JPH01159321A - Finish rolling method for austenitic stainless seamless steel pipe - Google Patents

Finish rolling method for austenitic stainless seamless steel pipe

Info

Publication number
JPH01159321A
JPH01159321A JP31731487A JP31731487A JPH01159321A JP H01159321 A JPH01159321 A JP H01159321A JP 31731487 A JP31731487 A JP 31731487A JP 31731487 A JP31731487 A JP 31731487A JP H01159321 A JPH01159321 A JP H01159321A
Authority
JP
Japan
Prior art keywords
finish rolling
pipe
austenitic stainless
stainless steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31731487A
Other languages
Japanese (ja)
Other versions
JPH0547603B2 (en
Inventor
Tetsuo Shimizu
哲雄 清水
Akishi Sasaki
佐々木 晃史
Isao Takada
高田 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31731487A priority Critical patent/JPH01159321A/en
Publication of JPH01159321A publication Critical patent/JPH01159321A/en
Publication of JPH0547603B2 publication Critical patent/JPH0547603B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a seamless steel pipe having excellent intergranular corrosion resistance with a simple state by subjecting a stock pipe for rolling to finish rolling at a specific temp., then cooling the pipe under specific conditions at the time of producing the austenitic stainless seamless steel pipe. CONSTITUTION:The stock pipe for finish rolling made of an austenitic stainless steel contg., by weight %, <0.08% C, <1.0% Si, <2.0% Mn, 16-26% Cr, and <0.3% N is heated to a 1050-1200%oC range. The stock pipe for finish rolling is then subjected to the finish rolling under the conditions under which the finish temp., i.e., the finished pipe temp. T( deg.C) on the outlet side of a mandrel mill satisfies equation II according to the working strain epsilon at the time of the finish rolling expressed by equation I when the sectional area of the stock pipe for finish rolling is designated as Ao(cm<2>) and the sectional area of the finished pipe as A(cm<2>). The pipe is in succession cooled under the conditions under which the average cooling rate V( deg.C/sec) satisfies V>=C<3>X10<4> (C; the carbon content expressed by weight %) in a 900-500 deg.C region. The seamless steel pipe made of the austenitic stainless steel which has uniformly fine crystal grains and has the extremely low corrosiveness at the crystal grain boundaries is produced even if a heat treatment stage for solutionization is omitted.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、オーステナイト系ステンレス継目無鋼管の
仕上げ圧延方法に関し、とくに該ステンレス継目無鋼管
の製品特性の劣化を伴うことなしに製造工程の簡略化を
図ろうとするものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for finish rolling a seamless austenitic stainless steel pipe, and in particular, simplifies the manufacturing process without deteriorating the product characteristics of the seamless stainless steel pipe. This is an attempt to make the world a better place.

(従来の技術) 継目無鋼管は一般にマンドレルミル方式、プラグミル方
式等の圧延法、あるいは、ユージンセジュルネ方式、エ
アハルトブツシュベンチ方式等の熱間押出法で製造され
るが、比較的小径サイズの造管には生産性、寸法精度が
優れているマンドレルミル方式の圧延法が広く利用され
ている。
(Prior art) Seamless steel pipes are generally manufactured by rolling methods such as the mandrel mill method and plug mill method, or hot extrusion methods such as the Eugene Sejourne method and the Erhard-Busch bench method. Mandrel mill rolling is widely used for pipe manufacturing because of its excellent productivity and dimensional accuracy.

さて従来、オーステナイト系ステンレス継目無鋼管をマ
ンドレルミル方式にて製造する場合の具体的な工程とし
ては、継目無鋼管用の素材ビレットを回転炉床式加熱炉
において所定の温度まで加熱し、その後マンネスマンピ
アサにより穿孔圧延を施すかあるいは連続鋳造機等によ
ってまず中空素管を製造する。そして得られた中空素管
を延伸圧延機であるマンドレルミルにて減肉延伸する。
Conventionally, the specific process for producing seamless austenitic stainless steel pipes using the mandrel mill method is to heat a billet of material for seamless steel pipes to a predetermined temperature in a rotary hearth heating furnace, and then use a mandrel mill. First, a hollow tube is produced by piercing and rolling with a piercer or by using a continuous casting machine or the like. Then, the obtained hollow shell tube is stretched to reduce its thickness using a mandrel mill, which is a stretching and rolling mill.

ここにマンドレルミルは中空素管にマンドレルバ−を挿
入した状態で延伸圧延する圧延機で、通常6〜8基のロ
ールスタンドから構成されており、各ロールスタンドに
は一対の孔型ロールを備え、隣接するロールスタンド間
ではこの孔型ロールの回転軸を圧延軸に垂直な面内で相
互に90度づつずらして配置している。中空素管はマン
ドレルミルで元の長さの2〜4倍の長、さに延伸され、
仕上圧延用素管となる。次に仕上げ圧延用素管は、必要
に応じて再加熱炉によって通常900℃〜1000℃の
間の所定の温度に再加熱された後、仕上げの圧延機であ
る、例えばストレッチレデューサ−によって絞り圧延さ
れさらに冷却床で常温まで冷却され仕上り管となる。ス
トレッチレデューサ−では素管の外径が最大で75%も
絞られ、かつ素材ビレットの長さの40倍以上にも延伸
され、さらにその外表面はストレッチレデューサ−の最
終側の数スタンドの真円孔型ロールによって定形される
ため比較的優れた外径寸法精度の仕上り管となる。その
後仕上り管は、耐食性、所定の機械的性質を附加する目
的で実施される固溶化熱処理のために熱処理炉にて再び
1010℃〜1150℃に加熱保持され、その後焼入槽
によって常温まで冷却される。そして最後に矯正機を経
たのち酸洗槽によって表面のスケールが除去される(第
2図参照)。
Here, a mandrel mill is a rolling mill that performs elongation rolling with a mandrel bar inserted into a hollow tube, and usually consists of 6 to 8 roll stands, each roll stand is equipped with a pair of grooved rolls, Adjacent roll stands are arranged such that the rotation axes of the grooved rolls are shifted from each other by 90 degrees in a plane perpendicular to the rolling axis. The hollow tube is stretched to a length 2 to 4 times its original length using a mandrel mill.
This becomes the raw tube for finish rolling. Next, the raw pipe for finish rolling is reheated to a predetermined temperature, usually between 900°C and 1000°C, in a reheating furnace as necessary, and then reduced and rolled in a finishing rolling mill, for example, a stretch reducer. The tube is then cooled down to room temperature on a cooling bed to become a finished tube. In a stretch reducer, the outer diameter of the raw pipe is reduced by up to 75%, and it is stretched to more than 40 times the length of the material billet, and the outer surface is as perfect a circle as the last few stands of the stretch reducer. Because it is shaped using grooved rolls, the finished tube has relatively excellent outer diameter dimensional accuracy. Thereafter, the finished tube is heated and maintained at 1010°C to 1150°C again in a heat treatment furnace for solution heat treatment, which is carried out for the purpose of adding corrosion resistance and predetermined mechanical properties, and then cooled to room temperature in a quenching tank. Ru. Finally, after passing through a straightening machine, surface scale is removed in a pickling tank (see Figure 2).

(発明が解決しようとする問題点) ところで、従来の技術に従って製造されるオーステナイ
ト系ステンレス継目無鋼管は、上述の如く所望の外径寸
法に仕上げたのちに、固溶化熱処理を行うことが不可欠
であるため再加熱による余計な熱処理費がかかるだけで
なく、固溶化熱処理を施しても必ずしも均一で微細な結
晶粒が得られるとは限らなかった。
(Problems to be Solved by the Invention) By the way, it is essential for seamless austenitic stainless steel pipes manufactured according to conventional techniques to be subjected to solution heat treatment after finishing them to the desired outer diameter as described above. Therefore, not only does reheating require extra heat treatment costs, but even if solution heat treatment is performed, uniform and fine crystal grains are not necessarily obtained.

製造工程の簡略化、とくに固溶化熱処理工程を省略して
も、再結晶軟質して耐粒界腐食性に優れるとともに、均
一でより微細な結晶粒をもつオーステナイト系ステンレ
ス継目無鋼管を得ることができる圧延方法を提案するこ
とがこの発明の目的である。
Simplification of the manufacturing process, in particular, even if the solution heat treatment process is omitted, it is possible to obtain seamless austenitic stainless steel pipes that are recrystallized, soft, have excellent intergranular corrosion resistance, and have uniform and finer grains. It is an object of this invention to propose a rolling method that can achieve this.

(問題点を解決するための手段) オーステナント系ステンレス鋼板の製造にて固溶化熱処
理を省略する試みとして特開昭55−107729号公
報に開示された技術があるけれども、この技術は鋼板の
製造方法に関するもので、変形挙動が複雑な継目無鋼管
とは全く製造プロセスが異なるために、新規な考えが必
要であった。そこで発明者らは前記マンネスマン−マン
ドレルミル方式の継目無鋼管製造工程を詳細に見直し、
オーステナイト系ステンレス鋼の固溶化の目的が再結晶
軟質化と炭化物の固溶化であることを着目して検討しり
結果、マンネスマン−マンドレルミル方式でのオーステ
ナイト系ステンレス継目無鋼管の製造に於て、再加熱炉
以前の工程で附加されたひずみの開放と、析出した炭化
物の固溶化を再加熱炉における仕上げ圧延用素管の加熱
中に完了させ、その後の仕上げ圧延時の加工ひずみによ
る圧延中の再結晶によって結晶粒を細粒均一化し、かつ
炭化物を析出させない冷却速度で冷却することによって
、仕上げ管を再び加熱して固溶化熱処理を実施せずとも
、圧延ままの状態で再結晶軟質化し、かつ十分炭化物の
固溶化が達成されたオーステナイト系ステンレス継目無
鋼管が得られることが明らかとなった。この発明は上記
の知見に立脚するものである。
(Means for solving the problem) There is a technique disclosed in JP-A-55-107729 as an attempt to omit solution heat treatment in the production of austenant stainless steel sheets. The manufacturing process was completely different from that of seamless steel pipes, which have complex deformation behavior, so new ideas were needed. Therefore, the inventors reviewed the seamless steel pipe manufacturing process using the Mannesmann-Mandrel mill method in detail, and
After considering that the purpose of solid solution conversion of austenitic stainless steel is to soften recrystallization and to convert carbides into a solid solution, we found that it is possible to recycle austenitic stainless steel in the production of seamless austenitic stainless steel pipes using the Mannesmann-Mandrel mill method. The release of the strain added in the process before the heating furnace and the solid solution of precipitated carbides are completed during the heating of the raw pipe for finish rolling in the reheating furnace, and the re-release during rolling due to the processing strain during the subsequent finish rolling is completed. By making the crystal grains fine and uniform with crystals and cooling at a cooling rate that does not precipitate carbides, the finished tube can be recrystallized and softened in the as-rolled state without having to be heated again and subjected to solution heat treatment. It has become clear that seamless austenitic stainless steel pipes in which carbides have been sufficiently dissolved into solid solution can be obtained. This invention is based on the above knowledge.

すなわちこの発明はC: 0.08wt%以下(以下単
に%で示す) 、Si : 1.0%以下、Mn : 
2.0%以下、Cr:16〜26%、N : 0.3%
以下を含むオーステナイト系ステンレス継目無鋼管を製
造するに当り、上記成分を含む仕上げ圧延用素管を10
50℃以上、1200℃以下に再加熱したのち、仕上げ
圧延用素管の断面積Ao(cm”)、仕上げ管の断面積
A(am”)とするときに、ε= i、 n (Ao/
A)にて表わされる仕上げ圧延時の加工ひずみεに応じ
て仕上げ温度Tが次式、T≧220 ・exp(−2・
t ) +900を満足する条件にて仕上げ圧延を実施
すること、この仕上げ圧延後における900〜500℃
の温度域にて平均冷却速度V(”C/S)が次式、■≧
C’ ×104 、ここに、C:炭素含有i1(wt%
)を満足する条件にて冷却することを特徴とするオース
テナイト系ステンレス継目無鋼管の仕上げ圧延方法であ
る。
That is, this invention has C: 0.08wt% or less (hereinafter simply expressed as %), Si: 1.0% or less, Mn:
2.0% or less, Cr: 16-26%, N: 0.3%
In manufacturing seamless austenitic stainless steel pipes containing the following, 10 pieces of raw pipe for finish rolling containing the above components are used.
After reheating to 50°C or higher and 1200°C or lower, ε= i, n (Ao/
A) The finishing temperature T is determined according to the processing strain ε during finish rolling expressed by the following formula, T≧220・exp(−2・
t) Perform finish rolling under conditions satisfying +900, and 900 to 500°C after this finish rolling.
The average cooling rate V ("C/S) in the temperature range is the following formula, ■≧
C' × 104, where C: carbon content i1 (wt%
This is a finish rolling method for seamless austenitic stainless steel pipe, which is characterized by cooling under conditions that satisfy the following conditions.

ここで、この発明に適合するオーステナイト系ステンレ
ス継目無鋼管の成分組成の限定理由につきまず説明する
First, the reasons for limiting the composition of the seamless austenitic stainless steel pipe that is compatible with the present invention will be explained.

C: Cはオーステナイト相を安定化し、強度を増加させるの
に有効であるが、0.08%を超えるとCr炭化物が形
成されやすくなり、とくに900〜500℃の炭化物析
出領域での冷却速度を増加させることが必要になるので
、Cは0.08%以下に限定した。
C: C is effective in stabilizing the austenite phase and increasing strength, but if it exceeds 0.08%, Cr carbides are likely to be formed, and in particular the cooling rate in the carbide precipitation region of 900 to 500°C is Since it is necessary to increase the amount of C, the content of C is limited to 0.08% or less.

Si : Siは通常脱酸元素として添加されるが、1.0%を超
える添加は熱間加工性を低下させるので、Siは1.0
%以下に限定した。
Si: Si is usually added as a deoxidizing element, but addition of more than 1.0% reduces hot workability.
% or less.

Mn: Mnは脱酸と熱間加工性の向上のため添加されるが、2
.0%を超える添加は耐食性を阻害するので、Mnは2
.0%以下に限定した。
Mn: Mn is added to deoxidize and improve hot workability, but 2
.. Addition of more than 0% impairs corrosion resistance, so Mn is
.. It was limited to 0% or less.

Cr: Crはステンレス鋼の耐食性を保つのに必須の元素であ
り、オーステナイト系ステンレス鋼においては硫酸、塩
酸等の非酸化性の酸に対する耐食性は16.0%未満で
は不十分である。しかし、26.0%を超える添加は耐
食性が飽和の傾向を示す一方、オーステナイト組織を保
つため高価なNiを増加する必要があり、コスト上昇を
招く。これらの理由からCrは16.0〜26.0%の
範囲に限定した。
Cr: Cr is an essential element for maintaining the corrosion resistance of stainless steel, and in austenitic stainless steel, corrosion resistance to non-oxidizing acids such as sulfuric acid and hydrochloric acid is insufficient if it is less than 16.0%. However, if the addition exceeds 26.0%, the corrosion resistance tends to be saturated, but it is necessary to increase the amount of expensive Ni in order to maintain the austenitic structure, leading to an increase in cost. For these reasons, Cr was limited to a range of 16.0 to 26.0%.

Ni : Niはオーステナイト組織を安定化する作用を有すると
共に、硫酸、塩酸等の非酸化性の酸に対する耐食性を改
善するが、6.0%未満では十分ではない。しかし、2
2.0%を超える添加は耐食性が飽和の傾向を示しコス
トの上昇になる。これらの理由からNiは6.0〜22
.0%の範囲に限定した。
Ni: Ni has the effect of stabilizing the austenite structure and improves the corrosion resistance against non-oxidizing acids such as sulfuric acid and hydrochloric acid, but if it is less than 6.0%, it is not sufficient. However, 2
If the content exceeds 2.0%, the corrosion resistance tends to be saturated, leading to an increase in cost. For these reasons, Ni is 6.0 to 22.
.. It was limited to a range of 0%.

N : Nは強度上昇と耐食性の向上に効果のある元素であるが
、063%を超える添加は製造性の低下を招くので、N
は0.3%以下に限定した。
N: N is an element that is effective in increasing strength and improving corrosion resistance, but adding more than 0.63% leads to a decrease in manufacturability.
was limited to 0.3% or less.

この発明を実施するに当っては、上記の成分だけでも良
いし、その他必要に応じて4%以下のMO125%以下
のCu5O,8%以下のNb、0.5%以下のTiを添
加することもできる。なお、これら添加元素の成分範囲
について以下に述べる。
In carrying out this invention, the above components alone may be used, or if necessary, MO of 4% or less, Cu5O of 25% or less, Nb of 8% or less, and Ti of 0.5% or less may be added. You can also do it. Note that the component ranges of these additional elements will be described below.

衿0: Moは耐食性、特に耐孔食性の向上に著しい効果のある
元素であるが高価な元素であるため多量の添加はコスト
増加となるので4%以下が好ましい。
Collar 0: Mo is an element that has a remarkable effect on improving corrosion resistance, especially pitting corrosion resistance, but it is an expensive element and adding a large amount increases cost, so it is preferably 4% or less.

Cu: CuはMoと同じく耐食性、特に耐孔食性の向上に著し
い効果のある元素であるが、高価な元素であるため多量
の添加はコスト増加となるので2.5%以下が好ましい
Cu: Like Mo, Cu is an element that has a remarkable effect on improving corrosion resistance, especially pitting corrosion resistance, but since it is an expensive element, adding a large amount increases cost, so it is preferably 2.5% or less.

Nb: NbはNb炭化物を形成し、Cr炭化物の生成を抑制し
て耐粒界腐食性の向上や結晶粒の微細化のために添加さ
れるために添加されるが、Cと有効に結びつくためのN
b量はC(%)×10で十分であり、多量の添加は製造
性の低下を招くので上限を0.8%とするのが好ましい
Nb: Nb is added to form Nb carbides and suppress the formation of Cr carbides to improve intergranular corrosion resistance and refine crystal grains, but it is added to effectively combine with C. N of
It is sufficient for the amount of b to be C (%) x 10, and since addition of a large amount leads to a decrease in productivity, it is preferable to set the upper limit to 0.8%.

Ti: TiはNbと同じ<、Ti炭化物を形成してCr炭化物
の生成を抑制して耐粒界腐食性の向上や結晶粒の微細化
のために添加されるがCと有効に結びつ(ためのTiN
はC(%)×5で十分であり、多量の添加は製造性の低
下を招くので上限を0.5%とするのが好ましい。
Ti: Same as Nb, Ti is added to form Ti carbides and suppress the formation of Cr carbides to improve intergranular corrosion resistance and refine crystal grains, but it does not combine effectively with C ( TiN for
C (%) x 5 is sufficient, and addition of a large amount leads to a decrease in productivity, so it is preferable to set the upper limit to 0.5%.

(作 用) この発明でまず再加熱炉における仕上げ圧延用素管の加
熱温度を1050’C以上、1200℃以下に規制する
が、その理由は、再加熱炉での加熱中に、それ以前の工
程で附加された加工ひずみを開放して再結晶させ、析出
した炭化物を固溶化させることが必要でありそのために
は、再加熱炉での加熱温度は少な(ともオーステナイト
系ステンレス鋼の再結晶、固溶化温度以上で、かつその
後の仕上げ圧延に再結晶状態を確保できる1050℃以
上が絶対条件である。しかし、1200℃を超えると、
再加熱炉で結晶粒が粗大化し、その後の工程である仕上
げ圧延での結晶粒の細粒均一化が阻害される。
(Function) In this invention, firstly, the heating temperature of the raw pipe for finish rolling in the reheating furnace is regulated to 1050'C or higher and 1200°C or lower. It is necessary to release the processing strain added in the process and recrystallize, and to make the precipitated carbide a solid solution. To do this, the heating temperature in the reheating furnace is low (both recrystallization and The absolute condition is 1050°C or higher, which is higher than the solution temperature and can ensure a recrystallized state in the subsequent finish rolling.However, if it exceeds 1200°C,
The crystal grains become coarse in the reheating furnace, and it is difficult to make the crystal grains fine and uniform in the subsequent finish rolling process.

したがって、再加熱炉での仕上げ圧延用素管の加熱温度
は1050℃以上、1200℃以下とした。
Therefore, the heating temperature of the raw pipe for finish rolling in the reheating furnace was set to 1050°C or more and 1200°C or less.

次に仕上げ圧延用素管の断面積をAo(cm”)、仕上
げ管の断面積をA(cm2)とするときに次式%式%(
1) で表わされる仕上げ圧延時の加工ひずみεに応じて仕上
げ温度すなわちマンドレルミルの出側における仕上り管
温度T(’C)が次式、 T≧220 ・exp(−2・t ) +900   
 ・・(2)を満たす条件で仕上げ圧延を実施するのは
、下記の理由からである。
Next, when the cross-sectional area of the raw pipe for finish rolling is Ao (cm") and the cross-sectional area of the finished pipe is A (cm2), the following formula % formula % (
1) The finishing temperature, that is, the finishing tube temperature T ('C) at the exit side of the mandrel mill, is determined by the following formula according to the working strain ε during finish rolling, which is expressed as: T≧220 ・exp(−2・t ) +900
The reason why finish rolling is performed under conditions that satisfy (2) is as follows.

第1図に5US304鋼について、外径90胴、肉厚3
〜10fflT11、及び外径146 trtm、肉厚
5 mmの仕上げ圧延用素管を用いて、再加熱温度を1
050〜1200℃として、絞り圧延での加工ひずみε
と仕上り管温度Tとを変化させて仕上げ圧延を実施した
後の未再結晶組織残存の有無を示す。ここで、加工ひず
みεは仕上り管の外径絞り率を変えることにより、また
仕上げ温度Tは、仕上げ圧延時のデスケーリング水量、
ロール冷却水量等を調整することにより変化させた。仕
上り管温度Tが低い程、加工ひずみεが小さい程、未再
結晶組織が残存し、仕上り管温度Tが220 ・exp
(−2・e ) +900 (’C)以上であれば、完
全な再結晶組織が得られる。未再結晶が残存すると、Y
S、TSが上昇し、伸びが低下し、例えば製品の曲げ、
拡管、縮管等の加工を実施した場合に、割れ、破断等の
欠陥が発生しやすくなり、好ましくない。以上の結果よ
り、この発明では、再結晶軟質化した加工性の良いオー
ステナイト系ステンレス継目無鋼管を得るために、仕上
り管温度Tを220−exp(−2・e ) +900
じC)以上と限定した。
Figure 1 shows 5US304 steel with an outer diameter of 90 mm and a wall thickness of 3 mm.
~10fflT11, an outer diameter of 146 trtm, and a wall thickness of 5 mm for finish rolling, the reheating temperature was set to 1.
050-1200℃, processing strain ε in reduction rolling
The presence or absence of an unrecrystallized structure remaining after performing finish rolling by changing the and finishing tube temperature T is shown. Here, the processing strain ε can be determined by changing the outside diameter drawing ratio of the finished tube, and the finishing temperature T can be determined by changing the amount of descaling water during finish rolling.
This was changed by adjusting the amount of roll cooling water, etc. The lower the finished tube temperature T and the smaller the processing strain ε, the more unrecrystallized structure remains, and the finished tube temperature T becomes 220 ・exp
If it is (-2.e) +900 ('C) or more, a perfect recrystallized structure can be obtained. If unrecrystallized remains, Y
S, TS increases, elongation decreases, for example, bending of the product,
When pipe expansion, pipe contraction, etc. are carried out, defects such as cracks and breaks are likely to occur, which is undesirable. From the above results, in this invention, in order to obtain a seamless austenitic stainless steel pipe that is recrystallized and softened and has good workability, the finished pipe temperature T is set to 220-exp(-2・e) +900.
C) limited to the above.

次に仕上げ圧延後における900〜500℃の温度域を
平均冷却速度V (”C/5ec)が鋼中の炭素含有量
C(wt%)に応じてV2C’ X 10’を満たす条
件で冷却するのは、900〜500’Cの温度域での平
均冷却速度V(’C/5ec)が、Cr炭化物の析出に
及ぼす影響を炭素含有量の種々異なるオーステナイト系
ステンレス鋼について調査した結果、炭素itC(wt
%)に応じて、V2CX 10’を満足する場合には耐
粒界腐食性を維持できるが、上記関係式を満足しない遅
い平均冷却速度で冷却した場合はCr炭化物が析出して
耐粒界腐食性が劣化することが判明した。従って、この
発明では900〜500℃の温度域での平均冷却速度を
■≧C’ X 10’ と規定した。なお、ここで90
0℃を超える高温域あるいは500℃未満の低温域にお
ける冷却速度はCr炭化物の析出に影響を与えないので
、900〜500℃の温度域についてのみ冷却速度を限
定した。
Next, the steel is cooled in the temperature range of 900 to 500°C after finish rolling under conditions where the average cooling rate V ("C/5ec) satisfies V2C' x 10' according to the carbon content C (wt%) in the steel. As a result of investigating the effect of the average cooling rate V ('C/5ec) on the precipitation of Cr carbides in the temperature range of 900 to 500'C on austenitic stainless steels with various carbon contents, it was found that carbon itC (wt
%), intergranular corrosion resistance can be maintained if V2CX 10' is satisfied, but if cooling is performed at a slow average cooling rate that does not satisfy the above relational expression, Cr carbides will precipitate and intergranular corrosion resistance will be maintained. It was found that the quality deteriorated. Therefore, in this invention, the average cooling rate in the temperature range of 900 to 500° C. is defined as ■≧C' X 10'. In addition, here 90
Since the cooling rate in the high temperature range exceeding 0°C or the low temperature range below 500°C does not affect the precipitation of Cr carbide, the cooling rate was limited only to the temperature range of 900 to 500°C.

(実施例) 第1表     (wt%) 上記第1表に示す6鋼種のオーステナイト系ステンレス
鋼を用いて、第2表に示す製造条件にて継目無鋼管を製
造して、得られた各鋼管における機械的性質等を調査し
た。その結果を第2表に併せて示す。
(Example) Table 1 (wt%) Seamless steel pipes were manufactured using the six types of austenitic stainless steel shown in Table 1 above under the manufacturing conditions shown in Table 2, and each steel pipe was obtained. We investigated the mechanical properties, etc. The results are also shown in Table 2.

なお、機械的性質は仕上り管の外径が60.5mm以下
のものはJISZ2201に規定される14C号試験片
、それを超える外径のものは同じ<14B号試験片にて
JISZ2241に規定される金属材料引張試験方法で
測定し、再結晶組織は断面の顕微鏡観察にて、未再結晶
組織が残存しておらず、完全な再結晶組織となっている
ものに関して01未再結晶組織が残存しているものに×
を記した。また耐粒界腐食性は、JISGO571に規
定される10%しゅう酸エッチ試験法による判別で段状
組織をOlそれ以外を×として評価した。さらに粒度番
号はJISGO551に規定されるオーステナイト結晶
粒度試験法にて算出した。
In addition, the mechanical properties of finished pipes with an outer diameter of 60.5 mm or less are specified by the No. 14C test piece specified in JIS Z2201, and those with an outer diameter exceeding that are specified by the same No. 14B test piece according to JIS Z2241. Measured using the metal material tensile test method, the recrystallized structure was found to have no unrecrystallized structure remaining by microscopic observation of the cross section, and 01 unrecrystallized structure remained for those with a complete recrystallized structure. What you have ×
I wrote down. The intergranular corrosion resistance was determined by the 10% oxalic acid etch test method specified in JIS GO 571, and was evaluated as O for the stepped structure and × for the others. Furthermore, the grain size number was calculated using the austenite grain size test method specified in JISGO551.

第2表より明らかなようにこの発明に従えば再結晶軟質
化して耐粒界腐食性に優れ、かつ均一でより微細な結晶
粒を持つオーステナイト系ステンレス継目無鋼管が得ら
れているのが認められる。
As is clear from Table 2, according to the present invention, it is possible to obtain seamless austenitic stainless steel pipes that are softened by recrystallization, have excellent intergranular corrosion resistance, and have uniform and finer grains. It will be done.

なお参考までに第3表に、圧延後に固溶化処理を実施し
た従来例のデータを示すが、この発明に従えば固溶化処
理を施した場合と同等の結果が得られることは明らかで
ある。
For reference, Table 3 shows data for conventional examples in which solution treatment was performed after rolling, but it is clear that according to the present invention, results equivalent to those obtained by solution treatment can be obtained.

(発明の効果) この発明によれば、圧延工程後の熱処理炉による固溶化
熱処理工程を省略できるし、十分再結晶軟質化して耐粒
界腐食性に優れた、かつ均一でより微細な結晶粒を持つ
オーステナイト系ステンレス継目無鋼管が得られる。
(Effects of the Invention) According to the present invention, it is possible to omit the solution heat treatment step in a heat treatment furnace after the rolling step, and the crystal grains are sufficiently softened by recrystallization to have uniform and finer crystal grains with excellent intergranular corrosion resistance. A seamless austenitic stainless steel pipe with the following properties is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加工ひずみと仕上り管温度を変えた時の未再結
晶残存の有無を示すグラフ、 第2図はマンネスマン−マンドレルミル方式での継目無
鋼管製造ラインの従来例を示す概略図である。 1・・・ビレット     2・・・回転炉床式加熱炉
3・・・マンネスマンピアサ 5・・・連続鋳造機    4^・・・中空素管4B・
・・仕上げ圧延用素管 6・・・マンドレルミル7・・
・マンドレルバ−8・・・孔型ロール9・・・再加熱炉 10・・・ストレッチレデューサ 11・・・仕上り管     12・・・冷却床13・
・・熱処理炉     14・・・焼入槽15・・・矯
正機      16・・・酸洗槽特許出願人  川崎
製鉄株式会社
Figure 1 is a graph showing the presence or absence of unrecrystallized remains when processing strain and finished pipe temperature are changed. Figure 2 is a schematic diagram showing a conventional example of a seamless steel pipe manufacturing line using the Mannesmann-mandrel mill system. . 1... Billet 2... Rotary hearth heating furnace 3... Mannesmann Piaser 5... Continuous casting machine 4^... Hollow tube 4B.
...Material pipe for finish rolling 6...Mandrel mill 7...
・Mandrel bar 8...grooved roll 9...reheating furnace 10...stretch reducer 11...finishing pipe 12...cooling bed 13・
... Heat treatment furnace 14 ... Quenching tank 15 ... Straightening machine 16 ... Pickling tank Patent applicant Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 1、C:0.08wt%以下、Si:1.0wt%以下
、Mn:2.0wt%以下、Cr:16〜26wt%、
N:0.3wt%以下を含むオーステナイト系ステンレ
ス継目無鋼管を製造するに当り、 上記成分を含む仕上げ圧延用素管を1050℃以上、1
200℃以下に再加熱したのち、仕上げ圧延用素管の断
面積A_o(cm^2)、仕上げ管の断面積A(cm^
2)とするときに、 ε=ln(A_o/A) にて表わされる仕上げ圧延時の加工ひずみεに応じて仕
上げ温度Tが次式、 T≧220・exp(−2・ε)+900 を満足する条件にて仕上げ圧延を実施すること、 この仕上げ圧延後における900〜500℃の温度域に
て平均冷却速度V(℃/S)が次式、V≧C^3×10
^4、ここに、C:炭素含有量(wt%)、 を満足する条件にて冷却することを特徴とするオーステ
ナイト系ステンレス継目無鋼管の仕上げ圧延方法。
[Claims] 1. C: 0.08 wt% or less, Si: 1.0 wt% or less, Mn: 2.0 wt% or less, Cr: 16 to 26 wt%,
In manufacturing seamless austenitic stainless steel pipes containing N: 0.3 wt% or less, the base pipe for finish rolling containing the above components is heated at 1050°C or higher for 1
After reheating to 200℃ or less, the cross-sectional area A_o (cm^2) of the raw pipe for finish rolling and the cross-sectional area A (cm^2) of the finished pipe
2), the finishing temperature T satisfies the following formula, T≧220・exp(−2・ε)+900, according to the processing strain ε during finish rolling expressed as ε=ln(A_o/A) Finish rolling is carried out under the following conditions, and the average cooling rate V (°C/S) in the temperature range of 900 to 500°C after this finish rolling is the following formula, V≧C^3×10
^4. Here, C: Carbon content (wt%). A method for finish rolling a seamless austenitic stainless steel pipe, characterized by cooling under conditions that satisfy the following.
JP31731487A 1987-12-17 1987-12-17 Finish rolling method for austenitic stainless seamless steel pipe Granted JPH01159321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31731487A JPH01159321A (en) 1987-12-17 1987-12-17 Finish rolling method for austenitic stainless seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31731487A JPH01159321A (en) 1987-12-17 1987-12-17 Finish rolling method for austenitic stainless seamless steel pipe

Publications (2)

Publication Number Publication Date
JPH01159321A true JPH01159321A (en) 1989-06-22
JPH0547603B2 JPH0547603B2 (en) 1993-07-19

Family

ID=18086826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31731487A Granted JPH01159321A (en) 1987-12-17 1987-12-17 Finish rolling method for austenitic stainless seamless steel pipe

Country Status (1)

Country Link
JP (1) JPH01159321A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009964A1 (en) * 2000-08-01 2002-02-07 Nisshin Steel Co., Ltd. Stainless steel fuel tank for automobile
JP2007167912A (en) * 2005-12-22 2007-07-05 Sumitomo Metal Ind Ltd Method for producing stainless steel tube
WO2007126005A1 (en) * 2006-04-28 2007-11-08 Sumitomo Metal Industries, Ltd. Process for producing stainless-steel pipe
CN104831179A (en) * 2015-04-28 2015-08-12 苏州钢特威钢管有限公司 High-temperature resistant seamless austenitic stainless steel pipe and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009964A1 (en) * 2000-08-01 2002-02-07 Nisshin Steel Co., Ltd. Stainless steel fuel tank for automobile
US6935529B2 (en) 2000-08-01 2005-08-30 Nisshin Steel Co., Ltd. Stainless steel fuel tank for automobile
KR100784888B1 (en) * 2000-08-01 2007-12-11 닛신 세이코 가부시키가이샤 Stainless steel fuel tank for automobile
JP2007167912A (en) * 2005-12-22 2007-07-05 Sumitomo Metal Ind Ltd Method for producing stainless steel tube
JP4720491B2 (en) * 2005-12-22 2011-07-13 住友金属工業株式会社 Stainless steel pipe manufacturing method
WO2007126005A1 (en) * 2006-04-28 2007-11-08 Sumitomo Metal Industries, Ltd. Process for producing stainless-steel pipe
US8047039B2 (en) 2006-04-28 2011-11-01 Sumitomo Metal Industries, Ltd. Process for producing stainless steel pipe
JP4853515B2 (en) * 2006-04-28 2012-01-11 住友金属工業株式会社 Stainless steel pipe manufacturing method
CN104831179A (en) * 2015-04-28 2015-08-12 苏州钢特威钢管有限公司 High-temperature resistant seamless austenitic stainless steel pipe and preparation method thereof

Also Published As

Publication number Publication date
JPH0547603B2 (en) 1993-07-19

Similar Documents

Publication Publication Date Title
CN101410536B (en) Method of manufacturing seamless pipe and tube
JP2007196237A (en) Method for producing seamless steel tube for machine structural component
JPS59182920A (en) Manufacture of seamless steel pipe
SU1087078A3 (en) Method for making section stock from low-alloy dispersion-solidifiyng steels
JPH01159321A (en) Finish rolling method for austenitic stainless seamless steel pipe
JPS5839738A (en) Manufacture of high tensile wire rod
JP3965708B2 (en) Manufacturing method of high strength seamless steel pipe with excellent toughness
JP2003105441A (en) METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
JP3694967B2 (en) Method for producing martensitic stainless steel seamless steel pipe
JPH01132717A (en) Production of high-strength austenitic stainless seamless steel pipe
JP4182556B2 (en) Seamless steel pipe manufacturing method
JP3326783B2 (en) Manufacturing method of low alloy seamless steel pipe with excellent high temperature strength
JP2000119749A (en) Production of chromium-molybdenum seamless steel pipe for machine structure
JP3214351B2 (en) Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength
JPS63293111A (en) Manufacture of seamless pipe of martensitic stainless steel
JP3006486B2 (en) Manufacturing method of austenitic stainless steel seamless pipe
JPH046218A (en) Production of seamless cr-mo steel tube
JPS6396215A (en) Production of tough steel pipe
JP3214350B2 (en) Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength
JPH06240357A (en) Production of high toughness and high strength steel pipe
JPS63255322A (en) Manufacture of seamless two-phase stainless steel tube
JPH06100931A (en) Production of round billet for producing martenstic stainless seamless pipe
JP2004027351A (en) Method for producing high strength and high toughness martensitic stainless steel seamless pipe
JPH0718328A (en) Manufacture of seamless steel tube having grain refining organization
JPS62263924A (en) Production of tough steel pipe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees