JP2002060893A - Oil-well steel having excellent sulfide stress corrosion cracking resistance, and its manufacturing method - Google Patents

Oil-well steel having excellent sulfide stress corrosion cracking resistance, and its manufacturing method

Info

Publication number
JP2002060893A
JP2002060893A JP2000248425A JP2000248425A JP2002060893A JP 2002060893 A JP2002060893 A JP 2002060893A JP 2000248425 A JP2000248425 A JP 2000248425A JP 2000248425 A JP2000248425 A JP 2000248425A JP 2002060893 A JP2002060893 A JP 2002060893A
Authority
JP
Japan
Prior art keywords
steel
mass
cas
cao
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000248425A
Other languages
Japanese (ja)
Other versions
JP3666372B2 (en
Inventor
Takahiro Kushida
隆弘 櫛田
Mitsuhiro Numata
光裕 沼田
Yoshihiko Higuchi
善彦 樋口
Hirofumi Kurayasu
浩文 蔵安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000248425A priority Critical patent/JP3666372B2/en
Publication of JP2002060893A publication Critical patent/JP2002060893A/en
Application granted granted Critical
Publication of JP3666372B2 publication Critical patent/JP3666372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide oil-well steel having excellent sulfide stress corrosion cracking resistance and manufacturable by means of round CC(continuous casting) with high production efficiency and its manufacturing method and also to provide oil-well steel having excellent cracking resistance and its manufacturing method. SOLUTION: In the oil-well steel having excellent sulfide stress corrosion cracking resistance, a composition of Ca-type nonmetallic inclusions comprises >=50 mass%, in total, of CaS and CaO and also comprises <50 mass% compound oxide of Ca and Al, and the hardness of the steel ranges from HRC 21 to 30, and further, the total content X (mass%) of CaO and CaS satisfies the inequality, 100-X<=120-(10/3)×HRC. The method for manufacturing the steel is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油井やガス井のケ
ーシングやチュービングおよび掘削用のドリルパイプ等
の用途に好適な耐硫化物応力腐食割れ性に優れた油井用
鋼とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel for oil wells having excellent sulfide stress corrosion cracking resistance and suitable for applications such as casings for oil wells and gas wells, tubing and drill pipes for drilling.

【0002】[0002]

【従来の技術】溶接管に比較して高信頼性が得られる継
目無鋼管は、過酷な油井環境や高温環境で使用されるこ
とが多く、高強度化、靱性改善および耐硫化物応力割れ
性(以下、耐SSC性と記す)の改善が常に要求されて
いる。
2. Description of the Related Art Seamless steel pipes, which provide higher reliability than welded pipes, are often used in harsh oil well environments and high-temperature environments, and provide higher strength, improved toughness, and resistance to sulfide stress cracking. (Hereinafter referred to as SSC resistance) is always required to be improved.

【0003】継目無鋼管は、一般に傾斜圧延方式により
製造される。すなわち、ビレットを穿孔圧延機で穿孔し
て中空素管とし、プラグミルあるいはマンドレルミルで
圧延し、再加熱後ストレッチレデューサーにより外径圧
下と若干の肉厚圧下して製品寸法にして、通常焼入れ、
焼戻し処理をおこない調質される。
[0003] A seamless steel pipe is generally manufactured by an inclined rolling method. That is, the billet is pierced by a piercing mill to form a hollow shell, rolled by a plug mill or a mandrel mill, and after reheating, the outer diameter is reduced by a stretch reducer and the thickness is reduced slightly to a product size.
Tempered and tempered.

【0004】最近では、製造コストダウンが追求され、
生産効率を上げるためにビレットは連続鋳造(以下、ラ
ウンドCCと記す)ビレットの適用がなされている。し
かしながら、ラウンドCCを適用する場合、タンディシ
ュから鋳型に溶鋼を注ぐためのノズルは小径となるため
ノズル詰まりが発生しやすい。これを防止するためにC
aが添加されるが、このCaが耐SSC性を低下させる
起因になっていることがわかってきた。耐SSC性が低
下する機構は、油井環境で使用中にCa系介在物が溶け
て孔食が発生し、この孔食が応力集中源となってSSC
の発生を加速するものと推定される。
Recently, production cost reduction has been pursued.
In order to increase production efficiency, continuous casting (hereinafter, referred to as round CC) billet is used as a billet. However, when the round CC is applied, the nozzle for pouring molten steel from the tundish into the mold has a small diameter, so that nozzle clogging is likely to occur. To prevent this, C
Although a is added, it has been found that this Ca causes a decrease in SSC resistance. The mechanism by which the SSC resistance is reduced is that, during use in an oil well environment, Ca-based inclusions melt and pitting occurs.
Is presumed to accelerate the occurrence of

【0005】これまでの研究によって、耐SSC性を向
上させる鋼の化学組成と熱処理条件については、かなり
の知見が得られており、それらに基づいて耐SSC性に
優れた鋼が、開発されてきた。例えば、マルテンサイト
組織が80〜90%以上の鋼、高温焼戻し鋼、細粒組織
の鋼、高降伏比鋼および粗大な炭化物を含まない鋼等で
ある。しかし、これらの鋼をラウンドCC法により丸ビ
レットにして上記方法により継目無鋼管を製造する場合
は、Ca系介在物によって耐SSC性が低下して使用に
耐えなくなる場合が生じることがわかってきた。
[0005] From the previous studies, considerable knowledge has been obtained on the chemical composition and heat treatment conditions of steel for improving SSC resistance. Based on these findings, steels having excellent SSC resistance have been developed. Was. For example, a steel having a martensite structure of 80 to 90% or more, a high-temperature tempered steel, a steel having a fine-grained structure, a high yield ratio steel, a steel containing no coarse carbide, and the like. However, when these steels are made into round billets by the round CC method and a seamless steel pipe is manufactured by the above method, it has been found that the SSC resistance is reduced due to Ca-based inclusions and the steel may not be usable. .

【0006】しかし、ラウンドCC時にCaを使用する
場合に生じる耐SSC性の低下に対して有効な対策がな
いのが現状である。Caを使用しないのでは連続鋳造で
のラウンドCCの適用、さらにその連々比率のアップと
いう生産効率向上が達成できない。
However, at present, there is no effective countermeasure against a decrease in SSC resistance that occurs when Ca is used during the round CC. If Ca is not used, application of round CC in continuous casting and further improvement in production efficiency such as an increase in the ratio of continuous CC cannot be achieved.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、生産
効率のよいラウンドCCにより製造可能な耐硫化物応力
腐食割れ性に優れた油井用鋼とその製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an oil well steel having excellent sulfide stress corrosion cracking resistance, which can be produced by round CC with good production efficiency, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】発明者らは、上記の課題
を解消するにあたり、ラウンドCC−継目無製管−オフ
ラインあるいはインライン熱処理を適用した種々の化学
組成と、90〜125ksi(620〜862MPa)
の強度を有する油井用鋼管を製造し、それらの耐SSC
性を調査して、耐SSC性とCa系介在物組成の相関を
調べることにより下記の知見を得るに至った。特に、C
a系介在物の組成分析に、後述するように高度な分別定
量法を適用した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have studied various chemical compositions using round CC-seamless pipe-off-line or in-line heat treatment, 90-125 ksi (620-862 MPa). )
Of steel pipes for oil wells with high strength and their SSC resistance
The following findings were obtained by investigating the properties and examining the correlation between the SSC resistance and the Ca-based inclusion composition. In particular, C
An advanced fractional quantification method was applied to the composition analysis of the a-system inclusions as described later.

【0009】a)Caを添加して鋼中にCaが5ppm
以上残留すると、Ca系非金属介在物は、主として、C
aとAlの複合酸化物(以下、Ca−Al−Oと記
す)、CaOおよびCaSからなる。
A) 5 ppm of Ca in steel by adding Ca
When the above remains, the Ca-based nonmetallic inclusion mainly contains C
It is composed of a composite oxide of a and Al (hereinafter referred to as Ca-Al-O), CaO and CaS.

【0010】b)Ca系非金属介在物は、いずれも、N
ACE TM0177浴(NaCl+CH3COOH溶液)[以下、
NACE浴と記す]のような酸溶液中では溶解して孔食
となり、応力集中源となる。
B) Ca-based nonmetallic inclusions are all N
ACE TM0177 bath (NaCl + CH 3 COOH solution) [Hereafter,
In an acid solution such as NACE bath], it dissolves into pits and becomes a source of stress concentration.

【0011】c)Ca−Al−Oは、CaO及びCaS
に比べて大きい。そのおおよその大きさは、Ca−Al
−Oが数十μm、CaO及びCaSは数μmである。
C) Ca—Al—O comprises CaO and CaS
Larger than. Its approximate size is Ca-Al
—O is several tens μm, and CaO and CaS are several μm.

【0012】d)Ca−Al−Oの相対比が高いほど、
Ca系非金属介在物は大きい傾向を示す。
D) The higher the relative ratio of Ca—Al—O, the more
Ca-based nonmetallic inclusions tend to be large.

【0013】e)Ca−Al−Oが50%未満と少ない
鋼が、耐SSC性が良好である。
E) A steel having as little as less than 50% Ca-Al-O has good SSC resistance.

【0014】f)特に、硬度との関係において以下の式
を満足する鋼は、NACE TM0177 METHO
D A(単軸引張試験)で、NACE浴中で規格最小降
伏応力の85%の付加応力で破断を生じない。
F) In particular, a steel satisfying the following equation in relation to hardness is NACE TM0177 METHO.
In DA (uniaxial tensile test), no fracture occurs in NACE bath with an applied stress of 85% of the specified minimum yield stress.

【0015】100−X≦120−(10/3)×HR
C ただし、21≦HRC≦30 g)脱酸が過剰となると、Al過多となって、Ca−A
l−Oが生成されやすくなる。また、CaOが生成しに
くくなる。
100−X ≦ 120− (10/3) × HR
C However, 21 ≦ HRC ≦ 30 g) If deoxidation becomes excessive, Al becomes excessive and Ca-A
1-O is easily generated. Further, CaO is hardly generated.

【0016】h)一方、脱酸が不足すると、MnSが生
成して耐SSC性が低下する。
H) On the other hand, if the deoxidation is insufficient, MnS is generated and the SSC resistance is reduced.

【0017】i)脱硫が過剰となると、Ca過多となっ
て、Ca−Al−Oが生成されやすくなる。
I) If desulfurization becomes excessive, Ca becomes excessive and Ca-Al-O is easily generated.

【0018】j)また、脱硫が不足すると、MnSが生
成するとともに、多量のCaが必要とされ、Ca系介在
物も増加するので、やはり、耐SSC性が低下する。
J) If the desulfurization is insufficient, MnS is generated, and a large amount of Ca is required, and the amount of Ca-based inclusions increases, so that the SSC resistance also decreases.

【0019】k)適正な介在物組成は、Ca、Al、
O、Sを以下の範囲とすることにより得られる。
K) The proper inclusion composition is Ca, Al,
It can be obtained by setting O and S to the following ranges.

【0020】-0.005≦(Ca/40-S/32)×sol.Al×TotalO
×1000000≦0.0042 本発明は、このような知見に基づきなされたもので、そ
の要旨は以下の通りである。
-0.005 ≦ (Ca / 40-S / 32) × sol.Al × TotalO
× 1000000 ≦ 0.0042 The present invention has been made based on such findings, and the gist thereof is as follows.

【0021】(1)質量%で、C:0.15〜0.35
%、Si:0.1〜1.5%、Mn:0.1〜2.5
%、P:0.025以下、S:0.004%以下、sol.
Al:0.001〜0.1%、Ca:0.0005〜
0.005%を含有し、Ca系非金属介在物の組成が、
CaSとCaOとの合計が50質量%以上であり、Ca
とAlの複合酸化物が50質量%未満であり、かつ鋼の
硬さがHRCで21〜30の範囲内で、鋼の硬さおよび
CaOとCaSの合計量X(質量%)が下記式(1)を
満足している耐硫化物応力腐食割れ性に優れた油井用
鋼。
(1) In mass%, C: 0.15 to 0.35
%, Si: 0.1 to 1.5%, Mn: 0.1 to 2.5
%, P: 0.025% or less, S: 0.004% or less, sol.
Al: 0.001-0.1%, Ca: 0.0005-
0.005%, the composition of Ca-based nonmetallic inclusions is
The sum of CaS and CaO is 50% by mass or more;
When the composite oxide of Al and Al is less than 50% by mass and the hardness of the steel is in the range of 21 to 30 in terms of HRC, the hardness of the steel and the total amount X (% by mass) of CaO and CaS are expressed by the following formula ( Oil well steel excellent in sulfide stress corrosion cracking resistance that satisfies 1).

【0022】 100−X≦120−(10/3)×HRC ・・・(1) (2)転炉出鋼後から、鋳造までの間に溶鋼にCaまた
はCa含有物質を添加し、溶鋼中にCaを0.0005
〜0.005質量%以上を含有させるとともに、鋼中
S、Al、CaおよびTotal O(酸素)が下記式(2)
を満足するように制御する耐硫化物応力腐食割れ性に優
れた油井用鋼の製造方法。
100−X ≦ 120− (10/3) × HRC (1) (2) Ca or a Ca-containing substance is added to the molten steel after the start of the converter and before casting. To 0.0005
Not less than 0.005% by mass, and S, Al, Ca and Total O (oxygen) in steel are represented by the following formula (2)
A method for producing oil well steel having excellent sulfide stress corrosion cracking resistance, which is controlled to satisfy the following.

【0023】 -0.005≦(Ca/40-S/32)×sol.Al×TotalO×1000000≦0.0042・・(2) ここで、式中の元素記号は、含有量(質量%)を示す。-0.005 ≦ (Ca / 40−S / 32) × sol.Al × TotalO × 1000000 ≦ 0.0042 (2) Here, the element symbol in the formula indicates the content (% by mass).

【0024】[0024]

【発明の実施の形態】以下、本発明の油井用鋼の化学組
成を規定した理由について説明する。なお、以下%表示
は全て質量%とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for defining the chemical composition of the steel for oil wells according to the present invention will be described below. Hereinafter, all percentages are expressed as mass%.

【0025】C:Cは、鋼管の強度を確保するために必
要な元素で、0.15%未満では焼入性が不足して、焼
戻し温度を低下させ、必要とする性能を確保することが
難しい。また、0.35%を超えると焼き割れが発生
し、さらに靱性も劣化するのでめ0.15〜0.35%
とする。望ましくは、0.2〜0.3%である。
C: C is an element necessary for securing the strength of the steel pipe. If it is less than 0.15%, the hardenability is insufficient, the tempering temperature is lowered, and the required performance can be secured. difficult. On the other hand, if the content exceeds 0.35%, quenching cracks occur and the toughness is further deteriorated.
And Desirably, it is 0.2 to 0.3%.

【0026】Si:Siは、脱酸を目的に添加する。ま
た、焼戻軟化抵抗をたかめて強度上昇にも寄与する。脱
酸の目的では0.1%以上含有させる必要がある。ま
た、1.5%を超えて含有させると、熱間加工性が著し
く乏しくなるので上限を1.5%とした。望ましくは、
0.1〜0.5%である。
Si: Si is added for the purpose of deoxidation. Further, it strengthens the tempering softening resistance and contributes to an increase in strength. For the purpose of deoxidation, it is necessary to contain 0.1% or more. Further, if the content exceeds 1.5%, the hot workability becomes extremely poor, so the upper limit was made 1.5%. Preferably,
0.1-0.5%.

【0027】Mn:Mnは、鋼の焼入性を増し、鋼管の
強度確保に有効な元素である。0.1%未満では焼入性
の不足によって強度、靱性ともに低下する。一方、2.
5%を超えて含有させる場合は、偏析が増して靱性を低
下させるため、上限2.5%とした。望ましくは、0.
2〜1%である。
Mn: Mn is an element that increases the hardenability of steel and is effective in ensuring the strength of a steel pipe. If it is less than 0.1%, both strength and toughness decrease due to insufficient hardenability. Meanwhile, 2.
When the content exceeds 5%, the segregation increases and the toughness decreases, so the upper limit is set to 2.5%. Preferably, 0.
2-1%.

【0028】P:Pは、不純物として鋼中に不可避的に
存在する。0.025%を超えると、粒界に偏析して靱
性を低下させるので0.025%以下とする。低ければ
低いほど望ましい。
P: P is inevitably present in steel as an impurity. If it exceeds 0.025%, it segregates at the grain boundaries and lowers the toughness. The lower the better.

【0029】S:Sは、MnまたはCaと結合し介在物
を形成して熱間圧延で延伸する。その含有量が多いと靱
性が低下するので、0.004%以下とする。低ければ
低いほど望ましい。
S: S combines with Mn or Ca to form inclusions and is stretched by hot rolling. If the content is too large, the toughness is reduced. The lower the better.

【0030】sol.Al:Alは、脱酸のために必要
な元素であり、sol.Alで0.001%以下の含有
量では、脱酸不足によって鋼質が劣化し、靱性が低下す
る。しかし、0.1%を超えて含有させると、かえって
靱性の低下を招くため好ましくない。従って0.001
〜0.1%とする。ただし、Ca、S、その他の元素と
の兼ね合いで、過剰なAlは、Ca−Al−Oを生成し
やすくする。望ましくは、0.01〜0.05%であ
る。
Sol. Al: Al is an element necessary for deoxidation, and sol. If the content of Al is 0.001% or less, the steel quality is deteriorated due to insufficient deoxidation, and the toughness is reduced. However, when the content exceeds 0.1%, the toughness is rather lowered, which is not preferable. Therefore 0.001
To 0.1%. However, excess Al makes Ca—Al—O easy to generate in view of the balance with Ca, S, and other elements. Desirably, it is 0.01 to 0.05%.

【0031】Ca:Caは、連続鋳造におけるノズル詰
まりを防止するために含有させる。その効果を得るには
0.0005%以上含有させる必要がある。また、Ca
量がこれ以下ではCa系非金属介在物に起因したSSC
の問題がないことから、Caの下限は0.0005%と
なる。また、含有量が0.005%を超えると個の清浄
性が低下して靱性劣化を招く。したがって、Ca含有量
は、0.0005〜0.005%とした。望ましくは
0.008〜0.004%である。また、Caは割れの
起点となる延伸しやすいMnSの生成を防いで、Sを圧
延によって伸びにくく、かつ微細なCaSとする効果も
ある。
Ca: Ca is contained to prevent nozzle clogging in continuous casting. In order to obtain the effect, it is necessary to contain 0.0005% or more. In addition, Ca
If the amount is less than this, SSC caused by Ca-based nonmetallic inclusions
Therefore, the lower limit of Ca is 0.0005%. On the other hand, if the content exceeds 0.005%, the cleanliness of individual pieces is reduced, and the toughness is deteriorated. Therefore, the Ca content is set to 0.0005 to 0.005%. Desirably, it is 0.008 to 0.004%. In addition, Ca prevents the generation of easily stretchable MnS, which serves as a starting point of cracking, has the effect of making S difficult to elongate by rolling and forming fine CaS.

【0032】本発明の油井用鋼は、少なくとも上記の元
素を含有しておればよいが、さらに、必要により以下の
元素を含有させてもよい。
The steel for oil wells according to the present invention may contain at least the above-mentioned elements, and may further contain the following elements as necessary.

【0033】Cr:Crは、焼入性を高めるのに有用な
元素であるが、他の元素により最低限の焼入性が確保さ
れる場合、含有させなくてもよい。しかし、より厚肉の
鋼管を製造する場合に含有させると有利である。含有さ
せる場合、Cr含有量を0.1%以上にすると焼入性、
および焼戻軟化抵抗を高める効果がある。また、1.5
%を超える量を含有させる場合、靱性が劣化する。よっ
てCrを含有させる場合は0.1〜1.5%とする。望
ましくは、0.2〜1.2%である。
Cr: Cr is an element useful for improving the hardenability, but may not be contained if other elements ensure the minimum hardenability. However, it is advantageous to include it when producing a thicker steel pipe. When the Cr content is 0.1% or more, hardenability,
And it has the effect of increasing tempering softening resistance. Also, 1.5
%, The toughness deteriorates. Therefore, when Cr is contained, the content is set to 0.1 to 1.5%. Desirably, it is 0.2 to 1.2%.

【0034】Mo:Moは、厚肉の鋼管を製造する場合
に、焼入性および焼戻軟化抵抗を高めることを目的とし
て含有させるのが好ましい。また、耐サワー性能を向上
させる効果もある。含有させる場合、0.1%未満では
効果が現れないので、0.1%以上含有させるのが望ま
しい。また、1%を超えると靱性が悪化するため1%以
下とするのがよい。望ましくは、0.2〜0.8%であ
る。
Mo: Mo is preferably contained for the purpose of increasing hardenability and tempering softening resistance when producing a thick steel pipe. Also, there is an effect of improving sour resistance. When it is contained, the effect is not exhibited if it is less than 0.1%, so it is desirable to contain it at 0.1% or more. If it exceeds 1%, the toughness deteriorates, so it is preferable to set the content to 1% or less. Desirably, it is 0.2 to 0.8%.

【0035】Nb:Nbは、オフライン熱処理プロセス
では、再加熱時に結晶粒の成長をピンニング効果で抑制
して、オーステナイト粒の細粒化に有効である。含有さ
せる場合は、0.01%未満では効果が現れないので、
0.01%以上含有させることが望ましい。望ましく
は、0.015〜0.05%である。
Nb: In the off-line heat treatment process, Nb is effective for suppressing the growth of crystal grains during reheating by a pinning effect and for reducing austenite grains. In the case where it is contained, since the effect does not appear if it is less than 0.01%,
Desirably, the content is 0.01% or more. Desirably, it is 0.015 to 0.05%.

【0036】一方、最終圧延後Ar3点以上の温度に保
持したまま焼入するインライン熱処理プロセスにおいて
は、そのような効果はないばかりか、もし、含有してい
る場合は、焼入れ時にほとんどのNbCが析出せず、焼
戻し時に析出するという、オフライン熱処理とは全く異
なった析出挙動をするので、強度に大きく影響する。特
に、継目無鋼管においては、工具と接触する表面層と肉
厚中央部では温度差が必ず生じ、この温度差に起因して
Nbの固溶量が肉厚方向の位置により変化し、強度にバ
ラツキを発生する。しがって、固溶Nbをほぼ0にする
ことが望まれるので、0.005%未満とするのがよ
く、望ましくは、0.003%以下である。
On the other hand, in the in-line heat treatment process in which quenching is performed while maintaining the temperature at the Ar 3 point or higher after the final rolling, such an effect is not only obtained, but if contained, most of NbC is hardened during quenching. Since it does not precipitate and precipitates during tempering, it has a precipitation behavior completely different from that of the off-line heat treatment, and thus greatly affects the strength. In particular, in a seamless steel pipe, a temperature difference always occurs between the surface layer in contact with the tool and the center of the wall thickness, and the solid solution amount of Nb changes depending on the position in the wall thickness direction due to the temperature difference. Variations occur. Therefore, since it is desired that the solid solution Nb is reduced to substantially zero, the content is preferably set to less than 0.005%, and more preferably 0.003% or less.

【0037】V:Vは、耐SSC性を高めるのに有効な
元素である。Vは、含有させると二次析出強化により強
度を高める効果があり、所定の強度を得る場合により高
温で焼戻すことができ、これが耐SSC性の向上に寄与
する。また、オーステナイト領域でのVCの溶解度が大
きいため、インラインでの焼入れ時に全て固溶してお
り、強度バラツキの原因にはならない。含有量が、0.
01%未満ではその効果がなく、0.3%を超えて含有
させると靱性が大きく劣化する。よって含有させる場合
は0.01〜0.3%とする。望ましくは、0.02〜
0.2%である。
V: V is an element effective for improving SSC resistance. When V is contained, it has an effect of increasing the strength by secondary precipitation strengthening, and when obtaining a predetermined strength, can be tempered at a higher temperature, which contributes to an improvement in SSC resistance. In addition, since VC has a high solubility in the austenite region, all are in solid solution during in-line quenching, and do not cause a variation in strength. Content is 0.
If the content is less than 01%, the effect is not obtained. If the content exceeds 0.3%, the toughness is significantly deteriorated. Therefore, when it is contained, the content is set to 0.01 to 0.3%. Desirably, 0.02-
0.2%.

【0038】Ti:Tiは、含有させるとNとの結合力
が強く、高温から安定なTiNを形成し、Nを固定する
効果がある。0.005%未満ではその効果がない。一
方、0.05%を超えて多量に含有させると、TiCが
最終圧延温度域で析出し始めるため、Nbと同様に強度
バラツキの原因となる。よって含有させる場合は、0.
005〜0.05%とする。望ましくは、0.01〜
0.03%である。
Ti: When Ti is contained, it has a strong bonding force with N, forms TiN stable at high temperatures, and has the effect of fixing N. If less than 0.005%, the effect is not obtained. On the other hand, if it is contained in a large amount exceeding 0.05%, TiC starts to precipitate in the final rolling temperature range, which causes a variation in strength as in the case of Nb. Therefore, in the case where it is contained, 0.
005 to 0.05%. Desirably, 0.01 to
0.03%.

【0039】W:Wは、Moと同様、焼入性を改善し高
強度を得ることができると共に、焼戻軟化抵抗を高めて
耐SSC性を向上させる効果があり、必要により含有さ
せる。含有量が1%を超えると効果が飽和するので、含
有量の上限は1%とするのがよい。
W: Like W, W has the effect of improving hardenability and obtaining high strength, and has the effect of increasing temper softening resistance and improving SSC resistance, and is contained as necessary. If the content exceeds 1%, the effect is saturated, so the upper limit of the content is preferably set to 1%.

【0040】B:Bは、含有させると著しく焼入性が向
上するので、厚肉の鋼管を製造する際に含有させること
により、要求強度を確保できる。含有させる場合は、
0.0030%以上にすると、粒界に炭窒化物が析出し
やすくなり、靱性劣化の原因となるため、上限を0.0
03%とするのがよい。
B: Since B significantly improves hardenability when B is contained, the required strength can be ensured by adding B when producing a thick steel pipe. If you want to include
If the content is 0.0030% or more, carbonitride tends to precipitate at the grain boundary, which causes deterioration of toughness.
It is good to make it 03%.

【0041】Mg:Mgは、含有させると鋼中のSと反
応して溶鋼中で硫酸化物を生成する。この硫酸化物は圧
延加工後も球状であり、圧延方向に伸びることがない。
このため、圧延直角方向の衝撃性質を向上させ、さらに
は水素誘起割れを抑制する作用もある。含有量が0.0
05%以上になると鋼中の介在物量が増え、清浄度が低
下し、種々の性能が低下するため、0.005%以下と
するのがよい。
Mg: When Mg is contained, it reacts with S in steel to form sulfate in molten steel. This sulfate is spherical even after rolling, and does not extend in the rolling direction.
For this reason, it also has the effect of improving the impact properties in the direction perpendicular to the rolling and suppressing hydrogen-induced cracking. Content 0.0
When the content exceeds 05%, the amount of inclusions in the steel increases, the cleanliness decreases, and various performances decrease. Therefore, the content is preferably 0.005% or less.

【0042】N:Nは、不可避的に鋼中に存在する。N
はAl、TiやNbと結合して窒化物を形成する。特
に、AlNやTiNが多量に析出すると、靱性や耐SS
C性、耐HIC性に悪影響を及ぼすため、0.008%
以下とするのがよい。
N: N is inevitably present in steel. N
Combines with Al, Ti and Nb to form a nitride. In particular, when a large amount of AlN or TiN precipitates, toughness and SS
0.008% because it has an adverse effect on C properties and HIC resistance
It is better to do the following.

【0043】Zr:Zrは、含有させるとTiと同様、
鋼中の不純物であるNを窒化物として固定するので、B
の焼入性を十分確保できる。また、炭化物を形成し難い
ので、強度バラツキの原因とはならない。一方、含有量
が0.1%を超えると、介在物が増加して靱性が低下す
るので、含有量の上限は0.1%とするのがよい。
Zr: When Zr is contained, like Zr,
Since N, which is an impurity in steel, is fixed as nitride, B
Hardenability can be sufficiently secured. Further, since it is difficult to form carbides, it does not cause a variation in strength. On the other hand, if the content exceeds 0.1%, inclusions increase and toughness decreases, so the upper limit of the content is preferably 0.1%.

【0044】O:Oは、不可避的に鋼中に存在する。O
は、AlやTiと結合して酸化物を形成する。特に、A
23が多量に析出すると、靱性に悪影響を及ぼすた
め、0.008%以下とするのが好ましい。また、C
a、S、Al、その他の元素との兼ね合いで、過剰なO
は、Ca−Al−Oを生成しやすくするので、低ければ
低いほど望ましい。
O: O is inevitably present in steel. O
Combines with Al and Ti to form an oxide. In particular, A
If a large amount of l 2 O 3 is precipitated, the toughness is adversely affected. Therefore, the content is preferably set to 0.008% or less. Also, C
a, S, Al, and other elements, excessive O
Is more preferable because it makes Ca-Al-O easier to produce.

【0045】以下、非金属介在物について説明する。Hereinafter, the non-metallic inclusion will be described.

【0046】Ca系非金属介在物の内、CaOとCaS
の合計が50%以上:Ca系非金属介在物は、比較的大
型のCa−Al−O、比較的小型のCaO及びCaSか
らなり、CaOおよびCaSの和の相対比が高いほど、
全体としてCa系非金属介在物は小さい傾向を示す。C
aOおよびCaSの合計が50%以上、言い換えると、
残部のCa−Al−Oが50%未満と少ないと、耐SS
C性が改善される。
Among Ca-based nonmetallic inclusions, CaO and CaS
Is 50% or more: Ca-based nonmetallic inclusions are composed of relatively large Ca—Al—O, relatively small CaO and CaS, and the higher the relative ratio of the sum of CaO and CaS,
As a whole, Ca-based nonmetallic inclusions tend to be small. C
The sum of aO and CaS is 50% or more, in other words,
When the balance of Ca-Al-O is less than 50%, the SS resistance is low.
C property is improved.

【0047】連続鋳造で丸ビレットを鋳造する際、Ca
を溶鋼に添加していく課程で、介在物の組成はAl23
から、ます有害な大型のCa−Al−Oとなって、さ
らにCaが添加されていくとCa−Al−Oの複合介在
物から単体のCaOが分離し、そのCaOが即座にSと
反応してCaSとなる。すなわち、CaSが少ないと有
害なMnSが残存して耐硫化物応力割れ性を劣化させる
可能性がある。また、CaSが少ないと有害な大型のC
a−Al−Oから、無害なCaOやCaSへの反応が進
んでいないことを意味するので、結果として耐硫化物応
力割れ性が劣る。したがって、CaSは10%を超える
量とするのが好ましい。
When a round billet is cast by continuous casting, Ca
Is added to molten steel, and the composition of inclusions is Al 2 O 3
Therefore, it becomes harmful large Ca-Al-O, and when Ca is further added, simple CaO is separated from the complex inclusion of Ca-Al-O, and the CaO immediately reacts with S. To CaS. That is, if the content of CaS is small, harmful MnS may remain and deteriorate sulfide stress cracking resistance. In addition, large C that is harmful if CaS is small
This means that the reaction from a-Al-O to harmless CaO or CaS has not progressed, resulting in poor sulfide stress cracking resistance. Therefore, CaS is preferably used in an amount exceeding 10%.

【0048】鋼の硬さとCaO+CaS量(X):鋼の
硬さは、21≦HRC≦30とし、鋼の硬さ(HRC)
とCaO+CaS量Xが下記の式を満足させる必要があ
る。
Hardness of Steel and CaO + CaS Content (X): Hardness of steel is set to 21 ≦ HRC ≦ 30, and hardness of steel (HRC)
And the amount X of CaO + CaS must satisfy the following expression.

【0049】100−X≦120−(10/3)×HR
C ここで、XはCaO+CaS量(質量%)である。
100−X ≦ 120− (10/3) × HR
C Here, X is the amount of CaO + CaS (% by mass).

【0050】なお、HRC30を超える高強度油井管に
おいては、上記の式で整理できない。それは、SSC感
受性が極めて高くなるので、Ca系非金属介在物組成以
外に、合金元素組成、組織および熱処理条件等々が密接
に関係した結果であると考えられる。また、HRCが2
1未満では油井用鋼(油井管)として必要な達しないた
め、硬度は21以上にする必要がある。
In the case of a high-strength oil country tubular good exceeding HRC30, the above equation cannot be used. This is considered to be because the SSC sensitivity becomes extremely high, so that the alloy element composition, the structure, the heat treatment conditions, and the like are closely related to the Ca-based nonmetallic inclusion composition. HRC is 2
If it is less than 1, the hardness required for oil well steel (oil well pipe) is not reached, so the hardness needs to be 21 or more.

【0051】次に、製造方法について説明する。Next, the manufacturing method will be described.

【0052】溶鋼へのCa添加方法:Ca含有物質を添
加する精錬段階および添加方法は限定しない。ただし、
Ca含有物質はCa純分で0.01以上1.1kg/溶
鋼トン以下が好ましい。0.01kg/溶鋼トン未満で
は、溶鋼中Ca濃度を高め、かつ介在物中CaO濃度を
十分に高めることが困難である。1.1kg/溶鋼トン
を超えて高くすると、Ca系非金属介在物の組成をCa
−Al−Oとして50%未満にすることができず、Ca
−Al−O濃度が過剰となりやすい。
Method for adding Ca to molten steel: The refining step and method for adding the Ca-containing substance are not limited. However,
The Ca-containing substance is preferably 0.01 to 1.1 kg / ton of molten steel in terms of pure Ca. If it is less than 0.01 kg / ton of molten steel, it is difficult to increase the Ca concentration in the molten steel and the CaO concentration in the inclusions sufficiently. When the pressure exceeds 1.1 kg / ton of molten steel, the composition of Ca-based nonmetallic inclusions becomes Ca
-Cannot be less than 50% as Al-O;
-Al-O concentration tends to be excessive.

【0053】ノズル詰まりを防止するためには、転炉出
鋼後から鋳造までの間にCa添加をおこなえばよい。C
a添加は、取鍋内溶鋼へCa含有物質へ添加する方法、
連続鋳造時にタンディッシュ内溶鋼へCa含有物質を添
加する方法、タンディッシュへCa含有物質を入れ置き
する方法がある。
In order to prevent clogging of the nozzle, Ca may be added during the period from tapping the converter to the casting. C
a addition is a method of adding the Ca-containing substance to the molten steel in the ladle,
There are a method of adding a Ca-containing substance to molten steel in a tundish during continuous casting, and a method of placing a Ca-containing substance in a tundish.

【0054】-0.005≦(Ca/40-S/32)×sol.Al×TotalO
×1000000≦0.0042:鋼中のS、sol.AlおよびTotalO
が、上式で0.0042を超えると、過剰なCaが残っ
ている上に、AlおよびOが多く、Ca−Al−Oが著
しく増加して耐SSC性が低下する。一方、上記の式で
−0.005を下回るとMnSによって耐SSC性が低
下するので、−0.005〜0.0042と定めた。望
ましくは、0〜0.0036である。
-0.005 ≦ (Ca / 40-S / 32) × sol.Al × TotalO
× 1000000 ≦ 0.0042: S, sol.Al and TotalO in steel
However, when the value exceeds 0.0042 in the above formula, excess Ca remains, and Al and O are large, Ca-Al-O increases remarkably and SSC resistance decreases. On the other hand, if the value is less than -0.005 in the above equation, the SSC resistance is reduced by MnS. Desirably, it is 0 to 0.0036.

【0055】Ca系介在物の形態別定量法は、詳しくは
鉄と鋼、vol.82(1996)、No.12、p.53に記載されてい
る。
The method of quantifying Ca-based inclusions by form is described in detail in Iron and Steel, vol. 82 (1996), No. 12, p.

【0056】無水メタノールを使用してAr雰囲気のグ
ローブボックス中で作業するという水分対策を施せば、
臭素−メタノール法により、Ca−Al−Oが定量的に
抽出される。また、AA(アセチルアセトン)系電解法
によりCa−Al−OとCaSが定量的に抽出される。
すなわち、Ca−Al−Oは、臭素−メタノール抽出残
さ中の金属成分を酸化物換算することにより、また、C
aSは、AA系電解抽出残さとは臭素−メタノール抽出
残さのCa分析値の差をCa as CaSとして求め
ることが出来る。
If the water countermeasure of working in a glove box in an Ar atmosphere using anhydrous methanol is taken,
Ca-Al-O is quantitatively extracted by the bromine-methanol method. In addition, Ca-Al-O and CaS are quantitatively extracted by an AA (acetylacetone) -based electrolytic method.
That is, Ca-Al-O is obtained by converting the metal component in the bromine-methanol extraction residue into oxide, and
As for aS, the difference between Ca analysis values of the AA-based electrolytic extraction residue and the bromine-methanol extraction residue can be determined as Ca as CaS.

【0057】CaOは抽出できないが、鋼中酸素は酸化
物として存在し、酸化物はCa−Al−OとCaOであ
ることを利用して、鋼中酸素量と臭素−メタノール抽出
残さ中金属成分の酸化物換算酸素量との差を、O as
CaOとして算出することが出来る。
Although CaO cannot be extracted, oxygen in steel exists as an oxide, and the oxides are Ca—Al—O and CaO. The difference between the oxide equivalent oxygen amount of
It can be calculated as CaO.

【0058】具体的な計算式は以下の通りである。 [Ca-Al-O]=[Ca(1)]×56.06/40.08+[Al]×101.96/53.96+
[Mg]×40.31/24.31+[Zr]×123.22/91.22 [CaS]=([Ca(2)]-[Ca(1)])×72.14/40.08 [CaO]=[TotalO]-([Ca(1)]×16.00/40.08+[Al]×48.00/
53.96+[Mg]×16.00/24.31+[Zr]×32.00/91.22}×56.08/
16.00) ここで、 [Ca(1) ]:グローブボックス中臭素−無水メタノール
抽出残さ中Ca量 [Ca(2) ]:AA系電解抽出残さ中Ca量 [TotalO]:鋼中酸素量 とする。
The specific calculation formula is as follows. [Ca-Al-O] = [Ca (1)] × 56.06 / 40.08 + [Al] × 101.96 / 53.96 +
[Mg] × 40.31 / 24.31 + [Zr] × 123.22 / 91.22 [CaS] = ([Ca (2)]-[Ca (1)]) × 72.14 / 40.08 [CaO] = [TotalO]-([Ca ( 1)] × 16.00 / 40.08 + [Al] × 48.00 /
53.96+ [Mg] × 16.00 / 24.31 + [Zr] × 32.00 / 91.22} × 56.08 /
16.00) Here, [Ca (1)]: the amount of Ca in the bromine-anhydrous methanol extraction residue in the glove box [Ca (2)]: the amount of Ca in the AA-based electrolytic extraction residue [TotalO]: the amount of oxygen in the steel

【0059】連続鋳造した鋼は、前述した通常マンネス
マン方式により継目無鋼管にし、焼入れ、焼戻し処理に
より調質して使用する。
The continuously cast steel is made into a seamless steel pipe by the ordinary Mannesmann method described above, and used after being quenched and tempered.

【0060】熱処理について、以下に説明する。The heat treatment will be described below.

【0061】インラインで直接焼入れ、焼戻しする場合
は、最終圧延温度が950℃未満の場合は、伸展粒組織
となり、靱性や耐SSC性に異方性が生じ、その後の補
熱でも解消されないので、また、1100℃を超える最
終圧延温度では、結晶粒度が著しく粗大化して、その後
の補熱によっても細粒とならないので、最終圧延温度は
950℃〜1100℃とするのが好ましい。
In the case of direct quenching and tempering in-line, if the final rolling temperature is lower than 950 ° C., an extended grain structure is formed, and anisotropy is generated in toughness and SSC resistance, and the anisotropy is not eliminated by subsequent heating. At a final rolling temperature exceeding 1100 ° C., the crystal grain size is remarkably coarsened, and fine grains are not formed even by supplementary heat. Therefore, the final rolling temperature is preferably 950 ° C. to 1100 ° C.

【0062】鋼管全体を均熱化して温度ムラを解消する
と同時に細粒化によって、強度バラツキの解消と耐SS
C性向上させるために、圧延後に補熱処理を施す場合、
補熱温度が950℃を超えると、粗粒のままなので、靱
性及び耐SSC性が芳しくない。また、Ar3点未満と
なると、初析フェライトが析出して完全マルテンサイト
組織が得られない。そこで補熱温度はAr3点以上95
0℃以下とするのが好ましい。望ましくは920℃以下
である。
The uniformity of the temperature of the steel pipe is eliminated by eliminating the temperature unevenness, and at the same time, the dispersion of the strength is eliminated and the SS
When performing supplementary heat treatment after rolling to improve C property,
If the supplementary heat temperature exceeds 950 ° C., the toughness and SSC resistance are not good because the grains remain coarse. If the Ar value is less than 3 points, proeutectoid ferrite precipitates and a complete martensitic structure cannot be obtained. Therefore, the supplementary heat temperature is 3 points or more of Ar 95
The temperature is preferably set to 0 ° C. or lower. It is desirably 920 ° C. or lower.

【0063】焼戻温度は、耐SSC性の観点からは、焼
戻温度が高い方が望ましい。望ましくは、680℃以上
である。しかし、Ac1点を超えると著しく軟化するの
で、Ac1点未満とする必要がある。
The tempering temperature is preferably higher from the viewpoint of SSC resistance. Desirably, it is 680 ° C. or higher. However, if the temperature exceeds the Ac1 point, the material softens significantly.

【0064】つぎにオフラインで焼入れ、焼戻し処理す
る場合は、加熱温度が980℃を超えると、粗粒となっ
て靱性及び耐SSC性が低下する。また、Ac3点未満
では完全にオーステナイト化しないので、焼き入れたと
きに均一な組織が得られない。そこで加熱温度はAc3
点以上980℃未満とするのがよく。望ましくは950
℃以下である。
Next, in the case of quenching and tempering off-line, if the heating temperature exceeds 980 ° C., coarse particles are formed and the toughness and SSC resistance are reduced. In addition, when the Ac point is less than 3 points, since austenite is not completely formed, a uniform structure cannot be obtained when quenched. So the heating temperature is Ac3
The temperature is preferably not less than the point and less than 980 ° C. Preferably 950
It is below ° C.

【0065】焼戻温度は、耐SSC性の観点からは、焼
戻温度が高い方が望ましい。望ましくは、680℃以上
である。しかし、Ac1点を超えると著しく軟化するの
で、Ac1点未満とするのがよい。
The tempering temperature is preferably higher from the viewpoint of SSC resistance. Desirably, it is 680 ° C. or higher. However, if the temperature exceeds the Ac1 point, the material softens remarkably.

【0066】[0066]

【実施例】表1に示す化学組成の記号A1〜Fの鋼を溶
製し、丸ビレットに連続鋳造した。各鋼はいずれも連続
鋳造時に、順次タンディッシュ内にて、Caその他の成
分を調整した。
EXAMPLES Steels having the chemical compositions shown in Table 1 and having symbols A1 to F were melted and continuously cast into round billets. For each steel, Ca and other components were adjusted sequentially in a tundish during continuous casting.

【0067】[0067]

【表1】 その後、実ビレットからマンネスマン・マンドレルミル
方式の製管法により、外径244.5mm、肉厚13.
8mmの継目無鋼管を製造し、表2に示す温度で焼入
れ、焼戻しの熱処理を施した。
[Table 1] Thereafter, an outer diameter of 244.5 mm and a wall thickness of 13.15 mm were obtained from the actual billet by the Mannesmann mandrel mill method.
An 8 mm seamless steel pipe was manufactured, and quenched and tempered at the temperatures shown in Table 2.

【0068】[0068]

【表2】 次に、熱処理後の継目無鋼管から、平行部が6.35φ
×25.4mmの引張試験片を各2本採取して、NAC
E TM0177 Method Aに従ってSSC試
験を実施した。すなわち、1気圧の硫化水素が飽和した
25℃の0.5%酢酸+5%食塩水中で、それぞれ規格
最小降伏応力(SYS)の85%の応力を付加して、単
軸引張試験を実施した。720hの試験期間内に破断し
ないものを耐SSC性良好とした(1つでも破断したも
のは不芳とした)。
[Table 2] Next, from the seamless steel pipe after the heat treatment, the parallel portion was 6.35φ.
× 25.4 mm tensile test pieces were collected from each, and NAC
The SSC test was performed according to E TM0177 Method A. That is, a uniaxial tensile test was performed in a 0.5% acetic acid + 5% saline solution at 25 ° C. saturated with hydrogen sulfide at 1 atm with a stress of 85% of the specified minimum yield stress (SYS). Those that did not break within the test period of 720 h were considered to have good SSC resistance (those that broke even one were bad).

【0069】いずれの試験片も、SSC試験後にその試
験片でHRC硬さ測定を実施した。硬さは3点測定の平
均値である。
All the test pieces were subjected to HRC hardness measurement after the SSC test. Hardness is an average value of three-point measurements.

【0070】これらの結果を表2に示す。代表的な耐S
SC性の試験結果について以下に説明する。
Table 2 shows the results. Representative S
The test results of the SC property will be described below.

【0071】記号A1〜A3において、記号A3はSが
高く、耐SSC性が不芳である。破面にはMnSが観察
されたので、MnS起点のSSCと思われる。
Among the symbols A1 to A3, the symbol A3 has a high S and poor SSC resistance. Since MnS was observed on the fractured surface, it is considered to be SSC originating from MnS.

【0072】記号B1〜B4において、記号B2は、C
a介在物の溶け落ちた孔食を起点にSSCを発生した。
Ca介在物組成と硬度との関係が請求範囲外である。記
号B4は、RCC時ににCa過多により、Ca−Al−
Oが多くCa系非金属介在物組成が外れた。焼戻温度を
高くして硬度を低めに制御したが、それでもSSCを発
生した。
In the symbols B1 to B4, the symbol B2 is
aSSC was generated from the pitting corrosion of the inclusions that had melted down.
The relationship between the Ca inclusion composition and the hardness is out of the claims. The symbol B4 indicates that Ca-Al-
O-rich Ca-based nonmetallic inclusion composition was removed. Although the tempering temperature was increased and the hardness was controlled to be lower, SSC still occurred.

【0073】記号C1〜C3において、試番C3は、C
a介在物の溶け落ちた孔食を起点にSSCを発生した。
RCC時に、Al過多により、Ca−Al−Oが多く生
成してしまった。
In the symbols C1 to C3, the trial number C3 is
aSSC was generated from the pitting corrosion of the inclusions that had melted down.
At the time of RCC, a large amount of Ca-Al-O was generated due to excessive Al.

【0074】記号D1〜D3において、記号D3は、R
CC時に、O過多により、Ca−Al−Oが多く生成し
てしまった。耐SSC性はやはり不芳であった。
In the symbols D1 to D3, the symbol D3 is
At the time of CC, a large amount of Ca-Al-O was generated due to excessive O. SSC resistance was also poor.

【0075】[0075]

【発明の効果】本発明によれば、耐硫化物応力腐食割れ
性に優れた油井用鋼が得られ、油井やガス井のケーシン
グやチュービング、掘削用のドリルパイプ等に用いて優
れた効果を発揮する。さらに、製造方法においてラウン
ドCCを適用することができ、連々比率を上げて、製造
コストを下げることができる
According to the present invention, a steel for oil wells having excellent sulfide stress corrosion cracking resistance can be obtained, and excellent effects can be obtained when used for casings, tubing, drill pipes and the like of oil wells and gas wells. Demonstrate. Furthermore, the round CC can be applied in the manufacturing method, and the ratio can be continuously increased to reduce the manufacturing cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 善彦 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 蔵安 浩文 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 Fターム(参考) 4K013 AA09 BA14 EA03 EA12 EA25 FA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Yoshihiko Higuchi 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka Prefecture Inside Sumitomo Metal Industries, Ltd. (72) Hirofumi Kurasuya 4-chome Kitahama, Chuo-ku, Osaka-shi, Osaka No. 5 33 Sumitomo Metal Industries, Ltd. F term (reference) 4K013 AA09 BA14 EA03 EA12 EA25 FA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】質量%で、C:0.15〜0.35%、S
i:0.1〜1.5%、Mn:0.1〜2.5%、P:
0.025以下、S:0.004%以下、sol.Al:
0.001〜0.1%、Ca:0.0005〜0.00
5%を含有し、Ca系非金属介在物の組成が、CaSと
CaOとの合計が50質量%以上であり、CaとAlの
複合酸化物が50質量%未満であり、かつ鋼の硬さがH
RCで21〜30の範囲内で、鋼の硬さおよびCaOと
CaSの合計量X(質量%)が下記式(1)を満足して
いることを特徴とする耐硫化物応力腐食割れ性に優れた
油井用鋼。 100−X≦120−(10/3)×HRC ・・・(1)
C. 0.15 to 0.35% by mass%, S:
i: 0.1 to 1.5%, Mn: 0.1 to 2.5%, P:
0.025 or less, S: 0.004% or less, sol.Al:
0.001-0.1%, Ca: 0.0005-0.00
5%, the composition of Ca-based nonmetallic inclusions is such that the sum of CaS and CaO is 50% by mass or more, the composite oxide of Ca and Al is less than 50% by mass, and the hardness of steel is Is H
Within the range of 21 to 30 in RC, the hardness of the steel and the total amount X (mass%) of CaO and CaS satisfy the following formula (1). Excellent oil well steel. 100−X ≦ 120− (10/3) × HRC (1)
【請求項2】転炉出鋼後から、鋳造までの間に溶鋼にC
aまたはCa含有物質を添加し、溶鋼中にCaを0.0
005〜0.005質量%以上を含有させるとともに、
鋼中S、Al、CaおよびTotal O(酸素)が下記式
(2)を満足するように制御することを特徴とする、耐
硫化物応力腐食割れ性に優れた油井用鋼の製造方法。 -0.005≦(Ca/40-S/32)×sol.Al×TotalO×1000000≦0.0042・・(2) ここで、式中の元素記号は、含有量(質量%)を示す。
2. After the start of the converter and before casting, the molten steel
a or Ca-containing substance is added, and Ca
005 to 0.005% by mass or more,
A method for producing oil well steel excellent in sulfide stress corrosion cracking resistance, characterized in that S, Al, Ca and Total O (oxygen) in the steel are controlled so as to satisfy the following formula (2). -0.005 ≦ (Ca / 40-S / 32) × sol.Al × TotalO × 1000000 ≦ 0.0042 (2) Here, the element symbol in the formula indicates the content (% by mass).
JP2000248425A 2000-08-18 2000-08-18 Oil well steel with excellent resistance to sulfide stress corrosion cracking and its manufacturing method Expired - Lifetime JP3666372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000248425A JP3666372B2 (en) 2000-08-18 2000-08-18 Oil well steel with excellent resistance to sulfide stress corrosion cracking and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000248425A JP3666372B2 (en) 2000-08-18 2000-08-18 Oil well steel with excellent resistance to sulfide stress corrosion cracking and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2002060893A true JP2002060893A (en) 2002-02-28
JP3666372B2 JP3666372B2 (en) 2005-06-29

Family

ID=18738337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000248425A Expired - Lifetime JP3666372B2 (en) 2000-08-18 2000-08-18 Oil well steel with excellent resistance to sulfide stress corrosion cracking and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3666372B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090615A1 (en) * 2004-03-24 2005-09-29 Sumitomo Metal Industries, Ltd. Process for producing low-alloy steel excelling in corrosion resistance
WO2006003775A1 (en) * 2004-06-14 2006-01-12 Sumitomo Metal Industries, Ltd. Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
WO2006009142A1 (en) * 2004-07-20 2006-01-26 Sumitomo Metal Industries, Ltd. Steel for steel pipe
WO2009063660A1 (en) * 2007-11-14 2009-05-22 Sumitomo Metal Industries, Ltd. Steel for steel pipes excellent in sour resistance and process for manufacturing the same
EP2133443A1 (en) * 2007-03-30 2009-12-16 Sumitomo Metal Industries, Ltd. Low alloy steel for the pipe for oil well use and seamless steel pipe
JP2011246798A (en) * 2009-06-24 2011-12-08 Jfe Steel Corp High-strength seamless steel tube for oil well with excellent resistance to sulfide stress cracking, and method for producing the same
WO2013094179A1 (en) 2011-12-22 2013-06-27 Jfeスチール株式会社 High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same
WO2014192251A1 (en) 2013-05-31 2014-12-04 新日鐵住金株式会社 Seamless steel pipe for line pipe used in sour environment
WO2017149570A1 (en) 2016-02-29 2017-09-08 Jfeスチール株式会社 Low-alloy, high-strength seamless steel pipe for oil well
WO2017149571A1 (en) 2016-02-29 2017-09-08 Jfeスチール株式会社 Low-alloy, high-strength seamless steel pipe for oil well
WO2019131037A1 (en) 2017-12-26 2019-07-04 Jfeスチール株式会社 Low alloy high strength seamless steel pipe for oil wells
WO2019182056A1 (en) 2018-03-23 2019-09-26 Jfeスチール株式会社 Method for manufacturing high-purity steel
US10975450B2 (en) 2016-02-29 2021-04-13 Jfe Steel Corporation Low alloy high strength thick-walled seamless steel pipe for oil country tubular goods
US11414733B2 (en) 2017-12-26 2022-08-16 Jfe Steel Corporation Low-alloy high-strength seamless steel pipe for oil country tubular goods
US11453924B2 (en) 2017-12-26 2022-09-27 Jfe Steel Corporation Low-alloy high-strength seamless steel pipe for oil country tubular goods

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728877A1 (en) * 2004-03-24 2006-12-06 Sumitomo Metal Industries, Ltd. Process for producing low-alloy steel excelling in corrosion resistance
US7635406B2 (en) 2004-03-24 2009-12-22 Sumitomo Metal Industries, Ltd. Method for manufacturing a low alloy steel excellent in corrosion resistance
WO2005090615A1 (en) * 2004-03-24 2005-09-29 Sumitomo Metal Industries, Ltd. Process for producing low-alloy steel excelling in corrosion resistance
EP1728877A4 (en) * 2004-03-24 2009-12-09 Sumitomo Metal Ind Process for producing low-alloy steel excelling in corrosion resistance
AU2005258696B2 (en) * 2004-06-14 2008-10-09 Nippon Steel Corporation Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
WO2006003775A1 (en) * 2004-06-14 2006-01-12 Sumitomo Metal Industries, Ltd. Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
US8168010B2 (en) 2004-06-14 2012-05-01 Sumitomo Metal Industries, Ltd. Low alloy steel for oil well pipes having excellent sulfide stress cracking resistance
EA011681B1 (en) * 2004-06-14 2009-04-28 Сумитомо Метал Индастриз, Лтд. Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
US7264684B2 (en) 2004-07-20 2007-09-04 Sumitomo Metal Industries, Ltd. Steel for steel pipes
AU2005264481B2 (en) * 2004-07-20 2008-09-25 Nippon Steel Corporation Steel for steel pipe
EP1790748A4 (en) * 2004-07-20 2008-09-03 Sumitomo Metal Ind Steel for steel pipe
EA008934B1 (en) * 2004-07-20 2007-10-26 Сумитомо Метал Индастриз, Лтд. Steel for steel pipes
EP1790748A1 (en) * 2004-07-20 2007-05-30 Sumitomo Metal Industries, Ltd. Steel for steel pipe
WO2006009142A1 (en) * 2004-07-20 2006-01-26 Sumitomo Metal Industries, Ltd. Steel for steel pipe
EP2133443A1 (en) * 2007-03-30 2009-12-16 Sumitomo Metal Industries, Ltd. Low alloy steel for the pipe for oil well use and seamless steel pipe
EP2133443A4 (en) * 2007-03-30 2010-05-05 Sumitomo Metal Ind Low alloy steel for the pipe for oil well use and seamless steel pipe
EP2361996A3 (en) * 2007-03-30 2011-10-19 Sumitomo Metal Industries, Ltd. Low alloy pipe steel for oil well use and seamless steel pipe
WO2009063660A1 (en) * 2007-11-14 2009-05-22 Sumitomo Metal Industries, Ltd. Steel for steel pipes excellent in sour resistance and process for manufacturing the same
US7959709B2 (en) 2007-11-14 2011-06-14 Sumitomo Metal Industries, Ltd. Method of producing steel for steel pipe excellent in sour-resistance performance
US8262767B2 (en) 2007-11-14 2012-09-11 Sumitomo Metal Industries, Ltd. Method of producing steel for steel pipe excellent in sour-resistance performance
EP2447386A1 (en) 2009-06-24 2012-05-02 JFE Steel Corporation High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
CN102459677A (en) * 2009-06-24 2012-05-16 杰富意钢铁株式会社 High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
JP2011246798A (en) * 2009-06-24 2011-12-08 Jfe Steel Corp High-strength seamless steel tube for oil well with excellent resistance to sulfide stress cracking, and method for producing the same
US9234254B2 (en) 2009-06-24 2016-01-12 Jfe Steel Corporation High-strength seamless steel tube, having excellent resistance to sulfide stress cracking, for oil wells and method for manufacturing the same
EP2447386A4 (en) * 2009-06-24 2016-06-15 Jfe Steel Corp High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
WO2013094179A1 (en) 2011-12-22 2013-06-27 Jfeスチール株式会社 High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same
US9708681B2 (en) 2011-12-22 2017-07-18 Jfe Steel Corporation High-strength seamless steel pipe for oil well use having excellent resistance to sulfide stress cracking
WO2014192251A1 (en) 2013-05-31 2014-12-04 新日鐵住金株式会社 Seamless steel pipe for line pipe used in sour environment
WO2017149571A1 (en) 2016-02-29 2017-09-08 Jfeスチール株式会社 Low-alloy, high-strength seamless steel pipe for oil well
WO2017149570A1 (en) 2016-02-29 2017-09-08 Jfeスチール株式会社 Low-alloy, high-strength seamless steel pipe for oil well
EP3425075A4 (en) * 2016-02-29 2019-04-24 JFE Steel Corporation Low-alloy, high-strength seamless steel pipe for oil well
US10975450B2 (en) 2016-02-29 2021-04-13 Jfe Steel Corporation Low alloy high strength thick-walled seamless steel pipe for oil country tubular goods
US11111566B2 (en) 2016-02-29 2021-09-07 Jfe Steel Corporation Low alloy high strength seamless steel pipe for oil country tubular goods
WO2019131037A1 (en) 2017-12-26 2019-07-04 Jfeスチール株式会社 Low alloy high strength seamless steel pipe for oil wells
EP3733899A4 (en) * 2017-12-26 2020-11-04 JFE Steel Corporation Low alloy high strength seamless steel pipe for oil wells
US11414733B2 (en) 2017-12-26 2022-08-16 Jfe Steel Corporation Low-alloy high-strength seamless steel pipe for oil country tubular goods
US11453924B2 (en) 2017-12-26 2022-09-27 Jfe Steel Corporation Low-alloy high-strength seamless steel pipe for oil country tubular goods
US11505842B2 (en) 2017-12-26 2022-11-22 Jfe Steel Corporation Low-alloy high-strength seamless steel pipe for oil country tubular goods
WO2019182056A1 (en) 2018-03-23 2019-09-26 Jfeスチール株式会社 Method for manufacturing high-purity steel
KR20200124753A (en) 2018-03-23 2020-11-03 제이에프이 스틸 가부시키가이샤 Manufacturing method of high-definition steel

Also Published As

Publication number Publication date
JP3666372B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JP6677310B2 (en) Steel materials and steel pipes for oil wells
EP1862561B1 (en) Oil well seamless pipe having excellent sulfide stress cracking resistance and method for manufacturing an oil well seamless steel pipe
JP4135691B2 (en) Nitride inclusion control steel
JP4945946B2 (en) Seamless steel pipe and manufacturing method thereof
JP5640762B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JP4379550B2 (en) Low alloy steel with excellent resistance to sulfide stress cracking and toughness
WO2015012357A1 (en) High-strength steel material for oil well use, and oil well pipe
AU2017226127B2 (en) Steel material and oil-well steel pipe
JP5582307B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JP2000297344A (en) Oil well steel excellent in toughness and sulfide stress corrosion cracking resistance, and its manufacture
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP2000256783A (en) High strength steel for oil well excellent in toughness and sulfide stress corrosion cracking resistance and its production
JPH10280037A (en) Production of high strength and high corrosion-resistant seamless seamless steel pipe
JP3666372B2 (en) Oil well steel with excellent resistance to sulfide stress corrosion cracking and its manufacturing method
JP6583532B2 (en) Steel and oil well steel pipes
JPH09249935A (en) High strength steel material excellent in sulfide stress cracking resistance and its production
JP4701874B2 (en) Manufacturing method of steel pipe for oil well with excellent resistance to sulfide stress cracking
JPH1161254A (en) Production of high strength high corrosion resistance seamless steel tube
JP7207557B2 (en) Stainless seamless steel pipe for oil country tubular goods and manufacturing method thereof
JP3451993B2 (en) Cr-containing steel for oil country tubular goods with excellent corrosion resistance to hydrogen sulfide and carbon dioxide
JP6524440B2 (en) Martensite steel
JP2003183781A (en) Martensitic stainless steel
JPH08120345A (en) Production of martensitic stainless steel seamless tube excellent in corrosion resistance
JPH05255749A (en) Production of seamless steel tube having high strength and high toughness and excellent in ssc resistance
JPH11310855A (en) Martensitic stainless steel for oil well, excellent in corrosion resistance, and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350