JP3473502B2 - Method for producing steel for in-line heat treatment and seamless steel pipe made of this steel having excellent sulfide stress corrosion cracking resistance - Google Patents

Method for producing steel for in-line heat treatment and seamless steel pipe made of this steel having excellent sulfide stress corrosion cracking resistance

Info

Publication number
JP3473502B2
JP3473502B2 JP17700099A JP17700099A JP3473502B2 JP 3473502 B2 JP3473502 B2 JP 3473502B2 JP 17700099 A JP17700099 A JP 17700099A JP 17700099 A JP17700099 A JP 17700099A JP 3473502 B2 JP3473502 B2 JP 3473502B2
Authority
JP
Japan
Prior art keywords
steel
temperature
heat treatment
strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17700099A
Other languages
Japanese (ja)
Other versions
JP2001011568A (en
Inventor
隆弘 櫛田
邦夫 近藤
茂 中村
俊治 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17700099A priority Critical patent/JP3473502B2/en
Publication of JP2001011568A publication Critical patent/JP2001011568A/en
Application granted granted Critical
Publication of JP3473502B2 publication Critical patent/JP3473502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、インライン熱処理
を施した場合に、強度バラツキが小さく、その結果とし
て、耐硫化物応力腐食割れ性に優れる高強度な製品が得
られるインライン熱処理用鋼とこの鋼からなる継目無鋼
管、具体的には油井やガス井用のケーシングやチュービ
ングおよび掘削用のドリルパイプの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel for in-line heat treatment which, when subjected to in-line heat treatment, has a small strength variation, and as a result, a high-strength product excellent in sulfide stress corrosion cracking resistance is obtained. The present invention relates to a method for manufacturing a seamless steel pipe made of steel, specifically, a casing for oil wells and gas wells, tubing, and a drill pipe for drilling.

【0002】[0002]

【従来の技術】溶接鋼管に比較して信頼性が高い継目無
鋼管は、過酷な油井環境や高温環境で使用されることが
多く、高強度化、靱性向上、耐硫化物応力割れ性(以
下、耐SSC性という)の向上が常に要求されている。
2. Description of the Related Art Seamless steel pipes, which are more reliable than welded steel pipes, are often used in harsh oil well environments and high temperature environments, and have higher strength, improved toughness, and sulfide stress cracking resistance (hereinafter , SSC resistance) is always required.

【0003】耐SSC性に優れる従来鋼としては、(a)
80〜90%以上のマルテンサイト組織鋼、(b) 粗大な
炭化物を含まない鋼、(c) 非金属介在物の少ない清浄
鋼、(d) 高温焼戻し鋼、(e) 細粒組織鋼、(f) 高降伏比
鋼、(g) 低Mn−低P−低S鋼、(h) 不溶性窒化物を多
く含む鋼、(i) Zr添加鋼がある。
As a conventional steel having excellent SSC resistance, (a)
80-90% or more martensitic steel, (b) steel containing no coarse carbide, (c) clean steel with few non-metallic inclusions, (d) high temperature tempered steel, (e) fine grain steel, f) high yield ratio steel, (g) low Mn-low P-low S steel, (h) steel containing a large amount of insoluble nitride, and (i) Zr-added steel.

【0004】上記(a)〜(i)の従来鋼のうち、(e) の細粒
組織鋼は、高性能な継目無鋼管を得るために開発された
鋼で、オーステナイト結晶粒度の細粒化を図った鋼であ
る。
Among the conventional steels of (a) to (i) above, the fine grain structure steel of (e) is a steel developed to obtain a high-performance seamless steel pipe, and has a fine grain size of austenite grain size. It is a steel aimed at.

【0005】この細粒組織鋼の代表的な製造方法として
は、特開平4−328170号公報に示される方法があ
る。すなわち、その方法は、素材に0.01〜0.1%
のNb添加鋼を用い、製管後の鋼管にオフラインで焼入
れ焼戻しの熱処理を施す方法である。
As a typical method for producing this fine grain steel, there is a method disclosed in Japanese Patent Laid-Open No. 4-328170. That is, the method is 0.01-0.1%
This is a method of performing the quenching and tempering heat treatment off-line on the steel pipe after pipe making using Nb-added steel.

【0006】しかし、その方法は、インラインで熱処理
する方法に比べると、生産効率や省エネルギーの観点か
らは不利である。また、この不利を避けるために、イン
ラインで熱処理を施すと、焼入れまでにNbCが不均一
に析出して製品の強度バラツキが極めて大きくなり、高
強度になった部分の耐SSC性が低下するという欠点を
有している。さらに、上記の方法は、穿孔、粗圧延後に
連続して2台以上の傾斜圧延機が必要で、設備費が嵩む
という欠点も有している。
However, this method is disadvantageous from the viewpoint of production efficiency and energy saving, as compared with the method of in-line heat treatment. Further, in order to avoid this disadvantage, when heat treatment is performed in-line, NbC is nonuniformly precipitated before quenching, resulting in extremely large variation in strength of the product, and the SSC resistance of the portion having high strength deteriorates. It has drawbacks. Further, the above method also has a drawback in that it requires two or more inclined rolling machines in succession after piercing and rough rolling, which increases equipment costs.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、オフ
ライン処理に比べて低コストなインライン熱処理で、強
度バラツキが小さく、結果として、耐硫化物応力腐食割
れ性に優れる高強度な製品が得られるインライン熱処理
用鋼とこの鋼からなる継目無鋼管の製造方法を提供する
ことにある。
An object of the present invention is to provide a high-strength product which is low-cost in-line heat treatment as compared with off-line treatment and has small strength variations, resulting in excellent sulfide stress corrosion cracking resistance. Another object of the present invention is to provide a steel for in-line heat treatment that is used and a method for producing a seamless steel pipe made of this steel.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、下記
(1)のインライン熱処理用鋼と、(2)の耐硫化物応
力腐食割れ性に優れる継目無鋼管の製造方法にある。
The gist of the present invention resides in the following (1) steel for in-line heat treatment and (2) a method for producing a seamless steel pipe excellent in sulfide stress corrosion cracking resistance.

【0009】(1)重量%で、C:0.23〜0.35
%、Si:0.1〜1.5%、Mn:0.1〜2.5
%、P:0.03%以下、S:0.004%以下、A
l:0.001〜0.1%、V:0.01〜0.25
%、Ti:3.4×N%以下、Cr:0〜1.5%、M
o:0〜1.0%、W:0〜1.0%、B:0〜0.0
030%、Ca:0〜0.0050%、Mg:0〜0.
0050%、Zr:0〜0.10%を含有する一方、N
とNbがそれぞれ0.0080%以下、0.005%未
満に規制され、残部は実質的にFeからなるインライン
熱処理用鋼。
(1) C: 0.23 to 0.35 by weight%
%, Si: 0.1 to 1.5%, Mn: 0.1 to 2.5
%, P: 0.03% or less, S: 0.004% or less, A
1: 0.001-0.1%, V: 0.01-0.25
%, Ti: 3.4 × N% or less, Cr: 0 to 1.5%, M
o: 0 to 1.0%, W: 0 to 1.0%, B: 0 to 0.0
030%, Ca: 0 to 0.0050%, Mg: 0 to 0.
0050%, Zr: 0 to 0.10%, while N
And Nb are regulated to 0.0080% or less and less than 0.005%, respectively, and the balance substantially consists of Fe.

【0010】(2)上記(1)に記載のインライン熱処
理用鋼からなるビレットを、熱間で穿孔、延伸圧延し、
最終圧延温度950〜1100℃の条件で製管された継
目無鋼管を、インラインでAr3 変態点〜950℃の温
度域で補熱してから、Ar3 変態点以上のまま焼入れ
し、次いでAc1 変態点未満で焼戻す耐硫化物応力腐食
割れ性に優れる継目無鋼管の製造方法。
(2) The billet made of the steel for in-line heat treatment as described in (1) above is hot-perforated and stretch-rolled,
The seamless steel pipe produced under the conditions of the final rolling temperature of 950 to 1100 ° C. is supplemented with in-line temperature in the temperature range of Ar 3 transformation point to 950 ° C., then quenched as it is at the Ar 3 transformation point or higher, and then Ac 1 A method for producing a seamless steel pipe that is excellent in sulfide stress corrosion cracking resistance to be tempered below the transformation point.

【0011】上記に(1)と(2)の本発明は、下記の
知見に基づいて完成させた。すなわち、発明者らは上記
の課題を達成するにあたり、種々の鋼成分、種々の圧延
条件で継目無鋼管を製造し、圧延条件と結晶粒度の関
係、さらに強度の関係について検討を重ねた。その結
果、以下のことが判明した。
The present inventions (1) and (2) are completed based on the following knowledge. That is, in order to achieve the above-mentioned object, the inventors manufactured seamless steel pipes with various steel components and various rolling conditions, and repeatedly studied the relationship between the rolling conditions and the grain size, and further the strength. As a result, the following was revealed.

【0012】最終圧延後、Ar3 変態点以上の温度に保
持(補熱を含む)したまま、焼入れするインライン熱処
理プロセスにおいては、オーステナイト領域において析
出し始めるTiやNbの炭化物および/または炭窒化物
が焼入れまでに継目無鋼管全域にわたって不均一に析出
し、これが原因で強度バラツキが生じる。
In the in-line heat treatment process of quenching while maintaining (including supplementary heat) at a temperature of Ar 3 transformation point or higher after final rolling, Ti and Nb carbides and / or carbonitrides which begin to precipitate in the austenite region Is unevenly deposited over the entire area of the seamless steel pipe before quenching, which causes strength variations.

【0013】上記炭化物および/または炭窒化物の不均
一析出に起因する強度バラツキは、Nbの含有量を極力
少なくし、かつTiの含有量をN固定に必要な量以下に
すれば解消される。
The variation in strength due to the non-uniform precipitation of carbides and / or carbonitrides can be eliminated by reducing the Nb content as much as possible and the Ti content below the amount required for N fixing. .

【0014】Ar3 変態点以上の温度域で最終圧延した
まま、比較的長尺の継目無鋼管を補熱せずに焼入れする
インライン熱処理プロセスにおいては、鋼管の周方向ま
たは長手方向に温度ムラが発生し、これが原因で強度バ
ラツキが生じる。
In the in-line heat treatment process in which a relatively long seamless steel pipe is quenched without supplemental heating while it is finally rolled in a temperature range not lower than the Ar 3 transformation point, temperature unevenness occurs in the circumferential or longitudinal direction of the steel pipe. However, this causes variations in strength.

【0015】特に、1100℃以上の高温で最終圧延す
ると、組織が粗粒になり、耐SSC性が低下する。
Particularly, when the final rolling is performed at a high temperature of 1100 ° C. or higher, the structure becomes coarse and the SSC resistance is lowered.

【0016】一方、最終圧延温度が950℃未満の場合
には、組織が伸展粒組織になり、靱性や耐SSC性に異
方性が生じ、その後に補熱しても解消しない。また、補
熱に必要な温度が確保できない。
On the other hand, when the final rolling temperature is lower than 950 ° C., the structure becomes an expanded grain structure and anisotropy occurs in toughness and SSC resistance, and even if supplementary heat is applied thereafter, it cannot be eliminated. Moreover, the temperature required for supplementary heat cannot be secured.

【0017】最終圧延後、950℃以下、Ar3 変態点
以上で補熱して鋼管全体を均熱化すると鋼管の温度ムラ
が解消され、かつ、その間に再結晶して細粒化し、強度
バラツキがなくなって耐SSC性が向上する。
After the final rolling, if the temperature of the entire steel pipe is soaked by supplementing heat at 950 ° C. or lower and at the Ar 3 transformation point or higher, the temperature unevenness of the steel pipe is eliminated, and during that, recrystallization and fine graining occur, resulting in strength variations. SSC resistance is improved.

【0018】このとき、Vを適量添加すると、耐SSC
性がより一層向上し、油井管として必要な耐SSC性が
確保される。
At this time, if V is added in an appropriate amount, SSC resistance
The property is further improved, and the SSC resistance required for an oil country tubular good is secured.

【0019】[0019]

【発明の実施の形態】以下、本発明について詳細に説明
する。なお、以下において「%」は「重量%」を意味す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. In the following, "%" means "% by weight".

【0020】最初に、本発明鋼の化学組成を上記のよう
に定めた理由について説明する。
First, the reason why the chemical composition of the steel of the present invention is determined as described above will be explained.

【0021】C: Cは、鋼管の強度を確保する目的で含有させるが、0.
23%未満では焼入性が不足して焼戻温度を低下させ、
必要な強度確保が困難になる。しかし、0.35%を超
えて含有させると焼き割れが発生するだけでなく、靱性
が劣化する。このため、C含有量は0.23〜0.35
%とした。好ましい範囲は0.23〜0.30%であ
る。
C: C is contained for the purpose of ensuring the strength of the steel pipe .
If it is less than 23 %, the hardenability is insufficient and the tempering temperature is lowered,
It becomes difficult to secure the required strength. However, if the content exceeds 0.35%, not only quench cracks occur but also the toughness deteriorates. Therefore, the C content is 0.23 to 0.35.
%. A preferred range is 0.23 to 0.30%.

【0022】Si:Siは、通常、鋼の脱酸剤として添
加され、また焼戻軟化抵抗をたかめて強度上昇にも寄与
する。これらの効果を得るには0.1%が必要である。
しかし、1.5%を超えて含有させると、熱間加工性が
著しく低下する。このため、Si含有量は0.1〜1.
5%とした。好ましい範囲は0.10〜0.50%であ
る。
Si: Si is usually added as a deoxidizing agent for steel, and contributes to an increase in strength by strengthening the resistance to temper softening. 0.1% is required to obtain these effects.
However, if the content exceeds 1.5%, the hot workability is significantly reduced. Therefore, the Si content is 0.1 to 1.
It was set to 5%. A preferred range is 0.10 to 0.50%.

【0023】Mn:Mnは、鋼の焼入性を増し、鋼管の
強度確保に有効な元素である。しかし、その含有量が
0.1%未満では焼入性の不足によって強度、靱性およ
び耐食性ともに低下する。一方、2.5%を超えて含有
させると、偏析を増して靱性が低下する。このため、M
n含有量は0.1〜2.5%とした。好ましい範囲は
0.20〜1.0%である。
Mn: Mn is an element effective in increasing the hardenability of steel and ensuring the strength of the steel pipe. However, if the content is less than 0.1%, the strength, toughness, and corrosion resistance decrease due to insufficient hardenability. On the other hand, if the content exceeds 2.5%, segregation increases and toughness decreases. Therefore, M
The n content was 0.1 to 2.5%. A preferable range is 0.20 to 1.0%.

【0024】P:Pは不可避不純物として鋼中に存在
し、その含有量が0.05%を超えると、粒界に偏析し
て靱性を低下させる。このため、P含有量は0.05%
とした。なお、P含有量は低ければ低いほどよい。
P: P is present in steel as an unavoidable impurity, and if its content exceeds 0.05%, it segregates at grain boundaries and reduces toughness. Therefore, the P content is 0.05%
And The lower the P content, the better.

【0025】S:Sは、上記のPと同様に、不可避不純
物として鋼中に存在し、Mnまたは添加した場合のCa
と結合して介在物(MnS、CaS)を形成する。これ
らの介在物は熱間圧延で延伸して靭性を低下させる。し
かし、S含有量が0.004%以下であれば特に支障は
ないことから、その上限を0.004%とした。なお、
S含有量は低ければ低いほどよい。
S: S, like P, exists in steel as an unavoidable impurity and is Mn or Ca when added.
To form inclusions (MnS, CaS). These inclusions are stretched by hot rolling to reduce toughness. However, if the S content is 0.004% or less, there is no particular problem, so the upper limit was made 0.004%. In addition,
The lower the S content, the better.

【0026】Al:Alは鋼の脱酸のために必要な元素
であり、その含有量が0.001%未満では脱酸不足に
よって鋼質が劣化し、靱性が低下する。しかし、0.1
%を超えて含有させると、かえって靱性の低下を招く。
このため、Al含有量は0.001〜0.1%とした。
好ましい範囲は0.01〜0.07%である。なお、本
発明にいうAlとは、酸可溶Al(sol.Al)のこ
とである。
Al: Al is an element necessary for deoxidizing steel. If the content of Al is less than 0.001%, the quality of steel deteriorates due to insufficient deoxidation and the toughness decreases. But 0.1
If it is contained in excess of%, the toughness is rather lowered.
Therefore, the Al content is set to 0.001 to 0.1%.
A preferred range is 0.01 to 0.07%. The Al referred to in the present invention means acid-soluble Al (sol. Al).

【0027】V:Vは、耐SSC性を高めるのに有効な
元素であるほか、二次析出強化により強度を高める効果
があり、所定の強度を得るのにより高温で焼戻すことが
でき、これが耐SSC性の向上に寄与している。また、
VCはオーステナイト相への溶解度が大きいため、イン
ラインでの焼入時に全て固溶しており、強度バラツキの
原因にならない。これらの効果を得るためには0.01
%以上が必要である。しかし、0.25%を超えて含有
させると靱性が大きく劣化する。このため、V含有量は
0.01%〜0.25%とした。好ましい範囲は0.0
2〜0.1%である。
V: V is an element effective for enhancing the SSC resistance, and also has the effect of enhancing the strength by secondary precipitation strengthening, and it can be tempered at a high temperature by obtaining a predetermined strength. It contributes to the improvement of SSC resistance. Also,
Since VC has a large solubility in the austenite phase, it is a solid solution during in-line quenching and does not cause variations in strength. To obtain these effects, 0.01
% Or more is required. However, if the content exceeds 0.25%, the toughness deteriorates significantly. Therefore, the V content is set to 0.01% to 0.25%. The preferred range is 0.0
It is 2 to 0.1%.

【0028】Ti:Tiは鋼中の不可避不純物である後
述のNとの結合力が強く、高温から安定なTiNを形成
してNを固定する効果がある。しかし、Nの固定に必要
な量、すなわち、3.4×N%を超えて含有させると過
剰なTiがTiCとなって析出し、これが最終圧延温度
域で析出し始めるため、後述するNbと同様に、強度バ
ラツキの原因となる。このため、Ti含有量は3.4×
N%以下とした。
Ti: Ti has a strong bonding force with N, which will be described later, which is an unavoidable impurity in steel, and has the effect of forming stable TiN from a high temperature to fix N. However, when N is contained in an amount necessary for fixation, that is, in excess of 3.4 × N%, excess Ti is precipitated as TiC, which begins to precipitate in the final rolling temperature range. Similarly, it causes variations in strength. Therefore, the Ti content is 3.4 ×
N% or less.

【0029】Cr:Crは添加しなくてもよい。添加す
れば、焼入性と焼戻軟化抵抗を高め、強度と耐SSC性
を向上させる作用があり、特に厚肉鋼管を製造する場合
に有効な元素である。したがって、この効果を得たい場
合には添加することができる。その効果は0.1%以上
で顕著になるが、1.5%を超えて含有させると靱性が
劣化する。このため、添加する場合のCr含有量は0.
1〜1.5%とするのがよい。好ましい範囲は0.2〜
0.7%である。
Cr: Cr may not be added. If added, it has the effects of increasing hardenability and temper softening resistance, and improving strength and SSC resistance, and is an effective element particularly in the case of manufacturing thick steel pipes. Therefore, it can be added if this effect is desired. The effect becomes remarkable at 0.1% or more, but if the content exceeds 1.5%, the toughness deteriorates. For this reason, the Cr content when added is 0.
It is preferable to be 1 to 1.5%. The preferred range is 0.2-
It is 0.7%.

【0030】Mo:Moは添加しなくてもよい。添加す
れば、上記のCrと同様に、焼入性と焼戻軟化抵抗を高
め、強度と耐SSC性を向上させる作用があり、特に厚
肉鋼管を製造する場合に有効な元素である。また、Mo
には耐サワー性能を向上させる作用もある。したがっ
て、これらの効果を得たい場合には添加することができ
る。その効果は0.1%以上で顕著になるが、1.0%
を超えて含有させると靱性が劣化する。このため、添加
する場合のMo含有量は0.1〜1.0%とするのがよ
い。好ましい範囲は0.2%〜0.8%である。
Mo: Mo may not be added. When added, it has an effect of enhancing hardenability and temper softening resistance, and improving strength and SSC resistance, like Cr, and is an effective element particularly when manufacturing thick-walled steel pipe. Also, Mo
Also has the effect of improving sour resistance. Therefore, if it is desired to obtain these effects, they can be added. The effect becomes remarkable at 0.1% or more, but 1.0%
If the content is exceeded, the toughness deteriorates. Therefore, when added, the Mo content is preferably 0.1 to 1.0%. A preferable range is 0.2% to 0.8%.

【0031】W:Wは、は添加しなくてもよい。添加す
れば、上記のCr、Moと同様に、焼入性と焼戻軟化抵
抗を高め、強度と耐SSC性を向上させる元素である。
したがって、この効果を得たい場合には添加することが
できる。その効果は0.1%以上で顕著になるが、1.
0%超では飽和する。このため、添加する場合のW含有
量は0.1〜1.0%とするのがよい。好ましい範囲は
0.1〜0.5%である。
W: W may not be added. When added, it is an element that enhances the hardenability and the temper softening resistance, and improves the strength and the SSC resistance, like the above Cr and Mo.
Therefore, it can be added if this effect is desired. The effect becomes remarkable at 0.1% or more, but 1.
If it exceeds 0%, it will be saturated. Therefore, the W content when added is preferably 0.1 to 1.0%. A preferred range is 0.1 to 0.5%.

【0032】B:Bは添加しなくてもよい。添加すれ
ば、焼入性を著しく高め、強度を大幅に向上させる作用
があり、特に厚肉鋼管を製造する場合に有効な元素であ
る。したがって、この効果を得たい場合には添加するこ
とができる。その効果は0.0005%以上で顕著にな
るが、0.0030%を超えて含有させると粒界に炭窒
化物が析出しやすくなり、靱性劣化の原因になる。この
ため、添加する場合のB含有量は0.0005〜0.0
030%とするのがよい。好ましい上限は0.0015
%である。
B: B may not be added. If added, it has the effect of significantly increasing the hardenability and the strength of the steel, and is an effective element especially when manufacturing thick-walled steel pipes. Therefore, it can be added if this effect is desired. The effect becomes remarkable at 0.0005% or more, but if it exceeds 0.0030%, carbonitrides are likely to precipitate at grain boundaries, which causes deterioration of toughness. Therefore, the B content when added is 0.0005 to 0.0
It is good to set it to 030%. The preferred upper limit is 0.0015
%.

【0033】Ca、Mg:これらの元素は添加しなくて
もよい。添加すれば、不可避不純物として鋼中に存在す
るSと反応して硫化物を生成する。この硫化物は、圧延
加工後も球状であり、圧延方向に伸びることがない。そ
の結果、圧延直角方向の衝撃性質を向上させる一方、水
素誘起割れを抑制する。したがって、この効果を得たい
場合にはいずれか一方を単独または両方を複合で添加す
ることができる。その効果は、いずれの元素も0.00
05%以上で顕著になるが、0.0050%を超えて含
有させると鋼中の介在物量が増加して清浄度が低下し、
種々の性能が低下する。このため、添加する場合のこれ
らの元素の含有量は、いずれも、0.0005〜0.0
050%とするのがよい。なお、両方を複合で添加する
場合の合計含有量は、0.0050%以下とするのが好
ましい。
Ca, Mg: These elements may not be added. If added, it reacts with S existing in steel as an unavoidable impurity to form a sulfide. This sulfide is spherical even after rolling and does not extend in the rolling direction. As a result, while improving the impact property in the direction perpendicular to the rolling, hydrogen-induced cracking is suppressed. Therefore, in order to obtain this effect, either one can be added alone or both can be added in combination. The effect of each element is 0.00
When it is contained in an amount of more than 0.0050%, the amount of inclusions in the steel increases and the cleanliness decreases,
Various performances are degraded. Therefore, the content of these elements when added is 0.0005 to 0.0
It is good to set it to 050%. In addition, when both are added in combination, the total content is preferably 0.0050% or less.

【0034】Zr:Zrは添加しなくてもよい。添加す
れば、上記のTiと同様に、不可避不純物として鋼中に
存在する後述のNと結合し、窒化物を形成してNを固定
する作用を有しており、特に、前述のB添加時には優先
的にNと結合して窒化物を形成してBの焼入性向上効果
を高める作用を有している。したがって、この効果を得
たい場合には添加することができる。その効果は0.0
1%以上で顕著になるが、0.10%を超えて含有させ
ると、介在物が増加して靱性が低下する。このため、添
加する場合のZr含有量は0.01〜0.10%とする
のがよい。好ましい上限は0.05%である。なお、Z
rは炭化物を形成しにくので、添加しても強度バラツキ
の原因にはならない。
Zr: Zr may not be added. If added, it has a function of binding to N described later existing in the steel as an unavoidable impurity and forming a nitride to fix N, as in the case of Ti described above. It has a function of preferentially combining with N to form a nitride to enhance the hardenability improving effect of B. Therefore, it can be added if this effect is desired. The effect is 0.0
Although it becomes remarkable at 1% or more, if it exceeds 0.10%, inclusions increase and toughness decreases. Therefore, the Zr content when added is preferably 0.01 to 0.10%. A preferable upper limit is 0.05%. In addition, Z
Since r does not easily form carbides, addition of r does not cause strength variations.

【0035】N:Nは不可避不純物として鋼中に存在
し、Al、Ti、Nbと結合して窒化物を形成する。特
に、AlNやTiNが多量に析出すると、靱性や耐SS
C性、耐水素誘起割れ性に悪影響を及ぼす。しかし、そ
の含有量が0.0080%以下であれば特に問題ないこ
とから、その上限を0.0080%とした。好ましい上
限は0.0060%である。
N: N exists in steel as an unavoidable impurity and forms a nitride by combining with Al, Ti and Nb. In particular, if a large amount of AlN or TiN precipitates, toughness and SS resistance
It adversely affects the C property and hydrogen-induced cracking resistance. However, if the content is 0.0080% or less, there is no particular problem, so the upper limit was made 0.0080%. A preferable upper limit is 0.0060%.

【0036】Nb:Nbは、従来のオフライン熱処理プ
ロセスでは、再加熱時に結晶粒の成長をピンニング効果
で抑制し、オーステナイト粒の細粒化に有効であるとし
て積極的に添加されていた。しかし、本発明のように、
最終圧延後、Ar3 変態点以上の温度に保持したまま焼
入れするインライン熱処理プロセスにおいては、Nbに
上記のような効果はないばかりでなく、仮にNbが鋼中
に存在している場合には、焼入れ時にほとんどのNbC
が析出せず、焼戻し時に析出するという、オフライン熱
処理とは全く異なった析出挙動を示し、従来にも増して
強度により大きく影響を及ぼす。特に、継目無鋼管にお
いては、工具と接触する表面層と肉厚中央部では温度差
が必ず生じ、この温度差に起因してNbの固溶量が肉厚
位置により変化するために、強度バラツキが顕著にな
る。したがって、本発明においては、Nb含有量は少な
ければ少ないほどよく、皆無であることが最も好まし
い。しかし、その含有量が0.005%未満であれば、
特に支障はないことから、その含有量を0.005%未
満と定めた。好ましい上限は0.003%である。
In the conventional off-line heat treatment process, Nb: Nb has been positively added because it suppresses the growth of crystal grains during reheating by a pinning effect and is effective for refining austenite grains. However, like the present invention,
In the in-line heat treatment process in which quenching is performed while maintaining the temperature at the Ar 3 transformation point or higher after the final rolling, not only does Nb not have the above effect, but if Nb is present in the steel, Most of NbC during quenching
Does not precipitate, but precipitates during tempering, which is a completely different precipitation behavior from the offline heat treatment, and has a greater effect on strength than before. In particular, in a seamless steel pipe, a temperature difference inevitably occurs between the surface layer in contact with the tool and the center of the wall thickness, and the solid solution amount of Nb changes depending on the wall thickness position due to this temperature difference. Becomes noticeable. Therefore, in the present invention, the smaller the Nb content, the better, and the most preferable is none. However, if the content is less than 0.005%,
Since there is no particular problem, the content was set to less than 0.005%. A preferable upper limit is 0.003%.

【0037】次に、上記の化学組成を有する鋼からなる
継目無鋼管の製造条件を上記のように定めた理由につい
て説明する。
Next, the reason why the manufacturing conditions of the seamless steel pipe made of steel having the above-mentioned chemical composition are set as above will be explained.

【0038】素材ビレットの加熱温度:素材ビレットの
加熱温度は特に制限しない。要は次に述べる最終圧延温
度が満足できる温度であればよい。
Heating temperature of material billet: The heating temperature of the material billet is not particularly limited. The point is that the temperature can satisfy the final rolling temperature described below.

【0039】最終圧延温度:最終圧延温度が950℃未
満では、伸展粒組織となり、靱性や耐SSC性に異方性
が生じ、その後の補熱でも解消されない。また、110
0℃超では、結晶粒度が著しく粗大化して、その後の補
熱によっても細粒とならない。このため、本発明におい
ては、最終圧延温度を950℃〜1100℃とした。
Final rolling temperature: When the final rolling temperature is lower than 950 ° C., an expanded grain structure is formed, and anisotropy occurs in toughness and SSC resistance, and it cannot be eliminated even by supplementary heat thereafter. Also, 110
If it exceeds 0 ° C., the crystal grain size is remarkably coarsened and the grains are not made fine by subsequent supplementary heat. Therefore, in the present invention, the final rolling temperature is set to 950 ° C to 1100 ° C.

【0040】補熱温度:補熱温度が950℃超では、粗
粒のままなので、靱性および耐SSC性が芳しくない。
また、Ar3 変態点未満では、初析フェライトが析出し
て完全なマルテンサイト組織が得られない。このため、
補熱温度はAr3 変態点以上、950℃以下とした。好
ましい上限温度は920℃である。
Supplementary heating temperature: If the supplementary heating temperature exceeds 950 ° C., coarse particles remain, so the toughness and SSC resistance are poor.
Further, below the Ar 3 transformation point, proeutectoid ferrite precipitates and a complete martensite structure cannot be obtained. For this reason,
The supplementary heating temperature was set to not lower than the Ar 3 transformation point and not higher than 950 ° C. A preferable upper limit temperature is 920 ° C.

【0041】この補熱処理は、鋼管全体を均熱化して温
度ムラを解消すると同時に細粒化を図り、これによって
強度バラツキの解消と耐SSC性を向上させることにあ
る。なお、補熱時間は、特に制限しないが、下式を満た
す時間保持するのが好ましい。すなわち、温度差が大き
ければ大きいほど、また肉厚が厚ければ厚いほど、長時
間保持するのがよい。
This supplementary heat treatment is intended to equalize the temperature of the entire steel pipe to eliminate temperature unevenness and at the same time to reduce the grain size, thereby eliminating the strength variation and improving the SSC resistance. The supplementary heating time is not particularly limited, but it is preferable to maintain it for a time that satisfies the following formula. That is, the larger the temperature difference and the thicker the wall thickness, the better the holding time.

【0042】補熱時間≧温度差因子(=最終圧延温度−
補熱温度)×肉厚因子 焼戻温度:焼戻温度がAc1 変態点以上では、著しく軟
化して所望の強度が確保できないので、焼戻温度はAc
1 変態点未満とした。なお、下限温度は特に定めない
が、耐SSC性の観点からは高い方が好ましく、680
℃以上とするとがよい。
Supplementary heating time ≧ temperature difference factor (= final rolling temperature−
(Temperature of supplementary heat) x wall thickness factor Tempering temperature: When the tempering temperature is Ac 1 transformation point or higher, the tempering temperature is Ac because it is significantly softened and the desired strength cannot be secured.
Less than 1 transformation point. The lower limit temperature is not particularly defined, but is preferably higher from the viewpoint of SSC resistance.
It is better to set the temperature above ℃.

【0043】[0043]

【実施例】表1と表2に示す化学組成を有する11種類
の鋼を準備した。なお、表1〜2中、鋼No. A〜Hは容
量150kgの真空溶解炉に用いて溶製した鋼で、鋼N
o.A〜C、D〜EおよびF〜Hは、いずれも、同じ溶鋼
をそれぞれ分湯し、分湯後にNb、VおよびTiの含有
量を調整した鋼である。また、鋼No. I〜Kは、実機の
マンドレルミルラインによる製管試験に供するために準
備した鋼である。
EXAMPLE 11 kinds of steel having the chemical compositions shown in Tables 1 and 2 were prepared. In Tables 1 and 2, Steel Nos. A to H are steels melted in a vacuum melting furnace having a capacity of 150 kg, and steel No.
o. A to C, D to E, and F to H are steels obtained by splitting the same molten steel and adjusting the contents of Nb, V, and Ti after the splitting. Further, Steel Nos. I to K are steels prepared for use in a pipe making test by an actual mandrel mill line.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】準備した鋼のうち、鋼No. A〜Hについて
は、得られたインゴットを熱間鍛造し、厚さ50mm、
幅80mm、長さ100mmのブロック材とした。次い
で、各ブロック材を種々の温度に加熱し、表3に示す最
終圧延、補熱温度、焼入温度および焼戻温度で処理し、
厚さ15mmの板材とした。
Among the prepared steels, for steel Nos. A to H, the obtained ingots were hot forged to have a thickness of 50 mm,
A block material having a width of 80 mm and a length of 100 mm was used. Then, each block material is heated to various temperatures and treated at the final rolling, supplementary heating temperature, quenching temperature and tempering temperature shown in Table 3,
A plate material having a thickness of 15 mm was used.

【0047】その際、各板材の強度は、焼戻温度を変え
ることにより、全厚での降伏強度(YS)がAPI規格
に規定されるT95級になるように調整した。
At that time, the strength of each plate material was adjusted by changing the tempering temperature so that the yield strength (YS) in the entire thickness was in the T95 class specified in the API standard.

【0048】なお、板圧延においても、継目無管の場合
と同じく、圧延ロールと接触する表面層と肉厚中心部で
は温度差が生じるので、Nb量によっては硬度差が生じ
ることになることはいうまでもない。
Also in the strip rolling, as in the case of the seamless pipe, there is a temperature difference between the surface layer contacting the rolling roll and the central portion of the wall thickness, so that a hardness difference may occur depending on the Nb amount. Needless to say.

【0049】一方、鋼No. I〜Kについては、外径27
6mmの中実丸ビレットを準備し、いずれも1250℃
に加熱した後、実機のマンネスマンピアサーに供して外
径250mm、肉厚15.88mmの中空素管とした。
次いで、この中空素管をマンドレルミルに供し、最終圧
延温度を種々変化(1000℃、1050℃)させて外
径244.5mm、肉厚13.8mmの継目無鋼管に仕
上げた。そして、仕上げた継目無鋼管の温度がAr3
態点を下回らない間にインライン中に設けられた補熱炉
(加熱炉でもよい)に挿入し、種々の温度(900℃、
920℃、950℃)に5分間保持する補熱(均熱)処
理を施した後、直ちに水焼入れし、次いでインライン中
に設けられた焼戻し炉に挿入し、種々の温度(680
℃、690℃、700℃)に15分間保持する焼戻し処
理を施して製品管とした。
On the other hand, for steel Nos. I to K, the outer diameter is 27
Prepare a solid round billet of 6 mm, 1250 ℃ for both
After being heated to 1, it was subjected to an actual Mannesmann piercer to obtain a hollow shell having an outer diameter of 250 mm and a wall thickness of 15.88 mm.
Next, this hollow shell was subjected to a mandrel mill, and the final rolling temperature was variously changed (1000 ° C., 1050 ° C.) to finish a seamless steel pipe having an outer diameter of 244.5 mm and a wall thickness of 13.8 mm. Then, while the temperature of the finished seamless steel pipe does not fall below the Ar 3 transformation point, the finished seamless steel pipe is inserted into a supplementary heating furnace (which may be a heating furnace) provided in-line, and various temperatures (900 ° C.,
At 920 ° C and 950 ° C), a supplementary heat treatment (soaking) is performed for 5 minutes, immediately followed by water quenching, and then insertion into a tempering furnace provided in-line at various temperatures (680 ° C).
C., 690.degree. C., 700.degree. C.) and holding for 15 minutes to obtain a product tube.

【0050】鋼No. A〜Hから得られた各板材について
は、上面、下面および肉厚中心部から、圧延方向(L方
向)に、NACE TM0177 Method Bに
規定される3点曲げ試験片を各2枚採取した。
For each of the plate materials obtained from Steel Nos. A to H, a three-point bending test piece specified in NACE TM0177 Method B was applied in the rolling direction (L direction) from the upper surface, the lower surface and the center of wall thickness. Two sheets each were collected.

【0051】また、実機のマンネスマン−マンドレルミ
ルで製造した継目無鋼管からは、管軸長方向の任意位置
からリング状のサンプルを採取し、円周4ヶ所(0°、
90°、180°、270°)位置の外面部、肉厚中央
部および内面部のそれぞれから、上記と同様の3点曲げ
試験片を各2枚採取した。
A ring-shaped sample was taken from a seamless steel pipe manufactured by an actual Mannesmann-mandrel mill at an arbitrary position in the longitudinal direction of the pipe, and the circumference was measured at four positions (0 °, 0 °,
Two 3-point bending test pieces similar to the above were sampled from each of the outer surface portion, the center portion of the wall thickness, and the inner surface portion at positions (90 °, 180 °, 270 °).

【0052】採取した各試験片は、NACE TM01
77 Method Bに規定される方法に従った腐食
試験に供した。すなわち、S値として100ksiを与
えた試験片を、1気圧の硫化水素が飽和した25℃の
0.5%酢酸水溶液中に720時間浸漬する試験であ
る。
Each of the test pieces collected was NACE TM01.
It was subjected to a corrosion test according to the method specified in 77 Method B. That is, this is a test in which a test piece given an S value of 100 ksi is immersed in a 0.5% acetic acid aqueous solution at 25 ° C. saturated with hydrogen sulfide at 1 atm for 720 hours.

【0053】腐食試験の評価は、2つの試験片とも破断
しなかったものを耐SSC性が良好「○」、2つのうち
1つ以上が破断したものを耐SSC性が不芳「×」とし
た。また、いずれの試験片も、上記の腐食試験後、端部
のロックウエル硬度(HRC)を測定した。
In the evaluation of the corrosion test, when two test pieces were not broken, the SSC resistance was good, and when one or more of them were broken, the SSC resistance was poor. did. In addition, the Rockwell hardness (HRC) of the end of each test piece was measured after the above corrosion test.

【0054】以上の調査結果を、表3に、製造条件と併
せて示した。なお、表中の硬度は、2つの試験片の平均
値である。
The above investigation results are shown in Table 3 together with the production conditions. The hardness in the table is an average value of two test pieces.

【0055】[0055]

【表3】 [Table 3]

【0056】表3に示す結果からわかるように、本発明
のインライン熱処理用鋼を用い、本発明で規定する条件
に基づいて製造された本発明例の板材と継目無鋼管(試
番1、5〜7、9〜12、14および15)は、いずれ
も肉厚方向の硬度差(強度差)が小さく、耐SSC性が
良好であった。
As can be seen from the results shown in Table 3, the plate material of the present invention and the seamless steel pipe (trial Nos. 1 and 5) produced by using the steel for in-line heat treatment of the present invention under the conditions specified in the present invention. No. 7, 9-12, 14 and 15), the hardness difference (strength difference) in the thickness direction was small, and the SSC resistance was good.

【0057】これに対し、鋼の化学組成または製造条件
のいずれかが本発明で規程する範囲を外れる条件で製造
された比較例の板材と継目無鋼管(試番2〜4、8、1
3、および16〜18)は、いずれも肉厚方向の硬度差
(強度差)が大きく、耐SSC性が不芳であった。
On the other hand, the plate material of the comparative example and the seamless steel pipe (trial Nos. 2 to 4, 8 and 1) manufactured under the condition that either the chemical composition of the steel or the manufacturing condition is out of the range specified by the present invention.
3 and 16 to 18), the hardness difference (strength difference) in the thickness direction was large, and the SSC resistance was poor.

【0058】具体的に説明すると、試番1〜3は、Nb
含有量の影響を調べた例であるが、試番2と3は、製造
条件は本発明の範囲内であるが、鋼のNb含有量が多す
ぎるために、肉厚中心部の硬度が高く、該部の耐SSC
性が不芳であった。
More specifically, trial numbers 1 to 3 are Nb.
This is an example in which the influence of the content was investigated. In the test Nos. 2 and 3, the manufacturing conditions are within the scope of the present invention, but the hardness of the center portion of the wall thickness is high because the Nb content of the steel is too large. , SSC resistance of the part
The sex was poor.

【0059】試番4〜8は、VまたはTi含有量の影響
を調べた例であるが、試番4はVが添加されていないた
めに、試番8はTi含有量が多すぎるために、製造条件
は本発明の範囲内であるが、いずれも肉厚方向の硬度
(強度)バラツキは小さいものの、耐SSC性が不芳で
あった。
Trial Nos. 4 to 8 are examples in which the influence of V or Ti content was investigated. Trial No. 4 had no V added, and Trial No. 8 had too much Ti content. Although the manufacturing conditions were within the scope of the present invention, the hardness (strength) variation in the thickness direction was small, but the SSC resistance was poor.

【0060】試番12〜18は、仕上げ温度と補熱温度
の影響を調べた例であり、鋼の化学組成はいずれも本発
明で規程する範囲内であるが、試番13は仕上げ温度が
低すぎるために、試番16は仕上げ温度が高すぎるため
に、また試番17と18は補熱温度が高すぎるために、
いずれも肉厚方向の硬度(強度)バラツキは小さいもの
の、耐SSC性が不芳であった。
Test Nos. 12 to 18 are examples in which the effects of the finishing temperature and the supplementary heating temperature were investigated. The chemical compositions of steels are all within the range specified by the present invention, but the test No. 13 has a finishing temperature. Because the finishing temperature is too high for trial No. 16 because it is too low, and the supplementary heating temperature for trial Nos. 17 and 18 is too high,
In both cases, the hardness (strength) variation in the thickness direction was small, but the SSC resistance was poor.

【0061】[0061]

【発明の効果】本発明の鋼は、所定の条件でインライン
熱処理を施せば、強度が大きくバラツクことがない。ま
た、本発明発の方法によれば、強度バラツキが小さく、
結果ととして耐SSC性に優れた細粒組織の高強度な継
目無鋼管を高能率かつ低コストで製造することができ
る。
EFFECTS OF THE INVENTION The steel of the present invention has a large strength and does not vary when subjected to in-line heat treatment under predetermined conditions. Further, according to the method of the present invention, the variation in strength is small,
As a result, it is possible to manufacture a high-strength seamless steel pipe having a fine grain structure excellent in SSC resistance with high efficiency and low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 俊治 和歌山県和歌山市湊1850番地住友金属工 業株式会社和歌山製鉄所内 (56)参考文献 特開 昭60−67623(JP,A) 特開 平9−235617(JP,A) 特開 平9−59719(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunji Abe 1850 Minato, Wakayama, Wakayama Sumitomo Metal Industries, Ltd. Wakayama Works (56) Reference JP-A-60-67623 (JP, A) JP 9 -235617 (JP, A) JP-A-9-59719 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.23〜0.35%、S
i:0.1〜1.5%、Mn:0.1〜2.5%、P:
0.03%以下、S:0.004%以下、Al:0.0
01〜0.1%、V:0.01〜0.25%、Ti:
3.4×N%以下、Cr:0〜1.5%、Mo:0〜
1.0%、W:0〜1.0%、B:0〜0.0030
%、Ca:0〜0.0050%、Mg:0〜0.005
0%、Zr:0〜0.10%を含有する一方、NとNb
がそれぞれ0.0080%以下、0.005%未満に規
制され、残部は実質的にFeからなることを特徴とする
インライン熱処理用鋼。
1. C: 0.23 to 0.35% by weight, S:
i: 0.1-1.5%, Mn: 0.1-2.5%, P:
0.03% or less, S: 0.004% or less, Al: 0.0
01-0.1%, V: 0.01-0.25%, Ti:
3.4 × N% or less, Cr: 0 to 1.5%, Mo: 0
1.0%, W: 0 to 1.0%, B: 0 to 0.0030
%, Ca: 0 to 0.0050%, Mg: 0 to 0.005
0%, Zr: 0 to 0.10%, while N and Nb
Are regulated to 0.0080% or less and less than 0.005%, respectively, and the balance substantially consists of Fe.
【請求項2】請求項1に記載のインライン熱処理用鋼か
らなるビレットを、熱間で穿孔、延伸圧延し、最終圧延
温度950〜1100℃の条件で製管された継目無鋼管
を、インラインでAr変態点〜950℃の温度域で補
熱してから、Ar変態点以上のまま焼入れし、次いで
Ac変態点未満で焼戻すことを特徴とする耐硫化物応
力腐食割れ性に優れる継目無鋼管の製造方法。
2. A seamless steel pipe produced by hot piercing and stretch rolling the billet made of the steel for inline heat treatment according to claim 1, and making the pipe at a final rolling temperature of 950 to 1100 ° C. in line. A seam having excellent resistance to sulfide stress corrosion cracking characterized by supplementing heat in the temperature range of Ar 3 transformation point to 950 ° C., quenching as it is at the Ar 3 transformation point or higher, and then tempering at less than the Ac 1 transformation point. Steelless pipe manufacturing method.
JP17700099A 1999-06-23 1999-06-23 Method for producing steel for in-line heat treatment and seamless steel pipe made of this steel having excellent sulfide stress corrosion cracking resistance Expired - Fee Related JP3473502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17700099A JP3473502B2 (en) 1999-06-23 1999-06-23 Method for producing steel for in-line heat treatment and seamless steel pipe made of this steel having excellent sulfide stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17700099A JP3473502B2 (en) 1999-06-23 1999-06-23 Method for producing steel for in-line heat treatment and seamless steel pipe made of this steel having excellent sulfide stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JP2001011568A JP2001011568A (en) 2001-01-16
JP3473502B2 true JP3473502B2 (en) 2003-12-08

Family

ID=16023432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17700099A Expired - Fee Related JP3473502B2 (en) 1999-06-23 1999-06-23 Method for producing steel for in-line heat treatment and seamless steel pipe made of this steel having excellent sulfide stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JP3473502B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480398A (en) * 2014-12-22 2015-04-01 内蒙古包钢钢联股份有限公司 Rare earth containedseamless steel tube ZT540 for drilling and production method of rare earth containedseamless steel tube
CN104532136A (en) * 2014-12-22 2015-04-22 内蒙古包钢钢联股份有限公司 Rare-earth-containing seamless steel tube ZT740 for drilling and production method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE510031T1 (en) * 2004-03-24 2011-06-15 Sumitomo Metal Ind PROCESS FOR PRODUCING LOW ALLOY STEEL WITH EXCELLENT CORROSION RESISTANCE
JP4635764B2 (en) 2005-07-25 2011-02-23 住友金属工業株式会社 Seamless steel pipe manufacturing method
CN106319359B (en) * 2015-06-29 2018-04-03 鞍钢股份有限公司 M65-grade resistance welding sleeve and manufacturing method thereof
CN105586529B (en) * 2016-02-25 2017-10-31 宝山钢铁股份有限公司 A kind of 890MPa grade high-strengths steel, steel pipe and its manufacture method
CN110885949A (en) * 2019-10-09 2020-03-17 包头钢铁(集团)有限责任公司 Seamless steel tube for steel-grade multi-steel-grade oil well pipe and preparation method thereof
CN111187995B (en) * 2020-02-17 2021-07-20 包头钢铁(集团)有限责任公司 Seamless steel pipe material for boron-containing hydraulic prop
CN113025915B (en) * 2021-03-04 2022-02-01 东北大学 High-strength and high-toughness vanadium-nitrogen microalloyed hot-rolled steel pipe and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480398A (en) * 2014-12-22 2015-04-01 内蒙古包钢钢联股份有限公司 Rare earth containedseamless steel tube ZT540 for drilling and production method of rare earth containedseamless steel tube
CN104532136A (en) * 2014-12-22 2015-04-22 内蒙古包钢钢联股份有限公司 Rare-earth-containing seamless steel tube ZT740 for drilling and production method thereof

Also Published As

Publication number Publication date
JP2001011568A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
JP3545770B2 (en) High tensile steel and method for producing the same
JP3116156B2 (en) Method for producing steel pipe with excellent corrosion resistance and weldability
JP2000178682A (en) Steel for oil well excellent in sulfide stress corrosion cracking resistance
WO2013133076A1 (en) Method for producing high-strength steel material having excellent sulfide stress cracking resistance
JPH1150148A (en) Production of high strength and high corrosion resistance seamless steel pipe
JP2000256783A (en) High strength steel for oil well excellent in toughness and sulfide stress corrosion cracking resistance and its production
EP1099772A1 (en) Martensite stainless steel for seamless steel tube
JP4123672B2 (en) Manufacturing method of high strength seamless steel pipe with excellent toughness
JP3812168B2 (en) Manufacturing method of seamless steel pipe for line pipe with excellent strength uniformity and toughness
JP3473502B2 (en) Method for producing steel for in-line heat treatment and seamless steel pipe made of this steel having excellent sulfide stress corrosion cracking resistance
JP2000017389A (en) Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL
JP3226278B2 (en) Method of manufacturing steel material and steel pipe excellent in corrosion resistance and weldability
JP2007196237A (en) Method for producing seamless steel tube for machine structural component
JP3620326B2 (en) Seamless steel pipe with fine grain structure and small strength variation
JPH0625746A (en) Manufacture of high cr-containing steel pipe for oil well
JPH11302785A (en) Steel for seamless steel pipe
JP2003105441A (en) METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
CN118374749A (en) Hot rolled steel sheet for continuous pipe
JP4196501B2 (en) Steel for seamless steel pipe with high strength and excellent toughness
JP3544455B2 (en) Manufacturing method of high strength non-heat treated steel for seamless steel pipes
JPH05171361A (en) Production of martensitic stainless steel
JPH11310822A (en) Production of high strength martensitic stainless steel tube excellent in low temperature toughness
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH05255749A (en) Production of seamless steel tube having high strength and high toughness and excellent in ssc resistance
JP2002060909A (en) High strength martensitic stainless steel pipe for oil well excellent in balance of strength-toughness and its production method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees