JP2001247931A - Non-heattreated high strength seamless steel pipe and its production method - Google Patents

Non-heattreated high strength seamless steel pipe and its production method

Info

Publication number
JP2001247931A
JP2001247931A JP2000062639A JP2000062639A JP2001247931A JP 2001247931 A JP2001247931 A JP 2001247931A JP 2000062639 A JP2000062639 A JP 2000062639A JP 2000062639 A JP2000062639 A JP 2000062639A JP 2001247931 A JP2001247931 A JP 2001247931A
Authority
JP
Japan
Prior art keywords
temperature
steel pipe
rolling
seamless steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000062639A
Other languages
Japanese (ja)
Inventor
Masaharu Oka
正春 岡
Toshiharu Sakamoto
俊治 坂本
Shinichi Tamura
眞市 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000062639A priority Critical patent/JP2001247931A/en
Publication of JP2001247931A publication Critical patent/JP2001247931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-heattreated high strength seamless steel pipe having a high strength as hog-rolled without largely adding alloy elements or using supplementary such as heat treatment and cold working and to provide a production method therefor. SOLUTION: This non-heattreated high strength seamless steel pipe contains, by mass, 0.01 to 0.6% C, 0.01 to 1.0% Si and 0.1 to 2.0% Mn, and in which the average ferrite gain size in the cross-section vertical to the longitudinal direction of the steel tube is <=20 μm. Moreover, in the method for producing the seamless steel pipes so as to be fed to hot rolling of the Mannesmann system, a cast slab or steel slab is heated at Ac3 transformation point to 1,300 deg.C and is thereafter subjected to piercing and rolling, and, successively, the pipe stock is held at 650 to 750 deg.C and is thereafter subjected to finish rolling in which cumulative reduction of cross-section is >=20%, and the temperature of the tube stock at the time of the final rolling is 600 to 750 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非調質高強度継目
無し鋼管及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-heat treated high strength seamless steel pipe and a method for producing the same.

【0002】[0002]

【従来の技術】土木建設機械などに用いられる油圧機器
のシリンダーチューブ、機械構造物、自動車用部品など
に使用される鋼管としては、熱処理を施すか、または冷
間加工仕上げを行って強度を向上させた継目無し鋼管が
多用されてきた。しかしながら、これらの方法では熱処
理工程や冷間加工工程などの付帯工程が必要なためコス
ト高となる問題があった。このため、熱間圧延ままで熱
処理材や冷間加工材と同等以上の強度を有する高強度継
目無し鋼管が要望されている。
2. Description of the Related Art Cylinder tubes for hydraulic equipment used in civil engineering and construction machinery, steel tubes used for mechanical structures, automotive parts, etc., are subjected to heat treatment or cold working to improve strength. Used seamless steel pipes have been used frequently. However, these methods have a problem that the cost is high because an additional step such as a heat treatment step or a cold working step is required. For this reason, there is a demand for a high-strength seamless steel pipe having a strength equal to or higher than that of a heat-treated material or a cold-worked material as hot-rolled.

【0003】熱間圧延ままで高強度を得る方法として
は、C,Si,Mnなどの安価な合金元素を多量に添加
する方法が考えられるが、前記の適用分野では強度に加
えて溶接性や靭性などが要求されるため、C量、Si
量、Mn量や炭素当量Ceq(=%C+%Si/24+
%Mn/6+%Ni/40+%Cr/5+%Mo/4+
%V/14)の上限値が規定される場合が多く、従って
安価な合金元素の多量添加により上記問題を解決するこ
とは困難である。
As a method of obtaining high strength as hot rolled, a method of adding a large amount of inexpensive alloy elements such as C, Si, and Mn can be considered. Since toughness is required, C content, Si
Amount, Mn amount and carbon equivalent Ceq (=% C +% Si / 24 +
% Mn / 6 +% Ni / 40 +% Cr / 5 +% Mo / 4 +
% V / 14) is often specified, and it is therefore difficult to solve the above problem by adding a large amount of inexpensive alloying elements.

【0004】また、微量元素の有効利用も検討されてお
り、非調質高強度継目無し鋼管として、特開平5−20
2447号公報などにみられるように、Vの析出強化作
用およびMn、Crのマトリックス強化に加え、Al,
Ti,Nの適量添加により非調質高強度継目無し鋼管を
得るとの技術が提案されている。しかしながら、この鋼
管においても炭素当量が高いため溶接性が不十分である
という問題があった。
Further, effective use of trace elements has been studied, and a non-heat treated high-strength seamless steel pipe is disclosed in Japanese Patent Laid-Open No. 5-20 / 1993.
No. 2447, etc., in addition to the precipitation strengthening action of V and the matrix strengthening of Mn and Cr,
There has been proposed a technique for obtaining a non-heat treated high strength seamless steel pipe by adding appropriate amounts of Ti and N. However, this steel pipe also has a problem that the weldability is insufficient due to the high carbon equivalent.

【0005】溶接性や靭性を維持しつつ熱間圧延ままの
素材の強度を向上させる方法としては、フェライト粒の
微細化が常套手段であり、厚板分野では制御圧延による
フェライト粒の微細化が広く行われている。しかしなが
ら、通常の継目無し鋼管製造方法であるマンネスマン方
式の熱間圧延法では、設備上の問題から厚板で行われて
いるような制御圧延の適用が困難である。そのため、熱
間圧延ままでの継目無し鋼管のフェライト粒径は20〜
40μm程度にとどまり、制御圧延された厚板のフェラ
イト粒径(安定して得られるのは10μm、細粒化限界
は5μm)に比べれば十分な細粒レベルには到達してい
ない。
[0005] As a method for improving the strength of a hot-rolled material while maintaining the weldability and toughness, refinement of ferrite grains is a conventional means. In the field of thick plates, refinement of ferrite grains by controlled rolling is known. Widely used. However, in the hot rolling method of the Mannesmann system, which is a normal seamless steel pipe manufacturing method, it is difficult to apply controlled rolling as performed on a thick plate due to equipment problems. Therefore, the ferrite grain size of the seamless steel pipe as hot rolled is 20 to
It is only about 40 μm, and does not reach a sufficient fine grain level as compared with the ferrite grain size of the controlled rolled thick plate (10 μm can be obtained stably and the grain refinement limit is 5 μm).

【0006】また、特開平10−306339号公報に
は、主に電気抵抗溶接鋼管(電縫管)を対象として造管
後の鋼管をオフラインでフェライトの再結晶温度域に再
加熱して絞り圧延し、フエライト粒径を3μm以下とす
ることで高靭性高延性の鋼管を得るとの技術が提案され
ている。しかしながらこの技術を継目無し鋼管に適用す
る場合には、熱間仕上げした鋼管をオフラインで再加熱
して絞り圧延する工程が必要となるので、コスト高とな
る問題がある。
[0006] Japanese Patent Application Laid-Open No. 10-306339 discloses that, mainly for electric resistance welded steel pipes (electrically welded pipes), the steel pipes after being formed are reheated off-line to a ferrite recrystallization temperature region and drawn and rolled. However, a technique has been proposed in which a ferritic steel pipe having a high toughness and a high ductility is obtained by reducing the ferrite particle diameter to 3 μm or less. However, when this technology is applied to a seamless steel pipe, a step of reheating the hot-finished steel pipe off-line and performing drawing and rolling is required, and thus there is a problem of high cost.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記したよ
うな問題点を解決するものであって、合金元素を多量に
添加することなく、また熱処理や冷間加工などの付帯工
程を用いることなく、熱間圧延ままの状態で高強度を有
する非調質高強度継目無し鋼管及びその製造方法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and does not require the addition of a large amount of alloying elements and uses ancillary steps such as heat treatment and cold working. It is another object of the present invention to provide a non-heat treated high-strength seamless steel pipe having high strength as it is hot-rolled, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、成分の異
なる種々の素材について、マンネスマン方式の熱間圧延
プロセスにより非調質高強度継目無し鋼管を製造するた
めの条件について研究を重ねた結果、鋳片または鋼片を
Ac3 変態点以上1300℃以下の温度に加熱したの
ち、穿孔・圧延を施し、引き続き素管を650〜750
℃で保定し、その後累積断面減少率20%以上で圧延時
の素管温度が600〜750℃の仕上げ圧延を行うこと
により、熱間圧延ままの状態でフェライト粒径が20μ
m以下である非調質高強度継目無し鋼管を製造できるこ
とを見出した。
Means for Solving the Problems The present inventors have repeated studies on the conditions for producing non-heat-treated high-strength seamless steel pipes by the Mannesmann hot rolling process for various materials having different components. As a result, the slab or slab was heated to a temperature of not less than the Ac3 transformation point and not more than 1300 ° C., followed by piercing and rolling.
C., and then perform finish rolling at a tube temperature of 600 to 750 ° C. during rolling at a cumulative cross-section reduction rate of 20% or more, so that the ferrite grain size in the hot-rolled state is 20 μm.
It has been found that a non-heat-treated high-strength seamless steel pipe having a diameter of not more than m can be manufactured.

【0009】本発明はこのような知見に基づいて構成し
たものであり、その要旨は次の通りである。 (1)質量%で、 C :0.01〜0.6%、 Si:0.01〜1.0%、 Mn:0.1〜2.0% を含有し、鋼管の長手方向に直交する断面の平均フェラ
イト粒径が20μm以下であることを特徴とする非調質
高強度継目無し鋼管。 (2)質量%で、 C :0.01〜0.6%、 Si:0.01〜1.0%、 Mn:0.1〜2.0% を含有する鋳片または鋼片を、マンネスマン方式の熱間
圧延に供して継目無し鋼管を製造する方法であって、鋳
片または鋼片をAc3 変態点以上1300℃以下の温度
に加熱したのち、穿孔・圧延を施し、引き続き素管を6
50〜750℃の温度で保定し、その後累積断面減少率
20%以上で圧延時の素管温度が600〜750℃の仕
上げ圧延を行うことを特徴とする非調質高強度継目無し
鋼管の製造方法。 (3)質量%で、 C :0.01〜0.6%、 Si:0.01〜1.0%、 Mn:0.1〜2.0%を含有する鋳片または鋼片を、
マンネスマン方式の熱間圧延に供して継目無し鋼管を製
造する方法であって、鋳片または鋼片をAc3 変態点以
上1300℃以下の温度に加熱したのち、穿孔・圧延を
施し、引き続き素管を650〜750℃の温度で、かつ
下記(1)式を満たす条件で保定し、その後累積断面減
少率20%以上で圧延時の素管温度が600〜750℃
の仕上げ圧延を行うことを特徴とする非調質高強度継目
無し鋼管の製造方法。 18700≦T(logt+20)≦20000 …………(1) ここで T:温度(K) t:時間(h) (4)穿孔・圧延を施した後、引き続き素管を空冷以上
の冷却速度で650〜750℃の温度まで冷却すること
を特徴とする前記(2)または(3)記載の非調質高強
度継目無し鋼管の製造方法。 (5)穿孔・圧延を施した後、650〜750℃の温度
で保定する前の素管の長手方向の温度偏差が80℃以下
であることを特徴とする前記(2)ないし(4)のいず
れか1項に記載の非調質高強度継目無し鋼管の製造方
法。 (6)前記仕上げ圧延を潤滑下で行うことを特徴とする
前記(2)ないし(5)のいずれか1項に記載の非調質
高強度継目無し鋼管の製造方法。
The present invention has been made based on such knowledge, and the gist thereof is as follows. (1) In mass%, C: 0.01 to 0.6%, Si: 0.01 to 1.0%, Mn: 0.1 to 2.0%, perpendicular to the longitudinal direction of the steel pipe. A non-heat treated high-strength seamless steel pipe having an average ferrite grain size of 20 μm or less in cross section. (2) A cast or steel slab containing, by mass%, C: 0.01 to 0.6%, Si: 0.01 to 1.0%, and Mn: 0.1 to 2.0% A method for producing a seamless steel pipe by subjecting it to a hot rolling method of a system, wherein a slab or a slab is heated to a temperature not lower than the Ac3 transformation point but not higher than 1300 ° C., and then pierced and rolled.
Production of a non-heat treated high strength seamless steel pipe characterized in that it is maintained at a temperature of 50 to 750 ° C. and then finish rolled at a raw material temperature of 600 to 750 ° C. at the time of rolling at a cumulative reduction of area of 20% or more. Method. (3) A slab or a slab containing, by mass%, C: 0.01 to 0.6%, Si: 0.01 to 1.0%, and Mn: 0.1 to 2.0%,
This is a method for producing a seamless steel pipe by subjecting it to hot rolling of the Mannesmann method, in which a slab or a slab is heated to a temperature of not less than the Ac3 transformation point and not more than 1300 ° C., and thereafter, piercing and rolling are performed. The temperature is maintained at a temperature of 650 to 750 ° C. and a condition satisfying the following formula (1).
A method for producing a non-heat treated high-strength seamless steel pipe, characterized by performing finish rolling. 18700 ≦ T (logt + 20) ≦ 20,000 (1) where T: temperature (K) t: time (h) (4) After piercing and rolling, the raw tube is continuously cooled at a cooling rate of air cooling or higher. The method for producing a non-heat treated high-strength seamless steel pipe according to the above (2) or (3), wherein the pipe is cooled to a temperature of 650 to 750 ° C. (5) The temperature deviation in the longitudinal direction of the raw tube before holding at a temperature of 650 to 750 ° C. after piercing / rolling is 80 ° C. or less, the above (2) to (4). The method for producing a non-heat treated high-strength seamless steel pipe according to any one of the preceding claims. (6) The method for producing a non-heat treated high-strength seamless steel pipe according to any one of (2) to (5), wherein the finish rolling is performed under lubrication.

【0010】[0010]

【発明の実施の形態】以下、本発明について詳細に説明
する。まず、本発明における非調質高強度継目無し鋼管
の成分限定理由について説明する。成分含有量は質量%
である。 C:Cは鋼の強度を増加させる元素として添加される。
0.01%未満では構造用鋼に必要な強度の確保が困難
であり、0.6%を超える過剰の添加は靭性や溶接性を
著しく劣化させる。従って、C含有量は0.01〜0.
6%とした。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. First, the reasons for limiting the components of the non-heat treated high-strength seamless steel pipe in the present invention will be described. Component content is mass%
It is. C: C is added as an element that increases the strength of steel.
If it is less than 0.01%, it is difficult to secure the strength required for structural steel, and if it is added in excess of 0.6%, the toughness and weldability are significantly deteriorated. Therefore, the C content is 0.01 to 0.1.
6%.

【0011】Si:Siは脱酸剤として、また鋼の強度
を増加させる元素として添加される。0.01%未満で
は強度を向上させる効果を有効に発揮させることができ
ず、1.0%を超える過剰の添加は粗大な酸化物を形成
して延性や靭性を劣化させる。従って、Si含有量は
0.01〜1.0%とした。
Si: Si is added as a deoxidizing agent and as an element for increasing the strength of steel. If it is less than 0.01%, the effect of improving the strength cannot be effectively exhibited, and if it exceeds 1.0%, a coarse oxide is formed to deteriorate ductility and toughness. Therefore, the Si content is set to 0.01 to 1.0%.

【0012】Mn:Mnは鋼の強度を増加させる元素と
して添加される。0.1%未満では強度を向上させる効
果を有効に発揮させることができず、2.0%を超える
多量の添加は延性や靭性を劣化させる。従って、Mn含
有量は0.1〜2.0%とした。
Mn: Mn is added as an element that increases the strength of steel. If it is less than 0.1%, the effect of improving strength cannot be effectively exhibited, and if added in a large amount exceeding 2.0%, ductility and toughness are deteriorated. Therefore, the Mn content is set to 0.1 to 2.0%.

【0013】以上が本発明鋼の基本成分であり、通常は
上記以外はFe及び不可避的不純物からなるが、所望の
強度レベルやその他の必要特性に応じて、質量%で、 Al:0.001〜0.2%、 N :0.001〜0.05%、 Cr:0.01〜2.0%、 Ni:0.01〜5.0%、 Mo:0.01〜2.0%、 Cu:0.01〜2.0%、 B :0.0003〜0.02%、 Mg:0.0005〜0.01%、 Ca:0.0005〜0.01%、 REM:0.001〜0.05、 Zr:0.01〜0.05%、 Ti:0.003〜0.2%、 Nb:0.003〜0.2%、 V :0.003〜0.2%、 W :0.5〜3%、 O :0.01%以下、 P :0.03%以下、 S :0.04%以下 の1種または2種以上を含有してもよい。
The above are the basic components of the steel of the present invention. Usually, the other components are Fe and unavoidable impurities. However, depending on the desired strength level and other necessary properties, Al: 0.001% by mass. 0.2%, N: 0.001 to 0.05%, Cr: 0.01 to 2.0%, Ni: 0.01 to 5.0%, Mo: 0.01 to 2.0%, Cu: 0.01 to 2.0%, B: 0.0003 to 0.02%, Mg: 0.0005 to 0.01%, Ca: 0.0005 to 0.01%, REM: 0.001 to 0.05, Zr: 0.01-0.05%, Ti: 0.003-0.2%, Nb: 0.003-0.2%, V: 0.003-0.2%, W: 0.5 to 3%, O: 0.01% or less, P: 0.03% or less, S: 0.04% or less Good.

【0014】次に、マンネスマン方式の熱間圧延法につ
いて説明する。本発明鋼は、マンネスマン方式の熱間圧
延法によって継目無し管に造管される。マンネスマン方
式の熱間圧延法による継目無し管の造管プロセスの1例
を図1に示す。ここでいうマンネスマン方式の熱間圧延
法とは、通常の継目無し鋼管製造のための熱間圧延法
で、矩形断面もしくは丸断面の製管用素材を用い、プレ
スロール穿孔機あるいはマンネスマン穿孔機により穿孔
した後、必要に応じて傾斜圧延機(エロンゲータミル)
により肉厚を減じると共に長さを伸ばす延伸圧延が行わ
れ、さらに必要に応じて絞り圧延機(ホローシェルレデ
ューサー)で外径を絞り、さらにマンドレルミルあるい
はプラグミルで肉厚を調整し、必要に応じてリーラーミ
ルで摩管を行い、再加熱炉により所定の温度に加熱さ
れ、最終仕上圧延機(ストレッチレデューサーあるいは
サイザーミル)で所定の外径に成形することにより造管
していく一連のプロセスである。
Next, the hot rolling method of the Mannesmann system will be described. The steel of the present invention is formed into a seamless pipe by a Mannesmann hot rolling method. FIG. 1 shows an example of a pipe forming process of a seamless pipe by a Mannesmann hot rolling method. The hot rolling method of the Mannesmann method here is a normal hot rolling method for producing a seamless steel pipe, using a material for pipe making having a rectangular or round cross section, and piercing with a press roll drilling machine or a Mannesmann drilling machine. After that, if necessary, inclined rolling mill (Elongator mill)
Elongation rolling is performed to reduce the wall thickness and increase the length, and if necessary, reduce the outer diameter with a rolling mill (hollow shell reducer), and further adjust the wall thickness with a mandrel mill or plug mill. This is a series of processes in which tubes are formed by a reeler mill, heated to a predetermined temperature by a reheating furnace, and formed into a predetermined outer diameter by a final finishing mill (stretch reducer or sizer mill) to form a tube.

【0015】ここで、仕上げ圧延前に素管を再加熱炉に
挿入する理由は、マンネスマン方式の熱間圧延法では圧
延工程が多いので、下流圧延機では素管温度の長手方向
バラツキが発生する。このため最終仕上げ圧延前に再加
熱炉でオーステナイト単相の温度において素管全長の温
度を均一化する必要があり、再加熱工程が必須とされて
おり、仕上げ圧延中あるいは仕上げ圧延後の管の変態収
縮や熱収縮のバラツキを防ぎ最終製品管の寸法精度を高
める機能を有する。この再加熱工程が継目無し鋼管圧延
と厚板圧延との最大の相違点であり、この再加熱工程が
存在するため、継目無し鋼管圧延において厚板で行われ
ているような制御圧延を適用しても十分な細粒効果が得
られない。
Here, the reason why the raw tube is inserted into the reheating furnace before the finish rolling is that the hot rolling method of the Mannesmann method involves many rolling steps, so that the downstream rolling mill has a variation in the raw tube temperature in the longitudinal direction. . For this reason, it is necessary to equalize the temperature of the entire tube at the temperature of the austenite single phase in a reheating furnace before the final finish rolling, and a reheating process is required, and the finish of the tube during or after finish rolling is required. It has the function of preventing variations in transformation shrinkage and heat shrinkage and increasing the dimensional accuracy of the final product tube. This reheating process is the biggest difference between seamless steel pipe rolling and thick plate rolling, and since this reheating process exists, control rolling such as that performed on thick plates in seamless steel pipe rolling is applied. However, a sufficient fine grain effect cannot be obtained.

【0016】次に、本発明における非調質高強度継目無
し鋼管の各製造条件の限定理由について説明する。本発
明においては、鋳片または鋼片の加熱温度をAc3 変態
点以上1300℃以下とする。これは加熱温度がAc3
変態点未満では溶体化が十分に行われず、1300Cを
超えるとオーステナイト粒径が極端に粗大化してフェラ
イト粒の細粒化が困難となるためである。
Next, the reasons for limiting the manufacturing conditions of the non-heat treated high strength seamless steel pipe in the present invention will be described. In the present invention, the heating temperature of the cast slab or the steel slab is set to the Ac3 transformation point or higher and 1300 ° C or lower. This is because the heating temperature is Ac3
If the temperature is less than the transformation point, the solution is not sufficiently formed. If the temperature exceeds 1300 C, the austenite grain size becomes extremely large, and it becomes difficult to reduce the size of ferrite grains.

【0017】次に、穿孔・圧延された素管を650〜7
50℃の二相域温度で保定する。これは保定温度が75
0℃を超えると結晶粒の粗大化が進み、650℃未満で
は再結晶や変態の核となる微細な炭化物の生成が抑制さ
れ、フェライト粒の微細化が抑制されるためである。こ
の保定には従来オーステナイト域での素管温度の均一化
のために用いていた再熱炉を低温で用いればよく、新た
な工程を加える必要はない。むしろ再熱炉温度の低下に
よりエネルギー原単位を低減できるのでコスト的には有
利である。
Next, the pierced and rolled raw tube is 650 to 7
Hold at a two-phase temperature of 50 ° C. This is a retention temperature of 75
If the temperature exceeds 0 ° C., the crystal grains are coarsened. If the temperature is lower than 650 ° C., the generation of fine carbides serving as nuclei for recrystallization and transformation is suppressed, and the miniaturization of ferrite grains is suppressed. For this retention, a reheating furnace which has been conventionally used for equalizing the pipe temperature in the austenite region may be used at a low temperature, and there is no need to add a new process. Rather, the unit cost of energy can be reduced by lowering the temperature of the reheating furnace, which is advantageous in terms of cost.

【0018】また、素管を650〜750℃の二相域温
度で保定する際、下記(1)式を満たす条件で保定する
のが望ましい。保定中にオーステナイト粒界やオーステ
ナイトとフェライトの粒界やオーステナイトの粒内に析
出する微細な炭化物は、再結晶や変態の核となり、二相
域圧延後のフェライトの回復・再結晶を促進すると共
に、加工オーステナイトのフェライト変態時のγ/α変
態比を大きくする効果があるが、T(1ogt+20)が1
8700未満では微細な炭化物の析出が必ずしも十分で
なく、20000を超えると炭化物の粗大化が生じて前
記の効果が抑制される傾向にあるためである。 18700≦T(1ogt+20)≦20000 …………(1) ここで、T:温度(K) t:時間(h)
Further, when keeping the raw tube at a temperature in the two-phase region of 650 to 750 ° C., it is desirable to keep it under the condition satisfying the following equation (1). Fine carbides that precipitate during austenite grain boundaries, austenite-ferrite grain boundaries and austenite grains during retention become nuclei for recrystallization and transformation, and promote recovery and recrystallization of ferrite after two-phase rolling. The effect of increasing the γ / α transformation ratio at the time of ferrite transformation of processed austenite is obtained, but T (1 oct +20) is 1
If it is less than 8700, precipitation of fine carbides is not always sufficient, and if it exceeds 20,000, the carbides are coarsened and the above effect tends to be suppressed. 18700 ≦ T (1ogt + 20) ≦ 20,000 (1) where T: temperature (K) t: time (h)

【0019】また、二相域で保定することにより素管全
長の温度を均一化でき、オーステナイト単相域で保定す
る場合と比べれば若干劣るものの最終製品管の寸法バラ
ツキや長手方向の強度バラツキを実用上問題ない程度に
することができる。
Further, by maintaining the temperature in the two-phase region, the temperature of the entire length of the raw tube can be made uniform, and although it is slightly inferior to the case where the temperature is maintained in the austenitic single-phase region, the dimensional variation and longitudinal strength variation of the final product tube are reduced. It can be reduced to a practically acceptable level.

【0020】なお、最終製品管の寸法バラツキや長手方
向の強度バラツキをより一層低減するためには、保定前
の素管の長手方向の温度偏差を80℃以下にするのが望
ましい。また、熱間で穿孔・圧延した後、650〜75
0℃の二相域温度で保定するまでの冷却速度は、フェラ
イトを微細に析出させるために空冷以上の冷却速度で冷
却することが望ましい。
In order to further reduce the dimensional variation and the strength variation in the longitudinal direction of the final product tube, it is desirable that the temperature deviation in the longitudinal direction of the raw tube before holding is 80 ° C. or less. After hot piercing and rolling, 650-75
The cooling rate until the temperature is maintained at the two-phase region temperature of 0 ° C. is desirably cooled at a cooling rate higher than air cooling in order to precipitate the ferrite finely.

【0021】650〜750℃の二相域温度で保定した
後の仕上げ圧延は、累積断面減少率を20%以上、圧延
時の素管温度を600℃以上750℃以下とする。累積
断面減少率を20%以上とするのは、断面減少率が20
%未満ではフェライトの再結晶が不十分であり均一な細
粒組織が得られないからである。また、圧延時の素管温
度を600℃以上750℃以下とするのは、圧延時の素
管温度が750℃を超えると得られた細粒フェライトが
成長して粗大化し、また圧延時の素管温度が600℃未
満ではフェライトの再結晶が十分に進まず、細粒組織が
得られないためである。
In the finish rolling after the temperature is maintained at a two-phase temperature of 650 to 750 ° C., the cumulative cross-sectional reduction rate is 20% or more, and the tube temperature during rolling is 600 to 750 ° C. The reason why the cumulative area reduction rate is set to 20% or more is that the area reduction rate is 20%.
%, The recrystallization of ferrite is insufficient and a uniform fine grain structure cannot be obtained. In addition, the reason why the raw pipe temperature during rolling is set to 600 ° C. or more and 750 ° C. or less is that if the raw pipe temperature during rolling exceeds 750 ° C., the obtained fine-grained ferrite grows and becomes coarse, and If the tube temperature is lower than 600 ° C., recrystallization of ferrite does not sufficiently proceed, and a fine grain structure cannot be obtained.

【0022】また、圧延時の素管温度が600℃以上7
50℃以下の仕上げ圧延では、オーステナイト域で仕上
げ圧延する場合に比べてはるかに良好な外面肌を得るこ
とができるが、より一層良好な外面肌を得るためには仕
上げ圧延を潤滑下で行うことが望ましい。潤滑剤として
は圧延油として使われる鉱油などの通常の潤滑剤を用い
ればよく、特に限定する必要はない。
The temperature of the raw tube during rolling is 600 ° C.
In finish rolling at 50 ° C or lower, a much better external surface can be obtained than in the case of finish rolling in the austenitic region, but in order to obtain a better external surface, finish rolling should be performed under lubrication. Is desirable. As the lubricant, a normal lubricant such as a mineral oil used as a rolling oil may be used, and there is no particular limitation.

【0023】上記の製造方法によれば、熱間圧延ままで
鋼管の長手方向に直交する断面の平均フェライト粒径が
20μm以下である非調質高強度継目無し鋼管が得られ
る。フェライト粒径が20μmを超える粒径範囲では細
粒化による強度向上効果は小さいが、フェライト粒径が
20μm以下になると細粒化による強度向上効果が大き
くなる。特に、フェライト粒径が10μm以下になると
その効果が顕著となる。従って、熱間圧延ままで安定し
てフェライト粒径を20μm以下、望ましくは10μm
以下とすることにより、非調質で高強度を有する継目無
し鋼管が得られる。
According to the above-mentioned manufacturing method, a non-heat treated high-strength seamless steel pipe having an average ferrite grain size of 20 μm or less in a cross section orthogonal to the longitudinal direction of the steel pipe as hot rolled is obtained. When the ferrite particle size exceeds 20 μm, the effect of improving the strength by grain refinement is small, but when the ferrite particle size is 20 μm or less, the effect of improving the strength by grain refinement increases. In particular, when the ferrite particle size is 10 μm or less, the effect becomes remarkable. Therefore, the ferrite grain size can be stably reduced to 20 μm or less, desirably 10 μm or less as hot rolled.
By performing the following, a seamless steel pipe having non-heat treated and high strength can be obtained.

【0024】本発明の製造方法を用いて達成できるフェ
ライト粒径は通常は3〜4μm程度が限界である。本発
明の製造方法を用いてフェライト粒径を3μm以下とす
るためには、変態前のオーステナイト粒径及び仕上げ圧
延前のフェライト粒径をより一層微細化する必要があ
り、そのためにはより複雑な熱履歴をとる必要があり、
コスト高となる問題がある。従って、生産性と製品性能
のバランスを考慮して、フェライト粒径は3μmを超え
て10μm以下とすることが望ましい。
The limit of the ferrite grain size that can be achieved by the production method of the present invention is usually about 3 to 4 μm. In order to reduce the ferrite grain size to 3 μm or less using the production method of the present invention, it is necessary to further refine the austenite grain size before transformation and the ferrite grain size before finish rolling, and for that purpose, a more complicated It is necessary to take heat history,
There is a problem of high cost. Therefore, in consideration of the balance between productivity and product performance, the ferrite grain size is desirably set to more than 3 μm and 10 μm or less.

【0025】[0025]

【実施例】表1に示す組成の217mm×217mm断
面の連続鋳造鋳片をマンネスマン方式の熱間圧延法によ
って継目無し管に造管した。圧延後、室温まで空冷し、
熱間圧延ままの鋼管のフェライト粒径、引張特性および
シャルピー試験による衝撃特性を調査した。フェライト
粒径は鋼管の長手方向に直交する断面(C断面)につい
て、2000倍で10視野観察し、平均粒径を測定し
た。シャルピー試験による衝撃特性は50%破面遷移温
度(vTrs)で評価した。また、寸法精度及び外面の
表面肌についても調査した。これらの調査結果を製造条
件と共に表2に示す。
EXAMPLES Continuous cast slabs having a composition shown in Table 1 and having a cross section of 217 mm × 217 mm were formed into seamless pipes by the hot rolling method of the Mannesmann system. After rolling, air-cool to room temperature,
Ferrite grain size, tensile properties and impact properties by Charpy test of the as-rolled steel pipe were investigated. As for the ferrite particle size, a cross section (C cross section) orthogonal to the longitudinal direction of the steel pipe was observed at 2,000 times in 10 visual fields, and the average particle size was measured. Impact characteristics by the Charpy test were evaluated at a 50% fracture surface transition temperature (vTrs). In addition, dimensional accuracy and outer surface skin were also investigated. Table 2 shows the results of these investigations together with the production conditions.

【0026】表2から、本発明例(No.1〜6)は平
均フェライト粒径がいずれも20μm以下となってお
り、オーステナイト単相域に再加熱して仕上げ圧延を行
う従来プロセスで製造した比較例(No.7〜9)の同
じ成分のもの(No.1,2とNo.7、 No.3,
4とNo.8、 No.5,6とNo.9)と比較する
と、いずれも大幅に強度が向上しており、かつ靭性も同
等以上であり、強度・靭性バランスが大幅に向上してい
る。また、いずれかの条件が本発明の限定範囲を外れて
いる比較例(No.10〜12)は、いずれも平均フェ
ライト粒径が20μm以上であり、同じ成分の本発明例
(No.1,2)と比較すると、いずれも強度が大幅に
低く、従来プロセスで製造した同じ成分の比較例(N
o.7)と同程度である。また、成分が本発明の限定範
囲を超えている比較例(No.13,14)は、いずれ
も高い強度が得られているが、靭性が非常に低い。
From Table 2, it can be seen that all of the examples of the present invention (Nos. 1 to 6) have an average ferrite grain size of 20 μm or less, and were manufactured by a conventional process of reheating to the austenite single phase region and finish rolling. Comparative Examples (Nos. 7 to 9) having the same components (Nos. 1, 2 and 7, No. 3).
4 and No. 8, No. Nos. 5, 6 and no. Compared with 9), each of them has significantly improved strength and the toughness is equal to or more than that, and the balance between strength and toughness is greatly improved. In Comparative Examples (Nos. 10 to 12) in which any of the conditions were outside the limited range of the present invention, the average ferrite particle diameter was 20 μm or more, and the present invention examples (No. In comparison with (2), the strength was significantly lower in each case, and a comparative example (N
o. It is about the same as 7). In Comparative Examples (Nos. 13 and 14) in which the components are beyond the limited range of the present invention, all have high strength, but have very low toughness.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】以上のように本発明によれば、合金元素
を多量に添加することなく、また熱処理や冷間加工など
の付帯工程を用いることなく、熱間圧延ままの非調質状
態で高強度を有する非調質高強度継目無しし鋼管が得ら
れる。
As described above, according to the present invention, a hot-rolled non-tempered state can be obtained without adding a large amount of alloying elements and without using ancillary steps such as heat treatment and cold working. A non-heat treated high strength seamless steel pipe having high strength is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】マンネスマン方式の継目無し鋼管の圧延工程を
示す概略図である。
FIG. 1 is a schematic view showing a rolling process of a seamless steel pipe of the Mannesmann system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 眞市 北九州市戸畑区飛幡町1−1 新日本製鐵 株式会社八幡製鐵所内 Fターム(参考) 4K032 AA04 AA05 AA06 AA16 AA31 BA03 CA01 CA02 CA03 CC02 CD05  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Makoto Tamura 1-1 Futaba-cho, Tobata-ku, Kitakyushu Nippon Steel Corporation Yawata Works F-term (reference) 4K032 AA04 AA05 AA06 AA16 AA31 BA03 CA01 CA02 CA03 CC02 CD05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.01〜0.6%、 Si:0.01〜1.0%、 Mn:0.1〜2.0% を含有し、鋼管の長手方向に直交する断面の平均フェラ
イト粒径が20μm以下であることを特徴とする非調質
高強度継目無し鋼管。
1. A steel pipe containing, by mass%, C: 0.01 to 0.6%, Si: 0.01 to 1.0%, and Mn: 0.1 to 2.0%. A non-heat treated high-strength seamless steel pipe, wherein the average ferrite grain size in a cross section orthogonal to the cross section is 20 μm or less.
【請求項2】 質量%で、 C :0.01〜0.6%、 Si:0.01〜1.0%、 Mn:0.1〜2.0% を含有する鋳片または鋼片を、マンネスマン方式の熱間
圧延に供して継目無し鋼管を製造する方法であって、鋳
片または鋼片をAc3 変態点以上1300℃以下の温度
に加熱したのち、穿孔・圧延を施し、引き続き素管を6
50〜750℃の温度で保定し、その後累積断面減少率
20%以上で圧延時の素管温度が600〜750℃の仕
上げ圧延を行うことを特徴とする非調質高強度継目無し
鋼管の製造方法。
2. A slab or slab containing, by mass%, C: 0.01 to 0.6%, Si: 0.01 to 1.0%, and Mn: 0.1 to 2.0%. A method for producing a seamless steel pipe by subjecting it to hot rolling of the Mannesmann method, in which a slab or a slab is heated to a temperature of from the Ac3 transformation point to 1300 ° C., then pierced and rolled, and subsequently the raw pipe 6
Production of a non-heat treated high-strength seamless steel pipe characterized in that it is maintained at a temperature of 50 to 750 ° C., and then subjected to finish rolling at a raw material temperature of 600 to 750 ° C. at the time of rolling at a cumulative sectional reduction of 20% or more. Method.
【請求項3】 質量%で、 C :0.01〜0.6%、 Si:0.01〜1.0%、 Mn:0.1〜2.0% を含有する鋳片または鋼片を、マンネスマン方式の熱間
圧延に供して継目無し鋼管を製造する方法であって、鋳
片または鋼片をAc3 変態点以上1300℃以下の温度
に加熱したのち、穿孔・圧延を施し、引き続き素管を6
50〜750℃の温度で、かつ下記(1)式を満たす条
件で保定し、その後累積断面減少率20%以上で圧延時
の素管温度が600〜750℃の仕上げ圧延を行うこと
を特徴とする非調質高強度継目無し鋼管の製造方法。 18700≦T(logt+20)≦20000 …………(1) ここで T:温度(K) t:時間(h)
3. A slab or slab containing, by mass%, C: 0.01 to 0.6%, Si: 0.01 to 1.0%, and Mn: 0.1 to 2.0%. A method for producing a seamless steel pipe by subjecting it to hot rolling of the Mannesmann method, in which a slab or a slab is heated to a temperature of from the Ac3 transformation point to 1300 ° C., then pierced and rolled, and subsequently the raw pipe 6
It is characterized by carrying out finish rolling at a temperature of 50 to 750 ° C and a condition satisfying the following formula (1), and thereafter, at a cumulative cross-section reduction rate of 20% or more, and at a raw tube temperature of 600 to 750 ° C during rolling. Of non-heat treated high strength seamless steel pipe. 18700 ≦ T (logt + 20) ≦ 20,000 (1) where T: temperature (K) t: time (h)
【請求項4】 穿孔・圧延を施した後、引き続き素管を
空冷以上の冷却速度で650〜750℃の温度まで冷却
することを特徴とする請求項2または3記載の非調質高
強度継目無し鋼管の製造方法。
4. The non-heat treated high-strength seam according to claim 2, wherein after the piercing / rolling is performed, the raw tube is continuously cooled to a temperature of 650 to 750 ° C. at a cooling rate higher than air cooling. No steel pipe manufacturing method.
【請求項5】 穿孔・圧延を施した後、650〜750
℃の温度で保定する前の素管の長手方向の温度偏差が8
0℃以下であることを特徴とする請求項2ないし4のい
ずれか1項に記載の非調質高強度継目無し鋼管の製造方
法。
5. After piercing and rolling, 650 to 750
The temperature deviation in the longitudinal direction of the tube before holding at a temperature of
The method for producing a non-heat treated high-strength seamless steel pipe according to any one of claims 2 to 4, wherein the temperature is 0 ° C or lower.
【請求項6】 前記仕上げ圧延を潤滑下で行うことを特
徴とする請求項2ないし5のいずれか1項に記載の非調
質高強度継目無し鋼管の製造方法。
6. The method for producing a non-heat treated high-strength seamless steel pipe according to claim 2, wherein the finish rolling is performed under lubrication.
JP2000062639A 2000-03-07 2000-03-07 Non-heattreated high strength seamless steel pipe and its production method Pending JP2001247931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062639A JP2001247931A (en) 2000-03-07 2000-03-07 Non-heattreated high strength seamless steel pipe and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062639A JP2001247931A (en) 2000-03-07 2000-03-07 Non-heattreated high strength seamless steel pipe and its production method

Publications (1)

Publication Number Publication Date
JP2001247931A true JP2001247931A (en) 2001-09-14

Family

ID=18582614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062639A Pending JP2001247931A (en) 2000-03-07 2000-03-07 Non-heattreated high strength seamless steel pipe and its production method

Country Status (1)

Country Link
JP (1) JP2001247931A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119865A (en) * 2005-10-28 2007-05-17 Nippon Steel Corp Steel tube for machine structural member, and production method therefor
WO2007114413A1 (en) 2006-03-28 2007-10-11 Nippon Steel Corporation High-strength seamless steel pipe for mechanical structure which has excellent toughness and weldability, and method for manufacture thereof
CN100400679C (en) * 2004-02-19 2008-07-09 住友金属工业株式会社 High strength seamless steel pipe and its manufacturing method
JP2009541589A (en) * 2006-06-29 2009-11-26 テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト Seamless precision steel pipe for hydraulic cylinders with improved isotropic toughness at low temperatures and method for obtaining the same
WO2010131754A1 (en) * 2009-05-15 2010-11-18 株式会社神戸製鋼所 Hollow seamless pipe for high-strength springs
CN114589203A (en) * 2022-01-25 2022-06-07 大冶特殊钢有限公司 Preparation method of 09MnNiD seamless steel tube suitable for low temperature
CN115679196A (en) * 2021-07-30 2023-02-03 宝山钢铁股份有限公司 Seamless steel pipe for self-lubricating automobile driving shaft and manufacturing method thereof
EP4169634A4 (en) * 2020-08-19 2024-04-17 JFE Steel Corporation Seamless steel pipe and method for manufacturing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400679C (en) * 2004-02-19 2008-07-09 住友金属工业株式会社 High strength seamless steel pipe and its manufacturing method
JP2007119865A (en) * 2005-10-28 2007-05-17 Nippon Steel Corp Steel tube for machine structural member, and production method therefor
JP4500246B2 (en) * 2005-10-28 2010-07-14 新日本製鐵株式会社 Steel pipe for machine structural member and manufacturing method thereof
WO2007114413A1 (en) 2006-03-28 2007-10-11 Nippon Steel Corporation High-strength seamless steel pipe for mechanical structure which has excellent toughness and weldability, and method for manufacture thereof
JP2009541589A (en) * 2006-06-29 2009-11-26 テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト Seamless precision steel pipe for hydraulic cylinders with improved isotropic toughness at low temperatures and method for obtaining the same
JP2010265523A (en) * 2009-05-15 2010-11-25 Kobe Steel Ltd Hollow seamless pipe for high strength spring
WO2010131754A1 (en) * 2009-05-15 2010-11-18 株式会社神戸製鋼所 Hollow seamless pipe for high-strength springs
CN105483519A (en) * 2009-05-15 2016-04-13 株式会社神户制钢所 Kobe Steel Ltd,Shinko Metal Prod,Nhk Spring Co Ltd
US9689051B2 (en) 2009-05-15 2017-06-27 Kobe Steel, Ltd. Hollow seamless pipe for high-strength springs
EP4169634A4 (en) * 2020-08-19 2024-04-17 JFE Steel Corporation Seamless steel pipe and method for manufacturing same
CN115679196A (en) * 2021-07-30 2023-02-03 宝山钢铁股份有限公司 Seamless steel pipe for self-lubricating automobile driving shaft and manufacturing method thereof
CN115679196B (en) * 2021-07-30 2024-04-05 宝山钢铁股份有限公司 Seamless steel tube for self-lubricating automobile driving shaft and manufacturing method thereof
CN114589203A (en) * 2022-01-25 2022-06-07 大冶特殊钢有限公司 Preparation method of 09MnNiD seamless steel tube suitable for low temperature
CN114589203B (en) * 2022-01-25 2023-09-05 大冶特殊钢有限公司 Preparation method of 09MnNiD seamless steel tube suitable for low temperature

Similar Documents

Publication Publication Date Title
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
US6290789B1 (en) Ultrafine-grain steel pipe and process for manufacturing the same
JP3758508B2 (en) Manufacturing method of duplex stainless steel pipe
JP2000144316A (en) Hot rolled steel sheet for working having superfine grain
JP2001355046A (en) Steel tube for reinforcing automobile door and its production method
WO2001096624A1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
EP1382703B1 (en) Steel pipe having low yield ratio
JP6679935B2 (en) Steel for cold work parts
JP3375554B2 (en) Steel pipe with excellent strength-ductility balance
JP2007196237A (en) Method for producing seamless steel tube for machine structural component
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JP2003105441A (en) METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
JP3785828B2 (en) Steel pipe drawing method
CN114729426B (en) Hot-rolled steel sheet for resistance-welded steel pipe, method for producing same, line pipe, and building structure
JP2000282167A (en) Low yield ratio type steel product and steel pipe, excellent in toughness, and their manufacture
JP2001262275A (en) High tensile strength seamless steel pipe excellent in toughness, ductility and weldability and its producing method
JP2004292922A (en) Method for manufacturing high tensile strength steel pipe of excellent combined secondary workability
JP3937964B2 (en) High strength and high toughness martensitic stainless steel seamless pipe manufacturing method
US20030221753A1 (en) Super fine granular steel pipe and method for producing the same
JP3214351B2 (en) Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength
JP2000219915A (en) Production of seamless steel pipe having high strength and high toughness
CN113646455B (en) Steel material for line pipe and method for producing same, and line pipe and method for producing same
JP3214350B2 (en) Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength
JP2003096545A (en) Electric resistance welded tube having high strength and ductility, and production method therefor
JPS59182919A (en) Production of high-tensile low-alloy steel pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040310

A131 Notification of reasons for refusal

Effective date: 20040323

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

RD02 Notification of acceptance of power of attorney

Effective date: 20040616

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810