JP3589066B2 - Manufacturing method of high strength and high toughness seamless steel pipe - Google Patents

Manufacturing method of high strength and high toughness seamless steel pipe Download PDF

Info

Publication number
JP3589066B2
JP3589066B2 JP02146099A JP2146099A JP3589066B2 JP 3589066 B2 JP3589066 B2 JP 3589066B2 JP 02146099 A JP02146099 A JP 02146099A JP 2146099 A JP2146099 A JP 2146099A JP 3589066 B2 JP3589066 B2 JP 3589066B2
Authority
JP
Japan
Prior art keywords
steel pipe
rolling
toughness
strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02146099A
Other languages
Japanese (ja)
Other versions
JP2000219915A (en
Inventor
大迫  一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP02146099A priority Critical patent/JP3589066B2/en
Publication of JP2000219915A publication Critical patent/JP2000219915A/en
Application granted granted Critical
Publication of JP3589066B2 publication Critical patent/JP3589066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、油井用鋼管として使用される継目無鋼管の製造方法に関し、さらに詳しくは、油井用の特性として要求される高強度および高靱性の性質を兼備する継目無鋼管を高い生産効率で製造する方法に関するものである。
【0002】
【従来の技術】
近年、深さ数千mにも及ぶ天然ガス田や原油田などの探査および天然ガスや原油の産出を行うために使用される油井用の継目無鋼管には、安全性、加工性を確保するため、高強度、かつ高靱性という特性を満足することが一層要請されるようになっている。
【0003】
このような継目無鋼管は、従来、圧延ラインとは別に焼入れ装置と焼戻し装置を設置し、圧延ラインで製造され、一旦室温まで冷却された鋼管を再加熱して、焼入れ−焼戻しの処理を行う、という方法で製造されてきた (以下、この方法を「再加熱−焼入れ法」という) 。そして、この製造方法に適用される鋼管素材としては、Mo等の高価な合金元素を添加して、鋼管の強度を確保するとともに、必要な特牲を兼備させるような成分設計がなされていた。
【0004】
例えば、特公平2−25969号公報には、サワー化傾向の下での深井戸化を前提として、耐硫化物応力腐食割れ性とともに低温靱性にも優れた高強度の継目無鋼管を製造するため、Cr:1.0〜4.0%を含み、Mo:0.2〜1.0%、Nb:0.01〜0.1%等を含有する素材鋼を用いて、「再加熱−焼入れ法」で製造する方法が提案されている。しかし、提案の方法では、高強度と低温靱性とを兼備させるため、高価な元素を多量に含有させる必要があることから、経済的な面から問題になる。
【0005】
また、特開昭60−33312号公報では、高価な元素であるはMo等を添加せず、添加したとしてもこれらの合金系の添加量は最小限にとどめ、「再加熱−焼入れ法」で焼入れすることにより、高価な合金成分を添加した場合と同等の強度と靱性を有する油井用鋼管が開示されている。しかし、ここで開示されている鋼管には、強度確保のためにV、Nbが添加されており、高価な元素を添加しないとするには不十分である。さらに、この製造方法では、焼戻し温度条件に制限を加えていることから、継目無鋼管の製造に適用した場合に、煩雑な焼戻し温度管理を必要として、生産性の低下が避けられないという問題がある。
【0006】
【発明が解決しようとする課題】
前述の通り、従来から、「再加熱−焼入れ法」で高強度の継目無鋼管を製造するため、焼入れ性向上に有効な高価な合金元素を添加していた。ところが、最近では、高強度の継目無鋼管を高い生産効率で得る方法として、熱間製管の連続プロセス化が検討され、その前提として「直接焼入れ法」も採用されるようになっている。「直接焼入れ法」とは、圧延材の保有熱を利用し、実質的な再加熱を行うことなく、焼入れを行う方法である。
【0007】
一方、靱性に関しては、圧延仕上げ温度をできるだけ低くコントロールすることによって、オーステナイト結晶粒を細粒化するのが有効である。しかし、圧延による継目無鋼管の製造では、潤滑の困難性などから、圧延仕上げ温度を低くすることが難しく、通常、仕上げ温度は1000℃以上を確保している。そうであれば、仕上げ温度が1000℃以上である圧延工程でオーステナイト結晶粒を微細化することが困難であり、これを通常の「直接焼入れ」で製造した場合には低温靱性に劣るものとなる。
【0008】
本発明は、上述の「直接焼入れ法」の際に生ずる問題点を勘案してなされたものであり、製管連続プロセスの前提となる「直接焼入れ法」を用いて、しかも、焼入れ性向上に有効であるが高価な合金元素を添加することなく、高強度で、かつ高靱性という特性を有する継目無鋼管を高い生産効率で製造する方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明者らは、上記の課題を達成するため、素材鋼の成分設計、穿孔圧延条件および直接焼入れ条件に関して種々の検討を加えた結果、焼入れ性を向上させるための高価な合金元素を添加しなくても、適正な圧延条件と加工熱処理を組み合わせることによって、高強度で、かつ高靱性な継目無鋼管を製造できることを明らかにした。この検討によって得られた知見は、次の▲1▼〜▲3▼である。
【0010】
▲1▼ 最終圧延工程である仕上げ圧延機において、断面圧縮率が40%以下の低加工を仕上げ温度1050℃以上で行うことによって、圧延完了後の鋼管のオーステナイト結晶粒を粗大にすることができる。そして、結晶粒が粗大なまま焼入れを実施すると焼入れ性が向上し、高強度化が得られる。
【0011】
▲2▼ 圧延終了後に、できるだけ高温で保熱することによりオーステナイト結晶粒を粗大なままで保持できるとともに、鋼管の全長各部にわたり均熱性を向上させることができ、焼入れ性能のバラツキ防止が可能になる。
【0012】
▲3▼ オーステナイト結晶粒の粗大は焼入れ性を向上させる反面、靱性劣化を顕著にする。また、靱性に関して、鋼中に不純物として含まれるP、Sが悪影響を及ぼす。そこで、素材鋼に含有されるP、Sを低減させることによって、結晶粒が粗大化した場合に、鋼管の靭性を著しく改善することができる。
【0013】
本願発明は、上記の知見に基づいて完成されたものであり、次の継目無鋼管の製造方法を要旨としている。
【0014】
すなわち、重量%で、C:0.15〜0.5%、Si:0.1〜1.0%、Mn:0.1〜1.5%、P:0.02%以下、S:0.002%以下、Cr:0.1〜1.5%、Ti:0〜0.5%、B:0〜0.01%、Al:0.005〜0.5%、N:0.01%以下、O(酸素):0.01%以下を含有し、残部はFeおよび不可避的不純物からなる素材を加熱して熱間で穿孔圧延し継目無鋼管を製造するに際し、最終圧延工程で断面圧縮率で40%以下の加工を仕上がり温度1050℃以上で行い、次いで直ちに930℃以上で保熱し、焼入れ前のオーステナイト粒の短径が平均で40μm以上の状態で直接焼入れすることを特徴とする高強度高靱性継目無鋼管の製造方法である。
【0015】
熱間で穿孔圧延し継目無鋼管を製造するに際には、後述するように、穿孔された中空素管が延伸圧延機および仕上げ圧延機によって寸法調整される。この圧延を行う設備にも幾つかの方式があるが、例えば、マンネスマン・マンドレルミル方式では、ピアサーミルで穿孔・圧延され、さらにマンドレルミルで延伸圧延が、サイザーまたはレデューサーで仕上げ圧延が行われる。したがって、本発明における最終圧延工程とは、上記の延伸圧延、およびサイザーまたはレデューサーによる仕上げ圧延工程の両者を意味している。
【0016】
本発明の継目無鋼管においては、高強度とは降伏応力で700Mpa以上であり、高靱性とは衝撃破面遷移温度(vTrs)が−50℃を超えることを意図している。
【0017】
【発明の実施の形態】
以下、本発明の各要件を、素材鋼の化学組成および継目無鋼管の製造方法に区分して逐次説明する。なお、化学成分の含有量を示す%は「重量%」を意味する。
【0018】
(A) 素材鋼の化学組成
C:0.15〜0.5%
Cは焼入れ性を高め、鋼管の強度を向上させために必要な元素である。0.15%未満では焼入れ性が不足して強度が確保できない。一方、0.5%を超えると焼き割れ、遅れ破壊が起こりやすく継目無鋼管の製造が困難になるので、C含有量は、0.15〜0.5%とする。
【0019】
Si:0.1〜1.0%
Siは鋼の脱酸作用の他に、鋼材強度を向上する作用があるので、0.1%以上の添加を必要とする。一方、添加が1.0%を超えると、靱性劣化が見られる。このため、Si含有量は、0.1〜1.5%とする。
【0020】
Mn:0.1〜1.5%
Mnにも鋼の脱酸、脱硫作用があり、この目的を達成するには0.1%以上の添加が必要である。一方、その添加が1.5%を超えると靱性劣化が見られるので、含有量は0.1〜1.5%とする。
【0021】
P:0.02%以下
Pは鋼中に不可避的に含まれる不純物であり、粒界に偏析してして靱性を劣化させるので、可能な限り含有量を少なくする。本発明方法において圧延加工後にオーステナイト結晶粒が粗大化した場合であっても、P含有量を低減することによって、鋼管の靭性を著しく改善することができる。そのため、その上限を0.02%とする。さらに、上限を0.005%とすることにより一層靱性を改善することができる。
【0022】
S:0.002%以下
Sは、上記Pと同様に、鋼中に不可避的に含まれる不純物であり、介在物として存在し靱性を劣化させるので、可能な限り含有量を少なくする。本発明方法において圧延加工後にオーステナイト結晶粒が粗大化した場合であっても、S含有量を低減することによって、靭性を著しく改善することができる。そのため、S含有量は、0.002%以下とした。さらに望ましくは0.0008%以下にする。
【0023】
Cr:0.1〜1.5%
Crは焼入れ性を確保し、強度を増加させる作用があるが、その含有量が0.1%未満ではその効果が得られず、1.5%を超えると靱性が劣化する。したがって、Cr含有量は、0.1〜1.5%とする。
【0024】
Ti:0〜0.5%
Tiは添加しなくてもよいが、焼入れ性に有効な元素であるのでより高強度が必要な場合に添加する。しかし、添加が0.5%を超えると鋼管の靱性を低下させるので、Ti含有量は0.5%以下とする。
【0025】
B:0〜0.01%
Bは添加しなくてもよいが、微量の添加で焼入れ性を向上させるのでより高強度が必要な場合に添加する。しかし、添加が0.01%を超えると靱性が劣化し、焼き割れ感受性も高くなることから、B含有量は0.01%以下とする。
【0026】
Al:0.005〜0.5%
Alは鋼の脱酸剤として有用な元素であるが、0.005%未満ではその効果が得られず、0.5%を超えると介在物が多くなって靱性が低下する。したがって、Al含有量は0.005〜0.5%とする。
N:0.01%以下
Nは不純物として鋼に存在し、鋼管の靭性を低下させるので、0.01%以下とする。
【0027】
O(酸素):0.01%以下
Oは、Nと同様に、不純物として鋼に存在し、鋼管の靱性を低下させるので、0.01%以下とした。
【0028】
(B) 継目無鋼管の製造方法
以下、本発明の継目無鋼管の製造方法を、工程順に説明する。
【0029】
1. 素材鋼の加熱および穿孔:
素材鋼は、丸棒状に分塊圧延した鋼片あるいは横断面が円形の鋳型を持つ連続鋳造機で鋳造した鋳片など、いわゆるビレットである。なお、エネルギー節減のためにはビレットは、分塊圧延や連続鋳造された後、室温まで完全に冷却する前に加熱炉に装入するのがよい。
【0030】
ビレットの加熱温度は、熱間加工で穿孔できる温度であればよく、材質の高温延性と高温強度を考慮して定めればよい。通常は、1100〜1300℃の範囲に加熱する。穿孔工程においては、例えば傾斜ロール圧延機のようなピアサーを用いて中実のビレットに熱間で貫通孔を開け中空素管(ホローシェル)を製造する。
【0031】
2. 最終圧延工程:
穿孔された中空素管は、延伸圧延機および仕上げ圧延機によって最終圧延されて、所定寸法の継目無鋼管が製造される。前述の通り、本発明の最終圧延工程とは、マンネスマン・マンドレルミル方式の場合では、マンドレル延伸圧延、およびサイザーまたはレデューサーによる仕上げ圧延工程の両者を意味している。
【0032】
製品鋼管のオーステナイト結晶粒を微細化し低温靭性を高めるためには、最終圧延において高加工度の圧延をなるべく低い温度で行うようにすれば良い。これは、高加工度の圧延によって加工歪みが大きくなり、再結晶による微細化が促進されるためであり、また、圧延温度を低くすることによって、再結晶後の粒成長が抑制されるためである。
【0033】
しかしながら、鋼管のオーステナイト結晶粒が小さくなると強度が低くなるため、高強度を確保することができず、高強度と高靱性を兼備する特性を満足することができない。一方、圧延温度を低くしすぎると、圧延負荷の上昇にともない、圧延後マンドレルバーの引き出しのときに焼き付きが発生する等の圧延生産性を阻害することになる。そこで、本発明方法では、圧延での生産能率を高めることも考慮し、最終圧延工程で低加工度の圧延を高温の仕上げ温度で実施するようにしている。したがって、具体的には、低加工度の圧延としては断面圧縮率で40%以下であり、高温仕上げ温度としては1050℃以上である。
【0034】
上述の通り、本発明方法によれば、鋼管のオーステナイト結晶粒が粗大になるが、同時に焼入れ性を著しく向上させることができるので、特に、高価な合金元素を添加することなく、高強度の鋼管を得ることができる。次ぎに、靱性に関しては、圧延加工後にオーステナイト結晶粒が粗大化した場合であっても、P、Sの含有量を低減することによって、鋼管の靭性を著しく改善することができるので、問題とならない。
【0035】
3. 最終圧延後の保熱:
最終圧延後の鋼管は、直ちに930℃以上で保熱される。一般には、圧延ラインの中に保熱炉のようなものを置くのは、設備コスト面では得策でないかもしれない。しかし、焼入れ前の鋼管の均熱性を確保して、焼入強度および靱性のバラツキを抑えるためには、鋼管の長手方向および円周方向の組織および性能の均一性を確保することができる保熱炉が必要である。
【0036】
再結晶による結晶粒の微細化が起こらないようにするため、保熱はできるだけ高温で行うようにするため、930℃以上とした。保熱時間は、鋼管全体の温度を均一にするために、少なくとも1分は必要である。しかし、60分を超えて保熱してもその効果は飽和し、生産性を低下させるだけである。
【0037】
4. 直接焼入れ:
保熱により温度を均一化された鋼管は、水冷等により直接焼入れされる。このとき、結晶粒径が大きいとフェライト変態がし難くなり、マルテンサイト変態がし易くなり焼入性が向上するので、焼入れ前のオーステナイト結晶粒の短径は平均で40μm以上になるようにしている。このときの冷却は、早ければ早いほど組織の均一性を増すことができるので上限を設ける必要はない。しかし、10℃/sec以下では、強度が低下し、また組織も粗大になって、靱性も低下する。
【0038】
上記の急冷の後は、空冷で適当な温度、例えば室温まで冷却すればよい。上記の冷却のままでも、製品鋼管は優れた特性のものとなる。しかし、これに焼戻し処理を施せば、組織の硬さを減じ、靱性をさらに改善することができるので、必要ある場合には、焼戻しすればよい。
【0039】
【実施例】
表1に示す化学組成を有する素材鋼を用いて、油井用継目無鋼管を製造する。これらの素材鋼を加熱炉に装入し、2時間以上保持して1230〜1280℃に加熱した後、ピアサーにて穿孔圧延して中空素管とした。最終圧延工程として、マンドレル延伸圧延し、次いでサイザーで仕上げ加工を行い、その後保熱し、直接焼入れののち焼戻して製品鋼管を製造した。このときの圧延仕上げ温度、圧延加工度、保熱温度(焼入温度)、焼戻し温度および焼入れ前のオーステナイト結晶粒の短径平均値を、表2に示すように、変化させた試験を実施した。なお、オーステナイト結晶の粒径は、ASTM E112で測定した。
【0040】
焼戻し後の製品鋼管から試験片を切り出し、引張試験およびシャルピー試験を行って、強度として降伏強さ(YS)、引張強さ(TS)を、靱性として破面遷移温度(vTrs)を調査した。その結果を、表2に示す。
【0041】
【表1】

Figure 0003589066
【0042】
【表2】
Figure 0003589066
【0043】
表2の結果から明らかなように、発明例の試験1〜9では、最終圧延での仕上げ温度が1050℃以上で、圧延加工度を40%以下として圧延を実施し、次いで保熱を930℃以上にて行った後、直ちに直接焼入れ+焼戻し処理にて製品鋼管を製造している。このため、焼入前のオーステナイト結晶粒を粗大の状態で保つことができ、充分な焼入れ性が確保できる。また、素材鋼である鋼A〜EはP、Sの低減により、粗大な結晶粒であっても、低温靱性の著しく改善している。したがって、高強度で、かつ高靱性と言える油井用鋼管の目安となる、YS:700Mpa以上、およびvTrs:−50℃を、いずれの発明例も達成している。
【0044】
これに対し、比較例の試験10〜12は、本発明で規定する素材鋼を用いたが、圧延仕上げ温度、最終圧延加工度、または保熱温度の何れかが本発明の規定範囲から外れているため、靱性劣化が著しい。
【0045】
比較例の試験13〜19は、最終圧延および直接焼入れの条件は本発明の規定を具備するものであるが、素材鋼の化学組成のいずれかが本発明の規定範囲を外れるものであるから、製品鋼管での靱性劣化が著しい。特に、試験17では焼入れ性を確保するために最小限必要なC含有量が不足しているため、必要な強度も確保することができなかった。
【0046】
【発明の効果】
本発明の高強度高靱性継目無鋼管の製造方法によれば、焼入れ性向上に有効であるが高価な合金元素を添加することなく、高強度で、かつ高靱性の特性を兼備する油井用鋼管を製造することができる。しかも、製管連続プロセスを前提とする「直接焼入れ法」による処理であるため、均一で優れた特性を有する継目無鋼管を高い生産効率で製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a seamless steel pipe used as a steel pipe for oil wells, and more particularly, to a method for manufacturing a seamless steel pipe having both high strength and high toughness required as properties for oil wells with high production efficiency. How to do it.
[0002]
[Prior art]
In recent years, seamless steel pipes for oil wells used for exploring natural gas fields and crude oil fields with a depth of several thousand meters and producing natural gas and crude oil have secured safety and workability. For this reason, it is increasingly required to satisfy the characteristics of high strength and high toughness.
[0003]
Conventionally, such a seamless steel pipe is provided with a quenching device and a tempering device separately from a rolling line, and re-heats a steel pipe manufactured in a rolling line and once cooled to room temperature to perform a quenching-tempering process. (Hereinafter, this method is referred to as “reheating-quenching method”). And, as a steel pipe raw material applied to this manufacturing method, an expensive alloy element such as Mo is added to secure the strength of the steel pipe and to design a component that combines necessary properties.
[0004]
For example, Japanese Patent Publication No. 2-25969 discloses a method for producing a high-strength seamless steel pipe having excellent low-temperature toughness as well as sulfide stress corrosion cracking resistance on the premise of deep wells under the trend of sourcing. , Cr: 1.0-4.0%, Mo: 0.2-1.0%, Nb: 0.01-0.1%, etc. A method of manufacturing by the "method" has been proposed. However, in the proposed method, it is necessary to contain a large amount of expensive elements in order to combine high strength and low temperature toughness.
[0005]
In Japanese Patent Application Laid-Open No. 60-33312, expensive elements such as Mo or the like are not added, and even if they are added, the amount of these alloys added is kept to a minimum, and the "reheating-quenching method" is used. There is disclosed an oil well steel pipe having the same strength and toughness as a case where an expensive alloy component is added by quenching. However, V and Nb are added to the steel pipe disclosed here to secure the strength, which is insufficient for not adding expensive elements. Furthermore, in this manufacturing method, since the tempering temperature conditions are limited, when applied to the production of a seamless steel pipe, there is a problem that a complicated tempering temperature control is required and a reduction in productivity is inevitable. is there.
[0006]
[Problems to be solved by the invention]
As described above, conventionally, in order to manufacture a high-strength seamless steel pipe by the "reheating-quenching method", an expensive alloy element effective for improving hardenability has been added. However, recently, as a method of obtaining a high-strength seamless steel pipe with high production efficiency, a continuous process of hot pipe making has been studied, and the "direct quenching method" has been adopted as a premise. The "direct quenching method" is a method in which quenching is performed by utilizing the retained heat of a rolled material without performing substantial reheating.
[0007]
On the other hand, regarding the toughness, it is effective to control the rolling finishing temperature as low as possible to make the austenite crystal grains fine. However, in the production of a seamless steel pipe by rolling, it is difficult to lower the rolling finishing temperature due to difficulties in lubrication and the like, and usually the finishing temperature is maintained at 1000 ° C. or higher. If so, it is difficult to refine the austenite crystal grains in the rolling step in which the finishing temperature is 1000 ° C. or higher, and when this is manufactured by ordinary “direct quenching”, the low-temperature toughness is inferior. .
[0008]
The present invention has been made in view of the problems that occur during the above-described “direct quenching method”, and uses the “direct quenching method” that is a premise of the continuous pipe making process, and furthermore, has been made to improve the hardenability. It is an object of the present invention to provide a method for producing a seamless steel pipe having high strength and high toughness with high production efficiency without adding an effective but expensive alloy element.
[0009]
[Means for Solving the Problems]
The present inventors have conducted various studies on the component design of the raw steel, the piercing rolling conditions and the direct quenching conditions in order to achieve the above object, and as a result, added an expensive alloy element for improving the hardenability. Even without this, it was clarified that a high-strength and high-toughness seamless steel pipe can be manufactured by combining appropriate rolling conditions and thermomechanical treatment. The findings obtained from this study are the following (1) to (3).
[0010]
{Circle around (1)} In the finishing rolling mill, which is the final rolling step, the austenite crystal grains of the steel pipe after the rolling is completed can be made coarse by performing the low working with the cross-sectional compression ratio of 40% or less at the finishing temperature of 1050 ° C. or more. . When quenching is performed while the crystal grains are coarse, quenching properties are improved, and high strength is obtained.
[0011]
(2) By keeping the heat at as high a temperature as possible after the end of rolling, the austenite crystal grains can be kept coarse, and the uniformity can be improved over the entire length of the steel pipe, thereby preventing variation in quenching performance. .
[0012]
{Circle around (3)} The coarseness of austenite crystal grains improves quenching properties, but remarkably deteriorates toughness. Further, regarding toughness, P and S contained as impurities in steel have an adverse effect. Therefore, by reducing P and S contained in the base steel, the toughness of the steel pipe can be significantly improved when the crystal grains are coarsened.
[0013]
The present invention has been completed based on the above findings, and has a gist of the following method for manufacturing a seamless steel pipe.
[0014]
That is, in weight%, C: 0.15 to 0.5%, Si: 0.1 to 1.0%, Mn: 0.1 to 1.5%, P: 0.02% or less, S: 0 0.002% or less, Cr: 0.1 to 1.5%, Ti: 0 to 0.5%, B: 0 to 0.01%, Al: 0.005 to 0.5%, N: 0.01 % Or less, O (oxygen): 0.01% or less, the remainder being a material consisting of Fe and unavoidable impurities, heated and pierced and rolled to produce a seamless steel pipe. Processing at a compression ratio of 40% or less is performed at a finishing temperature of 1050 ° C. or more, then immediately at 930 ° C. or more, and directly quenched in a state where the minor axis of austenite grains before quenching is 40 μm or more on average. This is a method for producing a high-strength, high-toughness seamless steel pipe.
[0015]
When a seamless steel pipe is manufactured by hot piercing and rolling, dimensions of the perforated hollow shell are adjusted by a stretching rolling mill and a finishing rolling mill, as described later. There are several types of equipment for performing this rolling. For example, in the Mannesmann mandrel mill method, piercing and rolling are performed by a piercer mill, and elongation rolling is performed by a mandrel mill, and finish rolling is performed by a sizer or a reducer. Therefore, the final rolling step in the present invention means both the above elongation rolling and the finish rolling step using a sizer or a reducer.
[0016]
In the seamless steel pipe of the present invention, high strength means that the yield stress is 700 Mpa or more, and high toughness means that the impact fracture transition temperature (vTrs) exceeds -50 ° C.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the requirements of the present invention will be sequentially described in terms of the chemical composition of the raw steel and the method of manufacturing the seamless steel pipe. In addition,% which shows content of a chemical component means "weight%."
[0018]
(A) Chemical composition C of material steel: 0.15 to 0.5%
C is an element necessary for improving the hardenability and improving the strength of the steel pipe. If it is less than 0.15%, the hardenability is insufficient and the strength cannot be secured. On the other hand, if it exceeds 0.5%, sintering cracks and delayed fracture are likely to occur, making it difficult to manufacture a seamless steel pipe. Therefore, the C content is set to 0.15 to 0.5%.
[0019]
Si: 0.1 to 1.0%
Since Si has the effect of improving the strength of steel material in addition to the deoxidizing effect of steel, it needs to be added in an amount of 0.1% or more. On the other hand, if the addition exceeds 1.0%, toughness is deteriorated. For this reason, the Si content is set to 0.1 to 1.5%.
[0020]
Mn: 0.1-1.5%
Mn also has a deoxidizing and desulfurizing action on steel, and to achieve this purpose, it is necessary to add 0.1% or more. On the other hand, if the addition exceeds 1.5%, toughness is deteriorated, so the content is set to 0.1 to 1.5%.
[0021]
P: 0.02% or less P is an impurity inevitably contained in steel, and segregates at grain boundaries to deteriorate toughness, so that the content is reduced as much as possible. In the method of the present invention, even when the austenite crystal grains are coarsened after rolling, the toughness of the steel pipe can be significantly improved by reducing the P content. Therefore, the upper limit is set to 0.02%. Further, by setting the upper limit to 0.005%, the toughness can be further improved.
[0022]
S: 0.002% or less S is an impurity unavoidably contained in steel, like P, and exists as inclusions to deteriorate toughness. Therefore, the content of S is reduced as much as possible. In the method of the present invention, even if the austenite crystal grains become coarse after rolling, the toughness can be significantly improved by reducing the S content. Therefore, the S content is set to 0.002% or less. More preferably, it is 0.0008% or less.
[0023]
Cr: 0.1-1.5%
Cr has the effect of securing the quenchability and increasing the strength, but if its content is less than 0.1%, the effect cannot be obtained, and if it exceeds 1.5%, the toughness deteriorates. Therefore, the Cr content is set to 0.1 to 1.5%.
[0024]
Ti: 0 to 0.5%
Ti does not need to be added, but is added when higher strength is required because it is an element effective for hardenability. However, if the addition exceeds 0.5%, the toughness of the steel pipe is reduced, so the Ti content is set to 0.5% or less.
[0025]
B: 0 to 0.01%
B does not need to be added, but is added when higher strength is required because hardenability is improved by adding a small amount. However, if the addition exceeds 0.01%, the toughness deteriorates and the susceptibility to quenching cracking increases, so the B content is set to 0.01% or less.
[0026]
Al: 0.005 to 0.5%
Al is an element useful as a deoxidizing agent for steel, but if its content is less than 0.005%, its effect cannot be obtained. If it exceeds 0.5%, inclusions increase and the toughness decreases. Therefore, the Al content is set to 0.005 to 0.5%.
N: 0.01% or less N is present in steel as an impurity and lowers the toughness of the steel pipe.
[0027]
O (oxygen): 0.01% or less O, like N, exists as an impurity in steel and lowers the toughness of a steel pipe.
[0028]
(B) Method of Manufacturing Seamless Steel Pipe Hereinafter, a method of manufacturing a seamless steel pipe of the present invention will be described in the order of steps.
[0029]
1. Heating and drilling of raw steel:
The material steel is a so-called billet, such as a steel slab that is slab-rolled into a round bar or a slab cast by a continuous casting machine having a mold having a circular cross section. In order to save energy, the billet is preferably charged into a heating furnace after being subjected to slab rolling or continuous casting and before completely cooled to room temperature.
[0030]
The heating temperature of the billet may be a temperature at which perforation can be performed by hot working, and may be determined in consideration of the high-temperature ductility and high-temperature strength of the material. Usually, it heats in the range of 1100-1300 degreeC. In the piercing step, a hollow shell (hollow shell) is manufactured by making a through hole in a solid billet by using a piercer such as an inclined roll rolling machine.
[0031]
2. Final rolling process:
The perforated hollow shell is finally rolled by a stretching rolling mill and a finishing rolling mill to produce a seamless steel pipe of a predetermined size. As described above, in the case of the Mannesmann mandrel mill system, the final rolling step of the present invention means both the mandrel elongation rolling and the finish rolling step using a sizer or a reducer.
[0032]
In order to refine the austenite crystal grains of the product steel pipe and increase the low-temperature toughness, it is only necessary to perform the rolling with a high working ratio at the lowest possible temperature in the final rolling. This is because the rolling at a high degree of processing increases processing strain and promotes refining by recrystallization, and also lowers the rolling temperature to suppress grain growth after recrystallization. is there.
[0033]
However, when the austenite crystal grains of the steel pipe are small, the strength is low, so that high strength cannot be ensured, and a property combining high strength and high toughness cannot be satisfied. On the other hand, if the rolling temperature is too low, the rolling productivity will be impaired due to an increase in the rolling load, such as occurrence of seizure when the mandrel bar is pulled out after rolling. Therefore, in the method of the present invention, in consideration of increasing the production efficiency in the rolling, the rolling at a low working ratio is performed at a high finishing temperature in the final rolling step. Therefore, specifically, the rolling at a low working ratio is 40% or less in cross-sectional compression ratio, and the high-temperature finishing temperature is 1050 ° C. or more.
[0034]
As described above, according to the method of the present invention, the austenite crystal grains of the steel pipe become coarse, but at the same time, the hardenability can be significantly improved. Can be obtained. Next, regarding the toughness, even if the austenite crystal grains become coarse after rolling, the toughness of the steel pipe can be remarkably improved by reducing the contents of P and S, so that there is no problem. .
[0035]
3. Heat retention after final rolling:
The steel tube after the final rolling is immediately kept at 930 ° C. or higher. In general, placing something like a regenerative furnace in the rolling line may not be a viable option in terms of equipment costs. However, in order to secure the uniform heat of the steel pipe before quenching and to suppress the variation in quenching strength and toughness, it is necessary to maintain uniformity of the structure and performance in the longitudinal and circumferential directions of the steel pipe. A furnace is needed.
[0036]
The temperature was kept at 930 ° C. or higher in order to keep the heat as high as possible in order to prevent the crystal grains from being refined by recrystallization. The heat retention time is at least one minute in order to make the temperature of the entire steel pipe uniform. However, if the heat is kept for more than 60 minutes, the effect is saturated and only the productivity is reduced.
[0037]
4. Direct quenching:
The steel pipe whose temperature has been made uniform by heat retention is directly quenched by water cooling or the like. At this time, when the crystal grain size is large, the ferrite transformation becomes difficult, the martensite transformation becomes easy, and the hardenability improves, so that the minor axis of the austenite crystal grains before quenching should be 40 μm or more on average. I have. At this time, it is not necessary to set an upper limit because the earlier the cooling, the more uniform the tissue can be. However, at a temperature of 10 ° C./sec or less, the strength decreases, the structure becomes coarse, and the toughness also decreases.
[0038]
After the rapid cooling described above, the air may be cooled to an appropriate temperature, for example, room temperature. Even with the above cooling, the product steel pipe has excellent characteristics. However, if this is subjected to a tempering treatment, the hardness of the structure can be reduced and the toughness can be further improved. Therefore, if necessary, the tempering may be performed.
[0039]
【Example】
A seamless steel pipe for an oil well is manufactured using a raw steel having a chemical composition shown in Table 1. These material steels were charged into a heating furnace, heated to 1300 to 1280 ° C. for 2 hours or more, and then pierced and rolled with a piercer to obtain hollow shells. As a final rolling step, mandrel elongation rolling was performed, followed by finishing with a sizer, heat retention, direct quenching, and tempering to produce a product steel pipe. At this time, a test was conducted in which the rolling finish temperature, the degree of rolling, the heat retention temperature (quenching temperature), the tempering temperature, and the minor axis average value of the austenite crystal grains before quenching were changed as shown in Table 2. . In addition, the particle size of the austenitic crystal was measured by ASTM E112.
[0040]
Specimens were cut out from the tempered product steel pipe and subjected to a tensile test and a Charpy test to investigate the yield strength (YS) and tensile strength (TS) as strength and the fracture surface transition temperature (vTrs) as toughness. Table 2 shows the results.
[0041]
[Table 1]
Figure 0003589066
[0042]
[Table 2]
Figure 0003589066
[0043]
As is clear from the results in Table 2, in Tests 1 to 9 of the invention examples, rolling was performed with the finishing temperature in the final rolling being 1050 ° C. or more and the rolling degree being 40% or less, and then keeping the heat at 930 ° C. Immediately after the above, the product steel pipe is manufactured by direct quenching and tempering. Therefore, the austenite crystal grains before quenching can be kept in a coarse state, and sufficient hardenability can be secured. Further, the steels A to E, which are the material steels, have remarkably improved low-temperature toughness due to the reduction of P and S, even in the case of coarse crystal grains. Therefore, all of the invention examples achieve YS: 700 Mpa or more and vTrs: −50 ° C., which are indications of a high-strength and high-toughness oil-well steel pipe.
[0044]
In contrast, Tests 10 to 12 of Comparative Examples used the raw steel specified in the present invention, but either the rolling finish temperature, the final rolling degree, or the heat retention temperature was out of the specified range of the present invention. Therefore, the toughness deteriorates remarkably.
[0045]
Tests 13 to 19 of the comparative examples show that the conditions of final rolling and direct quenching satisfy the requirements of the present invention, but any one of the chemical compositions of the raw steel is out of the specified range of the present invention. Significant deterioration in toughness of product steel pipe. In particular, in Test 17, the minimum necessary C content for securing hardenability was insufficient, and the required strength could not be secured.
[0046]
【The invention's effect】
According to the method for producing a high-strength, high-toughness seamless steel pipe of the present invention, an oil-well steel pipe having high strength and high toughness characteristics without adding an expensive alloy element, which is effective for improving hardenability. Can be manufactured. Moreover, since the treatment is performed by the “direct quenching method” on the premise of a continuous pipe production process, a seamless steel pipe having uniform and excellent characteristics can be manufactured with high production efficiency.

Claims (1)

重量%で、C:0.15〜0.5%、Si:0.1〜1.0%、Mn:0.1〜1.5%、P:0.02%以下、S:0.002%以下、Cr:0.1〜1.5%、Ti:0〜0.5%、B:0〜0.01%、Al:0.005〜0.5%、N:0.01%以下、O(酸素):0.01%以下を含有し、残部はFeおよび不可避的不純物からなる素材を加熱して熱間で穿孔圧延し継目無鋼管を製造するに際し、最終圧延工程で断面圧縮率で40%以下の加工を仕上がり温度1050℃以上で行い、次いで直ちに930℃以上で保熱し、焼入れ前のオーステナイト粒の短径が平均で40μm以上の状態で直接焼入れすることを特徴とする高強度高靱性継目無鋼管の製造方法。By weight%, C: 0.15 to 0.5%, Si: 0.1 to 1.0%, Mn: 0.1 to 1.5%, P: 0.02% or less, S: 0.002 %, Cr: 0.1 to 1.5%, Ti: 0 to 0.5%, B: 0 to 0.01%, Al: 0.005 to 0.5%, N: 0.01% or less , O (oxygen): 0.01% or less, the remainder being a material consisting of Fe and unavoidable impurities, heating and hot piercing and rolling to produce a seamless steel pipe. High strength characterized in that processing of 40% or less is performed at a finishing temperature of 1050 ° C. or more, followed by immediate heat retention at 930 ° C. or more, and direct quenching with the minor axis of austenite grains before quenching being 40 μm or more on average. Manufacturing method of high toughness seamless steel pipe.
JP02146099A 1999-01-29 1999-01-29 Manufacturing method of high strength and high toughness seamless steel pipe Expired - Fee Related JP3589066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02146099A JP3589066B2 (en) 1999-01-29 1999-01-29 Manufacturing method of high strength and high toughness seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02146099A JP3589066B2 (en) 1999-01-29 1999-01-29 Manufacturing method of high strength and high toughness seamless steel pipe

Publications (2)

Publication Number Publication Date
JP2000219915A JP2000219915A (en) 2000-08-08
JP3589066B2 true JP3589066B2 (en) 2004-11-17

Family

ID=12055603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02146099A Expired - Fee Related JP3589066B2 (en) 1999-01-29 1999-01-29 Manufacturing method of high strength and high toughness seamless steel pipe

Country Status (1)

Country Link
JP (1) JP3589066B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774588B2 (en) * 2000-10-26 2011-09-14 Jfeスチール株式会社 Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP4706183B2 (en) * 2004-05-07 2011-06-22 住友金属工業株式会社 Seamless steel pipe and manufacturing method thereof
CN1329544C (en) * 2005-03-15 2007-08-01 无锡西姆莱斯石油专用管制造有限公司 High anti-extrusion petroleum casing pipe and method for producing same
CN102632078A (en) * 2012-05-03 2012-08-15 无锡西姆莱斯石油专用管制造有限公司 Production method of J55 steel-grade oil casing capable of resisting impact load
CN108754308B (en) * 2018-05-25 2020-05-19 张家港海锅新能源装备股份有限公司 Production method of high-strength steel forging raw material for tubing head in deep sea oil production equipment

Also Published As

Publication number Publication date
JP2000219915A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
JP5387799B1 (en) Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking
JP4305681B2 (en) Seamless steel pipe manufacturing method
EP1862561B9 (en) Oil well seamless pipe having excellent sulfide stress cracking resistance and method for manufacturing an oil well seamless steel pipe
JP4945946B2 (en) Seamless steel pipe and manufacturing method thereof
WO2018043570A1 (en) Steel and oil well steel pipe
EP3173501B1 (en) Low alloy oil-well steel pipe
US20180073094A1 (en) X80 pipeline steel with good strain-aging performance, pipeline tube and method for producing same
JP6146542B2 (en) Steel pipe for thick oil well and manufacturing method thereof
JPH1150148A (en) Production of high strength and high corrosion resistance seamless steel pipe
JPH10280037A (en) Production of high strength and high corrosion-resistant seamless seamless steel pipe
CN104264054A (en) 550MPa-level high-temperature resistant pipeline steel and preparation method thereof
CN111893386B (en) Thick plate for deepwater pipeline designed based on plastic deformation and crush resistance and production method thereof
CN108699656B (en) Steel material and steel pipe for oil well
JP2004137542A (en) Method for manufacturing hot-forged member of microalloyed steel
JP5668547B2 (en) Seamless steel pipe manufacturing method
JP4513496B2 (en) Seamless oil well steel pipe for pipe expansion and manufacturing method thereof
JP4367259B2 (en) Seamless steel pipe for oil wells with excellent pipe expandability
JP3589066B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe
CN114086083B (en) 1100 MPa-grade sulfur-resistant high-pressure gas cylinder steel, high-pressure gas cylinder and manufacturing method thereof
JPH1161254A (en) Production of high strength high corrosion resistance seamless steel tube
JP3765277B2 (en) Method for producing martensitic stainless steel piece and steel pipe
JPH11286720A (en) Manufacture of high strength steel product excellent in sulfide stress cracking resistance
JPH05255749A (en) Production of seamless steel tube having high strength and high toughness and excellent in ssc resistance
JP3249210B2 (en) Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees