JP2000017389A - Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL - Google Patents

Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL

Info

Publication number
JP2000017389A
JP2000017389A JP10182172A JP18217298A JP2000017389A JP 2000017389 A JP2000017389 A JP 2000017389A JP 10182172 A JP10182172 A JP 10182172A JP 18217298 A JP18217298 A JP 18217298A JP 2000017389 A JP2000017389 A JP 2000017389A
Authority
JP
Japan
Prior art keywords
less
low alloy
toughness
steel pipe
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10182172A
Other languages
Japanese (ja)
Inventor
Kunio Kondo
邦夫 近藤
Shigeru Nakamura
茂 中村
Takahiro Kushida
隆弘 櫛田
Takeshi Ichinose
威 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10182172A priority Critical patent/JP2000017389A/en
Publication of JP2000017389A publication Critical patent/JP2000017389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain good toughness in a steel pipe even in the case the crystal grains are coarse ones by forming the main structure of martensite, controlling the old austenite grain size to specified value and precipitating carbides mainly of an M3C type other than an M23C6 type into the old austenite grain boundaries. SOLUTION: This steel pipe contains, by weight, 0.05 to 1.5% Cr and 0.05 to 1.0% Mo. The main structure is formed of tempered martensite, the old austenite grain size is controlled to No.<=7 in the size number prescribed by JISG0551, and carbides mainly of an M3C type other than an M23C6 type are precipitated into the old austenite grain boundaries. This steel pipe is produced by using a billet of Cr-Mo series low alloy steel as the stock, subjecting the steel pipe subjected to hot finish forming by a Mannesman-mandrel pipe making method or the like to quenching treatment by heat treating equipment provided on the back-end of a finish rolling mill in a state in which it is held to the temp. more than the Ar3 transformation point and thereafter executing tempering treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、靭性に優れたCr
−Mo系低合金鋼継目無鋼管とこの継目無鋼管用のCr
−Mo系低合金鋼に関する。より詳しくは、熱間による
製管後、管をAr3変態点以下の温度に冷却せず、熱間加
工時の保有熱を有効に利用して焼入れ処理し、次いで焼
戻し処理する、いわゆるインライン熱処理プロセスによ
って製造されるCr−Mo系の低合金鋼からなる継目無
鋼管で、主な組織が焼戻しマルテンサイト、旧オーステ
ナイト結晶粒度がJIS G 0551に規定される粒
度番号の7番以下であるにもかかわらず、靱性が優れた
Cr−Mo系低合金鋼継目無鋼管とそのためのCr−M
o系低合金鋼に関する。
[0001] The present invention relates to a Cr alloy having excellent toughness.
-Mo-based low alloy steel seamless steel pipe and Cr for this seamless steel pipe
-Mo type low alloy steel. More specifically, after hot pipe production, so-called in-line heat treatment, in which the pipe is not cooled to a temperature lower than the Ar 3 transformation point, but is quenched by effectively utilizing the heat retained during hot working and then tempered. A seamless steel pipe made of a Cr-Mo low alloy steel manufactured by the process, in which the main structure is tempered martensite and the former austenite crystal grain size is 7 or less of the grain size number specified in JIS G 0551. Regardless, a Cr-Mo low alloy steel seamless steel pipe with excellent toughness and a Cr-M for the same
o-based low alloy steel.

【0002】[0002]

【従来の技術】継目無鋼管は、溶接管に比較して信頼性
が高いので、過酷な油井環境や高温環境で使用されるこ
とが多く、高強度化、靱性向上および耐サワー性の向上
が常に要求されている。これらの要求を満たすため、従
来は、1.5%までのCrと1.0%までのMoを含有
する例えば1Cr−0.5Mo鋼に代表される焼入れ性
の高いCr−Mo鋼を用い、オフラインの調質処理によ
って結晶粒の大きさがJIS G 0551に規定され
る粒度番号で8番以上の微細粒にして製造されてきた。
しかし、生産効率や省エネルギーの観点から考えると、
インラインの熱処理の方が有利である。
2. Description of the Related Art Seamless steel pipes are more reliable than welded pipes and are therefore often used in harsh oil well environments and high-temperature environments, and are required to have higher strength, improved toughness and improved sour resistance. Always required. In order to satisfy these requirements, conventionally, a highly hardenable Cr-Mo steel represented by, for example, 1Cr-0.5Mo steel containing up to 1.5% of Cr and up to 1.0% of Mo is used, The size of the crystal grains has been reduced to 8 or more fine grains by a grain size number specified in JIS G 0551 by off-line tempering treatment.
However, from the viewpoint of production efficiency and energy saving,
In-line heat treatment is more advantageous.

【0003】そこで、加工熱処理をうまく活用して結晶
粒の微細化を図ることによって靭性を確保し、オフライ
ンの熱処理を省略することが検討されてきた。例えば、
特開昭61−238917号公報には、インラインで冷
却、加熱を組み合わせて組織の微細化を図った後、直接
焼入れすることによって靭性の良好な鋼材を得る方法が
示されている。
[0003] Therefore, it has been studied to secure the toughness by utilizing the thermomechanical treatment to make the crystal grains finer and to omit the off-line heat treatment. For example,
Japanese Patent Application Laid-Open No. 61-238917 discloses a method of obtaining a steel material having good toughness by directly quenching after refining the structure by combining cooling and heating in-line.

【0004】しかし、適切な温度での加工と冷却、再加
熱を必要とするため、省エネルギー量はそれほど大きく
ない。また、装置の制約から、すべての製造サイズに適
用することが困難であるといった問題点があった。した
がって、インラインの熱処理で得られる比較的粗粒の結
晶粒径であっても靭性が確保できる手段が必要とされて
た。
[0004] However, since it requires processing at an appropriate temperature, cooling and reheating, the amount of energy saving is not so large. In addition, there is a problem that it is difficult to apply to all manufacturing sizes due to restrictions of the device. Therefore, there is a need for a means capable of securing toughness even with a relatively coarse crystal grain size obtained by in-line heat treatment.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、比較
的粗粒の結晶粒径、具体的には旧オーステナイト結晶粒
度がJIS G 0551に規定される粒度番号の7番
以下の粗粒にもかかわらず、良好な靱性を有するCr−
Mo系低合金鋼継目無鋼管とそのためのCr−Mo系低
合金鋼を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the crystal grain size of relatively coarse grains, specifically, the coarse grain of prior austenite having a grain size of 7 or less of the grain size number prescribed in JIS G 0551. Nevertheless, Cr-
An object of the present invention is to provide a Mo-based low alloy steel seamless steel pipe and a Cr-Mo-based low alloy steel therefor.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、下記
(1)の靭性に優れたCr−Mo系低合金鋼継目無鋼管
と、下記(2)および(3)の継目無鋼管用のCr−M
o系低合金鋼にある。
SUMMARY OF THE INVENTION The gist of the present invention is to provide the following (1) Cr-Mo based low alloy steel seamless steel pipe having excellent toughness and the following (2) and (3) seamless steel pipes. Cr-M
o-based low alloy steel.

【0007】(1)重量%で、Cr:0.05〜1.5
%、Mo:0.05〜1.0%を含むCr−Mo系低合
金鋼継目無鋼管であって、主な組織が焼戻しマルテンサ
イトで、旧オーステナイト結晶粒度がJIS G 05
51に規定される粒度番号の7番以下であり、旧オース
テナイト粒界にM236 を除くタイプで、主としてM3
C タイプの炭化物が析出しているCr−Mo系低合金
鋼継目無鋼管。
(1) Cr: 0.05 to 1.5% by weight
%, Mo: 0.05 to 1.0% Cr-Mo low alloy steel seamless steel pipe containing tempered martensite and a prior austenite grain size of JIS G05
51 or less 7 No. grain size number defined in types except M 23 C 6 in the old austenite grain boundaries, mainly M 3
Cr-Mo low alloy steel seamless steel pipe with C type carbide precipitated.

【0008】(2)重量%で、C:0.15〜0.35
%、Si:0.1〜1.5%、Mn:0.1〜2.5
%、P:0.05%以下、S:0.004%以下、so
l.Al:0.001〜0.1%、Cr:0.05〜
1.5%、Mo:0.05〜1.0%、Nb:0〜0.
05%、Ti:0〜0.05%、V:0〜0.15%、
Ca:0〜0.0050%、Mg:0〜0.0050
%、REM:0〜0.0050%、N:0.01%以
下、B:0〜0.0030%、残部はFeおよび不可避
的不純物からなり、下記の式または式で求められる
有効Bの量〔B〕が0〜0.0005%未満であり、か
つCrとMoの関係が下記の式を満たす化学組成を有
する継目無鋼管用のCr−Mo系低合金鋼。
(2) C: 0.15 to 0.35% by weight
%, Si: 0.1 to 1.5%, Mn: 0.1 to 2.5
%, P: 0.05% or less, S: 0.004% or less, so
l. Al: 0.001 to 0.1%, Cr: 0.05 to
1.5%, Mo: 0.05-1.0%, Nb: 0-0.
05%, Ti: 0 to 0.05%, V: 0 to 0.15%,
Ca: 0 to 0.0050%, Mg: 0 to 0.0050
%, REM: 0 to 0.0050%, N: 0.01% or less, B: 0 to 0.0030%, the balance being Fe and unavoidable impurities, the amount of effective B obtained by the following formula or the formula A Cr-Mo based low alloy steel for seamless steel pipes, wherein [B] is 0 to less than 0.0005% and the relationship between Cr and Mo satisfies the following formula.

【0009】 Ti<3.419×Nの場合 〔B〕=B+0.2259×Ti−0.7723×N ・・・ Ti≧3.419×Nの場合 〔B〕=B ・・・・・・・・・・・・・・・・・・・・・・ Mo×Cr≦0.55 ・・・・・・・・・・・・・・・・・ ここで、各式中の元素記号は、鋼中のそれぞれの元素の
含有量(重量%)である。
When Ti <3.419 × N [B] = B + 0.2259 × Ti−0.7723 × N... When Ti ≧ 3.419 × N [B] = B ······· Mo × Cr ≦ 0.55 ···································································································· , The content (% by weight) of each element in the steel.

【0010】(3)重量%で、C:0.15〜0.35
%、Si:0.1〜1.5%、Mn:0.1〜2.5
%、P:0.05%以下、S:0.004%以下、so
l.Al:0.001〜0.1%、Cr:0.05〜
1.5%、Mo:0.05〜1.0%、Nb:0〜0.
05%、Ti:0〜0.05%、V:0〜0.15%、
Ca:0〜0.0050%、Mg:0〜0.0050
%、REM:0〜0.0050%、N:0.01%以
下、B:0〜0.0030%、残部はFeおよび不可避
的不純物であり、下記の式または式で求められる有
効Bの量〔B〕が0.0005〜0.0015%であ
り、かつCrとMoの関係が下記の式を満たす化学組
成を有する継目無鋼管用のCr−Mo系低合金鋼。
(3) In weight%, C: 0.15 to 0.35
%, Si: 0.1 to 1.5%, Mn: 0.1 to 2.5
%, P: 0.05% or less, S: 0.004% or less, so
l. Al: 0.001 to 0.1%, Cr: 0.05 to
1.5%, Mo: 0.05-1.0%, Nb: 0-0.
05%, Ti: 0 to 0.05%, V: 0 to 0.15%,
Ca: 0 to 0.0050%, Mg: 0 to 0.0050
%, REM: 0 to 0.0050%, N: 0.01% or less, B: 0 to 0.0030%, the balance being Fe and inevitable impurities, the amount of effective B obtained by the following formula or the formula [B] is 0.0005 to 0.0015%, and a Cr-Mo low alloy steel for a seamless steel pipe having a chemical composition in which the relationship between Cr and Mo satisfies the following formula.

【0011】 Ti<3.419×Nの場合 〔B〕=B+0.2259×Ti−0.7723×N ・・・ Ti≧3.419×Nの場合 〔B〕=B ・・・・・・・・・・・・・・・・・・・・・・ Mo×Cr≦0.16 ・・・・・・・・・・・・・・・・・ ここで、元素記号は、鋼中のそれぞれの含有量(重量
%)である。
When Ti <3.419 × N [B] = B + 0.2259 × Ti−0.7723 × N... When Ti ≧ 3.419 × N [B] = B... ······· Mo × Cr ≦ 0.16 ···················································· Each content (% by weight).

【0012】上記の(2)と(3)に記載の本発明合金
鋼は、Pの含有量が0.015%以下であることが好ま
しい。
The alloy steel of the present invention described in the above (2) and (3) preferably has a P content of 0.015% or less.

【0013】上記の本発明は、下記の知見に基づいて完
成された。すなわち、本発明者らは、生産効率や省エネ
ルギーの観点からインライン熱処理プロセスによって製
造された結晶粒径が粗大なCr−Mo系低合金鋼継目無
鋼管の靱性を向上させる方法について鋭意検討した結
果、次のことが判明した。
The present invention has been completed based on the following findings. That is, the present inventors have earnestly studied a method for improving the toughness of a Cr-Mo based low alloy steel seamless steel pipe having a coarse crystal grain size manufactured by an in-line heat treatment process from the viewpoint of production efficiency and energy saving; The following has been found.

【0014】熱間での加工後、室温付近にまで一旦冷却
された鋼材をAC3変態点以上に再加熱して焼入れ焼戻し
処理を行う、いわゆるオフライン熱処理プロセスで製造
される鋼材では、旧オーステナイト粒界に析出するM23
6 タイプの炭化物が粗大になると靭性が低下する。そ
こで、焼入れ時に炭化物の粗大化を助長するB含有量を
適正化すれば、M236 タイプの炭化物が微細となり、
十分な靭性の確保が可能なことが知られている(鉄と
鋼、vol.72、No. 2、233頁(1986)参
照)。
In a steel material manufactured by a so-called off-line heat treatment process in which a steel material once cooled to around room temperature after hot working is reheated to a temperature above the A C3 transformation point to perform a quenching and tempering treatment, old austenite grains are used. M 23 precipitated in the world
Toughness decreases when C 6 type carbide is coarsened. Therefore, if appropriate the B content which promotes coarsening of carbides during quenching, M 23 C 6 type carbide becomes fine,
It is known that sufficient toughness can be ensured (iron and steel, vol. 72, No. 2, page 233 (1986)).

【0015】オフライン熱処理プロセスで製造され、そ
の旧オーステナイト結晶粒度がJIS G 0551に
規定される粒度番号の8番以上である微細粒組織の鋼材
の場合には、確かに上記の方法で十分である。しかし、
インライン熱処理プロセスで製造され、その旧オーステ
ナイト結晶粒度がJIS G 0551に規定される粒
度番号の7番以下の粗粒組織の鋼材の場合、B含有量を
制御するだけでは、靱性は全く向上しない。
In the case of a steel material having a fine grain structure produced by an off-line heat treatment process and having a prior austenite grain size of 8 or more of the grain size number specified in JIS G 0551, the above method is certainly sufficient. . But,
In the case of a steel material manufactured by an in-line heat treatment process and having a coarse grain structure having a prior austenite grain size of 7 or less of the grain size number specified in JIS G 0551, controlling the B content alone does not improve the toughness at all.

【0016】そこで、上記の課題を達成するために、旧
オーステナイト結晶粒度がJISG 0551に規定さ
れる粒度番号の7番以下の粗粒組織のCr−Mo系低合
金鋼材の靭性を支配する因子を見いだす調査を行った。
その結果、旧オーステナイト粒界に析出する炭化物をM
236 タイプからM3C タイプに変化させると、粗粒組
織であるにもかかわらず、靱性が飛躍的に向上する。ま
た、M3C タイプの炭化物は、B、CrおよびMoの含
有量を次のように制御すれば、M236 タイプの炭化物
に変わって確実に粒界に析出する。
Therefore, in order to achieve the above object, a factor governing the toughness of a Cr-Mo based low alloy steel material having a coarse grain structure with a prior austenite crystal grain size of 7 or less of the grain size number specified in JIS G 0551 is considered. A search was conducted to find out.
As a result, the carbide precipitated at the former austenite grain boundary is reduced to M
When the type is changed from the 23 C 6 type to the M 3 C type, the toughness is drastically improved in spite of the coarse grain structure. Further, if the content of B, Cr and Mo is controlled as follows, the M 3 C type carbide is surely precipitated at the grain boundary instead of the M 23 C 6 type carbide.

【0017】先ず第1に、鋼に含まれるBの含有量を
0.0030%以下に制限する。そのうえで、焼入れ前
においてNと結合していないフリーなB(本明細書にお
いてはこれを有効Bという)であって、上記の式また
は式で求められる有効B量〔B〕を0〜0.0005
%未満にするとともに、CrとMoの含有量を前記の
式を満たす値にする。または、有効B量〔B〕を0.0
005〜0.0015%にするとともに、CrとMoの
含有量を前記の式を満たす値にする。
First, the content of B contained in steel is limited to 0.0030% or less. In addition, free B that is not bonded to N before quenching (this is referred to as effective B in the present specification), and the effective B amount [B] obtained by the above equation or the equation is 0 to 0.0005.
% And the content of Cr and Mo is set to a value satisfying the above equation. Alternatively, the effective B amount [B] is set to 0.0
005-0.0015%, and the contents of Cr and Mo are set to values satisfying the above formula.

【0018】図1と図2は、CrとMoの含有量および
上記の有効B量〔B〕がM3C タイプの炭化物析出に及
ぼす影響と、靱性との関係を示す図の一例で、図1は有
効B量〔B〕が0〜0.0005%未満、図2は有効B
量〔B〕が0.0005〜0.0015%で、いずれも
TiとNの含有量がそれぞれ0〜0.03%、0.00
30〜0.0070%の場合である。
FIGS. 1 and 2 are examples of diagrams showing the relationship between the effect of the Cr and Mo contents and the effective B content [B] on M 3 C type carbide precipitation and toughness. 1 indicates the effective B amount [B] is 0 to less than 0.0005%, and FIG.
The amount [B] is 0.0005 to 0.0015%, and the contents of Ti and N are 0 to 0.03% and 0.005%, respectively.
It is the case of 30 to 0.0070%.

【0019】なお、図中の「○」印は、粒界にM236
タイプの炭化物が全く析出しておらず、M3C タイプの
炭化物のみで靱性が良好なことを示し、「●」印は、粒
界にM3C タイプの炭化物に加えてM236 タイプの炭
化物が析出していて靱性が良好でないことを示してい
る。
The symbol "○" in the figure indicates that M 23 C 6
No type carbides precipitated at all indicates that toughness is good only in M 3 C type carbide, "●" mark, M 23 C 6 type in addition to the M 3 C type carbide in grain boundaries This indicates that carbides were precipitated and the toughness was not good.

【0020】ここで、上記のM236 またはM3C にお
けるMは、Crが主で、そのほかFe、Mo、Mnなど
である。
Here, M in the above-mentioned M 23 C 6 or M 3 C is mainly Cr, and in addition, it is Fe, Mo, Mn or the like.

【0021】上記の各条件のもとに、不純物中のPの含
有量を0.015%以下にすると、靭性が一段と向上す
る。
When the content of P in the impurities is set to 0.015% or less under the above conditions, the toughness is further improved.

【0022】[0022]

【発明の実施の形態】最初に、本発明の靭性に優れたC
r−Mo系低合金鋼継目無鋼管を得るのに用いて最も好
適な本発明になるCr−Mo系低合金鋼について説明す
る。なお、以下において、「%」は「重量%」を意味す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the toughness of the present invention, C
The most preferred Cr-Mo low alloy steel according to the present invention, which is used for obtaining an r-Mo low alloy steel seamless steel pipe, will be described. In the following, “%” means “% by weight”.

【0023】《鋼の化学組成について》 C:Cは、強度を確保する目的で添加する。しかし、そ
の含有量が0.15%未満であると、焼入性が不足し、
焼戻温度を低下させても必要とする強度を確保すること
が難しい。一方、0.35%を超えて含有させると、C
rとMoの含有量を後述するように抑制しても、M23
6 タイプの炭化物が粒界に析出するのを抑制できず、靭
性が低下する。また、焼き割れが発生しやすくなり、大
量生産が困難になる。このため、C含有量は0.15〜
0.35%とした。好ましい範囲は0.20〜0.28
%、より好ましい範囲は0.22〜0.25%である。
<< Chemical Composition of Steel >> C: C is added for the purpose of securing strength. However, if the content is less than 0.15%, hardenability is insufficient,
Even if the tempering temperature is lowered, it is difficult to secure the required strength. On the other hand, when the content exceeds 0.35%, C
Even if the contents of r and Mo are suppressed as described later, M 23 C
Precipitation of the six types of carbides at the grain boundaries cannot be suppressed, and the toughness decreases. In addition, burning cracks easily occur, which makes mass production difficult. Therefore, the C content is 0.15 to
0.35%. The preferred range is 0.20 to 0.28
%, And a more preferable range is 0.22 to 0.25%.

【0024】Si:Siは、通常、鋼の脱酸を目的に添
加され、焼戻し軟化抵抗を高めて強度上昇に寄与する元
素である。脱酸の効果は、0.1%以上の含有量で得ら
れる。しかし、1.5%を超えて含有させると、熱間加
工性が著しく乏しくなる。このため、Si含有量は0.
1〜1.5%とした。好ましい範囲は0.3〜0.8%
である。
Si: Si is an element that is usually added for the purpose of deoxidizing steel and that increases tempering softening resistance and contributes to an increase in strength. The deoxidizing effect is obtained at a content of 0.1% or more. However, when the content exceeds 1.5%, the hot workability becomes extremely poor. For this reason, the Si content is 0.1.
1 to 1.5%. The preferred range is 0.3-0.8%
It is.

【0025】Mn:Mnは、鋼の焼入性を増し、継目無
鋼管の強度を確保するのに有効な元素である。しかし、
その含有量が0.1%未満では、焼入性が不足し、強度
および靱性がともに低下する。一方、2.5%を超えて
含有させると偏析を増し、かえって靱性を低下させる。
このため、Mn含有量は0.1〜2.5%とした。
Mn: Mn is an element effective for increasing the hardenability of steel and ensuring the strength of a seamless steel pipe. But,
If its content is less than 0.1%, hardenability will be insufficient, and both strength and toughness will decrease. On the other hand, when the content exceeds 2.5%, segregation increases, and on the contrary, the toughness decreases.
Therefore, the Mn content is set to 0.1 to 2.5%.

【0026】なお、Mnは、後述するCr、Moに比べ
ると小さいものの、M236 タイプの炭化物を析出させ
る作用を有している。したがって、その含有量は、高靭
性を確保する観点からはできるだけ少ない方が好まし
く、高くても0.8%程度まで、より好ましくは0.5
%までとするのが望ましい。
Although Mn is smaller than Cr and Mo described below, Mn has an effect of precipitating M 23 C 6 type carbide. Therefore, the content is preferably as small as possible from the viewpoint of securing high toughness, and at most up to about 0.8%, more preferably 0.5%.
% Is desirable.

【0027】P:Pは、不純物として鋼中に不可避的に
存在する。その含有量が0.05%を超えると、粒界に
偏析して靱性を低下させるので0.05%以下とした。
なお、より一層の靭性向上を図る観点からはその含有量
を低減するのが好ましく、0.015%以下にすると良
好な靭性が得られ、さらに0.008%以下にすると靭
性がより一層良好になる。
P: P is inevitably present in steel as an impurity. If the content exceeds 0.05%, it segregates at the grain boundaries and lowers the toughness.
From the viewpoint of further improving the toughness, it is preferable to reduce the content. When the content is 0.015% or less, good toughness is obtained, and when the content is 0.008% or less, the toughness is further improved. Become.

【0028】S:Sは、上記のPと同様に、不純物とし
て鋼中に不可避的に存在する。その含有量が0.004
%を超えると、上記のMnまたは後述の添加する場合の
CaやREMと結合して介在物を形成し、靱性を低下さ
せるので、0.004%以下とした。なお、より一層の
靭性向上を図る観点からはその含有量を低減するのが好
ましく、0.0015%以下にすると良好な靭性が得ら
れ、さらに0.0008%以下にすると靭性がより一層
良好になる。
S: S is inevitably present as an impurity in the steel, like P described above. The content is 0.004
%, It binds with the above-mentioned Mn or Ca or REM when added later to form inclusions and lowers the toughness. From the viewpoint of further improving the toughness, it is preferable to reduce the content. If the content is 0.0015% or less, good toughness is obtained, and if it is 0.0008% or less, the toughness is further improved. Become.

【0029】sol.Al:Alは、鋼の脱酸のために
必要な元素である。しかし、その含有量がsol.Al
で0.001%未満であると脱酸不足によって鋼質が劣
化し、靱性が低下する。一方、sol.Alで0.1%
を超えて含有させると、かえって靱性の低下を招くため
好ましくない。このため、sol.Al含有量は0.0
01%〜0.1%とした。好ましい範囲は0.01〜
0.04%である。
Sol. Al: Al is an element necessary for deoxidizing steel. However, the content of sol. Al
If it is less than 0.001%, the steel quality is deteriorated due to insufficient deoxidation, and the toughness is reduced. On the other hand, sol. 0.1% in Al
If the content exceeds 3, the toughness is rather lowered, which is not preferable. Therefore, sol. Al content is 0.0
01% to 0.1%. The preferred range is 0.01 to
0.04%.

【0030】Cr、Mo:Crは、焼入性を高めるのに
有用な元素である。しかし、その含有量が0.05%未
満であると焼入性に劣るので、必要な強度が得られな
い。一方、1.5%を超えて含有させると、靱性の低下
が大きい。このため、Cr含有量は0.05〜1.5%
とした。
Cr, Mo: Cr is an element useful for improving hardenability. However, if the content is less than 0.05%, the hardenability is poor, and the required strength cannot be obtained. On the other hand, if the content exceeds 1.5%, the decrease in toughness is large. Therefore, the Cr content is 0.05 to 1.5%.
And

【0031】Moは、焼入性および焼戻軟化抵抗を高め
るために添加する。また、耐サワー性能を向上させる効
果もある。しかし、その含有量が0.05%未満では上
記の効果が得られない。一方、1.0%を超えて含有さ
せると、靱性が悪化する。このため、Mo含有量は0.
05〜1.0%とした。
Mo is added to enhance hardenability and temper softening resistance. Also, there is an effect of improving sour resistance. However, if the content is less than 0.05%, the above effects cannot be obtained. On the other hand, if the content exceeds 1.0%, the toughness deteriorates. For this reason, the Mo content is 0.1.
05 to 1.0%.

【0032】ただし、CrとMoの含有量は、両者のバ
ランスが重要で、M236 タイプの炭化物が粒界に析出
するのを抑制し、M3C タイプの他に靱性に悪影響を及
ぼさないMCタイプやM6CタイプさらにはM73タイ
プなどの炭化物が若干含まれることもあるが、主として
3C タイプの炭化物を粒界に析出させるためには、後
に詳述する有効B量〔B〕に応じて下記の式または
式を満たす量でなければならない。すなわち、有効B量
〔B〕が0〜0.0005%未満の場合には式を満た
す量、有効B量〔B〕が0.0005〜0.0015%
の場合には式を満たす量とする必要がある。
However, the balance between the contents of Cr and Mo is important, which suppresses the precipitation of M 23 C 6 type carbide at the grain boundaries, and adversely affects the toughness in addition to the M 3 C type. In some cases, carbides such as MC type, M 6 C type, and M 7 C 3 type may be slightly contained. However, in order to mainly precipitate M 3 C type carbide at grain boundaries, an effective B Depending on the quantity [B], the quantity must satisfy the following formula or the formula. That is, when the effective B amount [B] is 0 to less than 0.0005%, the amount satisfies the formula, and the effective B amount [B] is 0.0005 to 0.0015%.
In the case of, the amount must satisfy the formula.

【0033】Mo×Cr≦0.55 ・・・ Mo×Cr≦0.16 ・・・ ここで、元素記号は、鋼中のそれぞれの元素の含有量
(重量%)である。
Mo × Cr ≦ 0.55... Mo × Cr ≦ 0.16... Here, the element symbols are the contents (% by weight) of the respective elements in the steel.

【0034】Nb:Nbは、インライン熱処理プロセス
で製造された継目無鋼管の強度バラツキを大きくする作
用を有するので、強度バラツキを抑制する観点からは添
加しない方がよい。しかし、Nbは、二次析出によって
鋼を大幅に強化し、強度の向上に大きく寄与する元素で
ある。したがって、その効果を得たい場合には、Nbを
添加することができる。しかし、0.005%未満の含
有量では上記の効果が得られない。一方、0.05%を
超えて含有させると、強度バラツキおよび靭性低下が大
きくなる。このため、添加する場合のNb含有量は0.
005〜0.05%とするのが望ましく、より好ましく
は0.005〜0.02%とするのが望ましい。
Nb: Nb has the effect of increasing the variation in the strength of the seamless steel pipe manufactured by the in-line heat treatment process, so it is better not to add Nb from the viewpoint of suppressing the variation in the strength. However, Nb is an element which greatly strengthens steel by secondary precipitation and greatly contributes to improvement in strength. Therefore, when it is desired to obtain the effect, Nb can be added. However, if the content is less than 0.005%, the above effects cannot be obtained. On the other hand, when the content exceeds 0.05%, the variation in strength and the decrease in toughness increase. For this reason, the Nb content when added is 0.1.
005-0.05% is desirable, and 0.005-0.02% is more desirable.

【0035】Ti:Tiは、添加しなくてもよい。添加
すれば、Nとの結合力が強いので、高温から安定なTi
Nを形成してNを固定し、焼入れ時に鋼中のBがBNに
なるのを阻止して焼入性に有効なフリーなBにする作用
がある。また、二次析出効果によって鋼を強化し、強度
を向上させる作用もある。したがって、その効果を得た
い場合には、Tiを添加することができる。しかし、
0.005%未満の含有量では上記の効果が得られな
い。一方、0.05%を超えて含有させると、TiNや
TiCが多量に析出して靭性が低下する。このため、添
加する場合のTi含有量は0.005〜0.05%とす
るのが望ましく、より好ましくは0.005〜0.03
%とするのが望ましい。
Ti: Ti need not be added. If added, it has a strong bonding force with N, so that Ti
It has the effect of forming N and fixing N, preventing B in the steel from becoming BN during quenching, and making it free B effective for hardenability. It also has the effect of strengthening the steel by the secondary precipitation effect and improving the strength. Therefore, in order to obtain the effect, Ti can be added. But,
If the content is less than 0.005%, the above effects cannot be obtained. On the other hand, when the content exceeds 0.05%, a large amount of TiN or TiC precipitates and the toughness is reduced. For this reason, the Ti content when added is desirably 0.005 to 0.05%, more preferably 0.005 to 0.03%.
% Is desirable.

【0036】V:Vは、添加しなくてもよい。添加すれ
ば、上記のNbやTiと同様に、二次析出効果によって
鋼を強化し、強度を向上させる作用がある。また、V
は、熱間加工時のVCの溶解度が大きいため、インライ
ンでの焼入時に全て固溶しており、強度バラツキの原因
にはならない。したがって、その効果を得たい場合に
は、Vを添加することができる。しかし、0.01%未
満の含有量では上記の効果が得られない。一方、0.3
0%を超えて含有させると靱性が大きく劣化する。この
ため、添加する場合のV含有量は0.01〜0.30%
とするのが望ましく、より好ましくは0.05〜0.2
5%とするのが望ましい。
V: V may not be added. If added, it has the effect of strengthening the steel by the secondary precipitation effect and improving the strength, like Nb and Ti described above. Also, V
Has a large solubility in VC during hot working, so that it is completely dissolved in quenching in-line, and does not cause a variation in strength. Therefore, when the effect is desired, V can be added. However, if the content is less than 0.01%, the above effects cannot be obtained. On the other hand, 0.3
If the content exceeds 0%, the toughness is greatly deteriorated. Therefore, the V content when added is 0.01 to 0.30%.
And more preferably 0.05 to 0.2.
It is desirable to set it to 5%.

【0037】Ca、Mg、REM これらの元素は、添加しなくてもよい。添加すれば、こ
れらの元素は鋼中のSと反応して溶鋼中で硫酸化物を生
成する。この硫酸化物は、圧延加工後も球状であり、圧
延方向に伸びることがない。このため、圧延直角方向の
衝撃性質を向上させ、さらには水素誘起割れを抑制する
作用もある。したがって、その効果を得たい場合には、
Ca、MgおよびREM(Ce、La、Yなど)のうち
から選ばれた1種または2種以上を添加することができ
る。
Ca, Mg, REM These elements need not be added. When added, these elements react with S in the steel to form sulfates in the molten steel. This sulfate is spherical even after rolling, and does not extend in the rolling direction. For this reason, it also has the effect of improving the impact properties in the direction perpendicular to the rolling and suppressing hydrogen-induced cracking. So if you want to get that effect,
One or more selected from Ca, Mg, and REM (Ce, La, Y, etc.) can be added.

【0038】しかし、いずれの元素も、その含有量が
0.0005%未満では、上記の効果が得られない。一
方、いずれの元素も、0.0050%を超えて含有させ
ると鋼中の介在物量が増え、清浄度が低下し、種々の性
能が低下する。このため、添加する場合のこれらの元素
の含有量は、いずれの元素も、0.0005〜0.00
50%とするのが望ましく、より好ましくは0.000
05〜0.0025%とするのが望ましい。
However, if the content of each element is less than 0.0005%, the above effects cannot be obtained. On the other hand, if any element is contained in excess of 0.0050%, the amount of inclusions in the steel increases, the cleanliness decreases, and various performances decrease. Therefore, the content of these elements when added is 0.0005 to 0.00
The content is desirably set to 50%, more preferably 0.000%.
It is desirably set to 0.05 to 0.0025%.

【0039】N:Nは、上記のS、Pと同様に、不純物
として鋼中に不可避的に存在し、Al、TiおよびNb
と結合して窒化物を形成する。特に、その含有量が0.
01%を超えると、AlNやTiNが多量に析出し、靱
性、耐SSC性および耐HIC性に悪影響を及ぼす。こ
のため、N含有量は0.01%以下とした。好ましい上
限は、0.007%である。
N: N is inevitably present in steel as an impurity, similar to S and P described above, and Al, Ti and Nb
And form a nitride. In particular, the content is 0.1.
If it exceeds 01%, a large amount of AlN or TiN precipitates and adversely affects toughness, SSC resistance and HIC resistance. Therefore, the N content is set to 0.01% or less. A preferred upper limit is 0.007%.

【0040】B:Bは添加しなくてもよい。添加すれば
焼入れ性が向上し、特に厚肉の鋼管を製造する場合に有
効である。したがって、この効果を得たい場合には、B
を添加することができる。ただし、焼入れ性の向上に寄
与するBは、Nと結合していないフリーなB(有効B)
である。しかし、その有効B量〔B〕は、Nと添加する
場合のTiの影響を大きく受け、両者の関係が「Ti<
3.419×N」の場合には下記の式、「Ti≧3.
419×N」の場合には下記の式で求められる値にな
る。
B: B may not be added. If added, the hardenability is improved, and it is particularly effective when manufacturing a thick steel pipe. Therefore, to obtain this effect, B
Can be added. However, B contributing to the improvement of hardenability is free B not combined with N (effective B)
It is. However, the effective B amount [B] is greatly influenced by N and Ti when added, and the relationship between the two is “Ti <
In the case of “3.419 × N”, the following expression, “Ti ≧ 3.
In the case of “419 × N”, the value is obtained by the following equation.

【0041】 〔B〕=B+0.2259×Ti−0.7723×N ・・・ 〔B〕=B ・・・・・・・・・・・・・・・・・・・・・・ すなわち、Nと添加する場合のTiの関係が「Ti<
3.419×N」の場合には、添加したTiによってす
べてのNがTiNとして固定されず、過剰のNがBと結
合してBNを生成する。このため、有効B量〔B〕は添
加B量よりも減少し、上記の式で求められる値にな
る。なお、式で求められる値が「負」になる場合に
は、添加B量のすべてがNと結合し、BNとして固定さ
れることを意味するので、有効B量〔B〕は0となる。
[B] = B + 0.2259 × Ti−0.7723 × N [B] = B The relationship between N and Ti when added is “Ti <
In the case of “3.419 × N”, not all N is fixed as TiN by the added Ti, and excess N bonds with B to generate BN. For this reason, the effective B amount [B] is smaller than the added B amount, and becomes a value obtained by the above equation. When the value obtained by the formula is “negative”, it means that all of the added B amount is combined with N and is fixed as BN, so that the effective B amount [B] is 0.

【0042】これに対し、Nと添加する場合のTiの関
係が「Ti≧3.419×N」の場合には、添加したT
iによってすべてのNがTiNとして固定され、BNは
生成しない。このため、この場合の有効B量〔B〕は添
加B量と等しので、式で表される値になる。
On the other hand, when the relationship between N and Ti when added is “Ti ≧ 3.419 × N”, the added T
i fixes all N as TiN and does not generate BN. For this reason, the effective B amount [B] in this case is equal to the added B amount, and is a value represented by the equation.

【0043】焼入れ性向上効果は、有効B量〔B〕が
0.0001%以上で得られる。しかし、過剰な有効B
は、靱性を低下させるM236 タイプの炭化物の粒界析
出を助長し、旧オーステナイト結晶粒度がJIS G
0551に規定される粒度番号の7番以下の粗粒組織の
Cr−Mo系低合金鋼材の靱性を低下させる。
The effect of improving hardenability is obtained when the effective B amount [B] is 0.0001% or more. However, excessive effective B
Promotes grain boundary precipitation of M 23 C 6 type carbide which reduces toughness, and the prior austenite grain size is JIS G
The toughness of a Cr-Mo based low alloy steel material having a coarse grain structure having a grain size number of 7 or less specified by 0551 is reduced.

【0044】ところが、上記の有効Bを全く存在させな
いか、存在させてもその有効B量〔B〕を0.0005
%未満にするとともに、CrとMoの含有量を前述した
式を満たすように調整すれば、M236 タイプの炭化
物に代わって主としてM3Cタイプの炭化物が粒界に析
出し、靱性が飛躍的に向上する。
However, the effective B is not present at all, or even if it is present, the effective B amount [B] is 0.0005.
% And the contents of Cr and Mo are adjusted so as to satisfy the above-described formula, carbides of the M 3 C type mainly precipitate at the grain boundaries instead of the carbides of the M 23 C 6 type, and the toughness is reduced. Improve dramatically.

【0045】また、有効B量〔B〕が0.0005%以
上の領域では、その上限を0.0015%に制限したう
えで、CrとMoの含有量を前述したの関係を満たす
ように調整すれば、上記の場合と同様に、M236 タイ
プの炭化物に代わって主としてM3C タイプの炭化物が
粒界に析出し、靱性が飛躍的に向上する。
In the region where the effective B content [B] is 0.0005% or more, the upper limit is limited to 0.0015%, and the contents of Cr and Mo are adjusted so as to satisfy the above-mentioned relationship. Then, as in the case described above, M 3 C type carbide mainly precipitates at the grain boundaries instead of M 23 C 6 type carbide, and the toughness is dramatically improved.

【0046】すなわち、CrとMoの関係が前述した
式を満たす鋼では、有効B量〔B〕が0.0005%以
上であると、粒界にM236 タイプの炭化物が析出し、
靱性が著しく低下する。また、CrとMoの関係が前述
した式を満たす鋼では、有効B量〔B〕が0.001
5%を超えると、粒界にM236 タイプの炭化物が析出
し、靱性が著しく低下する。
That is, in a steel in which the relationship between Cr and Mo satisfies the above-described formula, if the effective B amount [B] is 0.0005% or more, M 23 C 6 type carbide precipitates at the grain boundaries,
The toughness is significantly reduced. In the case of steel in which the relationship between Cr and Mo satisfies the above-described formula, the effective B amount [B] is 0.001.
If it exceeds 5%, carbides of the M 23 C 6 type precipitate at the grain boundaries, and the toughness is significantly reduced.

【0047】このため、本発明においては、前述した
式または式で求められる有効B量〔B〕を、CrとM
oの関係が前述した式を満たす鋼については0〜0.
0005%未満、式を満たす鋼については0.000
5〜0.0015%と定めた。
Therefore, in the present invention, the effective B amount [B] obtained by the above equation or the equation
o is 0 to 0.
Less than 0005%, 0.000 for steel satisfying the formula
It was determined as 5 to 0.0015%.

【0048】なお、鋼中のB含有量が0.0030%を
超えると、炭硼化物の析出が多くなって耐硫化物応力割
れ性が低下する。また、冷却速度によってはかえって焼
入れ性が低下することもある。このため、B含有量の上
限は0.0030%とした。
If the B content in the steel exceeds 0.0030%, the precipitation of carbohydrates increases and the sulfide stress cracking resistance decreases. Further, depending on the cooling rate, the quenchability may be rather reduced. Therefore, the upper limit of the B content is set to 0.0030%.

【0049】《本発明のCr−Mo系低合金鋼継目無鋼
管について》本発明のCr−Mo系低合金鋼継目無鋼管
は、重量%で、Cr:0.05〜1.5%、Mo:0.
05〜1.0%を含むCr−Mo系低合金鋼継目無鋼管
であって、主な組織が焼戻しマルテンサイトで、旧オー
ステナイト結晶粒度がJISG 0551に規定される
粒度番号の7番以下であり、旧オーステナイト粒界にM
236 を除くタイプで、主としてM3C タイプの炭化物
が析出している継目無鋼管である。この継目無鋼管は、
上記の化学組成を有するCr−Mo系低合金鋼のビレッ
トを素材とし、常法、例えばマンネスマン−マンドレル
ミル製管法によって熱間仕上げ成形された鋼管を、Ar3
変態点以上の温度に維持した状態で、仕上げ圧延機の後
段に設けられた熱処理設備に供給して焼入れ処理し、そ
の後例えば600〜750℃で焼戻し処理することによ
って製造される。
<< About the Cr-Mo Low Alloy Steel Seamless Steel Pipe of the Present Invention >> The Cr-Mo low alloy steel seamless steel pipe of the present invention is, in terms of% by weight, Cr: 0.05-1.5%, Mo: : 0.
A Cr-Mo based low alloy steel seamless steel pipe containing 0.05 to 1.0%, in which the main structure is tempered martensite and the prior austenite grain size is 7 or less of the grain size number specified in JISG 0551. , M on old austenite grain boundary
In type except for the 23 C 6, it is a seamless steel pipe mainly M 3 C type carbides are precipitated. This seamless steel pipe
Using a billet of a Cr-Mo low alloy steel having the above chemical composition as a raw material, a steel pipe formed by hot finishing by a conventional method, for example, a Mannesmann-mandrel mill pipe forming method, was subjected to Ar3
In a state where the temperature is maintained at a temperature equal to or higher than the transformation point, it is supplied to a heat treatment facility provided at a stage subsequent to the finish rolling mill to perform a quenching treatment, and then to perform a tempering treatment at, for example, 600 to 750 ° C.

【0050】[0050]

【実施例】表1と表2に示す化学組成を有する26種類
の鋼を準備した。なお、表中のNo. 1〜20は本発明
鋼、No. 21〜25は比較例鋼である。
EXAMPLES 26 types of steels having the chemical compositions shown in Tables 1 and 2 were prepared. In the table, Nos. 1 to 20 are steels of the present invention, and Nos. 21 to 25 are steels of comparative examples.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】上記の各鋼からなる外径276mmのビレ
ットを作製し、1250℃に加熱した後、マンネスマン
−マンドレルミル製管法に供して外径244.5mm、
肉厚13.8mmの継目無鋼管に成形した。成形後の継
目無鋼管は、その温度がAr3変態点以上である間に、仕
上げ圧延機の後段に設けられた熱処理設備を構成する炉
内温度が950℃の補加熱炉に装入して5分間在炉させ
て均一に補加熱した後に水焼入れした。次いで、水焼入
れ後の継目無鋼管は、上記の熱処理設備を構成する焼戻
し炉に装入し、表3に示す各条件で焼戻し処理するイン
ライン熱処理プロセスで製品管に仕上げた。
A billet having an outer diameter of 276 mm made of each of the above steels was prepared, heated to 1250 ° C., and then subjected to a Mannesmann-mandrel mill tube manufacturing method to obtain an outer diameter of 244.5 mm.
It was formed into a seamless steel pipe having a thickness of 13.8 mm. While the temperature of the seamless steel pipe after forming is equal to or higher than the Ar3 transformation point, the seamless steel pipe is charged into an auxiliary heating furnace having a furnace temperature of 950 ° C., which constitutes a heat treatment facility provided at a subsequent stage of the finish rolling mill. After being left in the furnace for 5 minutes and uniformly supplementarily heated, water quenching was performed. Next, the seamless steel pipe after the water quenching was charged into a tempering furnace constituting the above heat treatment equipment, and was finished into a product pipe by an in-line heat treatment process of tempering under the conditions shown in Table 3.

【0054】得られた各製品管の長手方向から、API
(アメリカ石油協会)規格の5CTに規定される弧状引
張り試験片とJIS Z 2202に規定されるフルサ
イズの4号試験片とを採取して引張試験とシャルピー衝
撃試に供し、降伏強度(MPa)と破面遷移温度(℃)
を調べた。また、同様に、粒度測定試験片とミクロ観察
試験片を採取し、旧オーステナイトの結晶粒度の大きさ
(JIS G 0551に規定される粒度番号)と旧オ
ーステナイト粒界に析出した炭化物のタイプを抽出レプ
リカ法を用いて調べた。これらの調査結果を、表3に併
せて示した。
From the longitudinal direction of each product tube obtained, API
(American Petroleum Institute) An arc-shaped tensile test piece specified by 5CT and a full-size No. 4 test piece specified by JIS Z 2202 are sampled, subjected to a tensile test and a Charpy impact test, and yield strength (MPa) is obtained. And fracture surface transition temperature (℃)
Was examined. Similarly, a grain size measurement specimen and a micro observation specimen are collected, and the size of the grain size of the prior austenite (grain number specified in JIS G 0551) and the type of carbide precipitated at the prior austenite grain boundary are extracted. The examination was performed using a replica method. The results of these investigations are also shown in Table 3.

【0055】[0055]

【表3】 [Table 3]

【0056】表3に示す結果から明らかなように、本発
明鋼のうち、有効B量〔B〕(表1と表2中の「※2」
欄に示す)が0〜0.0005%未満で、かつ式「Mo
×Cr≦0.55」を満たすNo. 1〜10の本発明鋼で
製造された継目無鋼管(No.1〜10)は、すべて結晶
粒度番号が7番以下で、その粒界にはM236 タイプの
炭化物は析出しておらず、主としてM3C タイプの炭化
物が析出していた。そのため、降伏強度が821MPa
以上と高強度にもかかわらず、破面遷移温度が−21℃
以下で良好な靭性を有していた。なかでも、Pの含有量
を低減したNo.6〜10の本発明鋼で製造された継目無
鋼管(No. 6〜10)の靱性は、破面遷移温度が−44
℃以下で一段と良好であった。
As is clear from the results shown in Table 3, among the steels of the present invention, the effective B amount [B] ("* 2" in Tables 1 and 2)
0 to less than 0.0005%, and the formula “Mo
× Cr ≦ 0.55 ”, the seamless steel pipes (No. 1 to 10) manufactured from the steels of No. 1 to 10 of the present invention all have a grain size number of 7 or less, and M 23 C 6 type carbide was not precipitated, and mainly M 3 C type carbide was precipitated. Therefore, the yield strength is 821 MPa
Despite the above high strength, the fracture surface transition temperature is -21 ° C
Below, it had good toughness. Above all, the toughness of the seamless steel pipes (Nos. 6 to 10) manufactured from the steels of the present invention of Nos. 6 to 10 in which the content of P is reduced indicates that the fracture surface transition temperature is -44.
It was much better below ℃.

【0057】また、Bの含有量が0.0005〜0.0
030%で、かつ式「Mo×Cr≦0.16」を満たす
No. 11〜20の本発明鋼で製造された継目無鋼管(N
o. 11〜20)も、すべて結晶粒度番号が7番以下
で、その粒界にはM236 タイプの炭化物は析出してお
らず、主としてM3C タイプの炭化物が析出していた。
そのため、降伏強度が823MPa以上と高強度にもか
かわらず、破面遷移温度が−20℃以下で良好な靭性を
有していた。なかでも、Pの含有量を低減したNo.16
〜20の本発明鋼で製造された継目無鋼管(No. 16〜
20)の靱性は、破面遷移温度が−45℃以下で一段と
良好であった。
When the content of B is 0.0005 to 0.0
030% and satisfies the formula "Mo × Cr≤0.16"
No. 11 to 20 seamless steel pipes (N
o. 11 to 20) all had a grain size number of 7 or less, and no M 23 C 6 type carbide was precipitated at the grain boundaries, but mainly M 3 C type carbide.
For this reason, despite the high yield strength of 823 MPa or more, the fracture surface transition temperature was −20 ° C. or less, indicating good toughness. Above all, No. 16 with reduced P content
To 20 seamless steel pipes made of the steel of the present invention (Nos. 16 to 20).
The toughness of 20) was even better when the fracture surface transition temperature was -45 ° C or lower.

【0058】これに対し、比較鋼のうち、各元素の含有
量は本発明で規定する範囲内ではあるが、CrとMoの
関係が本発明で規定する上記の式「Mo×Cr≦0.5
5」または「Mo×Cr≦0.16」を満たさないNo.
21〜24の比較鋼で製造された継目無鋼管(No. 21
〜24)は、すべて結晶粒度番号が7番以下で、しかも
その粒界にはM236 タイプの炭化物のみが析出してい
た。そのため、降伏強度は828MPa以上と高強度で
はあるが、破面遷移温度が20℃以上で靭性が劣ってい
た。
On the other hand, among the comparative steels, the content of each element is within the range specified by the present invention, but the relationship between Cr and Mo is defined by the above formula “Mo × Cr ≦ 0. 5
No. 5 "or" Mo × Cr ≦ 0.16 "
Seamless steel pipes made of comparative steels Nos. 21 to 24 (No. 21)
24) is in all of the following grain size number is No. 7, yet its the grain boundary was precipitated only M 23 C 6 type carbides. Therefore, although the yield strength was as high as 828 MPa or more, the fracture surface transition temperature was 20 ° C. or more and the toughness was poor.

【0059】また、各元素の含有量は本発明で規定する
範囲内で、かつCrとMoの関係も本発明で規定する上
記の式「Mo×Cr≦0.16」を満たすものの、有効
B量〔B〕が本発明で規定する値を満たさないNo. 25
の比較鋼で製造された継目無鋼管(No. 25)は、結晶
粒度番号が5.5番で、しかもその粒界にはM236
イプの炭化物のみが析出していた。そのため、降伏強度
は828MPaと高強度ではあるが、破面遷移温度が4
1℃で靭性が著しく劣っていた。
The content of each element is within the range specified in the present invention, and the relationship between Cr and Mo also satisfies the above-mentioned formula “Mo × Cr ≦ 0.16” specified in the present invention. No. 25 in which the amount [B] does not satisfy the value specified in the present invention.
In the seamless steel pipe (No. 25) manufactured from the comparative steel No. 5, the grain size number was 5.5, and only the M 23 C 6 type carbide was precipitated at the grain boundaries. Therefore, although the yield strength is as high as 828 MPa, the fracture surface transition temperature is 4 MPa.
At 1 ° C., the toughness was remarkably inferior.

【0060】さらに、CrとMoの関係、N、TiとB
の関係は本発明で規定する条件を満たすものの、Pの含
有量が0.061%と高いNo. 26の比較鋼で製造され
た継目無鋼管(No. 26)は、結晶粒度番号が7番以下
で、その粒界にはM236 タイプの炭化物は析出してお
らず、主としてM3C タイプの炭化物が析出していた。
しかし、Pの含有量が高すぎるために、降伏強度は83
1MPaと高強度ではあるが、破面遷移温度が19℃で
靭性が劣っていた。
Further, the relationship between Cr and Mo, N, Ti and B
Although the relationship of satisfies the condition specified in the present invention, the seamless steel pipe (No. 26) made of the comparative steel of No. 26 having a high P content of 0.061% has a grain size number of 7 In the following, M 23 C 6 type carbide was not precipitated at the grain boundary, but mainly M 3 C type carbide was precipitated.
However, since the P content is too high, the yield strength is 83%.
Although the strength was as high as 1 MPa, the fracture surface transition temperature was 19 ° C. and the toughness was poor.

【0061】[0061]

【発明の効果】本発明のCr−Mo系低合金鋼継目無鋼
管は、旧オーステナイト結晶粒度がJIS G 055
1に規定される粒度番号で7番以下の粗粒であるにもか
かわらず、破面遷移温度が−20℃以下という優れた靱
性を有している。このため、過酷な油井環境や高温環境
で使用する場合の信頼性が高い。
According to the present invention, the Cr-Mo low alloy steel seamless steel pipe has a prior austenite grain size of JIS G 055.
Despite being coarse grains having a grain size number of 7 or less as defined in No. 1, it has excellent toughness with a fracture surface transition temperature of -20 ° C or less. For this reason, reliability is high when used in a severe oil well environment or high temperature environment.

【0062】また、本発明の継目無鋼管用Cr−Mo系
低合金鋼は、熱間加工時の保有熱を有効に利用して焼入
れ処理した後焼戻し処理する、いわゆるインライン熱処
理プロセスによって製造すると、結晶粒度が7番以下の
粒界にM236 タイプを除く炭化物で、主としてM3
タイプの炭化物が析出する。このため、上記本発明の靱
性に優れたCr−Mo系低合金鋼継目無鋼管を安価に製
造することができる。
Further, the Cr-Mo-based low alloy steel for seamless steel pipes of the present invention is produced by a so-called in-line heat treatment process in which a quenching treatment and a tempering treatment are performed by effectively utilizing the retained heat during hot working. Except for M 23 C 6 type carbides at grain boundaries with grain size of 7 or less, mainly M 3 C
A type of carbide precipitates. For this reason, the Cr-Mo low alloy steel seamless steel pipe excellent in toughness of the present invention can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】CrおよびMoの含有量と有効B量〔B〕がM
3C タイプの炭化物析出に及ぼす影響と、靱性との関係
を示す図の一例で、有効B量〔B〕が0〜0.0005
%未満の場合の図である。
FIG. 1: Cr and Mo content and effective B content [B] are M
3 and effects on C type carbide precipitation, in an example of a diagram showing the relationship between the toughness, effective B amount (B) is from 0 to 0.0005
It is a figure in the case of less than%.

【図2】CrおよびMoの含有量と有効B量〔B〕がM
3C タイプの炭化物析出に及ぼす影響と、靱性との関係
を示す図の一例で、有効B量〔B〕が0.0005〜
0.0015%の場合の図である。
FIG. 2 shows that the content of Cr and Mo and the effective B amount [B] are M
3 and effects on C type carbide precipitation, in an example of a diagram showing the relationship between the toughness, effective B amount (B) is 0.0005
It is a figure in the case of 0.0015%.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫛田 隆弘 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 (72)発明者 一ノ瀬 威 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takahiro Kushida 4-33, Kitahama, Chuo-ku, Osaka-shi, Osaka Prefecture Within Sumitomo Metal Industries, Ltd. (72) Inventor Takeshi Ichinose 4-chome, Kitahama, Chuo-ku, Osaka-shi, Osaka 5-33 No. Sumitomo Metal Industries, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Cr:0.05〜1.5%、M
o:0.05〜1.0%を含むCr−Mo系低合金鋼継
目無鋼管であって、主な組織が焼戻しマルテンサイト
で、旧オーステナイト結晶粒度がJIS G 0551
に規定される粒度番号の7番以下であり、旧オーステナ
イト粒界にM236 を除くタイプで、主としてM3C タ
イプの炭化物が析出していることを特徴とする靭性に優
れたCr−Mo系低合金鋼継目無鋼管。
(1) Cr: 0.05 to 1.5% by weight, M
o: A Cr-Mo low alloy steel seamless steel pipe containing 0.05 to 1.0%, in which the main structure is tempered martensite and the prior austenite grain size is JIS G 0551.
Or less 7 No. grain size number defined, in types except M 23 C 6 in the old austenite grain boundaries was largely superior toughness, characterized in that M 3 C type carbide is precipitated Cr- Mo-based low alloy steel seamless steel pipe.
【請求項2】重量%で、C:0.15〜0.35%、S
i:0.1〜1.5%、Mn:0.1〜2.5%、P:
0.05%以下、S:0.004%以下、sol.A
l:0.001〜0.1%、Cr:0.05〜1.5
%、Mo:0.05〜1.0%、Nb:0〜0.05
%、Ti:0〜0.05%、V:0〜0.15%、C
a:0〜0.0050%、Mg:0〜0.0050%、
REM:0〜0.0050%、N:0.01%以下、
B:0〜0.0030%、残部はFeおよび不可避的不
純物からなり、下記の式または式で求められる有効
Bの量〔B〕が0〜0.0005%未満であり、かつC
rとMoの関係が下記の式を満たす化学組成を有する
ことを特徴とする継目無鋼管用のCr−Mo系低合金
鋼。 Ti<3.419×Nの場合 〔B〕=B+0.2259×Ti−0.7723×N ・・・ Ti≧3.419×Nの場合 〔B〕=B ・・・・・・・・・・・・・・・・・・・・・・ Mo×Cr≦0.55 ・・・・・・・・・・・・・・・・・ ここで、各式中の元素記号は、鋼中のそれぞれの元素の
含有量(重量%)である。
2. C: 0.15 to 0.35% by weight, S
i: 0.1 to 1.5%, Mn: 0.1 to 2.5%, P:
0.05% or less, S: 0.004% or less, sol. A
l: 0.001 to 0.1%, Cr: 0.05 to 1.5
%, Mo: 0.05 to 1.0%, Nb: 0 to 0.05
%, Ti: 0 to 0.05%, V: 0 to 0.15%, C
a: 0 to 0.0050%, Mg: 0 to 0.0050%,
REM: 0 to 0.0050%, N: 0.01% or less,
B: 0 to 0.0030%, the balance being Fe and inevitable impurities, the amount of effective B [B] determined by the following formula or the formula is 0 to less than 0.0005%, and C
A Cr-Mo based low alloy steel for seamless steel pipes, characterized in that the relationship between r and Mo has a chemical composition satisfying the following formula. When Ti <3.419 × N [B] = B + 0.2259 × Ti−0.7723 × N ... When Ti ≧ 3.419 × N [B] = B ... ···· Mo × Cr ≦ 0.55 ············································································ Is the content (% by weight) of each element.
【請求項3】重量%で、C:0.15〜0.35%、S
i:0.1〜1.5%、Mn:0.1〜2.5%、P:
0.05%以下、S:0.004%以下、sol.A
l:0.001〜0.1%、Cr:0.05〜1.5
%、Mo:0.05〜1.0%、Nb:0〜0.05
%、Ti:0〜0.05%、V:0〜0.15%、C
a:0〜0.0050%、Mg:0〜0.0050%、
REM:0〜0.0050%、N:0.01%以下、
B:0〜0.0030%、残部はFeおよび不可避的不
純物からなり、下記の式または式で求められる有効
Bの量〔B〕が0.0005〜0.0015%であり、
かつCrとMoの関係が下記の式を満たす化学組成を
有することを特徴とする継目無鋼管用のCr−Mo系低
合金鋼。 Ti<3.419×Nの場合 〔B〕=B+0.2259×Ti−0.7723×N ・・・ Ti≧3.419×Nの場合 〔B〕=B ・・・・・・・・・・・・・・・・・・・・・・ Mo×Cr≦0.16 ・・・・・・・・・・・・・・・・・ ここで、各式中の元素記号は、鋼中のそれぞれの元素の
含有量(重量%)である。
3. C .: 0.15 to 0.35% by weight, S
i: 0.1 to 1.5%, Mn: 0.1 to 2.5%, P:
0.05% or less, S: 0.004% or less, sol. A
l: 0.001 to 0.1%, Cr: 0.05 to 1.5
%, Mo: 0.05 to 1.0%, Nb: 0 to 0.05
%, Ti: 0 to 0.05%, V: 0 to 0.15%, C
a: 0 to 0.0050%, Mg: 0 to 0.0050%,
REM: 0 to 0.0050%, N: 0.01% or less,
B: 0 to 0.0030%, the balance being Fe and unavoidable impurities, the amount [B] of effective B determined by the following formula or the formula is 0.0005 to 0.0015%,
A Cr-Mo based low alloy steel for seamless steel pipes, characterized in that the relationship between Cr and Mo has a chemical composition satisfying the following formula. When Ti <3.419 × N [B] = B + 0.2259 × Ti−0.7723 × N When Ti ≧ 3.419 × N [B] = B・ ・ ・ ・ ・ Mo × Cr ≦ 0.16 Is the content (% by weight) of each element.
【請求項4】Pの含有量が0.015重量%以下である
ことを特徴とする請求項2または請求項3に記載の継目
無鋼管用のCr−Mo系低合金鋼。
4. The Cr-Mo low alloy steel for a seamless steel pipe according to claim 2, wherein the content of P is 0.015% by weight or less.
JP10182172A 1998-06-29 1998-06-29 Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL Pending JP2000017389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10182172A JP2000017389A (en) 1998-06-29 1998-06-29 Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10182172A JP2000017389A (en) 1998-06-29 1998-06-29 Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL

Publications (1)

Publication Number Publication Date
JP2000017389A true JP2000017389A (en) 2000-01-18

Family

ID=16113613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10182172A Pending JP2000017389A (en) 1998-06-29 1998-06-29 Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL

Country Status (1)

Country Link
JP (1) JP2000017389A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014408A1 (en) * 2001-08-02 2003-02-20 Sumitomo Metal Industries, Ltd. Steel material having high toughness and method of producing steel pipes using the same
WO2005073421A1 (en) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
JP2006176840A (en) * 2004-12-22 2006-07-06 Sumitomo Metal Ind Ltd Method for manufacturing steel billet
JP2007009249A (en) * 2005-06-29 2007-01-18 Sumitomo Metal Ind Ltd Method for producing steel pipe for oil well excellent in sulfide-stress cracking resistance
JP2008038255A (en) * 2007-09-12 2008-02-21 Sumitomo Metal Ind Ltd Steel having high toughness
WO2008123422A1 (en) * 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
JP2010189765A (en) * 2010-03-29 2010-09-02 Sumitomo Metal Ind Ltd Method for manufacturing steel billet
WO2010113953A1 (en) * 2009-03-30 2010-10-07 住友金属工業株式会社 Method for producing seamless steel pipe
EP2361996A3 (en) * 2007-03-30 2011-10-19 Sumitomo Metal Industries, Ltd. Low alloy pipe steel for oil well use and seamless steel pipe
JP2012026030A (en) * 2010-06-21 2012-02-09 Jfe Steel Corp Steel pipes for oil well use excellent in sulfide stress cracking resistance, and manufacturing method of the same
CN104480398A (en) * 2014-12-22 2015-04-01 内蒙古包钢钢联股份有限公司 Rare earth containedseamless steel tube ZT540 for drilling and production method of rare earth containedseamless steel tube
CN104532136A (en) * 2014-12-22 2015-04-22 内蒙古包钢钢联股份有限公司 Rare-earth-containing seamless steel tube ZT740 for drilling and production method thereof
WO2021210655A1 (en) * 2020-04-15 2021-10-21 日本製鉄株式会社 Steel material
CN115679196A (en) * 2021-07-30 2023-02-03 宝山钢铁股份有限公司 Seamless steel pipe for self-lubricating automobile driving shaft and manufacturing method thereof

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1413639A1 (en) * 2001-08-02 2004-04-28 Sumitomo Metal Industries, Ltd. Steel material having high toughness and method of producing steel pipes using the same
US6958099B2 (en) 2001-08-02 2005-10-25 Sumitomo Metal Industries, Ltd. High toughness steel material and method of producing steel pipes using same
EP1413639A4 (en) * 2001-08-02 2006-07-26 Sumitomo Metal Ind Steel material having high toughness and method of producing steel pipes using the same
WO2003014408A1 (en) * 2001-08-02 2003-02-20 Sumitomo Metal Industries, Ltd. Steel material having high toughness and method of producing steel pipes using the same
EA010037B1 (en) * 2004-01-30 2008-06-30 Сумитомо Метал Индастриз, Лтд. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
WO2005073421A1 (en) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
US9017494B2 (en) 2004-01-30 2015-04-28 Nippon Steel & Sumitomo Metal Corporation Method for producing seamless steel pipe for oil wells excellent in sulfide stress cracking resistance
EP1712651A1 (en) * 2004-01-30 2006-10-18 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
EP1712651A4 (en) * 2004-01-30 2007-12-26 Sumitomo Metal Ind Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
AU2005209562B2 (en) * 2004-01-30 2008-09-25 Nippon Steel Corporation Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
JP4513551B2 (en) * 2004-12-22 2010-07-28 住友金属工業株式会社 Billet manufacturing method
JP2006176840A (en) * 2004-12-22 2006-07-06 Sumitomo Metal Ind Ltd Method for manufacturing steel billet
JP2007009249A (en) * 2005-06-29 2007-01-18 Sumitomo Metal Ind Ltd Method for producing steel pipe for oil well excellent in sulfide-stress cracking resistance
JP4701874B2 (en) * 2005-06-29 2011-06-15 住友金属工業株式会社 Manufacturing method of steel pipe for oil well with excellent resistance to sulfide stress cracking
EP2361996A3 (en) * 2007-03-30 2011-10-19 Sumitomo Metal Industries, Ltd. Low alloy pipe steel for oil well use and seamless steel pipe
EP2133442A4 (en) * 2007-03-30 2010-04-28 Sumitomo Metal Ind Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
EP2133442A1 (en) * 2007-03-30 2009-12-16 Sumitomo Metal Industries, Ltd. Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
WO2008123422A1 (en) * 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe
EA012256B1 (en) * 2007-03-30 2009-08-28 Сумитомо Метал Индастриз, Лтд. Low-alloy steel, seamless steel pipe for oil well and process for producing seamless steel pipe
JP4665953B2 (en) * 2007-09-12 2011-04-06 住友金属工業株式会社 Steel material with high toughness
JP2008038255A (en) * 2007-09-12 2008-02-21 Sumitomo Metal Ind Ltd Steel having high toughness
WO2010113953A1 (en) * 2009-03-30 2010-10-07 住友金属工業株式会社 Method for producing seamless steel pipe
US8696834B2 (en) 2009-03-30 2014-04-15 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing seamless pipes
EA019610B1 (en) * 2009-03-30 2014-04-30 Сумитомо Метал Индастриз, Лтд. Method for producing seamless steel pipe
JP2010189765A (en) * 2010-03-29 2010-09-02 Sumitomo Metal Ind Ltd Method for manufacturing steel billet
JP2012026030A (en) * 2010-06-21 2012-02-09 Jfe Steel Corp Steel pipes for oil well use excellent in sulfide stress cracking resistance, and manufacturing method of the same
CN104532136A (en) * 2014-12-22 2015-04-22 内蒙古包钢钢联股份有限公司 Rare-earth-containing seamless steel tube ZT740 for drilling and production method thereof
CN104480398A (en) * 2014-12-22 2015-04-01 内蒙古包钢钢联股份有限公司 Rare earth containedseamless steel tube ZT540 for drilling and production method of rare earth containedseamless steel tube
WO2021210655A1 (en) * 2020-04-15 2021-10-21 日本製鉄株式会社 Steel material
JPWO2021210655A1 (en) * 2020-04-15 2021-10-21
JP7445173B2 (en) 2020-04-15 2024-03-07 日本製鉄株式会社 steel material
CN115679196A (en) * 2021-07-30 2023-02-03 宝山钢铁股份有限公司 Seamless steel pipe for self-lubricating automobile driving shaft and manufacturing method thereof
CN115679196B (en) * 2021-07-30 2024-04-05 宝山钢铁股份有限公司 Seamless steel tube for self-lubricating automobile driving shaft and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3545770B2 (en) High tensile steel and method for producing the same
US8617462B2 (en) Steel for oil well pipe excellent in sulfide stress cracking resistance
JP4305681B2 (en) Seamless steel pipe manufacturing method
JP6451874B2 (en) High strength seamless steel pipe for oil well and method for producing the same
WO2003014408A1 (en) Steel material having high toughness and method of producing steel pipes using the same
JP2000178682A (en) Steel for oil well excellent in sulfide stress corrosion cracking resistance
JP2001271134A (en) Low-alloy steel excellent in sulfide stress cracking resistance and toughness
WO2009004741A1 (en) Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same
JP2000256783A (en) High strength steel for oil well excellent in toughness and sulfide stress corrosion cracking resistance and its production
JPH10280037A (en) Production of high strength and high corrosion-resistant seamless seamless steel pipe
JP2000017389A (en) Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL
JPH0598350A (en) Production of line pipe material having high strength and low yield ratio for low temperature use
JPH09249935A (en) High strength steel material excellent in sulfide stress cracking resistance and its production
JP2001073086A (en) Seamless steel tube with high toughness and high corrosion resistance
JP3473502B2 (en) Method for producing steel for in-line heat treatment and seamless steel pipe made of this steel having excellent sulfide stress corrosion cracking resistance
JPH07331381A (en) Seamless steel tube having high strength and high toughness and its production
JPH09111344A (en) Production of high strength and low yield ratio seamless steel pipe
JP4288441B2 (en) High-strength seamless steel pipe excellent in toughness, ductility, and weldability and method for producing the same
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP2000178692A (en) 655Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH STRESS CORROSION CRACKING RESISTANCE, AND ITS MANUFACTURE
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP4196501B2 (en) Steel for seamless steel pipe with high strength and excellent toughness
JPH11286720A (en) Manufacture of high strength steel product excellent in sulfide stress cracking resistance
JP3544455B2 (en) Manufacturing method of high strength non-heat treated steel for seamless steel pipes
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050913