JP3694967B2 - Method for producing martensitic stainless steel seamless steel pipe - Google Patents
Method for producing martensitic stainless steel seamless steel pipe Download PDFInfo
- Publication number
- JP3694967B2 JP3694967B2 JP09838096A JP9838096A JP3694967B2 JP 3694967 B2 JP3694967 B2 JP 3694967B2 JP 09838096 A JP09838096 A JP 09838096A JP 9838096 A JP9838096 A JP 9838096A JP 3694967 B2 JP3694967 B2 JP 3694967B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- temperature
- seamless steel
- finishing
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、常温で実質的にマルテンサイト組織となるステンレス鋼を用い、高強度で、かつ、靱性および耐食性に優れた継目無鋼管を製造する方法に関するものである。
【0002】
【従来の技術】
マルテンサイト系ステンレス鋼の継目無鋼管は、従来、製管後、焼入れ−焼戻しの熱処理を施して製品としている。この方法では、製管後に一旦冷却した鋼管を再加熱して焼入れをしなければならないので、工程が多く、またエネルギー消費も大きい。そこで、普通鋼および低合金鋼の継目無鋼管の製造で採用されている、いわゆる「直接焼入れ」をマルテンサイト系ステンレス鋼の継目無鋼管の製造にも適用する試みがなされている。
【0003】
例えば、特公平 5-45651号公報には、マンドレルミル方式で製管した後の鋼管をそのまま室温まで冷却した後、特定の条件で焼戻しを行う方法が、また、特開平5-98347 号公報には、熱間加工後のマルテンサイト系ステンレス鋼(鋼板、鋼管等) をそのまま直ちに2段階の冷却を行う方法が、それぞれ開示されている。
【0004】
しかし、これらの方法で得られる鋼管では、集合組織の形成が甚だしく、結晶粒界に析出したクロム炭化物の影響と重畳して、靱性等の機械的性質、耐硫化物応力割れ性(耐SSC性)等の耐食性に著しく異方性が現れる。
【0005】
本発明者は、上記の異方性の問題を解決する方法として、仕上げ圧延後に完全に再結晶する条件で熱間加工を行い、直接焼入れする方法を提案した(特開平4-110420号公報、参照) 。しかしながら、マルテンサイト系ステンレス鋼の再結晶温度は、低合金鋼に較べて著しく高いので、通常の継目無鋼管の製管ミルでは、製品サイズによって完全に再結晶させることが困難な場合がある。また、再結晶温度以上の高温で仕上げができるサイズの鋼管であっても、その鋼管の部位によって温度ムラがあって、これが製品に好ましくない影響を及ぼす。
【0006】
継目無鋼管の製造過程では、中空素管あるいは圧延後の鋼管が圧延ロールや搬送ラインのビーム等に全面均一に接触することはない。従って、1本の鋼管の部位(長手方向および円周方向の位置)によって冷却状況が異なり、相当の温度差が生じる。このような鋼管をそのまま焼入れすると、部位によっては未再結晶のまま焼入れされることになり、その結果として1本の鋼管内に異方性のある部分や機械的性質および耐食性の異なる部分が発生してしまう。即ち、製品鋼管は、特性にバラツキの多い実用に耐えないものになる。
【0007】
【発明が解決しようとする課題】
本発明の目的は、製管後に別ラインで再加熱して行われている従来の焼入れ−焼戻し処理を、製管ライン内で製管に引き続いて行い、しかも、あらゆる製品サイズにおいて異方性がなく強度と耐食性に優れたマルテンサイト系ステンレス鋼の継目無鋼管を製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、常温で実質的にマルテンサイト組織となるステンレス鋼を用いて継目無鋼管を製造する方法であって、下記▲1▼〜▲3▼の工程を順次行うことを特徴とする継目無鋼管の製造方法、を要旨とする。
【0009】
▲1▼ 中空素管に施す延伸加工および仕上げ加工を、両加工における合計の加工度で40%以上、仕上げ温度 800〜1100℃で行い継目無鋼管とする工程、
▲2▼ 上記継目無鋼管を補熱炉に装入し、下記の (a)式で規定されるfnの値が 22000 から27000 までの間の値となる温度T (℃) および時間t(hr)での補熱を行う工程、
▲3▼ 補熱炉から取り出した継目無鋼管を、少なくとも 600℃までは10℃/分以上の冷却速度として200 ℃以下に冷却した後、 500〜780 ℃で焼き戻す工程。
【0010】
fn=(T+ 273) × (21+ logt) ・・・ (a)
ただし、T≧ 800 (℃) である。
【0011】
本発明方法の対象となる「常温で実質的にマルテンサイト組織となるステンレス鋼」とは、常温でマルテンサイト主体の組織(50%未満のδフェライトを含んでいてもよい) となるステンレス鋼である。その化学組成には特に制約はないが、一般的な成分およびその含有量を例示すれば下記のとおりである(%は重量%である)。
【0012】
C:0.001 〜1.2 %、 Si:1 %以下、
Mn:2 %以下、 Cr: 8〜17%、
sol.Al:0.005 〜0.1 %、
P、S:それぞれ0.05%以下、
Mo:0〜3 %、Ni: 0〜8 %、
Cu: 0〜5 %、N:0.001 〜0.15%、
B:0 〜0.01%、
Ti、Nb、V:それぞれ 0〜0.5 %、
Ca、Mg、Y、希土類元素 (La、Ce等) :それぞれ 0〜0.01%。
【0013】
なお、これらの合金元素以外にも適当量の他の合金元素を含有していてもよい。
【0014】
【発明の実施の形態】
以下、本発明方法の各工程について順次説明する。なお、製管素材 (ビレット) は、インゴットまたは連続鋳造したスラブ、ブルーム等から分塊圧延や鍛造を経て製造したビレットでもよいし、また、連続鋳造で丸ビレットを鋳造すれば、そのまま穿孔工程に付すことができる。
【0015】
延伸圧延に付す中空素管(ホローシェル)の製造、即ち、穿孔は、どんな方法で行ってもよい。例えば、傾斜ロール圧延機等のいわゆるピアサーで行うことができる。穿孔条件は、通常のマルテンサイト系ステンレス鋼の継目無鋼管製造の場合と基本的に同じでよい。ただし、次工程の延伸圧延において厚肉の中空素管を大きな加工度で圧延するには大きなミル・パワーを要する。従って、次工程の圧延加工の加工度を大きくするためには、穿孔工程でできるだけ薄肉にしておくのが好ましい。例えば、ピアサーをコーン型にし、交叉角を付けたロールで拡管薄肉化が可能なタイプのピアサーを使用して穿孔する方法が推奨される。
【0016】
▲1▼ 延伸加工および仕上げ加工工程:
この加工を行う設備には、マンネスマン・マンドレルミル方式、マンネスマン・プラグミル方式等、種々の方式がある。本発明方法ではいずれの方式をも採用できる。例えばマンドレルミル方式では、マンドレルミルで延伸加工、サイザーまたはレデューサーで仕上げ加工が行われる。
【0017】
延伸、仕上げ加工は、穿孔加工に比べると低温加工になり、結晶粒微細化に重要な加工工程である。これらの加工での仕上げ温度が 800℃よりも低くなると、後の補熱でも十分に固溶しない粗大なクロム炭化物が析出し、製品鋼管の耐SSC性および靱性が低下する。一方、1100℃を超えると結晶粒が粗大化して、やはり耐SSC性および靱性が低下する。従って、仕上げ温度は 800〜1100℃としなければならない。なお、組織微細化の点から仕上げ温度は 800〜900 ℃程度と低くするのが望ましい。
【0018】
延伸加工および仕上げ加工の合計加工度が 40 %未満であれば、結晶粒の微細化が十分でない。この加工度の上限には特に制限はないが、90%を超えると工具への負担が大きいので40〜90%の範囲とするのが好ましい。
【0019】
結晶粒微細化の観点からは、延伸加工工程と仕上げ加工工程の間隔はなるべく短くするのがよい。即ち、延伸加工時に導入された転位が回復する前に仕上げ加工を実施して、十分に歪を蓄積した後に再結晶による微細化を図ればその効果が大きい。
【0020】
上記のような加工は、延伸加工を行う圧延機 (例えばマンドレルミル) と、仕上げ加工を行う圧延機 (例えばサイザーまたはレデューサー) との間隔を、前者で加工された中空素管の長さよりも短い間隔をおいて設置した設備を使用して実施することができる。例えば、エキストラクティングサイザーによって、直ちに仕上げ圧延を実施するとともにホローシェルからバーを引き抜く作業を同時に行うような圧延プロセスが好ましい。
【0021】
▲2▼ 補熱工程:
補熱は、製管した継目無鋼管を製管ラインに設けた補熱炉に装入して行う。この補熱には、前の加工で歪を導入した鋼管を再結晶させて微細組織とすること、圧延加工中に析出したクロム炭化物を固溶させること、および鋼管を均一に熱して特性のバラツキや局部的異方性を少なくする、という多くの目的がある。補熱炉を用いることによって、管全体の温度の均一化のみならず温度の正確な調整が可能になり、製品に望まれる特性に合わせた熱処理条件の選択ができるという利点がある。
【0022】
補熱の温度が 800℃よりも低いとクロム炭化物の析出および粗大化が著しい。
【0023】
従って、補熱は 800℃以上で行う必要がある。即ち、前記 (a)式のT(℃)は 800以上としなければならない。
【0024】
高温で再結晶させる場合には、再結晶後に直ちに結晶粒の成長、粗大化が始まるので、補熱は短時間にしなければならない。補熱の温度T(℃)と時間t(hr)の関係は、再結晶の活性化エネルギーから導出される前記 (a)式のfnの値が 22000〜27000 となるように調整する必要がある。fnの値が 22000より小さい条件の補熱では再結晶が完全に完了せず、一方、fnが 27000を超える条件では結晶粒の粗大化が著しく、製品鋼管の耐SSC性および靱性が低下する。
【0025】
前記▲1▼の工程での仕上げ温度は、補熱工程の適正温度より高い場合、同等である場合、およびそれより低い場合、のいずれもあり得る。従って、本発明方法で補熱というのは、圧延仕上げ温度からの徐冷、仕上げ温度とほぼ同じ温度での保持、仕上げ温度からの加熱(昇温)のいずれもあり得る。前記 (a)式の条件を満足する限り、ヒートパターンには何ら制約はない。なお、 (a)式を満たす条件で補熱すれば、管全体の温度の均一化も達成される。
【0026】
▲3▼ 冷却工程:
マルテンサイト系ステンレス鋼の焼入れ性は高いので、補熱炉を出た鋼管の冷却は、クロム炭化物が析出しない速度であれば十分である。少なくとも、クロム炭化物が析出しやすい温度域である 600℃までは 10 ℃/分以上の冷却速度で冷却する。それによって炭化物の析出は実用上問題にならない程度に抑えることができる。600 ℃より低温では、任意の冷却速度で、実質的なMf点である200 ℃以下まで冷却すればよい。ただし、残留オーステナイトをできるだけ少なくするために室温まで完全に冷し切るのが好ましい。
【0027】
焼戻しは、焼入れによって生成したマルテンサイト組織を焼き戻して、製品鋼管の靱性と耐SSC性を向上させるために行う。500 ℃よりも低温では焼戻し効果が十分ではなく、780 ℃を超える温度では強度低下を招く。なお、焼戻しの時間は 5分から1時間程度でよい。
【0028】
【実施例】
表1に示すA〜Gの鋼を溶製し外径 225mmのビレットを作製して、マンネスマン−マンドレルミルを用いて圧延を行い、外径 273.1mm、肉厚 9.3 mm の鋼管を製造した。製造条件は表2に示すとおりである。なお、補熱後の熱処理において 600℃よりも低温域での冷却は空冷とし、それぞれの冷却終了温度から焼戻し温度の再加熱した。鋼管強度は鋼種によって変化するので、この焼戻し温度を変えてどの鋼種においても耐力 (降伏強度) が 60 kgf/mm2 前後になるように調整した。
【0029】
表2の従来例とは、前掲の特開平4-110420号公報に開示した方法に準じ、十分に高温で加工を終了させ、再結晶させた後の鋼管を直接焼入れし、焼戻しの処理を施した例である。
【0030】
【表1】
【0031】
【表2】
【0032】
得られた鋼管について、管端から長手方向に3mおきの3カ所およびこれらの各位置について円周方向に4等分した位置の合計12カ所から管軸方向に引張試験片、シャルピー衝撃試験片および耐食性試験片を採取し、下記の試験を行い機械的性質および耐食性を調べた。
【0033】
引張試験は、直径4mm、平行部 34mm の丸棒試験片を用いて行った。シャルピー衝撃試験は、5mm×10mm×55mmの2mmVノッチ試験片を用い、0℃での衝撃値で評価した。耐食性 (耐SSC性)は、NACE TM 0177 METHOD-A に規定された定荷重試験に従い、45kgf/mm2 の応力を負荷し、「30atm. CO2+0.01 atm. H2S + 5%NaCl」の溶液に浸漬し、200 時間後の割れの有無によって評価した。試験結果を表3に示す。
【0034】
表3では、降伏強度と衝撃値は上記の12カ所の試験片による最大値(M)、最小値(m)、平均値、およびバラツキ(M−m)で示した。また、異方性は衝撃試験片の破面にセパレーションが発生しているか否かで示した。耐SSC性は、12カ所からの試験片のうち、何本が合格(割れ発生無し) であったか、により評価した。
【0035】
【表3】
【0036】
表3から次の事実が明らかである。
【0037】
1) 本発明例である試番1から14までは、強度、靱性ともに良好であり、鋼管の部位によるそれらの値の差異は極めて小さい。即ち、バラツキが小さい。また、上記本発明例の衝撃試験片の破面には異方性の指標となるセパレーションが見られない。
【0038】
2) 耐SSC性試験では、12本の試験片の全てに割れが無く、耐SSC性も良好である。
【0039】
3) 従来例である試番22〜28では、鋼管の部位による機械的性質、特に強度のバラツキが大きい。また、耐SSC性試験でも全数合格には到っていない。
【0040】
4) 試番15〜21は、製管および熱処理の条件のどれかが本発明で定める条件を満たしていない比較例である。これらのうち、試番15は延伸加工と仕上げ加工の合計加工度が 5%と小さく、試番16は仕上げ温度が高過ぎて、いずれもオーステナイト結晶粒が粗大になり、靱性および耐SSC性が劣る。
【0041】
5) 試番17は、補熱温度が低く過ぎて炭化物が粗大に成長し、かつフェライト変態が起きたために強度が低く、靱性および耐SSC性が劣る。
【0042】
6) 試番18は、fnの値が小さ過ぎたために再結晶が十分でなくセパレーションが観察された。即ち、異方性が大きい。他方、試番19は、fnの値が大き過ぎてオーステナイト結晶粒が粗大化したため、靱性および耐SSC性が劣る。
【0043】
7) 試番20は、補熱後の 600℃までの冷却速度が小さいので、粗大炭化物の析出によって靱性および耐SSC性が低下している。一方、試番21は、冷却終了温度が高過ぎたためにマルテンサイト変態が完了しない状態で焼戻されてしまい、強度が低く、靱性および耐SSC性も劣っている。
【0044】
【発明の効果】
実施例からも明らかなとおり、本発明方法によって製造したマルテンサイト系ステンレス鋼の継目無鋼管には、従来の直接焼入れ法で製造された鋼管の難点であった特性のバラツキが殆どなく、かつ異方性もない。本発明方法は、製管から熱処理まで、連続的にオンラインで実施できるので、継目無鋼管の製造における生産性の向上と製造コストの低減にも大きく寄与する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a seamless steel pipe having high strength and excellent toughness and corrosion resistance using stainless steel having a substantially martensitic structure at room temperature.
[0002]
[Prior art]
A martensitic stainless steel seamless steel pipe is conventionally made into a product after pipe-making and then subjected to quenching-tempering heat treatment. In this method, since the steel pipe once cooled after pipe making must be reheated and quenched, there are many steps and energy consumption is also large. Therefore, an attempt has been made to apply so-called “direct quenching” employed in the production of seamless steel pipes of ordinary steel and low alloy steel to the production of martensitic stainless steel seamless steel pipes.
[0003]
For example, Japanese Patent Publication No. 5-45651 discloses a method in which a steel pipe after being manufactured by the mandrel mill method is cooled to room temperature as it is and then tempered under specific conditions. Discloses a method in which martensitic stainless steel (steel plate, steel pipe, etc.) after hot working is immediately cooled in two stages as it is.
[0004]
However, in steel pipes obtained by these methods, the formation of texture is significant, and it overlaps with the effect of chromium carbide precipitated at the grain boundaries, resulting in mechanical properties such as toughness, sulfide stress crack resistance (SSC resistance). ) And other corrosion resistance are markedly anisotropic.
[0005]
The present inventor proposed a method of performing hot working under conditions of complete recrystallization after finish rolling and directly quenching as a method of solving the above-described anisotropy problem (Japanese Patent Laid-Open No. 4104420, See). However, since the recrystallization temperature of martensitic stainless steel is significantly higher than that of low alloy steel, it may be difficult to completely recrystallize depending on the product size in a normal seamless steel pipe making mill. Further, even a steel pipe of a size that can be finished at a high temperature above the recrystallization temperature has temperature unevenness depending on the part of the steel pipe, and this has an undesirable effect on the product.
[0006]
In the production process of the seamless steel pipe, the hollow shell or the rolled steel pipe does not come into uniform contact with the entire surface of the rolling roll, the beam of the conveying line, or the like. Therefore, the cooling situation differs depending on the part (position in the longitudinal direction and the circumferential direction) of one steel pipe, and a considerable temperature difference occurs. If such a steel pipe is quenched as it is, depending on the part, it will be quenched without recrystallization, and as a result, an anisotropic part or a part with different mechanical properties and corrosion resistance is generated in one steel pipe. Resulting in. In other words, the product steel pipe cannot withstand practical use with many variations in characteristics.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to perform the conventional quenching-tempering process, which is performed by reheating in a separate line after the pipe making, following the pipe making in the pipe making line, and anisotropy in all product sizes. Another object of the present invention is to provide a method for producing a martensitic stainless steel seamless steel pipe excellent in strength and corrosion resistance.
[0008]
[Means for Solving the Problems]
The present invention is a method for producing a seamless steel pipe using stainless steel having a substantially martensitic structure at room temperature, wherein the following steps (1) to (3) are sequentially performed. The gist is a method for manufacturing a steel pipe.
[0009]
(1) Stretching and finishing of the hollow shell are performed at a total processing degree of both processes at 40% or more at a finishing temperature of 800 to 1100 ° C to make a seamless steel pipe.
(2) The above seamless steel pipe is charged into a reheating furnace, and the temperature T (° C.) and the time t (hr) at which the value of fn defined by the following equation (a) is between 22000 and 27000. ) Process of performing supplementary heat in
(3) A step of tempering the seamless steel pipe taken out from the reheating furnace to 200 ° C. or less at a cooling rate of 10 ° C./min or more up to 600 ° C. and then tempering at 500 to 780 ° C.
[0010]
fn = (T + 273) × (21 + logt) (a)
However, T ≧ 800 (° C.).
[0011]
The “stainless steel that has a substantially martensitic structure at room temperature” as a target of the method of the present invention is a stainless steel that has a martensite-based structure (may contain δ ferrite of less than 50%) at room temperature. is there. Although there is no restriction | limiting in particular in the chemical composition, it will be as follows if a general component and its content are illustrated (% is weight%).
[0012]
C: 0.001 to 1.2%, Si: 1% or less,
Mn: 2% or less, Cr: 8-17%,
sol.Al: 0.005 to 0.1%,
P and S: 0.05% or less,
Mo: 0 to 3%, Ni: 0 to 8%,
Cu: 0 to 5%, N: 0.001 to 0.15%,
B: 0 to 0.01%
Ti, Nb, V: 0-0.5% each
Ca, Mg, Y, rare earth elements (La, Ce, etc.): 0 to 0.01% each.
[0013]
In addition to these alloy elements, an appropriate amount of other alloy elements may be contained.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, each process of the method of the present invention will be described in order. The pipe making material (billet) may be a billet manufactured by ingot or continuous casting slab, bloom, etc., through ingot rolling or forging. Can be attached.
[0015]
Production of a hollow shell (hollow shell) to be subjected to drawing and rolling, that is, drilling may be performed by any method. For example, it can be performed by a so-called piercer such as a tilt roll mill. The drilling conditions may be basically the same as in the case of manufacturing a normal martensitic stainless steel seamless steel pipe. However, a large mill power is required to roll a thick hollow shell with a high degree of processing in the next process of drawing and rolling. Therefore, in order to increase the workability of the rolling process in the next process, it is preferable to make it as thin as possible in the drilling process. For example, a method of punching using a piercer of a type in which the piercer has a cone shape and can be expanded and thinned with a roll having a crossed angle is recommended.
[0016]
(1) Stretching and finishing process:
There are various types of equipment for performing this processing, such as a Mannesmann mandrel mill method and a Mannesmann plug mill method. Any method can be adopted in the method of the present invention. For example, in the mandrel mill system, stretching is performed by a mandrel mill, and finishing is performed by a sizer or a reducer.
[0017]
Drawing and finishing are low-temperature processing compared to drilling, and are important processing steps for crystal grain refinement. When the finishing temperature in these processes is lower than 800 ° C., coarse chromium carbide that does not sufficiently dissolve even with subsequent supplemental heat is deposited, and the SSC resistance and toughness of the product steel pipe are deteriorated. On the other hand, when the temperature exceeds 1100 ° C., the crystal grains become coarse, and the SSC resistance and toughness are also lowered. Therefore, the finishing temperature must be 800-1100 ° C. The finishing temperature is preferably as low as about 800 to 900 ° C. from the viewpoint of the refinement of the structure.
[0018]
If the total degree of drawing and finishing is less than 40%, the crystal grains are not sufficiently refined. The upper limit of the degree of processing is not particularly limited, but if it exceeds 90%, the load on the tool is large, so it is preferable to set it in the range of 40 to 90%.
[0019]
From the viewpoint of crystal grain refinement, the interval between the drawing process and the finishing process should be as short as possible. That is, if the finishing process is performed before the dislocations introduced at the time of the stretching process are recovered, and the strain is sufficiently accumulated, the effect of refining by recrystallization is great.
[0020]
In the processing as described above, the distance between the rolling mill (for example, a mandrel mill) that performs stretching processing and the rolling mill (for example, a sizer or reducer) that performs finishing processing is shorter than the length of the hollow element tube processed in the former. It can be implemented using equipment installed at intervals. For example, a rolling process is preferred in which finish rolling is immediately performed by an extractor sizer and at the same time the bar is pulled out from the hollow shell.
[0021]
(2) Heating process:
The supplementary heat is performed by charging the seamless steel pipes that have been produced into a supplementary heating furnace provided in the production line. This supplementary heat can be achieved by recrystallizing the steel pipe that has been strained in the previous processing to form a fine structure, solidifying the chromium carbide precipitated during the rolling process, and heating the steel pipe uniformly to vary the characteristics. There are many purposes to reduce local anisotropy. By using the auxiliary heat furnace, not only the temperature of the entire tube is made uniform, but also the temperature can be accurately adjusted, and there is an advantage that the heat treatment conditions can be selected in accordance with the characteristics desired for the product.
[0022]
When the temperature of supplementary heat is lower than 800 ° C, chromium carbide precipitates and becomes coarse.
[0023]
Therefore, it is necessary to perform supplementary heat above 800 ℃. That is, T (° C.) in the above formula (a) must be 800 or more.
[0024]
In the case of recrystallization at a high temperature, since the growth and coarsening of crystal grains start immediately after recrystallization, it is necessary to supplement heat for a short time. The relationship between the temperature T (° C.) for supplementary heat and the time t (hr) needs to be adjusted so that the value of fn in the formula (a) derived from the activation energy of recrystallization is 22000 to 27000. . Reheating is not completed completely when the fn value is less than 22000, while recrystallization is not complete when the fn value exceeds 27000, and the SSC resistance and toughness of the product steel pipe deteriorate.
[0025]
The finishing temperature in the step (1) can be any of a case where the finishing temperature is higher than, a case where the finishing temperature is equal to or a case where the finishing temperature is lower. Accordingly, the supplementary heating in the method of the present invention can be any of slow cooling from the rolling finishing temperature, holding at substantially the same temperature as the finishing temperature, and heating from the finishing temperature (temperature increase). As long as the condition of the formula (a) is satisfied, there is no restriction on the heat pattern. If the heat is supplemented under the condition that satisfies the equation (a), the temperature of the entire tube can be made uniform.
[0026]
(3) Cooling process:
Since the martensitic stainless steel has high hardenability, it is sufficient to cool the steel pipe that has exited the auxiliary heat furnace so long as it does not precipitate chromium carbide. Cool at a cooling rate of 10 ° C / min or more to at least 600 ° C, where chromium carbide is likely to precipitate. Thereby, the precipitation of carbides can be suppressed to an extent that does not cause a problem in practice. At a temperature lower than 600 ° C., it may be cooled to 200 ° C. or lower, which is a substantial Mf point, at an arbitrary cooling rate. However, it is preferable to completely cool down to room temperature in order to minimize residual austenite.
[0027]
Tempering is performed to temper the martensite structure generated by quenching and improve the toughness and SSC resistance of the product steel pipe. At temperatures lower than 500 ° C, the tempering effect is not sufficient, and at temperatures above 780 ° C, the strength decreases. Tempering time may be about 5 minutes to 1 hour.
[0028]
【Example】
Steels A to G shown in Table 1 were melted to produce billets having an outer diameter of 225 mm and rolled using a Mannesmann-mandrel mill to produce a steel pipe having an outer diameter of 273.1 mm and a wall thickness of 9.3 mm. The production conditions are as shown in Table 2. In the heat treatment after supplementary heating, cooling in the lower temperature range than 600 ° C. was air cooling, and the tempering temperature was reheated from each cooling end temperature. Since the steel pipe strength varies depending on the steel type, the tempering temperature was changed to adjust the yield strength (yield strength) to around 60 kgf / mm 2 for any steel type.
[0029]
The conventional example in Table 2 is the same as the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 4-104420. The steel pipe after the recrystallization is finished by directly quenching the steel pipe after being processed at a sufficiently high temperature and subjected to tempering treatment. This is an example.
[0030]
[Table 1]
[0031]
[Table 2]
[0032]
About the obtained steel pipe, a tensile test piece, a Charpy impact test piece in the pipe axis direction from a total of 12 places of 3 places every 3 m in the longitudinal direction from the pipe end and a position obtained by dividing each of these positions into 4 parts in the circumferential direction, Corrosion resistance test specimens were collected and subjected to the following tests to examine mechanical properties and corrosion resistance.
[0033]
The tensile test was performed using a round bar test piece having a diameter of 4 mm and a parallel part of 34 mm. The Charpy impact test was evaluated using an impact value at 0 ° C. using a 2 mm V notch test piece of 5 mm × 10 mm × 55 mm. Corrosion resistance (SSC resistance) is measured according to the constant load test specified in NACE TM 0177 METHOD-A, with a stress of 45 kgf / mm 2 and “30 atm. CO 2 +0.01 atm. H 2 S + 5% NaCl. And was evaluated by the presence or absence of cracks after 200 hours. The test results are shown in Table 3.
[0034]
In Table 3, the yield strength and the impact value are shown by the maximum value (M), the minimum value (m), the average value, and the variation (M−m) by the above 12 test pieces. Anisotropy was indicated by whether or not separation occurred on the fracture surface of the impact test piece. The SSC resistance was evaluated based on how many of the test pieces from 12 locations passed (no cracking occurred).
[0035]
[Table 3]
[0036]
From Table 3, the following facts are clear.
[0037]
1) Sample Nos. 1 to 14, which are examples of the present invention, have good strength and toughness, and the difference in their values depending on the portion of the steel pipe is extremely small. That is, the variation is small. Further, no separation as an anisotropy index is observed on the fracture surface of the impact test piece of the present invention.
[0038]
2) In the SSC resistance test, all 12 specimens are not cracked and the SSC resistance is good.
[0039]
3) In the conventional samples Nos. 22 to 28, the mechanical properties, particularly the strength, vary greatly depending on the part of the steel pipe. In addition, the SSC resistance test has not passed all the tests.
[0040]
4) Test numbers 15 to 21 are comparative examples in which any of the conditions for pipe making and heat treatment does not satisfy the conditions defined in the present invention. Of these, trial No. 15 has a small total degree of drawing and finishing of 5%, and trial No. 16 has a finishing temperature that is too high, both of which have coarse austenite grains, and have good toughness and SSC resistance. Inferior.
[0041]
5) Test No. 17 has a low heat resistance temperature, carbides grow coarsely, and ferrite transformation has occurred, resulting in low strength and poor toughness and SSC resistance.
[0042]
6) In Test No. 18, separation was observed because the value of fn was too small and recrystallization was not sufficient. That is, the anisotropy is large. On the other hand, since the austenite crystal grains coarsened in the trial number 19 because the value of fn was too large, the toughness and the SSC resistance were inferior.
[0043]
7) In Test No. 20, the cooling rate to 600 ° C. after the supplemental heating is small, so the toughness and SSC resistance are reduced by the precipitation of coarse carbides. On the other hand, the trial number 21 was tempered in a state where the martensitic transformation was not completed because the cooling end temperature was too high, the strength was low, and the toughness and the SSC resistance were inferior.
[0044]
【The invention's effect】
As is apparent from the examples, the martensitic stainless steel seamless steel pipe produced by the method of the present invention has almost no variation in characteristics, which is a difficulty of the steel pipe produced by the conventional direct quenching method. There is no direction. Since the method of the present invention can be continuously performed on-line from pipe making to heat treatment, it greatly contributes to the improvement of productivity and the reduction of manufacturing cost in the production of seamless steel pipes.
Claims (1)
▲1▼ 中空素管に施す延伸加工および仕上げ加工を、両加工における合計の加工度で40%以上、仕上げ温度 800〜1100℃で行い継目無鋼管とする工程、
▲2▼ 上記継目無鋼管を補熱炉に装入し、下記の (a)式で規定されるfnの値が 22000 から27000 までの間の値となる温度T (℃) および時間t(hr)での補熱を行う工程、
▲3▼ 補熱炉から取り出した継目無鋼管を、少なくとも 600℃までは10℃/分以上の冷却速度として200 ℃以下に冷却した後、 500〜780 ℃で焼き戻す工程。
fn=(T+ 273) × (21+ logt) ・・・ (a)
ただし、T≧ 800 (℃) である。A method for producing a seamless steel pipe using stainless steel having a substantially martensitic structure at room temperature, wherein the following steps (1) to (3) are sequentially performed: .
(1) Stretching and finishing of the hollow shell are performed at a total processing degree of both processes at 40% or more at a finishing temperature of 800 to 1100 ° C to make a seamless steel pipe.
(2) The above seamless steel pipe is charged into a reheating furnace, and the temperature T (° C.) and the time t (hr) at which the value of fn defined by the following equation (a) is between 22000 and 27000. ) Process of performing supplementary heat in
(3) A step of tempering the seamless steel pipe taken out from the reheating furnace to 200 ° C. or less at a cooling rate of 10 ° C./min or more up to 600 ° C. and then tempering at 500 to 780 ° C.
fn = (T + 273) × (21 + logt) (a)
However, T ≧ 800 (° C.).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09838096A JP3694967B2 (en) | 1996-04-19 | 1996-04-19 | Method for producing martensitic stainless steel seamless steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09838096A JP3694967B2 (en) | 1996-04-19 | 1996-04-19 | Method for producing martensitic stainless steel seamless steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09287023A JPH09287023A (en) | 1997-11-04 |
JP3694967B2 true JP3694967B2 (en) | 2005-09-14 |
Family
ID=14218275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09838096A Expired - Fee Related JP3694967B2 (en) | 1996-04-19 | 1996-04-19 | Method for producing martensitic stainless steel seamless steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3694967B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4240178B2 (en) * | 1999-11-04 | 2009-03-18 | 住友金属工業株式会社 | Manufacturing method of martensitic stainless steel pipe with excellent descalability and corrosion resistance |
JP3680764B2 (en) * | 2001-05-22 | 2005-08-10 | 住友金属工業株式会社 | Method for producing martensitic stainless steel pipe |
JP5907083B2 (en) * | 2013-01-31 | 2016-04-20 | Jfeスチール株式会社 | Manufacturing method and equipment for seamless steel pipe with excellent toughness |
JP6686320B2 (en) * | 2015-08-05 | 2020-04-22 | 日本製鉄株式会社 | Manufacturing method of stainless steel pipe |
CN107587033A (en) * | 2016-07-06 | 2018-01-16 | 建平县园田矿山机械制造有限公司 | High chromium multiple elements design tup and preparation method thereof |
CN109750222B (en) * | 2017-12-08 | 2020-12-15 | 上海落日新材料科技有限公司 | High-performance martensitic stainless steel and manufacturing method of high-flatness plate thereof |
-
1996
- 1996-04-19 JP JP09838096A patent/JP3694967B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09287023A (en) | 1997-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3354756B1 (en) | Online-controlled seamless steel tube cooling process and seamless steel tube manufacturing method with effective grain refinement | |
US20030066580A1 (en) | Method for making high-strength high-toughness martensitic stainless steel seamless pipe | |
US10233520B2 (en) | Low-alloy steel pipe for an oil well | |
GB1562104A (en) | Production of seamless steel pipe | |
EP0787541A1 (en) | Method of manufacturing seamless steel pipes and manufacturing equipment therefor | |
WO2016080315A1 (en) | Rolled steel bar or rolled wire material for cold-forged component | |
CN101410536A (en) | Method of manufacturing seamless pipe and tube | |
JP4123672B2 (en) | Manufacturing method of high strength seamless steel pipe with excellent toughness | |
JP3375554B2 (en) | Steel pipe with excellent strength-ductility balance | |
JP3598868B2 (en) | Manufacturing method of hot rolled wire rod | |
US11421298B2 (en) | Electric resistance welded steel tube for coiled tubing and method for manufacturing the same | |
JP6901045B2 (en) | Steel pipe and manufacturing method of steel pipe | |
JP2004100016A (en) | Rolled wire rod for bearing and drawn wire rod | |
JP3694967B2 (en) | Method for producing martensitic stainless steel seamless steel pipe | |
JP2672441B2 (en) | Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance | |
JP3717745B2 (en) | Mandrel bar and its manufacturing method | |
JP3965708B2 (en) | Manufacturing method of high strength seamless steel pipe with excellent toughness | |
JP3589066B2 (en) | Manufacturing method of high strength and high toughness seamless steel pipe | |
JP2000096142A (en) | Method for reducing steel tube | |
JP3326783B2 (en) | Manufacturing method of low alloy seamless steel pipe with excellent high temperature strength | |
JPH07109008B2 (en) | Martensitic stainless steel seamless pipe manufacturing method | |
JPH09287027A (en) | Production of high strength, high toughness and seamless steel pipe | |
JP3214348B2 (en) | Manufacturing method of alloy steel pipe | |
JPH0678571B2 (en) | Stainless steel seamless pipe manufacturing method | |
JP3214351B2 (en) | Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050620 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080708 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090708 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090708 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100708 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110708 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110708 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120708 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120708 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130708 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130708 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130708 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |