033295A 1995-10-18 1995-10-18 Production of high strength and low yield ratio seamless steel pipe Withdrawn JPH09111344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27033295A JPH09111344A (en) 1995-10-18 1995-10-18 Production of high strength and low yield ratio seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27033295A JPH09111344A (en) 1995-10-18 1995-10-18 Production of high strength and low yield ratio seamless steel pipe

Publications (1)

Publication Number Publication Date
JPH09111344A true JPH09111344A (en) 1997-04-28

Family

ID=17484789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27033295A Withdrawn JPH09111344A (en) 1995-10-18 1995-10-18 Production of high strength and low yield ratio seamless steel pipe

Country Status (1)

Country Link
JP (1) JPH09111344A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176840A (en) * 2004-12-22 2006-07-06 Sumitomo Metal Ind Ltd Method for manufacturing steel billet
KR100627461B1 (en) * 1999-12-28 2006-09-22 주식회사 포스코 Method of manufacturing hot rolling steel sheet having high strength for linepipe
US7481897B2 (en) * 2000-09-01 2009-01-27 Trw Automotive U.S. Llc Method of producing a cold temperature high toughness structural steel
US7776160B2 (en) * 2000-09-01 2010-08-17 Trw Automotive U.S. Llc Method of producing a cold temperature high toughness structural steel tubing
JP2010189765A (en) * 2010-03-29 2010-09-02 Sumitomo Metal Ind Ltd Method for manufacturing steel billet
CN103290338A (en) * 2013-06-18 2013-09-11 内蒙古包钢钢联股份有限公司 Rare earth-containing seamless steel tube for L690Q pipeline and production method thereof
CN103409685A (en) * 2013-08-09 2013-11-27 内蒙古包钢钢联股份有限公司 Seamless steel pipe for conventional island in nuclear power plant and production process thereof
CN103409702A (en) * 2013-06-18 2013-11-27 内蒙古包钢钢联股份有限公司 Seamless steel pipe for L830Q pipeline containing rare earth and production method of seamless steel pipe
CN104141093A (en) * 2013-05-10 2014-11-12 河北钢铁股份有限公司承德分公司 Automobile compartment body band steel with yield strength reaching 700MPa, and rolling method thereof
CN104561774A (en) * 2013-10-10 2015-04-29 鞍钢股份有限公司 P110-level straight-seam welding petroleum casing pipe and manufacturing method thereof
CN114717476A (en) * 2022-03-11 2022-07-08 天津钢管制造有限公司 Method for improving performance of rolled carbon steel seamless steel tube

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100627461B1 (en) * 1999-12-28 2006-09-22 주식회사 포스코 Method of manufacturing hot rolling steel sheet having high strength for linepipe
US7481897B2 (en) * 2000-09-01 2009-01-27 Trw Automotive U.S. Llc Method of producing a cold temperature high toughness structural steel
US7776160B2 (en) * 2000-09-01 2010-08-17 Trw Automotive U.S. Llc Method of producing a cold temperature high toughness structural steel tubing
JP2006176840A (en) * 2004-12-22 2006-07-06 Sumitomo Metal Ind Ltd Method for manufacturing steel billet
JP4513551B2 (en) * 2004-12-22 2010-07-28 住友金属工業株式会社 Billet manufacturing method
JP2010189765A (en) * 2010-03-29 2010-09-02 Sumitomo Metal Ind Ltd Method for manufacturing steel billet
CN104141093A (en) * 2013-05-10 2014-11-12 河北钢铁股份有限公司承德分公司 Automobile compartment body band steel with yield strength reaching 700MPa, and rolling method thereof
CN103409702A (en) * 2013-06-18 2013-11-27 内蒙古包钢钢联股份有限公司 Seamless steel pipe for L830Q pipeline containing rare earth and production method of seamless steel pipe
CN103290338A (en) * 2013-06-18 2013-09-11 内蒙古包钢钢联股份有限公司 Rare earth-containing seamless steel tube for L690Q pipeline and production method thereof
CN103409685A (en) * 2013-08-09 2013-11-27 内蒙古包钢钢联股份有限公司 Seamless steel pipe for conventional island in nuclear power plant and production process thereof
CN104561774A (en) * 2013-10-10 2015-04-29 鞍钢股份有限公司 P110-level straight-seam welding petroleum casing pipe and manufacturing method thereof
CN114717476A (en) * 2022-03-11 2022-07-08 天津钢管制造有限公司 Method for improving performance of rolled carbon steel seamless steel tube
CN114717476B (en) * 2022-03-11 2023-11-21 天津钢管制造有限公司 Method for improving performance of rolled carbon steel seamless steel tube

Similar Documents

Publication Publication Date Title
JP6229640B2 (en) Seamless steel pipe and manufacturing method thereof
JPH10280037A (en) Production of high strength and high corrosion-resistant seamless seamless steel pipe
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JPH09249935A (en) High strength steel material excellent in sulfide stress cracking resistance and its production
US20180171443A1 (en) Hot rolled steel plate for oil well pipe, steel pipe using the same, and method of manufacturing the same
JPH06100923A (en) Production of oxide-containing fire resistant shape steel by controlled rolling
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JPH09111344A (en) Production of high strength and low yield ratio seamless steel pipe
JPH09111343A (en) Production of high strength and low yield ratio seamless steel pipe
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH05271772A (en) Manufacture of steel pipe for oil well excellent in sulfide stress cracking resistance
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JP4196501B2 (en) Steel for seamless steel pipe with high strength and excellent toughness
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
KR20220088214A (en) High-strength steel material having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JP3046183B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107