JP2007196237A - Method for producing seamless steel tube for machine structural component - Google Patents
Method for producing seamless steel tube for machine structural component Download PDFInfo
- Publication number
- JP2007196237A JP2007196237A JP2006014612A JP2006014612A JP2007196237A JP 2007196237 A JP2007196237 A JP 2007196237A JP 2006014612 A JP2006014612 A JP 2006014612A JP 2006014612 A JP2006014612 A JP 2006014612A JP 2007196237 A JP2007196237 A JP 2007196237A
- Authority
- JP
- Japan
- Prior art keywords
- less
- seamless steel
- temperature
- strength
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、従来法に比べ簡素化された製造工程を採用し、強度バラツキがなく、靭性に優れるとともに表面肌が良好であり、機械構造部品として最適な継目無鋼管の製造方法に関するものである。 The present invention relates to a method of manufacturing a seamless steel pipe that employs a simplified manufacturing process as compared to conventional methods, has no strength variation, has excellent toughness, and has a good surface skin, and is optimal as a machine structural component. .
継目無鋼管の製造において、高信頼性や高品質化の観点から、強度と靱性を要する製品の製造には、未だかなりの製品がオフラインでの熱処理が行われている。例えば、機械構造部品としてシリンダー等に使用される、引張強度が600MPa級ないしは800MPa級の鋼管は、強度と靭性を確保するためにオフラインで焼入れ・焼戻し(QT)処理が適用される。 In the manufacture of seamless steel pipes, from the viewpoint of high reliability and high quality, a significant amount of products are still subjected to offline heat treatment for manufacturing products that require strength and toughness. For example, steel pipes having a tensile strength of 600 MPa or 800 MPa used for cylinders or the like as mechanical structural parts are subjected to offline quenching and tempering (QT) treatment in order to ensure strength and toughness.
すなわち、高強度および高靭性の機械構造用継目無鋼管は、ビレットを穿孔機により穿孔して中空素管となし、プラグミルまたはマンドレルミルで延伸加工した後、サイザーまたはレデューサー等により定径加工を施し、冷却後、再加熱して焼入れ・焼戻しの熱処理を施し製造される。 In other words, seamless steel pipes for machine structures with high strength and toughness are made into hollow core pipes by drilling billets with a drilling machine, and after drawing with a plug mill or mandrel mill, they are subjected to constant diameter processing with a sizer or reducer. After cooling, it is reheated and subjected to heat treatment such as quenching and tempering.
このため、オフラインでの熱処理は、製管ラインとは別に熱処理炉を設置し、焼入れ・焼戻し熱処理を行う必要があり、経済的でなく製造コストを上昇させ、しかもリードタイムが長くなるという問題がある。これに対し、オンラインでの熱処理は、熱間加工後の素材の保有する熱を利用し、直ちに焼入れを行う直接焼入れプロセスで、工業的に大きなコストダウンが得られる。 For this reason, offline heat treatment requires the installation of a heat treatment furnace separately from the pipe production line, and it is necessary to perform quenching and tempering heat treatment, which is not economical and raises the manufacturing cost, and the lead time becomes long. is there. On the other hand, on-line heat treatment is a direct quenching process that uses the heat of the raw material after hot working and immediately quenches, resulting in a large cost reduction industrially.
例えば、特許文献1では、特定の成分系からなる鋼素材を鋼管に熱間加工し、直ちにその鋼管をAc3変態点以上の温度から内外面浸漬焼入れにより直接水焼入れし、次いでその鋼管を、T≦Ac1、並びに18000≦(T+273)・(20+logt)≦20000の両式を満足する温度T(℃)および焼戻し時間t(時間)で焼戻す高強度継目無鋼管の製造方法を提案している。 For example, in Patent Document 1, a steel material having a specific component system is hot-worked into a steel pipe, and the steel pipe is immediately water quenched by inner and outer surface immersion quenching from a temperature equal to or higher than the Ac 3 transformation point. Proposing a method for producing a high-strength seamless steel pipe tempered at a temperature T (° C.) and a tempering time t (hours) satisfying both T ≦ Ac 1 and 18000 ≦ (T + 273) · (20 + logt) ≦ 20000 Yes.
特許文献1で提案された製造方法を採用すれば、製管寸法により定径加工後の温度に各管毎に差が生じたり、また、各管毎に温度差が生じない場合でも、管端部と中央部とに温度差が生じ、焼入れでの温度バラツキに起因して管長手方向および円周方向における組織の均一性が得られず、強度バラツキや靭性低下を生ずることがある。 If the manufacturing method proposed in Patent Document 1 is adopted, even if there is a difference for each pipe in the temperature after constant diameter processing due to the pipe making dimensions, or even if there is no temperature difference for each pipe, There is a temperature difference between the central portion and the central portion, and due to temperature variation during quenching, the uniformity of the structure in the longitudinal direction and circumferential direction of the tube cannot be obtained, and strength variation and toughness degradation may occur.
また、構造用継目無鋼管の製造に際して、オンライン熱処理での高強度および高靭性を確保するため、熱間加工に引き続いてAr1温度以下まで冷却した後、所定の昇温速度で加熱し、次いで焼入れ後にAc1点以下の温度で焼戻す方法も提案されたが、熱間加工したのち、Ar1温度以下まで冷却することから、冷却に時間を要し、製管ラインを長くしたり、製造能率を下げる等の対応が必要になるとともに、リードタイムが長くなることになる。 Further, in the production of the structural seamless steel pipe, in order to ensure high strength and high toughness in the online heat treatment, after cooling to Ar 1 temperature or lower subsequent to hot working, heated at a predetermined heating rate, A method of tempering at a temperature of Ac 1 point or less after quenching was also proposed, but after hot working and cooling to Ar 1 temperature or less, it takes time for cooling, lengthening the pipe production line, While measures such as lowering the efficiency are required, the lead time becomes longer.
本発明は、上述した問題点に鑑みてなされたものであり、従来法より簡素化された製造工程で、強度バラツキがなく、靭性に優れるとともに表面肌が良好であり、機械構造部品として最適な継目無鋼管の製造方法を提供することを目的としている。 The present invention has been made in view of the above-described problems, and is a manufacturing process simplified from the conventional method. There is no variation in strength, excellent toughness, good surface skin, and optimal as a machine structural component. It aims at providing the manufacturing method of a seamless steel pipe.
本発明者らは、上記の課題を解決するため、オンライン熱処理における特性やそれに及ぼす合金元素の影響をついて、種々の検討を行った。その結果、直接にオンラインで焼入れするプロセスであっても、成分系を特定し、さらに、穿孔後の延伸加工と定径加工からなる仕上圧延の条件を限定し、適正な焼入れ・焼戻し熱処理を施すことによって、結晶粒度の細粒化を図ることができ、オフラインでの焼入れ・焼戻し熱処理を施したものと同等の特性が確保できることを知見した。 In order to solve the above-mentioned problems, the present inventors have conducted various studies on the characteristics in online heat treatment and the influence of alloy elements on the characteristics. As a result, even in the case of a direct on-line quenching process, the component system is specified, and the conditions for finish rolling consisting of stretching and constant diameter processing after drilling are limited, and appropriate quenching and tempering heat treatment is performed. As a result, it has been found that the crystal grain size can be reduced and the same characteristics as those obtained by offline quenching / tempering heat treatment can be secured.
上記の知見に基づくものであり、本発明の継目無鋼管の製造方法は、質量%で、C:0.10〜0.25%、Si:1.00%以下、Mn:0.20〜2.00%、P:0.030%以下、S:0.020%以下、Cr:0.1〜1.5%、Mo:0.5%以下、Ti:0.005〜0.030%およびV:0.01〜0.10%を含有し、Ti/N:3.5以下であり、残部がFeおよび不純物からなるビレットを用い、穿孔圧延したのち、延伸加工と定径加工からなる仕上圧延を断面減少率40%以上で、かつ仕上温度900℃以上で行い、冷却することなく直ちに900〜1000℃の温度に均熱し、焼入れ・焼戻し熱処理を連続してオンラインで行うことを特徴としている。 Based on the above findings, the production method of the seamless steel pipe of the present invention is in mass%, C: 0.10 to 0.25%, Si: 1.00% or less, Mn: 0.20 to 2 0.000%, P: 0.030% or less, S: 0.020% or less, Cr: 0.1-1.5%, Mo: 0.5% or less, Ti: 0.005-0.030% and V: containing 0.01 to 0.10%, Ti / N: 3.5 or less, and using a billet composed of Fe and impurities as the balance, after piercing and rolling, finishing consisting of stretching and constant diameter processing Rolling is performed at a cross-section reduction rate of 40% or more and at a finishing temperature of 900 ° C. or higher, immediately heated to 900 to 1000 ° C. without cooling, and subjected to quenching / tempering heat treatment continuously online. .
さらに、本発明の継目無鋼管の製造方法は、質量%で、Cu:0.5%以下、Ni:1.0%以下およびNb:0.01%以下のうちから1種または2種以上を含有するビレットを用いることが望ましい。さらに結晶粒度が細粒化し、強度と靭性に優れた機械構造部品用継目無鋼管を得ることができる。 Furthermore, the manufacturing method of the seamless steel pipe of this invention is 1 mass% or less, Cu: 0.5% or less, Ni: 1.0% or less, and Nb: 0.01% or less. It is desirable to use a billet containing. Further, the crystal grain size is reduced, and a seamless steel pipe for machine structural parts having excellent strength and toughness can be obtained.
本発明の継目無鋼管の製造方法によれば、オンラインでの焼入れ・焼戻し熱処理であっても、従来のオフラインの焼入れ・焼戻し熱処理したものと同等の性能を確保できるので、従来法に比較し、製造工程の簡素化、製管能率の向上および省エネルギーを達成できることから低コストであり、さらに強度バラツキがなく、靭性に優れるとともに表面肌が良好であることから、機械構造部品として最適な継目無鋼管を得ることができる。 According to the seamless steel pipe manufacturing method of the present invention, even if it is an online quenching and tempering heat treatment, it can ensure the same performance as that of the conventional offline quenching and tempering heat treatment, compared with the conventional method, Seamless steel pipe that is optimal as a machine structural component because it is low in cost because it can simplify the manufacturing process, improve pipe manufacturing efficiency, and save energy, and also has no strength variation, excellent toughness and good surface skin. Can be obtained.
本発明の製造方法を上記のように規定した理由について、ビレットの化学組成および製造条件に区分して説明する。以下の説明において、化学組成は「質量%」で示す。
1.ビレットの化学組成
C:0.10〜0.25%
Cは、強度を増加し焼入れ性を確保するのに必須の元素であるが、その含有量が0.10%未満ではその効果が十分でなく、一方、0.25%を超えると、焼入れ時の割れ発生および靭性の低下、並びに製品での溶接性および加工性が劣化する。このため、C含有量を0.10〜0.25%とした。さらに、高強度化にあたって合金元素の低減を図るために、C含有量の上限を0.16%とするのが望ましい。
The reason for defining the production method of the present invention as described above will be explained by dividing it into billet chemical composition and production conditions. In the following description, the chemical composition is indicated by “mass%”.
1. Billet chemical composition C: 0.10 to 0.25%
C is an essential element for increasing the strength and ensuring the hardenability, but if its content is less than 0.10%, its effect is not sufficient, while if it exceeds 0.25%, Generation of cracks and toughness, and weldability and workability of the product deteriorate. For this reason, C content was made into 0.10 to 0.25%. Furthermore, in order to reduce the alloy elements when increasing the strength, it is desirable to set the upper limit of the C content to 0.16%.
Si:1.00%以下
Siは、鋼の脱酸および強度向上に有効な元素であるが、その含有量が1.0%を超えて過剰に含有させると鋼を脆化させる。したがって、良好な靭性を確保するため、1.0%以下とした。
Si: 1.00% or less Si is an element effective for deoxidation and strength improvement of steel, but if its content exceeds 1.0% and is excessively contained, the steel is embrittled. Therefore, in order to ensure good toughness, the content was made 1.0% or less.
Mn:0.20〜2.00%
Mnは、鋼の脱酸・脱硫に必要であり、かつ強度、熱間加工性を改善し、適正な組織を得るために有用な元素であるが、その含有量が0.20%未満ではその効果が十分でなく、一方、2.00%を超えると強度が上がるものの、溶接性、加工性が劣化する。このため、Mn含有量は、0.20〜2.00% とした。
Mn: 0.20 to 2.00%
Mn is an element that is necessary for deoxidation and desulfurization of steel and is useful for improving strength and hot workability and obtaining an appropriate structure. However, if its content is less than 0.20%, The effect is not sufficient. On the other hand, if it exceeds 2.00%, the strength increases, but the weldability and workability deteriorate. Therefore, the Mn content is set to 0.20 to 2.00%.
P:0.030%以下
Pは、不純物として鋼中に不可避的に存在する元素であるが、含有が0.030%を超えると粒界に偏析して靭性を劣化させるため、不純物としての上限を0.030%とした。
P: 0.030% or less P is an element unavoidably present in steel as an impurity. However, if the content exceeds 0.030%, it segregates at grain boundaries and deteriorates toughness, so the upper limit as an impurity. Was 0.030%.
S:0.020%以下
Sは、Pと同様に不純物として鋼中に不可避的に存在する元素であるが、粗大な介在物を形成し、特に圧延方向と直角方向(T方向)の靭性を劣化させる。このため、不純物としてS含有量の上限を0.020%とした。
S: 0.020% or less S is an element that is unavoidably present in steel as an impurity like P, but forms coarse inclusions, and particularly has a toughness in a direction perpendicular to the rolling direction (T direction). Deteriorate. For this reason, the upper limit of the S content as an impurity is set to 0.020%.
Cr:0.1〜1.5%
Crは、Cと同様に焼入れ性を確保するのに必要な元素であるが、その含有量が0.1%未満ではその効果が十分でなく、一方、1.5%を超えると溶接性および加工性を低下させる。このため、Cr含有量は0.2〜1.5%とした。
Cr: 0.1 to 1.5%
Cr is an element necessary for ensuring hardenability like C. However, if its content is less than 0.1%, its effect is not sufficient, while if it exceeds 1.5%, weldability and Reduces workability. For this reason, Cr content was made into 0.2 to 1.5%.
Mo:0.5%以下
Moは、焼入れ性と高温焼戻しによる靭性確保に必要な元素であるが、その含有量が0.5%を超えるとその効果が飽和し、かつ偏析等により製管時の加工性を低下させる。このため、Mo含有量の上限を0.5%とした。
Mo: 0.5% or less Mo is an element necessary for securing hardenability and toughness by high-temperature tempering. However, when its content exceeds 0.5%, its effect is saturated and during pipe making due to segregation or the like. Reduces the workability. For this reason, the upper limit of Mo content was 0.5%.
Ti:0.005〜0.030%
Tiは、結晶粒度を細粒化し、靭性を向上させる効果を有する元素であるが、その含有量が0.005%未満ではその効果が十分でなく、また、0.030%を超えて多量に添加すると粗大な炭化物となり、靭性を低下させる。このため、Ti含有量は0.005〜0.030%とした。
Ti: 0.005-0.030%
Ti is an element having the effect of reducing the grain size and improving the toughness, but if its content is less than 0.005%, the effect is not sufficient, and more than 0.030% in large amounts. When added, coarse carbides are formed and the toughness is reduced. For this reason, Ti content was made into 0.005-0.030%.
さらに、Ti含有量が0.005〜0.030%の範囲であっても、後述するように、NによりTiNと固定することによりTiCの生成を制御するため、Ti/N:3.5以下の関係を満たすことが必要になる。 Furthermore, even if the Ti content is in the range of 0.005 to 0.030%, as described later, Ti / N: 3.5 or less in order to control the generation of TiC by fixing with TiN by N It is necessary to satisfy the relationship.
V:0.01〜0.10%
Vは、高温焼戻しによる靭性を向上させる効果を有する元素であるが、その含有量が0.01%未満ではその効果が十分でなく、また、0.10%を超えて多量に添加すると、粗大な炭化物となり、靭性を低下させる。このため、V含有量は0.01〜0.10%とした。
V: 0.01-0.10%
V is an element having an effect of improving toughness by high-temperature tempering, but if its content is less than 0.01%, its effect is not sufficient, and if added in excess of 0.10%, it is coarse. Carbides and lower toughness. For this reason, the V content is set to 0.01 to 0.10%.
Ti/N:3.5以下
Tiは、過剰に添加するとTiCが析出し鋼を劣化させる。TiCの析出を抑制するには、TiをNに結合させTiNとするのが有効である。TiとNの原子量の比から、Ti/Nの関係が3.5以下であればTiCの析出を抑制できる。
Ti / N: 3.5 or less When Ti is added excessively, TiC precipitates and deteriorates the steel. In order to suppress the precipitation of TiC, it is effective to combine Ti with N to form TiN. From the ratio of the atomic weight of Ti and N, precipitation of TiC can be suppressed if the Ti / N relationship is 3.5 or less.
本発明の製造方法では、ビレットの化学組成を上記の通り限定することによって、結晶粒度が細粒化し、強度と靭性に優れた機械構造部品用継目無鋼管を得ることができるが、さらに、強度および靭性を向上させたい場合に、上記の化学組成にNi、CuおよびNbのうち1種または2種以上を含有させるのが有効である。これら任意添加成分の含有量の限定理由は以下の通りである。 In the production method of the present invention, by limiting the chemical composition of the billet as described above, the crystal grain size can be reduced, and a seamless steel pipe for machine structural parts excellent in strength and toughness can be obtained. When it is desired to improve the toughness, it is effective to contain one or more of Ni, Cu and Nb in the chemical composition. The reasons for limiting the contents of these optional additives are as follows.
Cu:0.5%以下
Cuは、強度を高め、耐食性の向上に有効な元素であるが、その含有量が0.5%を超えると鋼管表面に欠陥が多発する。このため、Cuを含有させる場合には、その上限を0.5%とした。
Cu: 0.5% or less Cu is an element that increases strength and is effective for improving corrosion resistance. However, if its content exceeds 0.5%, defects occur frequently on the surface of the steel pipe. For this reason, when Cu is contained, the upper limit is made 0.5%.
Ni:1.0%以下
Niは、焼入れ性を改善すると共に、靭性を向上させる効果を有する元素であるが、高価であるため経済性の面から、含有させる場合には上限を1.0%とした。
Ni: 1.0% or less Ni is an element that has the effect of improving hardenability and improving toughness. However, since it is expensive, the upper limit is set to 1.0% in the case of inclusion from the economical aspect. It was.
Nb:0.01%以下
Nbは、Tiと同様に結晶粒度を細粒化させ、靭性を向上させる効果を有する元素であるが、オンライン熱処理プロセスではNb炭窒化物の析出偏在に起因する製品強度バラツキの原因となる。このため、Nbを含有させる場合には、その上限を0.01%とした。
2.製造条件
本発明の製造方法におけるビレットの加熱温度は、穿孔機で熱間穿孔できる温度であればよい。最適温度は、材質により異なり、高温延性と高温強度を考慮して決定する。通常は、1100〜1300℃の範囲に加熱する。穿孔工程は、穿孔機で中実のビレットに穿孔して中空素管とする工程である。穿孔工程においては、次の延伸加工と定径加工を合算した仕上圧延での強加工を容易とするため、コーン型ロールの交叉穿孔機を用いる。
Nb: 0.01% or less Nb is an element that has the effect of reducing the grain size and improving toughness in the same way as Ti, but in the online heat treatment process, the product strength caused by the uneven distribution of Nb carbonitrides It causes variation. For this reason, when Nb is contained, the upper limit was made 0.01%.
2. Manufacturing conditions The heating temperature of the billet in the manufacturing method of this invention should just be a temperature which can be hot drilled with a punch. The optimum temperature depends on the material and is determined in consideration of the high temperature ductility and high temperature strength. Usually, it heats in the range of 1100-1300 degreeC. The perforating step is a step of perforating a solid billet with a perforator to form a hollow shell. In the piercing process, a cone-type roll piercing machine is used in order to facilitate strong processing in finish rolling that includes the next drawing and constant diameter processing.
本発明の製造方法においては、穿孔圧延した中空素管の延伸加工と定径加工を合算した仕上圧延を、断面減少率40%以上で、かつ仕上温度900℃以上で行う必要がある。断面減少率40%未満の場合には、再結晶がスムーズに進行せず、結晶粒度の微細化による効果が得られないとともに、結晶粒が異常成長するおそれがある。仕上圧延における断面減少率の上限は、製管対象の材質やミルの能力によって異なることから、特に限定できないが、断面減少率が大きすぎると疵が発生し易くなるので、80%とするのが望ましい。 In the production method of the present invention, it is necessary to perform finish rolling, which is the sum of the stretching process and the constant diameter process of the hollow core tube that has been pierced and rolled, at a cross-section reduction rate of 40% or more and a finishing temperature of 900 ° C. or more. When the cross-section reduction rate is less than 40%, recrystallization does not proceed smoothly, the effect of making the crystal grain size fine cannot be obtained, and the crystal grains may grow abnormally. The upper limit of the cross-section reduction rate in finish rolling is not particularly limited because it varies depending on the material to be pipe-made and the capability of the mill. However, if the cross-section reduction rate is too large, wrinkles are likely to occur, so 80% is recommended. desirable.
仕上圧延における仕上温度は、製管対象の材質やミルの能力によって異なるが、900℃未満では素材鋼の変形抵抗が大きくなり、断面減少率40%以上の強加工を施すことが困難になることから900℃以上とした。また、仕上温度の上限は、製管対象の材質やミルの能力によって異なるため、特に限定できないが、1100℃とするのが望ましい。 The finishing temperature in finish rolling varies depending on the material to be pipe-made and the ability of the mill, but if it is less than 900 ° C, the deformation resistance of the material steel becomes large and it becomes difficult to perform strong processing with a cross-section reduction rate of 40% or more. To 900 ° C. or higher. Further, the upper limit of the finishing temperature varies depending on the material to be pipe-made and the capability of the mill, and thus is not particularly limited, but is preferably 1100 ° C.
本発明の製造方法では、仕上圧延と焼入れ・焼戻し熱処理との間で、冷却することなく、直ちに再結晶処理(焼ならし)を実施することが大きな特徴であり、これによって加工と熱処理との組合せで再結晶が誘起され、結晶粒の整粒化が可能になる。 The production method of the present invention is characterized in that the recrystallization treatment (normalization) is performed immediately without cooling between the finish rolling and the quenching / tempering heat treatment. Recombination is induced by the combination, and the grain size can be adjusted.
本発明の製造方法においては、従来技術で行われていたように、仕上圧延の途中工程で延伸加工と定径加工の間で再加熱し、均熱後に定径加工する必要がない。このため、均熱温度を再結晶が進行する最低温度に設定することができ、整粒化された再結晶粒を得ることができる。 In the production method of the present invention, as in the prior art, it is not necessary to reheat between the stretching process and the constant diameter process in the intermediate process of finish rolling, and to perform the constant diameter process after soaking. For this reason, the soaking temperature can be set to the lowest temperature at which recrystallization proceeds, and recrystallized grains that have been sized can be obtained.
均熱温度は、本発明が対象とするビレット(Cr−Mo鋼)の場合、900℃未満では再結晶化に長時間を必要とし、製管効率が顕著に低下する。また、1000℃を超えると、結晶粒の粗粒化が甚だしく、靭性が低下して二次加工等に際して割れ発生の原因となる。したがって、均熱温度は、900〜1000℃の温度域とした。均熱後は、直ちに焼入れ処理を実施する。 In the case of the billet (Cr—Mo steel) targeted by the present invention, the soaking temperature is less than 900 ° C., requiring a long time for recrystallization, and the pipe making efficiency is significantly reduced. On the other hand, when the temperature exceeds 1000 ° C., the crystal grains are excessively coarsened and the toughness is lowered, which causes cracks during secondary processing. Therefore, the soaking temperature was set to a temperature range of 900 to 1000 ° C. Immediately after soaking, quenching is performed.
オフラインでの焼入れ処理を行う場合は、常温からの昇温が必要になるため、加熱炉内での滞留時間が長くなり、経済性に劣り、かつ表面スケールの成長が大きく、用途によっては製品でのスケール除去のための酸洗、ショットブラスト等の工程が必要になる。これに対し、本発明の製造方法では、900℃以上の高温で仕上がった鋼管を、そのまま再加熱炉で均熱できるため、在炉時間も30分未満に抑えることができ、エネルギーコストの面で経済性に優れているとともに、表面肌が良好になる。 When performing off-line quenching treatment, it is necessary to raise the temperature from room temperature, so the residence time in the heating furnace becomes longer, the economy is inferior, and the growth of the surface scale is large. Steps such as pickling and shot blasting for removing the scale are required. On the other hand, in the manufacturing method of the present invention, since the steel pipe finished at a high temperature of 900 ° C. or higher can be soaked in a reheating furnace as it is, the in-furnace time can be suppressed to less than 30 minutes, and in terms of energy cost It is excellent in economic efficiency and the surface skin becomes good.
本発明における焼戻し処理は、目標強度を確保できるように所定温度で焼戻を施す。本発明が対象とするビレット(Cr−Mo鋼)では、Vが添加されているので、500〜600℃ではVC析出による靭性の劣化があるため、通常、620〜720℃の温度で焼戻を行う。 In the tempering process in the present invention, tempering is performed at a predetermined temperature so as to ensure the target strength. In the billet (Cr—Mo steel) targeted by the present invention, since V is added, since there is a deterioration in toughness due to VC precipitation at 500 to 600 ° C., tempering is usually performed at a temperature of 620 to 720 ° C. Do.
表1に示す化学組成の発明鋼A〜G、および比較鋼H〜Mを慣用される方法によって溶製し、分塊圧延して直径225mmのビレットとした。 Inventive steels A to G and comparative steels H to M having chemical compositions shown in Table 1 were melted by a commonly used method and subjected to ingot rolling to form billets having a diameter of 225 mm.
各ビレットは1250℃に加熱した後、穿孔機を用いて中空素管とした。そして、試験No.1〜7の本発明例では、延伸加工と定径加工からなる仕上圧延を、表2に示す圧延条件で行い、外径240mm、肉厚8〜30mmの継目無鋼管を製管し、冷却することなく直ちに表2に示す均熱温度で保持した後、焼入れ・焼戻し熱処理を行った。 Each billet was heated to 1250 ° C. and then formed into a hollow shell using a punch. And test no. In Examples 1 to 7 of the present invention, finish rolling consisting of stretching and constant diameter processing is performed under the rolling conditions shown in Table 2, and a seamless steel pipe having an outer diameter of 240 mm and a wall thickness of 8 to 30 mm is formed and cooled. Without being immediately maintained at the soaking temperature shown in Table 2, quenching and tempering heat treatment was performed.
試験No.8〜13の比較例では、本発明で規定する範囲を外れた比較鋼を用いて、表2に示す圧延条件で延伸加工と定径加工からなる仕上圧延を行い、外径240mm、肉厚8〜30mmの継目無鋼管を製管し、冷却することなく直ちに表2に示す条件で均熱保持した後、焼入れ・焼戻し熱処理を行った。 Test No. In Comparative Examples 8-13, finish rolling consisting of stretching and constant diameter processing was performed under the rolling conditions shown in Table 2 using comparative steels outside the range specified in the present invention, and the outer diameter was 240 mm and the wall thickness was 8 A seamless steel pipe having a thickness of ˜30 mm was produced, and immediately heated under the conditions shown in Table 2 without cooling, followed by quenching and tempering heat treatment.
また、試験No.14〜17の比較例では、延伸加工と定径加工からなる仕上圧延を、表2に示す圧延条件(試験No.15、16は本発明で規定する範囲を外れた条件)で行い、外径240mm、肉厚8〜30mmの継目無鋼管を製管した。そして、得られた各継目無鋼管は、冷却することなく直ちに表2に示す条件(試験No.14、17は本発明で規定する範囲を外れた条件)で再加熱保持した後、焼入れ・焼戻し熱処理を行った。 In addition, Test No. In Comparative Examples 14 to 17, finish rolling consisting of stretching and constant diameter processing is performed under the rolling conditions shown in Table 2 (Test Nos. 15 and 16 are outside the range defined in the present invention). A seamless steel pipe having a thickness of 240 mm and a thickness of 8 to 30 mm was produced. And each obtained seamless steel pipe was quenched and tempered after being reheated and held under the conditions shown in Table 2 (Test Nos. 14 and 17 were outside the range defined in the present invention) immediately without cooling. Heat treatment was performed.
さらに、試験No.18〜20の従来例では、延伸加工と定径加工からなる仕上圧延を、表2に示す条件で実施し、外径240mm、肉厚8〜30mmの継目無鋼管を製管した。そして、得られた各継目無鋼管は、常温まで冷却し、オフラインの焼入れ炉に装入して表2に示す条件に加熱後、水冷焼入れ・焼戻し熱処理を実施した。なお、表2中の均熱温度の( )内は、仕上圧延後、一旦常温まで冷却し、焼入れ炉に装入して昇温均熱した温度を示す。 Furthermore, test no. In the conventional examples of 18 to 20, finish rolling consisting of stretching and constant diameter processing was performed under the conditions shown in Table 2 to produce seamless steel pipes having an outer diameter of 240 mm and a wall thickness of 8 to 30 mm. Each obtained seamless steel pipe was cooled to room temperature, charged into an offline quenching furnace, heated to the conditions shown in Table 2, and then subjected to water-cooling quenching and tempering heat treatment. In Table 2, the soaking temperature in parentheses () indicates the temperature after the finish rolling, once cooled to room temperature, charged in a quenching furnace, and heated and soaked.
得られた各継目無鋼管の評価は、機械的特性をJIS Z2201の金属材料引張試験片に規定の12C号試験片を用い、JIS Z2241に規定の金属材料引張試験方法に準じて引張試験を実施し、引張強度(TS)が590MPa以上、および降伏強さ(YS)が490MPa以上を目標値とした。 Evaluation of each obtained seamless steel pipe was conducted using the 12C test piece specified for the mechanical material of JIS Z2201 as the metal material tensile test piece and performing a tensile test according to the metal material tensile test method specified in JIS Z2241. The target values were the tensile strength (TS) of 590 MPa or more and the yield strength (YS) of 490 MPa or more.
また、靭性は、JIS Z2202の金属材料衝撃試験片に規定の10mm幅のVノッチ試験片を用い、JIS Z2242に規定の金属材料衝撃試験方法に準じてシャルピー衝撃試験を実施し、0℃での吸収エネルギー(J)を測定し、100J以上を目標値とした。 As for toughness, a V-notch test piece with a width of 10 mm specified for a metal material impact test piece of JIS Z2202, a Charpy impact test was performed according to the metal material impact test method specified in JIS Z2242, and Absorbed energy (J) was measured, and 100 J or more was set as a target value.
評価は、引張強度および降伏強さ、並びに吸収エネルギーのいずれもが目標値を満足する場合を○とし、いずれかが目標値を満足しない場合を×とした。試験結果および評価結果を表3に示す In the evaluation, a case where all of the tensile strength, yield strength, and absorbed energy satisfy the target value was evaluated as ◯, and a case where any of the tensile strength and yield strength did not satisfy the target value was evaluated as x. Test results and evaluation results are shown in Table 3.
表2、表3に示すように、試験No.1〜7の本発明例では、機械的特性、吸収エネルギーともにバラツキが少なく、試験No.18〜20の従来例とほぼ同等の性能を示している。さらに、表面肌は良好な状態であった。これに対し、試験No.8〜17の比較例では、本発明の条件範囲を満足していないため、試験No.18〜20の従来例の性能を確保できず、いずれも×の評価であった。 As shown in Tables 2 and 3, test no. In Examples 1 to 7 of the present invention, there is little variation in both mechanical characteristics and absorbed energy. The performance is almost the same as that of 18-20 conventional examples. Furthermore, the surface skin was in a good state. In contrast, test no. In Comparative Examples 8 to 17, the condition range of the present invention was not satisfied. The performance of conventional examples of 18 to 20 could not be ensured, and all were evaluated as x.
本発明の継目無鋼管の製造方法によれば、オンラインでの焼入れ・焼戻し熱処理であっても、従来のオフラインの焼入れ・焼戻し熱処理したものと同等の性能を確保できるので、従来法に比較し、製造工程の簡素化、製管能率の向上および省エネルギーを達成でき、安価であり、さらに強度バラツキがなく、靭性に優れるとともに表面肌が良好であることから、機械構造部品として最適な継目無鋼管を得ることができる。これにより、機械構造部品用継目無鋼管の製造方法として広く採用することができる。
According to the seamless steel pipe manufacturing method of the present invention, even if it is an online quenching and tempering heat treatment, it can ensure the same performance as that of the conventional offline quenching and tempering heat treatment, compared with the conventional method, Seamless steel pipes that are optimal as machine structural parts are available because they can simplify the manufacturing process, improve pipe manufacturing efficiency, save energy, are inexpensive, have no strength variation, have excellent toughness, and have a good surface texture. Obtainable. Thereby, it can employ | adopt widely as a manufacturing method of the seamless steel pipe for machine structural components.
Claims (2)
穿孔圧延したのち、延伸加工と定径加工からなる仕上圧延を断面減少率40%以上で、かつ仕上温度900℃以上で行い、冷却することなく直ちに900〜1000℃の温度に均熱し、焼入れ・焼戻し熱処理を連続してオンラインで行うことを特徴とする機械構造部品用継目無鋼管の製造方法。 In mass%, C: 0.10 to 0.25%, Si: 1.00% or less, Mn: 0.20 to 2.00%, P: 0.030% or less, S: 0.020% or less, Cr: 0.1 to 1.5%, Mo: 0.5% or less, Ti: 0.005 to 0.030% and V: 0.01 to 0.10%, Ti / N: 3. 5 or less, and the balance is Fe and impurities consisting of impurities,
After piercing and rolling, finish rolling consisting of stretching and constant diameter processing is performed at a cross-section reduction rate of 40% or more and a finishing temperature of 900 ° C. or more, and immediately heated to 900 to 1000 ° C. without cooling, A method for producing a seamless steel pipe for machine structural parts, wherein tempering heat treatment is continuously performed online.
Furthermore, billets containing one or more of Cu: 0.5% or less, Ni: 1.0% or less, and Nb: 0.01% or less are used. Item 2. A method for producing a seamless steel pipe for machine structural parts according to Item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006014612A JP2007196237A (en) | 2006-01-24 | 2006-01-24 | Method for producing seamless steel tube for machine structural component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006014612A JP2007196237A (en) | 2006-01-24 | 2006-01-24 | Method for producing seamless steel tube for machine structural component |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007196237A true JP2007196237A (en) | 2007-08-09 |
Family
ID=38451348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006014612A Pending JP2007196237A (en) | 2006-01-24 | 2006-01-24 | Method for producing seamless steel tube for machine structural component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007196237A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010061882A1 (en) * | 2008-11-26 | 2010-06-03 | 住友金属工業株式会社 | Seamless steel pipe and method for manufacturing same |
CN102943213A (en) * | 2012-11-28 | 2013-02-27 | 钢铁研究总院 | Abrasion-resistant steel for low-alloy ultra-high strength engineering machine and preparation method thereof |
CN105032976A (en) * | 2015-05-28 | 2015-11-11 | 攀钢集团成都钢钒有限公司 | Production method of titanium alloy seamless pipe |
CN107541660A (en) * | 2017-09-27 | 2018-01-05 | 马鞍山平文锻造有限公司 | A kind of high-performance disintegrating apparatus rear-bank rotor housing and its processing method |
CN109778064A (en) * | 2019-01-11 | 2019-05-21 | 包头钢铁(集团)有限责任公司 | A kind of economical 555MPa grades of seamless steel pipes and preparation method thereof |
JP2019112705A (en) * | 2017-12-26 | 2019-07-11 | 日本製鉄株式会社 | Seamless steel tube and manufacturing method of seamless steel tube |
JP2020019976A (en) * | 2018-07-30 | 2020-02-06 | 日本製鉄株式会社 | Seamless steel pipe for hot forging |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0250913A (en) * | 1988-08-11 | 1990-02-20 | Nippon Steel Corp | Production of low alloy high tension seamless steel pipe having fine grained structure |
JPH04358026A (en) * | 1991-02-05 | 1992-12-11 | Nippon Steel Corp | Production of seamless low alloy steel tube having fine-grained structure |
JPH09118919A (en) * | 1995-10-26 | 1997-05-06 | Sumitomo Metal Ind Ltd | Manufacture of steel product excellent in seawater corrosion resistance |
JPH09235617A (en) * | 1996-02-29 | 1997-09-09 | Sumitomo Metal Ind Ltd | Production of seamless steel tube |
JP2000119749A (en) * | 1998-10-15 | 2000-04-25 | Sumitomo Metal Ind Ltd | Production of chromium-molybdenum seamless steel pipe for machine structure |
-
2006
- 2006-01-24 JP JP2006014612A patent/JP2007196237A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0250913A (en) * | 1988-08-11 | 1990-02-20 | Nippon Steel Corp | Production of low alloy high tension seamless steel pipe having fine grained structure |
JPH04358026A (en) * | 1991-02-05 | 1992-12-11 | Nippon Steel Corp | Production of seamless low alloy steel tube having fine-grained structure |
JPH09118919A (en) * | 1995-10-26 | 1997-05-06 | Sumitomo Metal Ind Ltd | Manufacture of steel product excellent in seawater corrosion resistance |
JPH09235617A (en) * | 1996-02-29 | 1997-09-09 | Sumitomo Metal Ind Ltd | Production of seamless steel tube |
JP2000119749A (en) * | 1998-10-15 | 2000-04-25 | Sumitomo Metal Ind Ltd | Production of chromium-molybdenum seamless steel pipe for machine structure |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010061882A1 (en) * | 2008-11-26 | 2010-06-03 | 住友金属工業株式会社 | Seamless steel pipe and method for manufacturing same |
JP4475440B1 (en) * | 2008-11-26 | 2010-06-09 | 住友金属工業株式会社 | Seamless steel pipe and manufacturing method thereof |
US8317946B2 (en) | 2008-11-26 | 2012-11-27 | Sumitomo Metal Industries, Ltd. | Seamless steel pipe and method for manufacturing the same |
CN102943213A (en) * | 2012-11-28 | 2013-02-27 | 钢铁研究总院 | Abrasion-resistant steel for low-alloy ultra-high strength engineering machine and preparation method thereof |
CN105032976A (en) * | 2015-05-28 | 2015-11-11 | 攀钢集团成都钢钒有限公司 | Production method of titanium alloy seamless pipe |
CN107541660A (en) * | 2017-09-27 | 2018-01-05 | 马鞍山平文锻造有限公司 | A kind of high-performance disintegrating apparatus rear-bank rotor housing and its processing method |
JP2019112705A (en) * | 2017-12-26 | 2019-07-11 | 日本製鉄株式会社 | Seamless steel tube and manufacturing method of seamless steel tube |
JP2020019976A (en) * | 2018-07-30 | 2020-02-06 | 日本製鉄株式会社 | Seamless steel pipe for hot forging |
JP7063169B2 (en) | 2018-07-30 | 2022-05-09 | 日本製鉄株式会社 | Seamless steel pipe for hot forging |
CN109778064A (en) * | 2019-01-11 | 2019-05-21 | 包头钢铁(集团)有限责任公司 | A kind of economical 555MPa grades of seamless steel pipes and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4632000B2 (en) | Seamless steel pipe manufacturing method | |
US6846371B2 (en) | Method for making high-strength high-toughness martensitic stainless steel seamless pipe | |
US11466333B2 (en) | Continuous hot rolled coil for high collapse-resistant sew petroleum casing and manufacturing method thereof | |
JP4123672B2 (en) | Manufacturing method of high strength seamless steel pipe with excellent toughness | |
JP2007196237A (en) | Method for producing seamless steel tube for machine structural component | |
JPH0598350A (en) | Production of line pipe material having high strength and low yield ratio for low temperature use | |
JP2000104117A (en) | Production of seamless steel pipe for linepipe excellent in toughness and uniformity of strength | |
CN105063511B (en) | Ultra-low carbon bainite thin gauge steel plate rolled through heavy and medium plate mill and production method of ultra-low carbon bainite thin gauge steel plate | |
JPH05271772A (en) | Manufacture of steel pipe for oil well excellent in sulfide stress cracking resistance | |
JP2003105441A (en) | METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS | |
JP2527511B2 (en) | Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance | |
JP2001247931A (en) | Non-heattreated high strength seamless steel pipe and its production method | |
JP2001262275A (en) | High tensile strength seamless steel pipe excellent in toughness, ductility and weldability and its producing method | |
JP3680764B2 (en) | Method for producing martensitic stainless steel pipe | |
JP2000119749A (en) | Production of chromium-molybdenum seamless steel pipe for machine structure | |
JP2527512B2 (en) | Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance | |
JP2000096142A (en) | Method for reducing steel tube | |
JP3249210B2 (en) | Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance | |
JP3214351B2 (en) | Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength | |
JPH06184635A (en) | Production of high strength seamless steel pipe excellent in fracture propagating resistance | |
JP2004027351A (en) | Method for producing high strength and high toughness martensitic stainless steel seamless pipe | |
JPH07102321A (en) | Production of non-heattreated type resistance welded oil well pipe having tensile strength of 800mpa and above | |
JPH08100214A (en) | Production of high strength seamless steel tube | |
JP3214350B2 (en) | Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength | |
JPH01159321A (en) | Finish rolling method for austenitic stainless seamless steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20080423 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101102 |
|
A02 | Decision of refusal |
Effective date: 20110517 Free format text: JAPANESE INTERMEDIATE CODE: A02 |