JP4123672B2 - Manufacturing method of high strength seamless steel pipe with excellent toughness - Google Patents

Manufacturing method of high strength seamless steel pipe with excellent toughness Download PDF

Info

Publication number
JP4123672B2
JP4123672B2 JP2000056461A JP2000056461A JP4123672B2 JP 4123672 B2 JP4123672 B2 JP 4123672B2 JP 2000056461 A JP2000056461 A JP 2000056461A JP 2000056461 A JP2000056461 A JP 2000056461A JP 4123672 B2 JP4123672 B2 JP 4123672B2
Authority
JP
Japan
Prior art keywords
steel pipe
toughness
temperature
rolling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000056461A
Other languages
Japanese (ja)
Other versions
JP2001240913A (en
Inventor
大迫  一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000056461A priority Critical patent/JP4123672B2/en
Publication of JP2001240913A publication Critical patent/JP2001240913A/en
Application granted granted Critical
Publication of JP4123672B2 publication Critical patent/JP4123672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強度と靱性に優れた継目無鋼管の製造方法に関し、さらに詳しくは、化学組成を限定した鋼材を素材として製管するに際し、オンラインプロセスによる加工熱処理を採用して、仕上圧延に引き続く再加熱炉の装入前における鋼管温度を調整することによって、高価な合金鋼を添加することなしに、靱性に優れた高強度継目無鋼管を製造する方法に関するものである。
【0002】
【従来技術】
継目無鋼管の製造に多用されているマンネスマン・マンドレルミル製管法では、高温に加熱されたビレットを穿孔圧延機(ピアサー)で穿孔した後、マンドレルミルで圧延して中空素管とし、再び加熱、昇温した後、ストレッチレデューサで所定の寸法の鋼管に仕上げ、引き続いて再加熱炉に装入して再加熱した後、次いで焼入れ・焼戻し処理して、その後は製品鋼管として精整処理される。
【0003】
このように多くの加工設備や熱処理装置を必要とする継目無鋼管の製造分野では、省エネルギーや省プロセスの観点から、オンラインでの加工熱処理を適用した製造プロセスの簡素化が検討されている。特に、熱間加工された後に素材が保有する熱を有効利用することに着目して、仕上圧延後に直ちにオーステナイト温度まで再加熱し、直接焼入するプロセスが導入されており、それによって大幅な省エネルギーと製造プロセスの効率化が図れ、工業的に大きなコストダウンが得られるようになっている。
【0004】
ところで、仕上圧延後に直接焼入するオンラインプロセスを採用するようになると、製造された製品鋼管の結晶粒径が粗大となり易く、靱性および耐食性が低下するという問題が生じている。このような問題に対応するため、従来から、直接焼入するプロセスを採用する場合であっても、仕上圧延された鋼管の結晶粒を微細にすることができる、種々の製造方法が提案されている。
【0005】
例えば、特開昭63−96215号公報で提案される製造方法では、結晶粒の微細化を図るため、マンドレルミル圧延後に素管を350℃以下に急冷して、そののち素管を再び加熱して仕上圧延を実施することとしている。すなわち、仕上圧延の前に、マンドレルミル圧延された中空素管に急速冷却と再加熱とを組み合わせることによって、仕上圧延された鋼管の結晶粒を微細にしようとする方法である。
【0006】
しかしながら、提案された製造方法を操業プロセスに適用しようとすると、穿孔圧延、マンドレルミル圧延から仕上圧延までの工程が複雑になるとともに、エネルギー消費が大きく、強制冷却設備等の投資も必要となる。このため、オンラインプロセスによる加工熱処理を採用しても、省エネルギーや省プロセスが不充分となり、大幅な製造コスト削減が望めないという問題がある。
【0007】
【発明が解決しようとする課題】
前述の通り、従来のオンラインプロセスによる加工熱処理では、仕上圧延前に強制冷却と再加熱とを組み合わせて実施することによって、製品鋼管として必要な靱性、耐食性を確保していた。このため、エネルギー消費が大きく、強制設備等の投資も必要となり、継目無鋼管の効率生産の面からは充分な対策になり得ていない。
【0008】
本発明は、上記の問題点に鑑みてなされたものであり、素材となる鋼材の化学組成を限定し、仕上圧延に引き続く再加熱炉の装入前での鋼管温度を調整することによって、高価な合金鋼を添加することなしに、靱性に優れた高強度継目無鋼管の製造方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明者は、上述の課題を解決するため、種々の化学組成の鋼材を対象として、数多くの研究を重ねた結果、オンライン熱処理を採用した製造プロセスであっても、仕上圧延後から再加熱炉装入までの時間を調整することによって、結晶粒の微細化が得られ、通常のオフライン熱処理と同様の性能を持った継目無鋼管が製造できることを知見した。また、上記の時間調整は、仕上圧延後から再加熱炉装入までの搬送コンベヤーや搬送用トレイの動作速度を変化させる程度で可能であることを明らかにした。
【0010】
本発明は、このような知見に基づいて完成されたものであり、下記の(1)〜(3)の靱性に優れた高強度継目無鋼管の製造方法を要旨としている。
(1)質量%で、C:0.04〜0.5%、Si:0.1〜1.0%、Mn:0.2〜1.5%、Cr:0.1〜1.5%、Mo:0.01〜1.0%、P:0.03%以下、S:0.003%以下およびAl:0.005〜0.5%を含有し、残部はFeおよび不可避的不純物からなる鋼材を素材として、穿孔後仕上圧延を行い、引き続いて空冷により再加熱炉への装入温度をAc1−100℃以下で850〜1000℃の温度条件で保持して再加熱を行い、その後直ちに焼入れを行うことを特徴とする靱性に優れた高強度継目無鋼管の製造方法である。
(2)上記(1)の鋼材に、さらに質量%で、Ti:0〜0.5%、Nb:0〜0.1%、B:0〜0.01%、V:0〜0.15%、Cu:0〜1.0%、Ni:0〜1.0%およびCa:0〜0.004%を含有するのが望ましい。
(3)上記(1)、(2)の製造方法では、再加熱炉への装入温度は、仕上圧延後に測定された鋼管の圧延仕上温度に基づいて、搬送コンベア速度および/またはトレイ動作速度を変化させて、圧延後から再加熱炉装入までの時間を調整するようにするのが望ましい。
【0011】
【発明の実施の形態】
本発明において、鋼材の化学組成および製造方法を上記のように限定した理由を説明する。まず、鋼材に高強度および高靱性の特性を具備させるのに有効な化学組成について説明する。ここで化学組成%は、質量%を示す。
1.鋼材の化学組成
C:0.04〜0.5%
Cは、鋼材の焼入れ性を高め、強度を向上させるために必要な元素である。含有量が0.04%未満では、焼入れ性が不足して高強度が得られない。一方、0.5%を超えて含有させると、焼き割れ、遅れ破壊が発生し易くなり、継日無鋼管の安定製造が困難になる。このため、C含有量は、0.04〜0.5%とする。
【0012】
Si:0.1〜1.0%
Siは、鋼の脱酸元素として有効な元素であると同時に、鋼材の強度を向上する作用がある。脱酸元素としての効果を発揮するには、0.1%以上の含有が必要であが、1.0%を超えて含有した場合には、靱性の劣化が見られる。このため、Si含有量は、0.1〜1.0%とする。
【0013】
Mn:0.2〜1.5%
Mnは、鋼の脱酸、脱硫作用を発揮するが、この作用を発揮させるためには0.2%以上の含有が必要である。一方、含有量が1.5%を超えると靱性の劣化が見られる。このため、Mn含有量は、0.2〜1.5%とする。
【0014】
Cr:0.1〜1.5%
Crは、焼入れ性を向上させると同時に、強度を増加させるので有効な元素である。しかし、その含有量が0.1%未満ではこれらの効果が得られず、また、1.5%を超えると靱性が劣化する。このため、Cr含有量は、0.1〜1.5%とする。
【0015】
Mo:0.01〜1.0%
Moは、鋼材の焼入れ性を向上させるとともに、焼戻し軟化抵抗を高める作用を発揮する。これらの作用を発揮させるためには、0.01%以上の含有が必要であり、一方、1.0%を超えて含有させると、靱性が劣化する。そのため、Mo含有量は、0.01〜1.0%とする。
【0016】
P:0.03%以下
Pは、不純物として鋼中に不可避的に存在する。含有量が0.03%を超えると、粒界に偏析して靱性を低下させるので、その含有は0.03%以下とする。
【0017】
S:0.003%以下
Sは、不純物として鋼中に不可避的に存在する。過剰に含有すると、鋼中に介在物として存在して靱性を劣化させるため、その含有は0.003%以下とする。
【0018】
Al:0.005〜0.5%
Alは、鋼の脱酸材として有用な元素であるが、0.005%未満の含有ではその効果が得られず、一方、0.5%を超えて含有させると、介在物が多くなって靱性が低下する。このため、Al含有量は0.005〜0.5%とする。
【0019】
Ti:0〜0.5%
Tiは、添加しなくてもよい。添加すると、鋼材の焼入れ性の確保に有効であり、さらに圧延された鋼管の細粒化に効果を発揮する。しかし、含有量が0.5%を超えると、靱性を低下させる。したがって、Tiを添加する場合には、その含有量は0.5%以下とする。
【0020】
Nb:0〜0.1%
Nbは、添加しなくてもよい。添加すると、鋼材の焼入れ性の確保に有効であり、さらに圧延された鋼管の細粒化に有効である。しかし、含有量が0.1%を超えると、靱性を低下させる。したがって、Nbを添加する場合には、その含有量は0.1%以下とする。
【0021】
B:0〜0.01%
Bは、添加しなくてもよい。添加すると、微量の含有であっても焼入れ性を向上させるので、より高強度が必要な場合に添加すると有効である。しかし、過剰の含有は、靱性を低下し、焼き割れ感受性を強くする。したがって、Bを添加する場合には、その含有量は0.01%以下とする。
【0022】
V:0〜0.15%
Vは、添加しなくてもよい。添加すると、焼戻し軟化抵抗および焼入れ性を向上させる。しかし、0.15%を超えて含有させると、靱性を著しく低下させる。したがって、Vを添加する場合には、その含有量は0.15%以下とする。
【0023】
Cu:0〜1.0%
Cuは、添加しなくてもよい。添加すると、鋼材の強度上昇および耐食性向上に有効である。そのため、必要に応じて添加されるが、1.0%以上超えて含有しても、コスト上昇に見合った性能の改善が見られない。したがって、Cuを添加する場合には、その含有量は1.0%以下とする。
【0024】
Ni:0〜1.0%
Niは、添加しなくてもよい。添加すると、鋼材の強度上昇および耐食性向上に有効である。しかし、1.0%以上超えて含有しても、コスト上昇に見合った性能の改善が見られない。したがって、Niを添加する場合には、その含有量は1.0%以下とする。
【0025】
Ca:0〜0.004%
Caは、添加しなくてもよい。Caは添加すると、脱硫効果が大きくなり、水素誘起割れ等の抑制に有効である。しかし、含有量が0.004%を超えると、Ca系介在物の生成を促し、清浄度の低下によって靱性を劣化させる。そのため、Caを添加する場合には、その含有量は0.004%以下とする。
2.製造方法
本発明の製造方法では、上記の化学組成を含有する鋼材を素材として、穿孔圧延を経て仕上圧延を行い、引き続いて空冷により再加熱炉への装入温度をAc1−100℃以下になるように調整し、850〜1000℃の温度条件で保持して再加熱を行い、その後直ちに焼入れを行うことを特徴としている。以下に、製造方法を上記のように限定した理由を説明する。
【0026】
まず、仕上圧延に引き続く再加熱炉での装入温度をAc1−100℃以下にするのは、仕上圧延終了時にオーステナイト相にあった鋼管を、空冷でAc1−100℃以下まで冷却すると、冷却速度が遅いためフェライト相を析出する。この後、Ac1−100℃以下の温度から再加熱炉内でAc3点以上の温度に鋼管を加熱すると、フェライトからオーステナイトヘの逆変態が起こり、鋼管の結晶粒を微細にすることができるからである。このとき、再加熱炉での昇温時の時間短縮、および省エネルギ−の観点から、再加熱炉での装入温度はAc1−100℃直下にするのが望ましい。
【0027】
具体的に、オンラインプロセスによる加工熱処理において、再加熱炉での装入温度がAc1−100℃以下になるように、圧延後から再加熱炉装入までの時間を調整するには、次の手順に従うのが望ましい。すなわち、穿孔圧延後、マンドレルミル圧延を経て仕上圧延によって鋼管を製管後、圧延仕上温度を測定し、その測定結果をフィードバックして、搬送コンベア速度、および/またはトレイ動作速度を変化させて、仕上圧延された鋼管が圧延終了〜再加熱炉装入まで搬送される時間を調整する。これにより、再加熱炉への装入温度がAc1−100℃以下になるように調整できる。
【0028】
通常、仕上圧延装置および再加熱炉の設備配置にもよるが、仕上圧延された鋼管の寸法、材質および仕上温度の条件から、標準搬送コンベア速度およびトレイ動作速度による再加熱炉での装入温度を予測する。この予測結果に基づいて、搬送コンベア速度等を調整し、鋼管の装入温度が規定条件を満足するようにする。
【0029】
次に、再加熱を850〜1000℃の温度で保持するのは、再加熱炉の装入温度をAc1−100℃以下に規定しているため、焼入れ開始温度を確保するために、850℃以上の再加熱が必要であり、一方、1000℃を超えて再加熱を行うと、結晶粒の成長が著しくなり、焼入れ後において靱性が確保できない恐れがあるからである。また、再加熱を上記の温度条件で保持することによって、再加熱炉内での鋼管毎の均熱性のみならず、長さ方向の均熱性も保てて、製品鋼管の強度および靱性の性能バラツキを抑制できる。
【0030】
さらに、圧延時の加工歪みによる再結晶効果も期待できる。すなわち、再加熱を850〜1000℃の温度条件で保持することによって、圧延時の加工歪みによる再結晶が起こるので、再結晶が誘起され、更なる結晶粒の微細化が可能となる。これにより、一層優れた靱性、耐食性の特性が期待できる。
【0031】
再加熱炉から抽出後、オーステナイト域から直ちに焼入れを実施することによって、高強度と高靱性を具備する鋼管を得ることができる。通常、焼入れ後には、焼戻し処理が行われ、製品鋼管の品質の安定が図られる。
【0032】
【実施例】
本発明の継目無鋼管の製造方法の効果を確認するため、表1に示す化学組成からなる10種の素材鋼を準備した。
【0033】
【表1】

Figure 0004123672
準備した素材鋼を加熱炉に装入して、1250℃で2時間以上保持したのち、ピアサーを用いて穿孔圧延した後、マンドレルミル圧延を経て中空素管として、次いでストレッチレデュサーを用いて仕上圧延を行い、所定の仕上寸法の鋼管を製管した。その後、圧延仕上温度を測定し、測定結果に基づいてストレッチレデュサーの出側から再加熱炉の入側の間に設けられた搬送コンベヤー速度を調整して、再加熱炉への装入温度を475℃〜869℃と変動させた。その結果を表2に示す。
【0034】
次に、表2に示す保持条件で再加熱した後、直接焼入れを施して、540℃〜580℃の条件で焼戻しを実施して、製品鋼管を製造した。さらに従来のオフラインプロセスによる焼入れ・焼戻し処理と比較するため、従来例として、オフラインで920℃焼入れQおよび540℃〜580℃焼戻しTを実施した。
【0035】
焼入れままの鋼管からサンプルを採取し、旧オーステナイト結晶粒度を測定した。また焼戻し後の鋼管から試験片を切り出し、引張試験(YS、TS)およびシャルピー試験を行った。その結果を表2に示す。
【0036】
【表2】
Figure 0004123672
通常、油井管、ラインパイプ等に用いられる鋼管に要求される強度は、YSで740Mpa以上であり、靱性はvTrsで-80℃以下であるとされる。したがって、表2の結果から明らかなように、本発明例1〜9では、いずれも本発明で規定する化学組成および製造条件を満足しているので、ASTM規格 E112 で測定のオーステナイト結晶粒は7.5以上と微細であり、さらに、高強度(YS≧740Mpa)および高靱性(vTrs≦-80℃)の特性も具備している。しかも、これらの性能は、オフライン焼入れ焼戻し処理した鋼(従来例20、21)と同等のものとなっている。
【0037】
これに対し、比較例10〜12では、再加熱炉への装入温度、再加熱の保持温度のいずれかまたは両方が本発明で規定する範囲から外れることによって、特に、靱性の劣化が著しい。また、比較例13〜19では、本発明で規定する化学組成を具備しておらず、一部においてさらに再加熱条件も満足していないことから(比較例13〜15)、いずれも靱性の劣化が著しくなっている。
【0038】
【発明の効果】
本発明の継目無鋼管の製造方法によれば、仕上圧延後の再加熱から焼入れまでを連続したオンライン加工熱処理する場合であっても、再加熱炉の装入温度を管理することのよって、高価な合金鋼を添加することなしに、靱性に優れた高強度継目無鋼管を製造することができる。しかも、継目無鋼管の製造に際して、大幅な省エネルギーとプロセスの効率化が図れ、工業的に大きなコストダウンが可能になる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a seamless steel pipe excellent in strength and toughness, and more specifically, in the case of producing a steel material with a limited chemical composition as a raw material, a thermomechanical process using an online process is employed to continue to finish rolling. The present invention relates to a method for producing a high-strength seamless steel pipe excellent in toughness without adding expensive alloy steel by adjusting the temperature of the steel pipe before charging the reheating furnace.
[0002]
[Prior art]
In the Mannesmann mandrel mill pipe manufacturing method, which is often used for the production of seamless steel pipes, billets heated to high temperatures are pierced with a piercing mill (piercer), then rolled with a mandrel mill to form hollow shells, and then heated again. After the temperature rises, the steel pipe is finished to the specified dimensions with a stretch reducer, and then reheated in a reheating furnace, then quenched and tempered, and then refined as a product steel pipe .
[0003]
In the field of seamless steel pipe manufacturing that requires a large number of processing equipment and heat treatment equipment, simplification of the manufacturing process using online heat treatment is being studied from the viewpoint of energy saving and process saving. In particular, paying attention to the effective use of the heat held by the material after hot working, a process of reheating to the austenite temperature immediately after finish rolling and direct quenching has been introduced, thereby greatly saving energy As a result, the manufacturing process can be made more efficient and a large cost reduction can be obtained industrially.
[0004]
By the way, when it comes to employ | adopt the on-line process directly hardened after finish rolling, the crystal grain diameter of the manufactured steel pipe will become coarse easily, and the problem that toughness and corrosion resistance fall has arisen. In order to cope with such a problem, various production methods have been proposed that can make the crystal grains of a finish-rolled steel pipe finer even when a direct quenching process is employed. Yes.
[0005]
For example, in the production method proposed in Japanese Patent Laid-Open No. 63-96215, in order to refine the crystal grains, the mandrel mill is rapidly cooled to 350 ° C. or lower after the mandrel mill rolling, and then the elementary tube is heated again. And finish rolling. That is, it is a method of trying to refine the crystal grains of the steel tube that has been finish-rolled by combining rapid cooling and reheating with a hollow tube that has been mandrel mill-rolled before finish rolling.
[0006]
However, if the proposed manufacturing method is applied to the operation process, the processes from piercing rolling, mandrel mill rolling to finish rolling become complicated, energy consumption is large, and investment such as forced cooling equipment is required. For this reason, there is a problem that even if the thermomechanical processing by the online process is adopted, the energy saving and the process saving become insufficient, and a drastic reduction in manufacturing cost cannot be expected.
[0007]
[Problems to be solved by the invention]
As described above, in the thermomechanical processing by the conventional online process, toughness and corrosion resistance necessary for a product steel pipe have been ensured by combining forced cooling and reheating before finish rolling. For this reason, energy consumption is large, and investment such as forced facilities is necessary, and it cannot be a sufficient measure from the aspect of efficient production of seamless steel pipes.
[0008]
The present invention has been made in view of the above-mentioned problems, and limits the chemical composition of the steel material to be a raw material, and by adjusting the steel pipe temperature before charging the reheating furnace subsequent to finish rolling, it is expensive. An object of the present invention is to provide a method for producing a high-strength seamless steel pipe excellent in toughness without adding any alloy steel.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor has conducted many researches on steel materials having various chemical compositions, and as a result, even in a manufacturing process adopting online heat treatment, a reheating furnace is used after finishing rolling. It was found that by adjusting the time until charging, refinement of crystal grains can be obtained, and seamless steel pipes having the same performance as ordinary off-line heat treatment can be produced. It has also been clarified that the above time adjustment can be made by changing the operation speed of the transfer conveyor and transfer tray from the finish rolling to the reheating furnace charging.
[0010]
The present invention has been completed on the basis of such knowledge, and the gist of the method for producing a high-strength seamless steel pipe having excellent toughness is as follows (1) to (3).
(1) By mass%, C: 0.04 to 0.5%, Si: 0.1 to 1.0%, Mn: 0.2 to 1.5%, Cr: 0.1 to 1.5% , Mo: 0.01 to 1.0%, P: 0.03% or less, S: 0.003% or less, and Al: 0.005 to 0.5%, the balance from Fe and inevitable impurities Using the steel material as a raw material, finish rolling after piercing is performed, followed by reheating by holding the charging temperature into the reheating furnace by air cooling at a temperature of 850 to 1000 ° C. under Ac 1 −100 ° C. A method for producing a high-strength seamless steel pipe excellent in toughness, characterized by immediately quenching.
(2) In addition to the steel material of (1) above, in mass%, Ti: 0 to 0.5%, Nb: 0 to 0.1%, B: 0 to 0.01%, V: 0 to 0.15 %, Cu: 0 to 1.0%, Ni: 0 to 1.0%, and Ca: 0 to 0.004%.
(3) In the manufacturing methods of (1) and (2) above, the charging temperature into the reheating furnace is based on the rolling finishing temperature of the steel pipe measured after finish rolling, and the conveyor speed and / or tray operating speed. It is desirable to adjust the time from rolling to charging the reheating furnace.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the reason why the chemical composition and the manufacturing method of the steel material are limited as described above will be described. First, a chemical composition effective for providing steel with high strength and high toughness will be described. Here, the chemical composition% indicates mass%.
1. Chemical composition C of steel: 0.04 to 0.5%
C is an element necessary for improving the hardenability of the steel material and improving the strength. If the content is less than 0.04%, the hardenability is insufficient and high strength cannot be obtained. On the other hand, if the content exceeds 0.5%, cracking and delayed fracture are likely to occur, and stable production of seamless steel pipes becomes difficult. For this reason, C content shall be 0.04-0.5%.
[0012]
Si: 0.1-1.0%
Si is an element effective as a deoxidizing element for steel, and at the same time, has an effect of improving the strength of the steel material. In order to exhibit the effect as a deoxidizing element, it is necessary to contain 0.1% or more, but when it exceeds 1.0%, deterioration of toughness is observed. For this reason, Si content shall be 0.1 to 1.0%.
[0013]
Mn: 0.2-1.5%
Mn exerts deoxidation and desulfurization action of steel, but in order to exert this action, it is necessary to contain 0.2% or more. On the other hand, if the content exceeds 1.5%, deterioration of toughness is observed. For this reason, Mn content shall be 0.2 to 1.5%.
[0014]
Cr: 0.1-1.5%
Cr is an effective element because it improves the hardenability and at the same time increases the strength. However, if the content is less than 0.1%, these effects cannot be obtained, and if it exceeds 1.5%, the toughness deteriorates. For this reason, the Cr content is 0.1 to 1.5%.
[0015]
Mo: 0.01-1.0%
Mo enhances the hardenability of the steel material and exhibits an effect of increasing the temper softening resistance. In order to exert these actions, it is necessary to contain 0.01% or more. On the other hand, if it exceeds 1.0%, the toughness deteriorates. Therefore, the Mo content is set to 0.01 to 1.0%.
[0016]
P: 0.03% or less P is unavoidably present in steel as an impurity. If the content exceeds 0.03%, it segregates at the grain boundaries and lowers the toughness, so the content is set to 0.03% or less.
[0017]
S: 0.003% or less S is unavoidably present in steel as an impurity. If it is contained excessively, it exists as inclusions in the steel and deteriorates toughness, so its content is made 0.003% or less.
[0018]
Al: 0.005-0.5%
Al is an element useful as a deoxidizing material for steel. However, if the content is less than 0.005%, the effect cannot be obtained. On the other hand, if the content exceeds 0.5%, inclusions increase and the toughness decreases. . For this reason, Al content shall be 0.005-0.5%.
[0019]
Ti: 0 to 0.5%
Ti does not need to be added. When added, it is effective in securing the hardenability of the steel material, and further exerts an effect on the refinement of the rolled steel pipe. However, if the content exceeds 0.5%, the toughness is reduced. Therefore, when adding Ti, the content is made 0.5% or less.
[0020]
Nb: 0 to 0.1%
Nb may not be added. When added, it is effective for securing the hardenability of the steel material, and further effective for refining the rolled steel pipe. However, if the content exceeds 0.1%, the toughness is lowered. Therefore, when Nb is added, its content is 0.1% or less.
[0021]
B: 0 to 0.01%
B may not be added. When added, the hardenability is improved even if contained in a very small amount, so it is effective to add it when higher strength is required. However, an excessive content reduces toughness and increases the sensitivity to burning cracks. Therefore, when adding B, the content is made 0.01% or less.
[0022]
V: 0 to 0.15%
V may not be added. Addition improves temper softening resistance and hardenability. However, if the content exceeds 0.15%, the toughness is significantly reduced. Therefore, when V is added, its content is 0.15% or less.
[0023]
Cu: 0 to 1.0%
Cu may not be added. When added, it is effective in increasing the strength of the steel material and improving the corrosion resistance. Therefore, although it adds as needed, even if it contains exceeding 1.0% or more, the improvement of the performance corresponding to a cost rise is not seen. Therefore, when adding Cu, the content is made 1.0% or less.
[0024]
Ni: 0 to 1.0%
Ni need not be added. When added, it is effective in increasing the strength of the steel material and improving the corrosion resistance. However, even if the content exceeds 1.0%, the performance improvement commensurate with the cost increase is not observed. Therefore, when adding Ni, the content is made 1.0% or less.
[0025]
Ca: 0 to 0.004%
Ca need not be added. When Ca is added, the effect of desulfurization is increased and effective in suppressing hydrogen-induced cracking and the like. However, if the content exceeds 0.004%, the formation of Ca-based inclusions is promoted, and the toughness is deteriorated due to the decrease in cleanliness. Therefore, when adding Ca, the content is made 0.004% or less.
2. Production method In the production method of the present invention, the steel material containing the above chemical composition is used as a raw material, finish rolling is performed through piercing rolling, and subsequently, the charging temperature to the reheating furnace is reduced to Ac 1 -100 ° C or less by air cooling. It adjusts so that it may become, It hold | maintains on the temperature conditions of 850-1000 degreeC, It reheats, It is characterized by performing quenching immediately after that. The reason why the manufacturing method is limited as described above will be described below.
[0026]
First, to a charging temperature in the reheating furnace following the finish rolling below Ac 1 -100 ° C. has a was in the austenite phase at the completion of the finish rolling steel, Upon cooling to Ac 1 -100 ° C. or less in air, Since the cooling rate is slow, a ferrite phase is precipitated. Thereafter, when heating the steel tube to Ac 3 point or more temperature reheat furnace from Ac 1 -100 ° C. temperatures below occurs reverse transformed austenite F ferrite, the crystal grains of the steel pipe can be fine Because. In this case, time saving during heating in the reheating furnace, and energy saving - in terms of, charging temperature in the reheating furnace is desirable to immediately below Ac 1 -100 ° C..
[0027]
Specifically, in the heat treatment by online process, to adjust the time from rolling to reheating furnace charging so that the charging temperature in the reheating furnace becomes Ac 1 -100 ° C or lower, It is desirable to follow the procedure. That is, after piercing and rolling, after mandrel mill rolling and after finishing the steel pipe by pipe rolling, the rolling finishing temperature is measured, the measurement result is fed back, the conveyor speed and / or tray operation speed is changed, The time during which the finish-rolled steel pipe is conveyed from the end of rolling to the reheating furnace is adjusted. Thus, charging temperature to the reheating furnace can be adjusted to be less than Ac 1 -100 ° C..
[0028]
Normally, depending on the equipment layout of the finishing rolling mill and reheating furnace, the charging temperature in the reheating furnace at the standard transfer conveyor speed and tray operating speed can be determined from the dimensions, material, and finishing temperature of the finished rolled steel pipe. Predict. Based on the prediction result, the conveyor speed and the like are adjusted so that the charging temperature of the steel pipe satisfies the specified condition.
[0029]
Next, the reheating is maintained at a temperature of 850 to 1000 ° C. because the charging temperature of the reheating furnace is regulated to Ac 1 −100 ° C. or lower, so that the quenching start temperature is secured, 850 ° C. This is because the above-mentioned reheating is necessary. On the other hand, if reheating is performed at a temperature exceeding 1000 ° C., the growth of crystal grains becomes remarkable, and there is a possibility that toughness cannot be secured after quenching. In addition, by maintaining reheating under the above temperature conditions, not only the heat uniformity of each steel pipe in the reheating furnace but also the heat uniformity in the length direction can be maintained, and the strength and toughness of the product steel pipe vary in performance. Can be suppressed.
[0030]
Furthermore, a recrystallization effect due to processing distortion during rolling can be expected. That is, by maintaining reheating at a temperature of 850 to 1000 ° C., recrystallization occurs due to processing strain during rolling, so that recrystallization is induced and further refinement of crystal grains becomes possible. Thereby, further superior toughness and corrosion resistance characteristics can be expected.
[0031]
By performing quenching immediately from the austenite region after extraction from the reheating furnace, a steel pipe having high strength and high toughness can be obtained. Usually, after quenching, a tempering process is performed to stabilize the quality of the product steel pipe.
[0032]
【Example】
In order to confirm the effect of the manufacturing method of the seamless steel pipe of the present invention, 10 kinds of material steels having chemical compositions shown in Table 1 were prepared.
[0033]
[Table 1]
Figure 0004123672
The prepared material steel is charged into a heating furnace and held at 1250 ° C for 2 hours or more. After piercing and rolling using a piercer, it is subjected to mandrel mill rolling as a hollow shell, and then using a stretch reducer. Finish rolling was performed to produce a steel pipe having a predetermined finish dimension. After that, the rolling finishing temperature is measured, and the conveying conveyor speed provided between the exit side of the stretch reducer and the entrance side of the reheating furnace is adjusted based on the measurement result, and the charging temperature to the reheating furnace is adjusted. Was varied from 475 ° C to 869 ° C. The results are shown in Table 2.
[0034]
Next, after reheating under the holding conditions shown in Table 2, direct quenching was performed, and tempering was performed under conditions of 540 ° C to 580 ° C to produce a product steel pipe. Furthermore, in order to compare with the quenching and tempering process by the conventional offline process, 920 degreeC quenching Q and 540 degreeC-580 degreeC tempering T were implemented offline as a prior art example.
[0035]
A sample was taken from the as-quenched steel pipe and the prior austenite grain size was measured. Moreover, the test piece was cut out from the steel pipe after tempering, and the tension test (YS, TS) and the Charpy test were done. The results are shown in Table 2.
[0036]
[Table 2]
Figure 0004123672
Usually, the strength required for steel pipes used for oil well pipes, line pipes, etc. is 740 MPa or more for YS, and toughness is -80 ° C. or less for vTrs. Therefore, as is apparent from the results in Table 2, since Examples 1 to 9 of the present invention all satisfy the chemical composition and production conditions specified in the present invention, the austenite grain size measured by ASTM standard E112 is 7.5. It is fine as described above, and also has the characteristics of high strength (YS ≧ 740 Mpa) and high toughness (vTrs ≦ −80 ° C.). Moreover, these performances are equivalent to those of steels subjected to offline quenching and tempering (conventional examples 20 and 21).
[0037]
On the other hand, in Comparative Examples 10 to 12, deterioration in toughness is particularly significant when either or both of the charging temperature into the reheating furnace and the reheating holding temperature or both are out of the range defined in the present invention. Moreover, in Comparative Examples 13-19, since it does not have the chemical composition prescribed | regulated by this invention, and reheat conditions are not satisfied in part (Comparative Examples 13-15), all are deterioration of toughness. Has become remarkable.
[0038]
【The invention's effect】
According to the method for producing a seamless steel pipe of the present invention, it is expensive to manage the charging temperature of the reheating furnace even in the case of continuous on-line processing heat treatment from reheating to quenching after finish rolling. A high-strength seamless steel pipe having excellent toughness can be produced without adding an alloy steel. In addition, when manufacturing seamless steel pipes, significant energy saving and process efficiency can be achieved, and a large cost reduction can be achieved industrially.

Claims (3)

質量%で、C:0.04〜0.5%、Si:0.1〜1.0%、Mn:0.2〜1.5%、Cr:0.1〜1.5%、Mo:0.01〜1.0%、P:0.03%以下、S:0.003%以下およびAl:0.005〜0.5%を含有し、残部はFeおよび不可避的不純物からなる鋼材を素材として、穿孔後仕上圧延を行い、引き続いて空冷により再加熱炉への装入温度をAc1−100℃以下で850〜1000℃の温度条件で保持して再加熱を行い、その後直ちに焼入れを行うことを特徴とする靱性に優れた高強度継目無鋼管の製造方法。In mass%, C: 0.04 to 0.5%, Si: 0.1 to 1.0%, Mn: 0.2 to 1.5%, Cr: 0.1 to 1.5%, Mo: A steel material containing 0.01 to 1.0%, P: 0.03% or less, S: 0.003% or less and Al: 0.005 to 0.5% with the balance being Fe and inevitable impurities. as a material, subjected to finish after piercing, the charging temperature of the reheat furnace performs holding and re-heating at a temperature of 850 to 1000 ° C. at Ac 1 -100 ° C. or less by air cooling subsequent, immediately thereafter quenching A method for producing a high-strength seamless steel pipe excellent in toughness characterized by being performed. 請求項1の鋼材に、さらに質量%で、Ti:0〜0.5%、Nb:0〜0.1%、B:0〜0.01%、V:0〜0.15%、Cu:0〜1.0%、Ni:0〜1.0%およびCa:0〜0.004%を含有することを特徴とする靱性に優れた高強度継目無鋼管の製造方法。The steel material according to claim 1 is further mass%, Ti: 0 to 0.5%, Nb: 0 to 0.1%, B: 0 to 0.01%, V: 0 to 0.15%, Cu: 0 to 1.0%, Ni: 0. A method for producing a high-strength seamless steel pipe excellent in toughness, characterized by containing -1.0% and Ca: 0-0.004%. 再加熱炉への装入温度は、仕上圧延後に測定された鋼管の圧延仕上温度に基づいて、搬送コンベア速度および/またはトレイ動作速度を変化させて、仕上圧延後から再加熱炉装入までの時間を調整することを特徴とする請求項1または請求項2記載の靱性に優れた高強度継目無鋼管の製造方法。The charging temperature to the reheating furnace is changed from the finishing rolling to the reheating furnace charging by changing the conveying conveyor speed and / or tray operating speed based on the rolling finishing temperature of the steel pipe measured after finishing rolling. The method for producing a high strength seamless steel pipe excellent in toughness according to claim 1 or 2, wherein the time is adjusted.
JP2000056461A 2000-03-01 2000-03-01 Manufacturing method of high strength seamless steel pipe with excellent toughness Expired - Fee Related JP4123672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056461A JP4123672B2 (en) 2000-03-01 2000-03-01 Manufacturing method of high strength seamless steel pipe with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056461A JP4123672B2 (en) 2000-03-01 2000-03-01 Manufacturing method of high strength seamless steel pipe with excellent toughness

Publications (2)

Publication Number Publication Date
JP2001240913A JP2001240913A (en) 2001-09-04
JP4123672B2 true JP4123672B2 (en) 2008-07-23

Family

ID=18577403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056461A Expired - Fee Related JP4123672B2 (en) 2000-03-01 2000-03-01 Manufacturing method of high strength seamless steel pipe with excellent toughness

Country Status (1)

Country Link
JP (1) JP4123672B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282825A (en) * 2016-08-25 2017-01-04 浙江天马轴承有限公司 A kind of high-speed bearing steel and preparation method thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513551B2 (en) * 2004-12-22 2010-07-28 住友金属工業株式会社 Billet manufacturing method
JP4500193B2 (en) * 2005-03-28 2010-07-14 新日本製鐵株式会社 Manufacturing method of steel pipe for machine structural member
JP4945946B2 (en) 2005-07-26 2012-06-06 住友金属工業株式会社 Seamless steel pipe and manufacturing method thereof
WO2007111131A1 (en) 2006-03-28 2007-10-04 Sumitomo Metal Industries, Ltd. Process for production of seamless pipes
JP4618189B2 (en) * 2006-04-24 2011-01-26 住友金属工業株式会社 High strength case hardening steel pipe for ball cage
JP5195802B2 (en) * 2010-03-29 2013-05-15 新日鐵住金株式会社 Billet manufacturing method
CN102134680A (en) * 2011-04-19 2011-07-27 首钢总公司 Ultrahigh strength steel with 960MPa of yield strength and production method thereof
JP5177261B2 (en) 2011-08-01 2013-04-03 新日鐵住金株式会社 Controlled rolling method of seamless steel pipe with excellent strength and low temperature toughness
CN102690993A (en) * 2012-06-01 2012-09-26 内蒙古包钢钢联股份有限公司 Water cooled wall seamless tube used for thermal power and production method thereof
CN102943207B (en) * 2012-11-09 2015-02-18 谢亚平 High-strength fastener and processing method thereof
CN104046903B (en) * 2014-06-30 2017-01-11 宝山钢铁股份有限公司 Coil rod for Grade 13.9/Grade 14.9 delayed-fracture-resistant high-strength fasteners and manufacturing method thereof
CN104911490A (en) * 2015-04-27 2015-09-16 内蒙古包钢钢联股份有限公司 13Cr1Mo1V heat resistant seamless steel pipe and seamless preparation method
CN104962830B (en) * 2015-07-29 2017-03-15 山东墨龙石油机械股份有限公司 A kind of manufacture method of seamless steel pipe
US11453925B2 (en) 2016-08-01 2022-09-27 Nippon Steel Corporation Seamless steel pipe and method for producing same
JP6891828B2 (en) * 2018-01-25 2021-06-18 日本製鉄株式会社 High-strength seamless steel pipe and jack-up rig bracing pipe
CN110484814B (en) * 2019-08-05 2021-05-18 中国科学院金属研究所 High-strength steel seamless tube containing rare earth for aerospace and preparation method thereof
CN118159675A (en) 2021-10-26 2024-06-07 日本制铁株式会社 Steel pipe welded joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282825A (en) * 2016-08-25 2017-01-04 浙江天马轴承有限公司 A kind of high-speed bearing steel and preparation method thereof

Also Published As

Publication number Publication date
JP2001240913A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP4123672B2 (en) Manufacturing method of high strength seamless steel pipe with excellent toughness
US5938865A (en) Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
EP1288316A1 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JP3812168B2 (en) Manufacturing method of seamless steel pipe for line pipe with excellent strength uniformity and toughness
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
JP2007196237A (en) Method for producing seamless steel tube for machine structural component
JPH0713257B2 (en) Method for manufacturing soft wire without as-rolled surface abnormal phase
JP5266804B2 (en) Method for producing rolled non-heat treated steel
JPS58123858A (en) Steel for electric welded steel pipe for hollow stabilizer
JPS6159379B2 (en)
JP3717745B2 (en) Mandrel bar and its manufacturing method
JPH0672258B2 (en) Method for producing rolled steel bar with excellent homogeneity
JPH0925518A (en) Production of seamless steel tube with high strength and high corrosion resistance
JPH11302785A (en) Steel for seamless steel pipe
WO2017050230A1 (en) Online-controlled seamless steel tube cooling process and seamless steel tube manufacturing method with effective grain refinement
JPH0112815B2 (en)
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP4976985B2 (en) Manufacturing method of wire rod and steel bar with excellent low-temperature torsional characteristics
JP2000119749A (en) Production of chromium-molybdenum seamless steel pipe for machine structure
WO2020090149A1 (en) Steel for bolts, and method for manufacturing same
JP2003268453A (en) METHOD FOR MANUFACTURING HIGH-Si SPRING STEEL WIRE WITH REDUCED FERRITE DECARBONIZATION
JP3941749B2 (en) Method for producing softened steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Ref document number: 4123672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees