JPH09287024A - Production of ferritic stainless steel seamless pipe - Google Patents

Production of ferritic stainless steel seamless pipe

Info

Publication number
JPH09287024A
JPH09287024A JP9848496A JP9848496A JPH09287024A JP H09287024 A JPH09287024 A JP H09287024A JP 9848496 A JP9848496 A JP 9848496A JP 9848496 A JP9848496 A JP 9848496A JP H09287024 A JPH09287024 A JP H09287024A
Authority
JP
Japan
Prior art keywords
steel pipe
temperature
seamless steel
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9848496A
Other languages
Japanese (ja)
Inventor
Kunio Kondo
邦夫 近藤
Takeshi Ichinose
威 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9848496A priority Critical patent/JPH09287024A/en
Publication of JPH09287024A publication Critical patent/JPH09287024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a ferritic stainless steel seamless pipe having small unevenness of the characteristic, such as excellent strength and corrosin resistance, in a low cost. SOLUTION: The seamless steel pipe is produced by using the ferritic stainless steel and executing the following (1)-(3) processes in order: (1) elongating work and finish work applied to a hollow base stock are executed at >=40% the total working ratio in both works and at 800-1,100 deg.C finish temp. to make the seamless steel pipe; (2) the seamless steel pipe is charged into a supplemental heating furnace and held at the temp. T deg.C regulated with the formula, 695+4×(%Cr)+20×(%Mo)+12×(%W)<=T deg.C<=1150, for 10sec to 30min; and (3) the seamless steel pipe taken out from the supplemental heating furnace is cooled at 1-100 deg.C/sec cooling velocity to 600 deg.C and successively, at >=20 deg.C/min at <=350 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、常温で実質的に
フェライト組織となる、いわゆるフェライト系のステン
レス鋼を用い、高強度で、かつ、靱性および耐食性に優
れた継目無鋼管を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a seamless steel pipe having high strength and excellent toughness and corrosion resistance by using a so-called ferritic stainless steel which has a substantially ferritic structure at room temperature. It is a thing.

【0002】[0002]

【従来の技術】フェライト系ステンレス鋼の継目無鋼管
は、従来、製管後、溶体化処理を施して製品としてい
る。しかし、フェライト系ステンレス鋼では、通常、熱
間加工された後の冷却中に炭窒化物や、σ相等の金属間
化合物が析出しやすく、また 475℃脆化感受性が高く、
脆化して必要な製品特性を備えないものになったり、継
目無鋼管製造の際の搬送時に管どうしが衝突して割れる
等、ハンドリング上の問題も多発する。
2. Description of the Related Art In the past, a seamless steel pipe made of ferritic stainless steel has been manufactured by subjecting it to a solution treatment after the pipe has been manufactured. However, in ferritic stainless steels, carbonitrides and intermetallic compounds such as σ phase tend to precipitate during cooling after hot working, and 475 ° C embrittlement susceptibility is high.
There are many handling problems such as brittleness and lack of required product properties, and pipes colliding and cracking during transportation during the manufacture of seamless steel pipes.

【0003】また、熱間圧延のままの継目無鋼管は、強
度的にも降伏応力が十分に高いとは言えず、高強度を得
るためには更に冷間加工を施さねばならない。また、製
管した後、再加熱して溶体化熱処理を行うという工程で
は、製造コストも高くなり生産性の点からも好ましくな
い。
Further, the seamless steel pipe as hot-rolled cannot be said to have a sufficiently high yield stress in terms of strength, and it must be further cold worked in order to obtain high strength. In addition, the process of performing re-heating and solution heat treatment after pipe making is not preferable from the viewpoint of productivity because the manufacturing cost becomes high.

【0004】フェライト系ステンレス鋼の溶体化処理を
省略する方法として、例えば特開昭61-69917号公報に開
示されているように、C、Nの含有量を制限した鋼を用
い、熱間圧延後特定の冷却速度で加速冷却する方法が提
案されている。この方法では炭窒化物の析出を防止する
ことが可能であるが、脆化の大きな原因である金属間化
合物の析出を抑制する効果は不明であり、また、過酷で
複雑な加工を必要とする上に製品特性に関する要求が厳
しい継目無鋼管の製造に、この技術がそのまま適用でき
るか否かは全く不明である。
As a method of omitting the solution treatment of ferritic stainless steel, for example, as disclosed in Japanese Patent Laid-Open No. 61-69917, a steel having a limited content of C and N is used and hot rolling is performed. A method of accelerating cooling at a specific cooling rate afterwards has been proposed. Although it is possible to prevent the precipitation of carbonitrides by this method, the effect of suppressing the precipitation of intermetallic compounds, which is a major cause of embrittlement, is unknown, and it requires severe and complicated processing. In addition, it is completely unclear whether this technology can be applied as it is to the production of seamless steel pipes that have severe requirements regarding product characteristics.

【0005】[0005]

【発明が解決しようとする課題】前記特開昭61-69917号
公報に提案されるように、最終加工後、急冷処理を行っ
て溶体化を省略することが可能であるとしても、継目無
鋼管の実生産ラインにこの方法を適用するのは難しい。
As proposed in the above-mentioned Japanese Patent Laid-Open No. 61-69917, even if it is possible to carry out quenching treatment after the final processing to omit solution treatment, a seamless steel pipe It is difficult to apply this method to the actual production line of.

【0006】継目無鋼管の製造過程では、中空素管ある
いは圧延後の鋼管が圧延ロールや搬送ラインのビーム等
に全面均一に接触することはない。従って、1本の鋼管
の部位(長手方向および円周方向の位置)によって冷却
状況が異なり、相当の温度の変動が生じる。このような
鋼管をそのまま急冷すると、部位によってそれぞれ異な
る温度から急冷されることになり、その結果として1本
の鋼管内に機械的性質や耐食性の異なる部分が発生して
しまう。即ち、製品鋼管は、特性にバラツキの多い実用
に耐えないものになる。さらに、圧延直後の、歪が過多
に導入されたままの鋼管を急冷するとσ相やラーベス相
等金属間化合物が析出し易くなり、十分な性能は得られ
ない。
[0006] In the process of manufacturing a seamless steel pipe, the hollow shell or the steel pipe after rolling does not come into uniform contact with the entire surface of the rolling roll, the beam of the conveying line or the like. Therefore, the cooling condition differs depending on the part of the one steel pipe (position in the longitudinal direction and the circumferential direction), and a considerable temperature fluctuation occurs. If such a steel pipe is rapidly cooled as it is, it will be rapidly cooled from different temperatures depending on the parts, and as a result, parts having different mechanical properties and corrosion resistance will be generated in one steel pipe. That is, the product steel pipe becomes unusable for practical use with many variations in characteristics. Further, when a steel pipe immediately after rolling, in which strain is excessively introduced, is rapidly cooled, intermetallic compounds such as σ phase and Laves phase are likely to precipitate, and sufficient performance cannot be obtained.

【0007】本発明の目的は、製管後に別ラインで再加
熱して行われている従来の溶体化処理を省略した簡素な
プロセスによって、炭窒化物や金属間化合物の析出を抑
制し、強度と耐食性に優れた継目無鋼管、特に1本の鋼
管内における特性のバラツキの小さい鋼管、を製造する
方法を提供することにある。
An object of the present invention is to suppress the precipitation of carbonitrides and intermetallic compounds by a simple process which omits the conventional solution treatment which is performed by reheating in a separate line after pipe making, and the strength is improved. Another object of the present invention is to provide a method for producing a seamless steel pipe having excellent corrosion resistance, particularly a steel pipe having a small variation in characteristics within one steel pipe.

【0008】[0008]

【課題を解決するための手段】本発明は、常温で実質的
にフェライト組織となるステンレス鋼を用いて継目無鋼
管を製造する方法であって、下記〜の工程を順次行
うことを特徴とする製造方法を要旨とする。
The present invention is a method for producing a seamless steel pipe using stainless steel which has a substantially ferritic structure at room temperature, characterized in that the following steps (1) to (2) are sequentially performed. The manufacturing method is the main point.

【0009】 中空素管に施す延伸加工および仕上げ
加工を、両加工における合計の加工度で40%以上、仕上
げ温度 800〜1100℃で行い継目無鋼管とする工程、 上記継目無鋼管を補熱炉に装入し、下記の (a)式で
規定される温度T℃で10秒から30分の間保持する工程、 補熱炉から取り出した継目無鋼管を1〜100 ℃/秒
の冷却速度で 600℃まで冷却し、次いで 350℃以下の温
度まで20℃/分以上の冷却速度で冷却する工程。
[0009] A step of performing a drawing process and a finishing process on a hollow shell at a total working ratio of 40% or more and a finishing temperature of 800 to 1100 ° C to obtain a seamless steel pipe, the seamless steel pipe being a supplementary heating furnace. The process of charging the steel tube to a temperature of T ℃ specified by the following formula (a) for 10 seconds to 30 minutes, the seamless steel pipe taken out from the auxiliary heating furnace at a cooling rate of 1 to 100 ℃ / sec. The process of cooling to 600 ° C and then to a temperature of 350 ° C or less at a cooling rate of 20 ° C / min or more.

【0010】 695+ 4×(%Cr) +20×(%Mo) +12×(%W) ≦T(℃)≦1150・・・ (a) 本発明方法の対象となる「常温で実質的にフェライト組
織となるステンレス鋼」とは、常温でフェライト主体の
組織(50%以下のマルテンサイトを含んでもよい) とな
るステンレス鋼である。その化学組成には特に制約はな
いが、一般的な成分およびその含有量を例示すれば下記
のとおりである(%は重量%である)。
695 + 4 × (% Cr) + 20 × (% Mo) + 12 × (% W) ≦ T (° C.) ≦ 1150 (a) “substantially ferrite structure at room temperature” which is the target of the method of the present invention The "stainless steel that becomes" is a stainless steel that has a structure mainly composed of ferrite (may contain martensite of 50% or less) at room temperature. There are no particular restrictions on the chemical composition, but typical components and their contents are as follows (% is% by weight).

【0011】C:0.15%以下、Si:0 〜4%、Mn:0 〜
2%、Cr:10〜40%、Mo:0〜5%、W:0〜5%、N
i: 0〜2 %、Co:0 〜4%、Al:0 〜4%、Nb:0 〜
1.0 %、Ti:0 〜1.0 %。なお、これらの合金元素以外
にも適当量の他の合金元素を含有していてもよい。
C: 0.15% or less, Si: 0 to 4%, Mn: 0 to
2%, Cr: 10-40%, Mo: 0-5%, W: 0-5%, N
i: 0 to 2%, Co: 0 to 4%, Al: 0 to 4%, Nb: 0 to
1.0%, Ti: 0 to 1.0%. In addition to these alloy elements, an appropriate amount of another alloy element may be contained.

【0012】[0012]

【発明の実施の形態】以下、本発明方法の各工程につい
て順次説明する。なお、製管素材 (ビレット) は、イン
ゴットまたは連続鋳造したスラブ、ブルーム等から分塊
圧延や鍛造を経て製造したビレットでもよいし、また、
連続鋳造で丸ビレットを鋳造すれば、そのまま穿孔工程
に付すことができる。
BEST MODE FOR CARRYING OUT THE INVENTION Each step of the method of the present invention will be sequentially described below. The pipe-making material (billet) may be a billet manufactured by slab rolling or forging from an ingot or a continuously cast slab, bloom, or the like.
If a round billet is cast by continuous casting, it can be directly subjected to the punching process.

【0013】延伸圧延に付す中空素管(ホローシェル)
の製造(穿孔)は、どんな方法で行ってもよい。例え
ば、傾斜ロール圧延機等のいわゆるピアサーで行うこと
ができる。穿孔条件は、通常のフェライト系ステンレス
鋼の継目無鋼管製造の場合と基本的に同じでよい。
Hollow shell for drawing and rolling (hollow shell)
Can be manufactured (drilled) by any method. For example, a so-called piercer such as an inclined roll mill can be used. The perforation conditions may be basically the same as in the case of manufacturing a normal ferritic stainless steel seamless steel pipe.

【0014】 延伸加工および仕上げ加工工程:この
加工を行う設備には、マンネスマン・マンドレルミル方
式、マンネスマン・プラグミル方式等、種々の方式があ
る。本発明方法ではいずれの方式をも採用できる。例え
ばマンドレルミル方式では、マンドレルミルで延伸加
工、サイザーまたはレデューサーで仕上げ加工が行われ
る。
Stretching and finishing processes: There are various systems for performing this process, such as the Mannesmann-mandrel mill system and the Mannesmann-plug mill system. Either method can be adopted in the method of the present invention. For example, in the mandrel mill system, a drawing process is performed by a mandrel mill and a finishing process is performed by a sizer or reducer.

【0015】延伸、仕上げ加工は、穿孔加工に比べると
低温加工になり、結晶粒微細化に重要な加工工程であ
る。これらの加工での仕上げ温度が 800℃よりも低くな
ると、金属間化合物が析出するので製品鋼管の靱性が低
下する。一方、1100℃を超えると結晶粒が粗大化して靱
性が低下する。従って仕上げ温度は 800〜1100℃としな
ければならない。なお、仕上げ温度を低くして、次の補
熱炉で昇温すれば、結晶粒微細化の効果が大きくなるの
で、仕上げ温度は 800〜950 ℃程度とするのが靱性向上
のためには望ましい。
Stretching and finishing are low-temperature working as compared with perforating, and are important working steps for refining crystal grains. If the finishing temperature in these processes is lower than 800 ° C, the toughness of the product steel pipe deteriorates because intermetallic compounds precipitate. On the other hand, if the temperature exceeds 1100 ° C, the crystal grains become coarse and the toughness decreases. Therefore, the finishing temperature must be 800-1100 ℃. It should be noted that if the finishing temperature is lowered and the temperature is raised in the next auxiliary heating furnace, the effect of grain refinement becomes greater, so it is desirable to set the finishing temperature to about 800 to 950 ° C for improving toughness. .

【0016】延伸加工および仕上げ加工の合計加工度が
40 %未満であれば、結晶粒の微細化が十分でない。こ
の加工度の上限には特に制限はないが、90%を超えると
工具への負担が大きいので40〜90%の範囲とするのが好
ましい。
The total degree of processing of stretching and finishing is
If it is less than 40%, the grain refinement is not sufficient. The upper limit of the workability is not particularly limited, but if it exceeds 90%, the load on the tool will be heavy, so it is preferably in the range of 40 to 90%.

【0017】結晶粒微細化の観点からは、延伸加工工程
と仕上げ加工工程の間隔はなるべく短いのが好ましい。
即ち、延伸加工時に導入された転位が回復する前に仕上
げ加工を実施して、十分に歪を蓄積した後に再結晶によ
る微細化を図ればその効果が大きい。
From the viewpoint of grain refinement, it is preferable that the interval between the drawing step and the finishing step is as short as possible.
That is, the effect is great if the finishing process is performed before the dislocations introduced during the stretching process are recovered, and the strain is sufficiently accumulated and then the grain size is reduced by recrystallization.

【0018】上記のような加工は、延伸加工を行う圧延
機 (例えばマンドレルミル) と、仕上げ加工を行う圧延
機 (例えばサイザーまたはレデューサー) との間隔を、
前者で加工された中空素管 (ホローシェル) の長さより
も短い間隔をおいて設置した設備を使用して実施するこ
とができる。例えば、エキストラクティングサイザーに
よって、直ちに仕上げ圧延を実施するとともにホローシ
ェルからバーを引き抜く作業を同時に行うような圧延プ
ロセスが好ましい。
In the above-mentioned processing, the distance between the rolling mill (for example, a mandrel mill) for stretching and the rolling machine (for example, sizer or reducer) for finishing is determined by
It can be carried out using equipment installed at intervals shorter than the length of the hollow shell (hollow shell) processed by the former. For example, a rolling process is preferred in which the finish rolling is immediately performed and the bar is pulled out from the hollow shell at the same time by using the extracting sizer.

【0019】 補熱工程:補熱は、製管した継目無鋼
管を製管ラインに設けた補熱炉に装入して行う。この補
熱は、圧延加工後に析出した金属間化合物を再固溶させ
る目的と、鋼管を十分均熱して前述のバラツキを少なく
する目的で実施する。補熱炉を用いることによって、管
全体の温度の均一化、およびその温度の正確な調整が可
能になり、製品に望まれる特性に合わせた熱処理条件の
選択ができるという、大きな利点が得られる。
Supplementary heating step: Supplementary heating is performed by charging the seamless steel pipe produced in a supplemental heating furnace provided in a pipe production line. This supplementary heat is carried out for the purpose of re-dissolving the intermetallic compound precipitated after the rolling process and for the purpose of soaking the steel pipe sufficiently to reduce the above-mentioned variation. By using the supplementary heating furnace, the temperature of the entire tube can be made uniform, and the temperature can be accurately adjusted, and the heat treatment conditions can be selected according to the characteristics desired for the product, which is a great advantage.

【0020】補熱の適正温度は、素材ステンレス鋼の合
金成分の含有量に依存する。即ち、素材鋼のCr、Moおよ
びWの含有量に応じて、前記 (a)式で規定される温度に
しなければならない。
The appropriate temperature for supplementary heat depends on the content of alloy components of the raw material stainless steel. That is, the temperature specified by the formula (a) must be set according to the contents of Cr, Mo and W in the raw steel.

【0021】前記 (a)式は、以下のようにして導出し
た。即ち、種々の化学組成のフェライト系ステンレス鋼
を用いて、マンネスマン製管法にて製管し、製管後の補
熱温度を 800〜1200℃の範囲で変化させ、30℃/秒で冷
却した試験材を作製した。その試験材を用いて耐食性を
調査し、その結果をもとに回帰分析を行った。その結果
の一例(後述する表1に示す組成のステンレス鋼を対象
とした場合)を示したのが図1である。図1からも明ら
かなように、耐食性が良好な領域は、直線Lから上の領
域である。ここで「耐食性が良好」というのは、溶体化
処理をオフラインで行う従来の製造方法で得た鋼管に比
べて、孔食電位の低下が見られないか、低下が 0.1V未
満のものを意味し、「耐食性不良」とは、孔食電位の低
下が 0.1V以上のものを意味する。
The above equation (a) was derived as follows. That is, using ferritic stainless steels of various chemical compositions, pipes were made by the Mannesmann pipe making method, and the post-heating temperature after pipe making was changed in the range of 800 to 1200 ° C and cooled at 30 ° C / sec. A test material was prepared. Corrosion resistance was investigated using the test material, and regression analysis was performed based on the result. FIG. 1 shows an example of the result (when stainless steel having the composition shown in Table 1 described later is targeted). As is clear from FIG. 1, the region having good corrosion resistance is the region above the straight line L. Here, "good corrosion resistance" means that the pitting corrosion potential does not decrease or is less than 0.1 V compared to the steel pipe obtained by the conventional manufacturing method in which solution treatment is performed offline. The term "poor corrosion resistance" means that the pitting corrosion potential is decreased by 0.1 V or more.

【0022】図1の直線Lは、 T(℃)= 695+ 4×(%Cr) +20×(%Mo) +12×(%W) と表される。従って、良好な耐食性を確保するために
は、補熱の温度T(℃)が T(℃)≧ 695+ 4×(%Cr) +20×(%Mo) +12×(%W) の式を満たせばよいことになる。この式の意味するとこ
ろは、フェライト系ステンレス鋼のCr、MoおよびWが増
加するにつれて、耐食性確保のための補熱温度を高くし
なければならないということであり、それは、これらの
成分が増加するとσ相等の金属間化合物が析出しやすく
なるためと考えられる。
The straight line L in FIG. 1 is expressed as T (° C.) = 695 + 4 × (% Cr) + 20 × (% Mo) + 12 × (% W). Therefore, in order to secure good corrosion resistance, if the temperature of supplementary heat T (℃) is T (℃) ≧ 695 + 4 × (% Cr) + 20 × (% Mo) + 12 × (% W) It will be good. The meaning of this formula is that as Cr, Mo and W of ferritic stainless steel increase, the supplementary heat temperature for ensuring corrosion resistance must be increased, which means that if these components increase It is considered that intermetallic compounds such as σ phase are likely to precipitate.

【0023】一方、補熱の温度を上げすぎると、前工程
(の工程) で蓄積した加工歪が完全に開放されて、次
の冷却処理後の鋼管の強度が上がらず、また、結晶粒の
粗大化が始まり靱性劣化を招くことになる。これらの弊
害のない補熱の温度の上限が1150 ℃である。
On the other hand, if the temperature of the supplementary heat is raised too much, the previous process
The working strain accumulated in (step) is completely released, the strength of the steel pipe after the next cooling treatment does not increase, and the coarsening of crystal grains begins to cause deterioration of toughness. The upper limit of the temperature of supplementary heat without these adverse effects is 1150 ° C.

【0024】なお、の工程での仕上げ温度が (a)式を
満たす範囲にある場合は、補熱はその仕上げ温度で行っ
てもよい。勿論、仕上げ温度を 800〜1100℃の範囲内の
低めの温度にして、補熱では (a)式を満たす範囲の高め
の温度に加熱 (昇温) する、というヒートパターンでも
よい。さらに、補熱中は、鋼管は一定温度に保たれる必
要はなく、 (a)式を満たす温度範囲内で、徐冷されるよ
うなヒートパターンも採用できる。ただし、いずれの場
合も、一本の鋼管の全体が均一な温度になるように配慮
することが重要である。
If the finishing temperature in the step is within the range satisfying the expression (a), the supplementary heat may be performed at the finishing temperature. Of course, a heat pattern may be used in which the finishing temperature is set to a low temperature within the range of 800 to 1100 ° C. and the supplemental heat is heated (raised) to a higher temperature within the range satisfying the expression (a). Furthermore, during supplementary heating, the steel pipe does not have to be kept at a constant temperature, and a heat pattern in which the steel pipe is gradually cooled within a temperature range satisfying the expression (a) can be adopted. However, in any case, it is important to consider that the temperature of one steel pipe is uniform.

【0025】補熱の時間は、処理すべき鋼管のサイズ、
特に肉厚、によるが、管の全体を均一な温度にし、炭窒
化物および金属間化合物を十分に固溶させるには、少な
くとも10秒は必要である。他方、30分を超えるような長
時間の補熱では、結晶粒の粗大化が進行し、製品鋼管の
靱性低下を招く。
The time for supplementary heating depends on the size of the steel pipe to be treated,
Depending on the wall thickness, in particular, at least 10 seconds are required to bring the entire temperature of the tube to a uniform temperature and to dissolve the carbonitride and the intermetallic compound sufficiently. On the other hand, when supplementing heat for a long time of more than 30 minutes, coarsening of crystal grains progresses, resulting in a decrease in toughness of the product steel pipe.

【0026】 冷却工程:補熱炉を出た鋼管の冷却工
程では、温度域ごとに冷却速度を調整することが重要で
ある。まず、600 ℃以上の温度域の炭窒化物と金属間化
合物が析出する領域では、 1〜100 ℃/秒で冷却し、次
に、600 ℃から350 ℃までの 475℃脆性温度域では、脆
化を回避できる20℃/分以上の速度で冷却する。
Cooling step: In the cooling step of the steel pipe exiting the auxiliary heating furnace, it is important to adjust the cooling rate for each temperature range. First, in the region where carbonitrides and intermetallic compounds precipitate in the temperature range of 600 ℃ or higher, cool at 1 to 100 ℃ / sec, and then in the 475 ℃ brittle temperature range from 600 ℃ to 350 ℃, Cool at a rate of 20 ° C / min or more that can avoid aging.

【0027】補熱温度から600 ℃までは、金属間化合
物、炭窒化物の析出が起こりやすい温度域である。1℃
/秒よりも遅い冷却速度では、金属間化合物の析出が生
じ、靱性、耐食性が低下する。炭窒化物の析出は、特に
フェライト系ステンレス鋼では、冷却速度を相当に大き
くしても避けられない。炭窒化物の析出に伴って、析出
物の近傍にクロム欠乏層ができて、いわゆる鋭敏化(耐
食性の劣化)がおきる。
The temperature range from the supplemental heating temperature to 600 ° C. is a temperature range where precipitation of intermetallic compounds and carbonitrides easily occurs. 1 ℃
If the cooling rate is lower than / sec, precipitation of intermetallic compounds occurs, and toughness and corrosion resistance decrease. Precipitation of carbonitrides, especially in ferritic stainless steels, is unavoidable even with a considerably high cooling rate. Along with the precipitation of carbonitride, a chromium deficient layer is formed in the vicinity of the precipitate, and so-called sensitization (deterioration of corrosion resistance) occurs.

【0028】しかし、冷却速度が100 ℃/秒以下であれ
ば、Crの拡散によってクロム欠乏層の修復ができ、耐食
性も回復する。本発明において、冷却速度の上限を100
℃/秒に抑えるのは、このクロム欠乏層の修復効果を得
るためである。
However, if the cooling rate is 100 ° C./sec or less, the chromium deficient layer can be repaired by the diffusion of Cr and the corrosion resistance can be recovered. In the present invention, the upper limit of the cooling rate is 100
The reason why the temperature is limited to ° C / sec is to obtain the effect of repairing the chromium-deficient layer.

【0029】600 ℃から 350℃までの温度域は、長時間
の加熱で 475℃脆性を生じ易い領域である。この領域を
できるだけ速やかに通過させるべく、本発明ではこの領
域の冷却速度を20℃/分以上 (可能なかぎり大きい冷却
速度が望ましい) とした。20℃/分未満の冷却速度では
脆化のおそれがある。なお、350 ℃より低温域での冷却
には特に制約はない。
The temperature range from 600 ° C. to 350 ° C. is a region where brittleness is likely to occur at 475 ° C. when heated for a long time. In the present invention, the cooling rate in this region is set to 20 ° C./minute or more (a cooling rate as high as possible is desirable) in order to pass through this region as quickly as possible. If the cooling rate is less than 20 ° C / min, embrittlement may occur. There are no particular restrictions on cooling in the temperature range lower than 350 ° C.

【0030】[0030]

【実施例】表1に示すA〜Gの鋼を溶製し外径 225mmの
ビレットを作製して、マンネスマン−マンドレルミルを
用いて圧延を行い、外径 273.1mm、肉厚 9.3 mm の鋼管
を製造した。製造条件は表2に示すとおりである。な
お、表2の従来例とは、仕上げ加工後の鋼管を常温まで
冷却した後、製管ラインとは別の熱処理ラインで溶体化
温度に再加熱して急冷する従来の製造方法である。
EXAMPLE Steels A to G shown in Table 1 were melted to prepare a billet having an outer diameter of 225 mm, which was rolled using a Mannesmann-mandrel mill to form a steel pipe having an outer diameter of 273.1 mm and a wall thickness of 9.3 mm. Manufactured. The manufacturing conditions are as shown in Table 2. The conventional example in Table 2 is a conventional manufacturing method in which a steel pipe after finishing is cooled to room temperature, and then reheated to a solution temperature at a heat treatment line different from the pipe making line and rapidly cooled.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】得られた鋼管について、管端から長手方向
に3mおきの3カ所およびこれらの各位置について円周
方向に4等分した位置、合計12カ所から管軸方向に引張
試験片、シャルピー衝撃試験片および耐食性試験片を採
取し、下記の試験を行い機械的性質および耐食性を調べ
た。
With respect to the obtained steel pipe, a tensile test piece and a Charpy impact in the pipe axial direction from a total of 12 places, three places at intervals of 3 m in the longitudinal direction from the pipe end and four equally divided positions in each of these positions in the circumferential direction. A test piece and a corrosion resistance test piece were sampled and subjected to the following tests to examine mechanical properties and corrosion resistance.

【0034】引張試験は、直径4mm、平行部 34mm の丸
棒試験片を用いて行った。シャルピー衝撃試験は、5mm
×10mm×55mmの2mmVノッチ試験片を用い、0℃での衝
撃値で評価した。腐食試験は、JIS G 0577に従い、80℃
の人工海水中の孔食電位で評価した。
The tensile test was carried out using a round bar test piece having a diameter of 4 mm and a parallel portion of 34 mm. Charpy impact test is 5mm
The impact value at 0 ° C. was evaluated using a 2 mm V notch test piece of × 10 mm × 55 mm. Corrosion test according to JIS G 0577, 80 ℃
It was evaluated by the pitting potential in artificial seawater.

【0035】表2は、上記の12カ所の試験片によるそれ
ぞれの試験結果の平均値を示したものである。表2に示
すとおり、機械的性質および耐食性は合金成分系によっ
て大きく変化する。従って、鋼種ごとに比較検討しない
と製造条件の影響は明らかにならない。まず、試番15〜
21の従来例の性能を基準とすると、本発明例である試番
1〜7の降伏強度はいずれの鋼種においても高くなって
おり、さらに衝撃値も良好になっている。耐食性は従来
例とほぼ同等である。
Table 2 shows the average value of the test results of the above 12 test pieces. As shown in Table 2, mechanical properties and corrosion resistance vary greatly depending on the alloy component system. Therefore, the effect of manufacturing conditions cannot be clarified unless a comparative study is conducted for each steel type. First, trial number 15 ~
On the basis of the performance of 21 conventional examples, the yield strengths of trial Nos. 1 to 7 which are examples of the present invention are high in all steel types, and the impact value is also good. Corrosion resistance is almost the same as the conventional example.

【0036】一方、試番8〜14の比較例の中、試番8、
9、11番はそれぞれ延伸加工および仕上げ加工の加工度
が小さすぎるもの、仕上げ温度が高すぎるもの、および
補熱の温度が高すぎ、かつ時間が長すぎるものである。
これらは、いずれも結晶粒が粗大化したため衝撃値が劣
っている。試番10と12は、それぞれ、補熱温度が (a)式
で得られる下限温度を下回る例、および 600℃までの冷
却速度が小さすぎる例であり、金属間化合物が析出する
ことによって強度は改善されるが、靱性、耐食性が大き
く低下している。
On the other hand, of the comparative examples of trial numbers 8 to 14, trial number 8,
Nos. 9 and 11 are those in which the workability of the stretching process and the finishing process are too small, the finishing temperature is too high, and the supplementary heat temperature is too high and the time is too long.
All of these have inferior impact values due to coarsening of crystal grains. Test Nos. 10 and 12 are examples in which the supplementary heat temperature is below the lower limit temperature obtained by equation (a) and the cooling rate up to 600 ° C is too low. Although improved, the toughness and corrosion resistance are greatly reduced.

【0037】試番13は、600 ℃までの冷却速度が大きす
ぎる例で、機械的性質には問題はないものの、鋭敏化が
見られ耐食性が低下している。試番14は、475 ℃脆性領
域を徐冷した例で、強度は高くなるが、靱性および耐食
性が大きく低下している。
Test No. 13 is an example in which the cooling rate up to 600 ° C. is too high, and although there is no problem in mechanical properties, sensitization is observed and corrosion resistance is reduced. Sample No. 14 is an example in which the brittle region at 475 ° C. is gradually cooled, and although the strength is high, the toughness and corrosion resistance are greatly reduced.

【0038】表3は、表1の試番1〜7の鋼管につい
て、管の長手方向および円周方向の前記12カ所の試験片
による試験結果を示したものである。各位置における降
伏点、衝撃値および耐食性の値はほぼ同じで、それらの
バラツキがきわめて小さいことが明らかである。
Table 3 shows the test results of the steel pipes of trial Nos. 1 to 7 in Table 1 by the above 12 test pieces in the longitudinal direction and the circumferential direction of the pipe. The yield point, impact value, and corrosion resistance value at each position are almost the same, and it is clear that their variations are extremely small.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【発明の効果】実施例からも明らかなとおり、本発明方
法によってフェライト系ステンレス鋼の継目無鋼管を製
造すると、従来のプロセスで製造された鋼に比べて、高
強度かつ高靭性の鋼管が得られる。しかも、その耐食性
は、従来のプロセスで溶体化熱処理を施した鋼管に較べ
ても何ら遜色はない。また、管の位置による特性のバラ
ツキも著しく小さい。
As is clear from the examples, when a ferritic stainless steel seamless steel pipe is produced by the method of the present invention, a steel pipe having high strength and high toughness is obtained as compared with the steel produced by the conventional process. To be Moreover, its corrosion resistance is not inferior to that of a steel pipe which has been subjected to solution heat treatment by a conventional process. Also, the variation in characteristics due to the position of the tube is extremely small.

【0041】本発明方法は、製管から熱処理まで、連続
的にオンラインで実施できるので、継目無鋼管の製造に
おける生産性の向上と製造コストの低減にも大きく寄与
する。
Since the method of the present invention can be continuously carried out on-line from pipe production to heat treatment, it greatly contributes to improvement of productivity and reduction of production cost in production of seamless steel pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】各鋼種ごと回帰分析で得られた式、即ち、 695
+ 4×(%Cr) +20×(%Mo) +12×(%W) を横軸とし、実
際の補熱温度を変化させたときの耐食性の変化を示した
図である。
[Fig. 1] Formula obtained by regression analysis for each steel type, namely 695
FIG. 4 is a diagram showing changes in corrosion resistance when the actual supplementary heat temperature is changed, with the horizontal axis being + 4 × (% Cr) + 20 × (% Mo) + 12 × (% W).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】常温で実質的にフェライト組織となるステ
ンレス鋼を用いて継目無鋼管を製造する方法であって、
下記〜の工程を順次行うことを特徴とする継目無鋼
管の製造方法。 中空素管に施す延伸加工および仕上げ加工を、両加
工における合計の加工度で40%以上、仕上げ温度 800〜
1100℃で行い継目無鋼管とする工程、 上記継目無鋼管を補熱炉に装入し、下記の (a)式で
規定される温度T℃で10秒から30分の間保持する工程、 補熱炉から取り出した継目無鋼管を1〜100 ℃/秒
の冷却速度で 600℃まで冷却し、次いで 350℃以下の温
度まで20℃/分以上の冷却速度で冷却する工程。 695+ 4×(%Cr) +20×(%Mo) +12×(%W) ≦T(℃)≦1150・・・ (a)
1. A method for producing a seamless steel pipe using stainless steel which has a substantially ferritic structure at room temperature,
A method for producing a seamless steel pipe, which comprises sequentially performing the following steps. 40% or more of the total working ratio of both drawing and finishing processes applied to hollow shells, finishing temperature 800 ~
1100 ℃ to make a seamless steel pipe, the above seamless steel pipe is charged into the auxiliary heating furnace, and the temperature T ℃ specified by the following equation (a) is maintained for 10 seconds to 30 minutes, A step of cooling the seamless steel pipe taken out of the furnace to 600 ° C at a cooling rate of 1 to 100 ° C / sec, and then to a temperature of 350 ° C or less at a cooling rate of 20 ° C / min or more. 695 + 4 x (% Cr) + 20 x (% Mo) + 12 x (% W) ≤ T (° C) ≤ 1150 ・ ・ ・ (a)
JP9848496A 1996-04-19 1996-04-19 Production of ferritic stainless steel seamless pipe Pending JPH09287024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9848496A JPH09287024A (en) 1996-04-19 1996-04-19 Production of ferritic stainless steel seamless pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9848496A JPH09287024A (en) 1996-04-19 1996-04-19 Production of ferritic stainless steel seamless pipe

Publications (1)

Publication Number Publication Date
JPH09287024A true JPH09287024A (en) 1997-11-04

Family

ID=14220932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9848496A Pending JPH09287024A (en) 1996-04-19 1996-04-19 Production of ferritic stainless steel seamless pipe

Country Status (1)

Country Link
JP (1) JPH09287024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254103A (en) * 2001-03-01 2002-09-10 Sanyo Special Steel Co Ltd Method for manufacturing ferrite system stainless teel sire rod, bar steel, and steel tube excellent in cold workability and wire rod, bar steel, and steel tube manufactured by its method
JP2018035381A (en) * 2016-08-29 2018-03-08 新日鐵住金株式会社 Production method of stainless steel tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254103A (en) * 2001-03-01 2002-09-10 Sanyo Special Steel Co Ltd Method for manufacturing ferrite system stainless teel sire rod, bar steel, and steel tube excellent in cold workability and wire rod, bar steel, and steel tube manufactured by its method
JP2018035381A (en) * 2016-08-29 2018-03-08 新日鐵住金株式会社 Production method of stainless steel tube

Similar Documents

Publication Publication Date Title
CN102365376B (en) Method for producing seamless steel pipe
EP0828007B1 (en) Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
JP4123672B2 (en) Manufacturing method of high strength seamless steel pipe with excellent toughness
JP3506033B2 (en) Method of manufacturing hot-rolled steel bars or wires
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
JP2007196237A (en) Method for producing seamless steel tube for machine structural component
JP3694967B2 (en) Method for producing martensitic stainless steel seamless steel pipe
JP3909939B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JP3965708B2 (en) Manufacturing method of high strength seamless steel pipe with excellent toughness
JP2003105441A (en) METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
JP3785828B2 (en) Steel pipe drawing method
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JP3717745B2 (en) Mandrel bar and its manufacturing method
JP3503211B2 (en) Manufacturing method of high strength seamless steel pipe
JPH09287024A (en) Production of ferritic stainless steel seamless pipe
JPH10330847A (en) Method for directly softening hot rolled wire rod
JPH11302785A (en) Steel for seamless steel pipe
JP3326783B2 (en) Manufacturing method of low alloy seamless steel pipe with excellent high temperature strength
US5226978A (en) Steel tube alloy
JP3214351B2 (en) Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength
JP2756533B2 (en) Manufacturing method of high strength, high toughness steel bars
JP2000219915A (en) Production of seamless steel pipe having high strength and high toughness
JPH0678571B2 (en) Stainless steel seamless pipe manufacturing method
JPH0547603B2 (en)