JP2004292922A - Method for manufacturing high tensile strength steel pipe of excellent combined secondary workability - Google Patents

Method for manufacturing high tensile strength steel pipe of excellent combined secondary workability Download PDF

Info

Publication number
JP2004292922A
JP2004292922A JP2003089577A JP2003089577A JP2004292922A JP 2004292922 A JP2004292922 A JP 2004292922A JP 2003089577 A JP2003089577 A JP 2003089577A JP 2003089577 A JP2003089577 A JP 2003089577A JP 2004292922 A JP2004292922 A JP 2004292922A
Authority
JP
Japan
Prior art keywords
less
rolling
point
steel pipe
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003089577A
Other languages
Japanese (ja)
Other versions
JP4140419B2 (en
Inventor
Makoto Kitazawa
真 北澤
Takaaki Toyooka
高明 豊岡
Yoshikazu Kawabata
良和 河端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003089577A priority Critical patent/JP4140419B2/en
Publication of JP2004292922A publication Critical patent/JP2004292922A/en
Application granted granted Critical
Publication of JP4140419B2 publication Critical patent/JP4140419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a high tensile strength steel pipe of excellent combined secondary workability. <P>SOLUTION: A steel pipe formed by performing electroseaming of a steel strip of the composition consisting of 0.01-0.60% C, 0.01-2.0% Si, 0.01-3.0% Mn, 0.005-0.10% Al, ≤ 0.0050% S, and ≤ 0.1% P, or further containing one kind or two or more kinds of Cu, Ni, Cr, Mo, Nb, V, Ti, B, REM and Ca is subjected to diameter-reduction rolling under the condition of the diameter-reduction ratio of ≥ 25%. The pipe is firstly subjected to the diameter-reduction rolling under the condition that the contraction ratio is ≥ 10%, the rolling start temperature is A<SB>3</SB>point or over, the rolling completion temperature is not lower than (A<SB>1</SB>point - 50°C) and not higher than A<SB>3</SB>point, and then, re-heated to not lower than A<SB>3</SB>point, and subjected to the diameter-reduction rolling under the condition that the diameter-reduction ratio is ≥ 5%, the rolling completion temperature is not lower than A<SB>3</SB>point. Here, A<SB>3</SB>point and A<SB>1</SB>point are defined by the relational expression to the composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複合二次加工性に優れた高張力鋼管の製造方法に関し、詳しくは、曲げ加工、縮径加工、管端扁平加工の組み合わせよりなる複合二次加工において、表面および/または端部に亀裂を生じることなく加工を完了しうる性質である複合二次加工性に優れた引張強度550MPa以上の高張力鋼管の製造方法に関する。
【0002】
【従来の技術】
溶接鋼管を母管とした熱間縮径圧延による鋼管製造に関する従来の技術としては、電縫溶接鋼管を用いて、 熱間絞り圧延してコイル状鋼管を製造する際に、 コイル状鋼管の内面ビード部に発生した内面シワ疵による冷間加工時の割れを防止するために、該電縫溶接鋼管の内面ビード部を切削又は/及び研削してビード高さを−200〜+20 μm とし、 続いて熱間絞り圧延し、 コイル状に巻き取りコイル状鋼管を製造することを特徴とするコイル状鋼管の製造方法(特許文献1)や、焼鈍することなく二次加工でき、しかも、管内面にスケールのない長尺のコイル状鋼管を製造するために、鋼管をストレッチレデューサにより熱間絞り圧延し、該圧延をA点以上の温度で終了させ、ついでコイルに巻取り放冷することを特徴とするコイル状鋼管の製造方法(特許文献2)や、製管工程、 加熱工程、そして圧延仕上げ工程を備えた熱間電縫管の製造方法において、接合部の局部腐食(溝状腐食)のない熱間電縫管の安定製造を目的として、製管後、得られた母管の圧延仕上げに先立って、燃焼加熱炉そして誘導加熱装置によって前記母管を加熱して、 所定の圧延仕上げ温度を確保することを特徴とする熱間電縫管の製造方法(特許文献3)や、ハイドロフォーム成形性に優れた鋼管を得るために、電縫管製造工程で製造した鋼管を、電縫溶接部を中心として両側、周方向に肉厚の5倍の範囲において最小肉厚が円周方向全体の肉厚の平均値より小さくならないようにビード切削を行い、この素管をAc点−30℃以上の温度に加熱し、オーステナイト、またはオーステナイト+フェライト2相組織となる温度で、かつ 700℃以上の温度域で縮径圧延を行い、その後冷却することを特徴とする成形性に優れた鋼管の製造方法(特許文献4)などが知られている。
【0003】
【特許文献1】
特開平6−238488号公報
【特許文献2】
特公昭63−53248号公報
【特許文献3】
特許第3031233号公報
【特許文献4】
特開2002−115029号公報
【0004】
【発明が解決しようとする課題】
一方、例えば、自動車用構造用鋼(例えば足回り部品等)などの用途分野では、引張強度(TSと記す)550MPa以上の高張力鋼管に、複合二次加工(:曲げ加工、縮径加工、管端扁平加工を2種以上組み合わせてなる二次加工)を施して複雑な形状に成形したものが使用されるようになってきており、そのため、相当に大きい加工量の複合二次加工を受けても割れを生じない(すなわち複合二次加工性に優れた)高張力鋼管の要求が強まっている。しかし、上記従来の技術では、複合二次加工性が考慮されておらず、必ずしも十分な複合二次加工性を有する高張力鋼管を得ることはできなかった。そこで、本発明は、TS:550MPa以上を有し複合二次加工を受けても割れを生じない鋼管を安定して製造しうる複合二次加工性に優れた高張力鋼管の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
発明者らは、前記目的を達成するために鋭意検討した結果、特定の組成(=化学組成)の帯鋼を電縫溶接してなる鋼管を特定の縮径率で縮径圧延するものとし、かつ、この縮径圧延を前段と後段に分けてその中間で再加熱を行い、前段圧延ではγ域ないしγ+αの2相域で圧延し、中間再加熱ではγ域に昇温し、後段圧延ではγ域で圧延することにより、複合二次加工性に優れた高張力鋼管を安定製造しうることを見出し、本発明をなした。
【0006】
すなわち、本発明は、質量%で、C:0.01〜0.60%、Si:0.01〜2.0 %、Mn:0.01〜3.0 %、Al:0.005 〜0.10%、S:0.0050%以下、P:0.1 %以下を含み、あるいはさらに、Cu:1%以下、Ni:1%以下、Cr:2%以下、Mo:1%以下、Nb:0.1 %以下、V:0.5 %以下、Ti:0.2 %以下、B:0.005 %以下、REM :0.02%以下、Ca:0.01%以下のうち1種または2種以上む組成の帯鋼を電縫溶接してなる鋼管を、縮径率:25%以上の条件で縮径圧延するにあたり、まず、縮径率:10%以上、圧延開始温度:下記〔式1〕で定義されるA点以上、圧延終了温度:(下記〔式2〕で定義されるA点−50℃)以上前記A点以下の条件で縮径圧延し、次いで前記A点以上に再加熱し、次いで縮径率:5%以上、圧延終了温度:前記A点以上の条件で縮径圧延することを特徴とする複合二次加工性に優れた高張力鋼管の製造方法である。
【0007】

〔式1〕
点(℃)=910 −203 ×√(%C)−15.2×(%Ni)+44.7×(%Si)+104 ×(%V)+31.5×(%Mo)−〔30×(%Mn)+11×(%Cr)+20×(%Cu)−700 ×(%P)−400 ×(%Al)−400 ×(%Ti)〕
〔式2〕
点(℃)=723 −10.7×(%Mn)−16.9×(%Ni)+29.1×(%Si)+16.9 ×(%Cr)
【0008】
【発明の実施の形態】
まず、本発明において、帯鋼の組成(=化学組成)を上記範囲に限定した理由について説明する。
C:0.01〜0.60%
Cは、基地中に固溶しあるいは炭化物として析出し、鋼の強度を増加させる元素であり、また、硬質な第2相(第2相粒子または第2相組織)として析出したセメンタイト、 パーライト、 ベイナイト、 マルテンサイトが高強度化と延性向上に寄与する。所望の強度を確保し、第2相として析出したセメンタイト等による延性向上の効果を得るためには、Cは、0.01%以上、好ましくは0.04%以上の含有を必要とするが、0.60%を超えて含有すると延性が劣化する。このため、Cは0.01〜0.60%の範囲に限定した。
【0009】
Si:0.01〜2.0 %
Siは、脱酸剤として作用するとともに、基地中に固溶し鋼の強度を増加させる。この効果は、0.01%以上、好ましくは0.1 %以上の含有で認められるが、2.0 %を超える含有は延性を劣化させる。このことから、Siは0.01〜2.0 %の範囲に限定した。なお、好ましくは、強度延性バランスの点から0.10〜1.5 %の範囲である。
【0010】
Mn:0.01〜3.0 %
Mnは、鋼の強度を増加させる元素であり第2相としてのセメンタイトの微細析出、あるいはマルテンサイト、ベイナイトの析出を促進させる。このような効果は、0.01%以上の含有で認められるが、3.0 %を超える含有は延性を劣化させる。このため、Mnは0.01〜3.0 %の範囲に限定した。なお、強度延性バランスの観点から、Mnは0.2 〜1.3 %の範囲が好ましく、より好ましくは0.6 〜1.3 %の範囲である。
【0011】
Al:0.005 〜0.10%
Alは、結晶粒を微細化する作用を有している。これにより、素材鋼管段階における第2相組織の分散を微細分散とし、本発明の効果をより大きくする。このためには少なくとも0.005 %以上の含有を必要とするが、0.10%を超えると酸化物系介在物量が増加し清浄度が劣化する。このため、Alは0.005 〜0.10%の範囲に限定した。なお、好ましくは0.015 〜0.06%である。
【0012】
S:0.0050%以下
Sは、硫化物を増加し清浄度を劣化させるのでできるだけ低減するのが望ましいが、とくに0.0050%を超えて含有すると複合二次加工性を著しく損なう。よって、Sは0.0050%以下とする。
P:0.1 %以下
Pは、微量の含有で鋼の強度を増加させるが、過度に含有すると粒界に偏析して複合二次加工性を著しく劣化させるので、0.1 %以下とする。
【0013】
上記した基本組成に加えて、次に述べる合金元素群(第1群〜第3群)を単独あるいは複合して添加してもよい。すなわち、Cu:1%以下、Ni:1%以下、Cr:2%以下、Mo:1%以下の1種または2種以上からなる第1群、Nb:0.1 %以下、V:0.5 %以下、Ti:0.2 %以下、B:0.005 %以下の1種または2種以上からなる第2群、REM :0.02%以下、Ca:0.01%以下の1種または2種からなる第3群である。
【0014】
第1群の元素Cu、Ni、Cr、Moは、いずれも強度を増加させる元素であり、必要に応じ1種または2種以上を添加できる。これら元素は、変態点を低下させ、フェライト粒あるいは第2相組織を微細化する効果を有している。しかし、Cuは多量添加すると熱間加工性が劣化するため1%を上限とした。Niは強度増加とともに靭性をも改善するが1%を超えて添加してもコスト高に比して効果が飽和してくるため、1%を上限とした。Cr、Moは多量添加すると溶接性、延性が劣化するうえコスト高となるため、それぞれ2%、1%を上限とした。なお、好ましくはCu:0.1 〜0.6 %、Ni:0.1 〜0.7 %、Cr:0.1 〜1.5 %、Mo:0.05〜0.5 %である。
【0015】
第2群の元素Nb、V、Ti、Bは、いずれも炭化物、窒化物または炭窒化物として析出し、結晶粒の微細化ひいては第2相組織の微細分散化に寄与するとともに、高強度化に寄与する元素であり、特に高温に加熱される接合部を有する鋼管では、接合時の加熱過程での粒微細化の効果に加え、冷却過程でのフェライトの析出核として作用し、接合部の硬化を防止する効果もあり、必要に応じ1種または2種以上添加できる。しかし多量添加すると、溶接性、靭性とも劣化するため、Nbは0.1 %、Vは0.5 %、Tiは0.2 %、Bは0.005 %をそれぞれ上限とした。なお、好ましくはNb:0.005 〜0.05%、V:0.05〜0.1 %、Ti:0.005 〜0.10%、B:0.0005〜0.002 %である。
【0016】
第3群の元素REM 、Caは、いずれも介在物の形状を調整し、加工性を向上させる作用を有しており、さらに、硫化物、酸化物、または酸硫化物として析出し、接合部を有する鋼管での接合部の硬化を防止する作用をも有し、必要に応じ1種または2種添加できる。しかし、REM が0.02%を超え、あるいは、Caが0.01%を超えると介在物が多くなりすぎ清浄度が低下し、延性が劣化するので、REM は0.02%、Caは0.01%をそれぞれ上限とした。なお、REM が0.004 %未満、Caが0.001 %未満では前記作用による効果が少ないため、REM :0.004 %以上、Ca:0.001 %以上とするのが好ましい。
【0017】
上に説明した成分元素以外の組成部分(残部)は、Feおよび不可避的不純物からなる。本発明では、不可避的不純物として、N:0.010 %以下、O:0.006 %以下が許容される。これら不可避的不純物元素について述べると、Nは、Alと結合して結晶粒を微細化ひいては第2相組織を微細化するに効果ある量0.010 %までは許容できるが、0.010 %超の含有は延性を劣化させるため、0.010 %以下に低減するのが好ましく、より好ましくは、0.002 〜0.006 %である。また、Oは、酸化物として清浄度を劣化させるため、できるだけ低減するのが好ましいが、0.006 %までは許容できる。
【0018】
次に、本発明の鋼管製造方法について説明する。
本発明では、上記組成を有する帯鋼を電縫溶接して鋼管(電縫鋼管)にする。電縫溶接方法はとくに限定されず、冷間、 熱間のいずれで行ってもよい。そして、得られた電縫鋼管を、ストレッチレデューサなどを用いて縮径圧延(=絞り圧延)し、所望の外径の鋼管にする。この縮径圧延全体での縮径率(全縮径率;Rと記す)は、製造効率を確保する観点から25%以上とする。
【0019】
本発明では、縮径圧延を前段圧延と後段圧延の2段階に分けて行い、前段圧延と後段圧延との間で中間加熱を行う。前段圧延ではγ域から圧延開始してα域の高温側〜α+γ域で圧延終了することで、フェライト組織ないしフェライト+オーステナイト混合組織に十分に圧延歪を導入し、第2相を微細に分散させ、圧延集合組織の発達を促す。さらに中間加熱でγ域に加熱し、後段圧延でγ域のみで圧延することで、管断面全域に再結晶を起こさせて、混粒組織の形成を回避し、微細かつ均一な整粒オーステナイト組織とする。これにより、圧延後の冷却変態組織を、第2相が微細に分散しかつ延性に好適な集合組織(例えば、{110 }面が管径方向に直交しかつ<111 >方向が管軸方向に沿う結晶方位をもつもの)が発達したフェライト主体の微細粒組織にすることができ、高強度でかつ複合二次加工性に優れた鋼管が得られる。
【0020】
本発明で採用した上記前段圧延、中間加熱および後段圧延に係る操業条件の限定理由を以下に述べる。
前段圧延の縮径率(rと記す):10%以上
が10%未満では、材料(:被圧延鋼管)に圧延歪が十分に導入されず、第2相の微細分散化が不十分となるうえ、圧延集合組織の形成も不十分となり、その後の工程による集合組織の発達がなされなくなるので、rは10%以上とする。なお、好ましくは20%以上である。
【0021】
前段圧延の圧延開始温度(Tと記す):A点以上
がA点未満では、後工程の中間加熱‐後段圧延で消し去るのが困難な程の混粒組織が生じやすいので、TはA点以上とする。なお、さらなる結晶粒微細化の観点からはA点〜A点+250 ℃の範囲が好ましい。
前段圧延の圧延終了温度(Tと記す):(A点−50℃)以上A点以下
が(A点−50℃)未満では、表面性状の悪化や形状の乱れが生起しやすくなり、一方、TがA点超では前段圧延がγ域のみで行われ、次の中間加熱でα→γ変態が起こらず、該変態の核生成による細粒化効果が期待できないので、Tは(A点−50℃)以上A点以下とする。
【0022】
中間加熱の加熱温度(TIHと記す):A点以上
IHがA点未満では、次の後段圧延がγ+α域で行われ、均一微細な再結晶γ整粒組織が得られなくなるので、TIHはA点以上とする。なお、さらなる結晶粒微細化の観点からはA点〜A点+250 ℃の範囲が好ましい。
後段圧延の縮径率(rと記す):5%以上
が5%未満であると、管断面全域を均一に再結晶させることが困難で、混粒組織となりやすいので、rは5%以上とする。なお、前段圧延および後段圧延の縮径率rおよびrと全縮径率Rとは、式:R=1−(1−r)×(1−r)で関係づけられる。
【0023】
後段圧延の圧延終了温度(Tと記す):A点以上
がA点未満であると、圧延中にγ→α変態が起こり、変態生成したフェライトが圧延されて加工硬化し、延性が劣化するので、TはA点以上とする。
後段圧延した後は、常法に従って冷却すればよい。この冷却は空冷および水冷のいずれで行ってもよい。
【0024】
【実施例】
表1に示す組成になる板厚2.5mm の帯鋼(熱延鋼板を条切りしたもの)を常法により冷間にて電縫溶接し、次いでビード切削を行って、外径146.0mm の素管とし、該素管を表2に示す種々の条件で絞り圧延し、表2に示すサイズの製品管を得た。絞り圧延ではタンデム配置の4ロール式レデューサを使用した。前段圧延前の加熱は、高周波誘導コイルを用いて行った。中間加熱は高周波誘導コイルを用いて行った。なお、後段圧延後の冷却は空冷とした。
【0025】
得られた製品管について、TSおよび複合加工性を調査した。TSは管軸方向を試験方向として採取したJIS 12号A試験片(円弧型試験片、平行部幅19mm、標点間距離50mm)の引張試験により測定した。複合二次加工性は、各製品管から10本ずつ切り出した200mm 長さの鋼管試験片について、押し抜きダイスにより30%縮径後、30°曲げ加工および管端から100mm 長さ部分の扁平加工を施して、割れ発生比率(割れ発生本数/10と表記)を調査し、その結果を用いて評価した。これらの調査結果を表2に示す。表2より、本発明に則って製造された製品管は高引張強度でかつ優れた複合二次加工性を有することがわかる。
【0026】
【表1】

Figure 2004292922
【0027】
【表2】
Figure 2004292922
【0028】
【発明の効果】
本発明によれば、TS:550MPa以上の高引張強度を有し、かつ複合二次加工を受けたときに割れを生じない、複合二次加工性に優れた高張力鋼管を安定製造できるようになるという優れた効果を奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a high-strength steel pipe having excellent composite secondary workability, and more particularly, to a composite secondary processing comprising a combination of bending, diameter reduction, and pipe end flattening, wherein a surface and / or end portion is formed. The present invention relates to a method for producing a high-strength steel pipe having a tensile strength of 550 MPa or more, which is excellent in composite secondary workability, which is a property capable of completing processing without generating cracks in the steel pipe.
[0002]
[Prior art]
As a conventional technique for producing a steel pipe by hot reduction rolling using a welded steel pipe as a mother pipe, when an ERW welded steel pipe is used and hot drawn and rolled to produce a coiled steel pipe, an inner surface of the coiled steel pipe is used. In order to prevent cracks at the time of cold working due to inner surface wrinkles generated in the bead portion, the inner surface bead portion of the ERW welded steel pipe is cut or / and ground so that the bead height is -200 to +20 μm. Hot-rolling, hot-rolling, and coiling to produce a coiled steel pipe (Patent Document 1), and secondary processing can be performed without annealing. In order to manufacture a long coiled steel pipe without scale, the steel pipe is hot drawn and rolled by a stretch reducer, the rolling is completed at a temperature of one or more points A, and then the coil is wound and allowed to cool. And carp In a method for manufacturing a tubular steel pipe (Patent Document 2) and a method for manufacturing a hot ERW pipe provided with a pipe making step, a heating step, and a rolling finishing step, hot joints free of local corrosion (grooved corrosion) at joints are used. For the purpose of stable production of an electric resistance welded pipe, after the pipe production, prior to the rolling finishing of the obtained mother pipe, the mother pipe is heated by a combustion heating furnace and an induction heating device to secure a predetermined rolling finishing temperature. In order to obtain a method of manufacturing a hot ERW pipe (Patent Document 3) and obtain a steel pipe excellent in hydroform formability, a steel pipe manufactured in an ERW pipe manufacturing process is mainly made of an ERW weld. as both sides, the minimum thickness at five times the range of the thickness in the circumferential direction performed bead cutting so as not smaller than the average thickness of the entire circumferential direction, the base tube Ac 3 point -30 ° C. or more Heat to austenite, or austenite A method for producing a steel pipe excellent in formability, characterized in that diameter-reducing rolling is performed at a temperature at which a + ferrite two-phase structure is formed and in a temperature range of 700 ° C. or higher, followed by cooling (Patent Document 4). ing.
[0003]
[Patent Document 1]
JP-A-6-238488 [Patent Document 2]
JP-B-63-53248 [Patent Document 3]
Japanese Patent No. 3031233 [Patent Document 4]
JP-A-2002-115029
[Problems to be solved by the invention]
On the other hand, for example, in application fields such as structural steel for automobiles (for example, undercarriage parts), composite secondary processing (: bending, diameter reduction, It is becoming more and more common to use two or more types of pipe end flattening to form a complicated shape and to use it. There is an increasing demand for high-strength steel pipes that do not crack even when they are cracked (ie, have excellent composite secondary workability). However, in the above-described conventional technology, the composite secondary workability is not considered, and a high-strength steel pipe having a sufficient composite secondary workability cannot always be obtained. Therefore, the present invention provides a method for producing a high-strength steel pipe excellent in composite secondary workability, which can stably produce a steel pipe having TS: 550 MPa or more and which does not crack even when subjected to composite secondary processing. The purpose is to:
[0005]
[Means for Solving the Problems]
The inventors have conducted intensive studies to achieve the above object, and as a result, shallow-roll a steel pipe formed by ERW welding a steel strip having a specific composition (= chemical composition) at a specific reduction ratio, In addition, this diameter reduction rolling is divided into a former stage and a latter stage, and reheating is performed in the middle thereof. In the first stage rolling, rolling is performed in a γ region or γ + α two-phase region. The present inventors have found that by rolling in the γ region, it is possible to stably produce a high-tensile steel pipe having excellent composite secondary workability, and have made the present invention.
[0006]
That is, in the present invention, in mass%, C: 0.01 to 0.60%, Si: 0.01 to 2.0%, Mn: 0.01 to 3.0%, Al: 0.005 to 0%. .10%, S: 0.0050% or less, P: 0.1% or less, or further, Cu: 1% or less, Ni: 1% or less, Cr: 2% or less, Mo: 1% or less, Nb : 0.1% or less, V: 0.5% or less, Ti: 0.2% or less, B: 0.005% or less, REM: 0.02% or less, Ca: 0.01% or less Alternatively, when a steel pipe formed by electric resistance welding of a steel strip having two or more kinds of compositions is subjected to diameter reduction at a diameter reduction rate of 25% or more, first, a diameter reduction rate of 10% or more, and a rolling start temperature: [equation 1] being defined a 3 points or more, the rolling end temperature :( below a 1 point -50 ° C. defined by [formula 2]) or the a 3 point following conditions Cast径圧, then reheated to above the A 3 point, then radial contraction rate: 5% or more, the rolling end temperature: conjugated secondary workability, characterized by diameter reduction rolling at the A 3 point or more conditions This is a method for manufacturing a high-tensile steel pipe excellent in quality.
[0007]
(Equation 1)
A 3 points (° C.) = 910 −203 × Δ (% C) −15.2 × (% Ni) + 44.7 × (% Si) + 104 × (% V) + 31.5 × (% Mo) − [30 × (% Mn) + 11 × (% Cr) + 20 × (% Cu) −700 × (% P) −400 × (% Al) −400 × (% Ti)]
[Equation 2]
A 1 point (° C.) = 723 −10.7 × (% Mn) −16.9 × (% Ni) + 29.1 × (% Si) + 16.9 × (% Cr)
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reason why the composition (= chemical composition) of the steel strip is limited to the above range in the present invention will be described.
C: 0.01 to 0.60%
C is an element that dissolves in the matrix or precipitates as a carbide to increase the strength of steel, and also precipitates as a hard second phase (second phase particles or second phase structure) such as cementite, pearlite, Bainite and martensite contribute to higher strength and ductility. In order to secure the desired strength and obtain the effect of improving ductility due to the cementite or the like precipitated as the second phase, the content of C is required to be 0.01% or more, preferably 0.04% or more. If the content exceeds 0.60%, the ductility deteriorates. For this reason, C is limited to the range of 0.01 to 0.60%.
[0009]
Si: 0.01 to 2.0%
Si acts as a deoxidizing agent and also forms a solid solution in the matrix to increase the strength of the steel. This effect is observed at a content of 0.01% or more, preferably 0.1% or more, but a content of more than 2.0% deteriorates the ductility. For this reason, Si was limited to the range of 0.01 to 2.0%. Preferably, it is in the range of 0.10 to 1.5% from the viewpoint of strength-ductility balance.
[0010]
Mn: 0.01 to 3.0%
Mn is an element that increases the strength of steel and promotes fine precipitation of cementite as a second phase or precipitation of martensite and bainite. Such an effect is observed at a content of 0.01% or more, but a content of more than 3.0% deteriorates ductility. For this reason, Mn was limited to the range of 0.01 to 3.0%. From the viewpoint of strength-ductility balance, Mn is preferably in the range of 0.2 to 1.3%, and more preferably in the range of 0.6 to 1.3%.
[0011]
Al: 0.005 to 0.10%
Al has a function of making crystal grains fine. Thereby, the dispersion of the second phase structure in the material steel pipe stage is made fine dispersion, and the effect of the present invention is further increased. For this purpose, the content must be at least 0.005% or more, but if it exceeds 0.10%, the amount of oxide-based inclusions increases and the cleanliness deteriorates. For this reason, Al was limited to the range of 0.005 to 0.10%. Incidentally, the content is preferably 0.015 to 0.06%.
[0012]
S: 0.0050% or less S increases the sulfide and deteriorates the cleanliness, so it is desirable to reduce it as much as possible. However, if the content exceeds 0.0050%, the composite secondary workability is significantly impaired. Therefore, S is set to 0.0050% or less.
P: 0.1% or less P increases the strength of the steel when it is contained in a trace amount, but when it is excessively contained, it segregates at the grain boundaries and significantly deteriorates the composite secondary workability. .
[0013]
In addition to the above-described basic composition, the following alloy element group (first group to third group) may be added alone or in combination. That is, a first group consisting of one or more of Cu: 1% or less, Ni: 1% or less, Cr: 2% or less, Mo: 1% or less, Nb: 0.1% or less, V: 0. A second group consisting of one or more of 5% or less, Ti: 0.2% or less, B: 0.005% or less, REM: 0.02% or less, Ca: 0.01% or less Or a third group consisting of two types.
[0014]
The first group of elements Cu, Ni, Cr and Mo are all elements that increase the strength, and one or more of them can be added as needed. These elements have the effect of lowering the transformation point and refining the ferrite grains or the second phase structure. However, when Cu is added in a large amount, hot workability deteriorates, so the upper limit is 1%. Ni improves the toughness as the strength increases. However, even if added over 1%, the effect saturates as compared with the high cost, so the upper limit is 1%. If Cr and Mo are added in large amounts, the weldability and ductility are deteriorated and the cost is increased. Therefore, the upper limits are 2% and 1%, respectively. Preferably, Cu: 0.1 to 0.6%, Ni: 0.1 to 0.7%, Cr: 0.1 to 1.5%, Mo: 0.05 to 0.5%.
[0015]
The elements of the second group, Nb, V, Ti, and B, all precipitate as carbides, nitrides, or carbonitrides, and contribute to the refinement of crystal grains and, consequently, the fine dispersion of the second phase structure, as well as to increase the strength. Especially in steel pipes that have joints that are heated to high temperatures, in addition to the effect of grain refinement during the heating process during joining, acts as ferrite precipitation nuclei during the cooling process, It also has the effect of preventing curing, and one or more of them can be added as necessary. However, if a large amount is added, both weldability and toughness are deteriorated. Therefore, the upper limits of Nb are 0.1%, V is 0.5%, Ti is 0.2%, and B is 0.005%. Preferably, Nb is 0.005 to 0.05%, V is 0.05 to 0.1%, Ti is 0.005 to 0.10%, and B is 0.0005 to 0.002%.
[0016]
The third group of elements REM and Ca both have the effect of adjusting the shape of inclusions and improving workability, and further precipitate as sulfides, oxides, or oxysulfides, and It also has the effect of preventing the hardening of the joints in steel pipes having the above, and one or two kinds can be added as necessary. However, if REM exceeds 0.02% or Ca exceeds 0.01%, the number of inclusions becomes too large, the cleanliness decreases, and the ductility deteriorates. Therefore, REM is 0.02% and Ca is 0%. 0.01% was set as the upper limit. When the REM is less than 0.004% and the Ca is less than 0.001%, the effect of the above effect is small. Therefore, it is preferable that the REM is 0.004% or more and the Ca is 0.001% or more.
[0017]
The composition portion (remaining portion) other than the component elements described above is composed of Fe and unavoidable impurities. In the present invention, N: 0.010% or less and O: 0.006% or less are allowed as inevitable impurities. Describing these unavoidable impurity elements, N can be allowed up to 0.010%, which is effective for refining the crystal grains by combining with Al and thereby refining the second phase structure, but exceeds 0.010%. Is preferably reduced to 0.010% or less, and more preferably 0.002 to 0.006%, since the content of the steel deteriorates ductility. O is preferably reduced as much as possible because it deteriorates cleanliness as an oxide, but up to 0.006% is acceptable.
[0018]
Next, the steel pipe manufacturing method of the present invention will be described.
In the present invention, the steel strip having the above composition is welded by ERW to form a steel pipe (ERW pipe). The electric resistance welding method is not particularly limited, and may be performed either cold or hot. Then, the obtained ERW steel pipe is subjected to diameter reduction rolling (= reduction rolling) using a stretch reducer or the like to obtain a steel pipe having a desired outer diameter. The diameter reduction ratio (total diameter reduction; described as R) in the entire diameter reduction rolling is set to 25% or more from the viewpoint of securing the production efficiency.
[0019]
In the present invention, diameter reduction rolling is performed in two stages of pre-rolling and post-rolling, and intermediate heating is performed between pre-rolling and post-rolling. In the pre-rolling, rolling is started from the γ region and finished at the high temperature side of the α region to the α + γ region to sufficiently introduce rolling strain into a ferrite structure or a mixed structure of ferrite and austenite, thereby dispersing the second phase finely. Promotes the development of the rolling texture. Furthermore, by heating to the γ region by intermediate heating and rolling only in the γ region in the subsequent rolling, recrystallization is caused over the entire cross section of the tube, avoiding the formation of a mixed grain structure, and fine and uniform sized austenite structure And Thereby, the cooling transformation structure after rolling is changed to a texture in which the second phase is finely dispersed and suitable for ductility (for example, the {110} plane is orthogonal to the pipe diameter direction and the <111> direction is the pipe axis direction. (Having a crystal orientation along the same direction) can be formed into a fine grain structure mainly composed of ferrite, and a steel tube having high strength and excellent composite secondary workability can be obtained.
[0020]
The reasons for limiting the operating conditions relating to the above-mentioned first-stage rolling, intermediate heating and second-stage rolling employed in the present invention will be described below.
Front rolling radial contraction rate (referred to as r 1): less than 10% or more r 1 is 10%, the material: rolled strain is not sufficiently introduced into the (rolled steel), a fine dispersion of second phase not terms of the well, the formation of rolling texture becomes insufficient, since the development of texture due to the subsequent steps will not be made, r 1 is 10% or more. Incidentally, it is preferably at least 20%.
[0021]
Rolling start temperature of the pre-rolling (T 0 and denoted): The A 3 points or more T 0 is A less than 3 points, in a subsequent step the intermediate heat - so prone to mixed grain structure of extent have difficulty obliterate later rolled , T 0 is the three or more points a. Incidentally, preferably in the range of A 3 point to A 3-point +250 ° C. From the viewpoint of further grain refinement.
The front rolling (referred to as T 1) rolling end temperature of :( A 1 point -50 ° C.) or higher A 3 points below T 1 is less than (A 1 point -50 ° C.), occurrence disturbances deterioration and shape of the surface texture It tends to, whereas, T 1 is the previous stage rolling is performed only gamma zone at three points than a, does not occur alpha → gamma transformation in the next intermediate heating, grain refining effect by nucleation of the transformation can not be expected since, T 1 is not more than 3 points a or (a 1 point -50 ° C.).
[0022]
The heating temperature of the intermediate heating (T referred to as the IH): The A to less than 3 points T the IH is A 3 points, the next subsequent rolling is performed in gamma + alpha region, because uniform fine recrystallized gamma grain structure can not be obtained , T the IH is set to three or more points a. Incidentally, preferably in the range of A 3 point to A 3-point +250 ° C. From the viewpoint of further grain refinement.
Subsequent rolling of the radial contraction rate (referred to as r 2): When more than 5% r 2 is less than 5%, it is difficult to uniformly recrystallized tube section throughout, so tends to mixed grain structure, r 2 is 5% or more. Note that the radial contraction rate r 1 and r 2 and Zenchijimi diameter ratio R of the front rolling and subsequent rolling, the formula: R = is related with 1- (1-r 1) × (1-r 2).
[0023]
(Referred to as T 2) rolling end temperature of the subsequent rolling: When A 3 point or more T 2 is less than 3 points A, occur gamma → alpha transformation during rolling, the ferrite generated transformation and work hardening are rolled, since ductility is deteriorated, T 2 is set to three or more points a.
After the second-stage rolling, cooling may be performed according to a conventional method. This cooling may be performed by either air cooling or water cooling.
[0024]
【Example】
A strip steel (thickness of a hot-rolled steel sheet) having a thickness of 2.5 mm having a composition shown in Table 1 was cold-sealed by a conventional method and subjected to electric resistance welding, followed by bead cutting to obtain an outer diameter of 146.0 mm. , And it was drawn and rolled under various conditions shown in Table 2 to obtain a product tube having a size shown in Table 2. In the rolling reduction, a 4-roll reducer having a tandem arrangement was used. Heating before pre-rolling was performed using a high-frequency induction coil. Intermediate heating was performed using a high frequency induction coil. The cooling after the second-stage rolling was air cooling.
[0025]
The obtained product pipe was examined for TS and composite workability. TS was measured by a tensile test of a JIS No. 12 A test piece (arc-shaped test piece, parallel portion width 19 mm, gauge length 50 mm) taken with the tube axis direction as the test direction. The composite secondary workability is as follows: For a 200 mm long steel tube test piece cut out from each product tube, after reducing the diameter by 30% with a punching die, bending 30 ° and flattening a 100 mm length from the pipe end And the crack occurrence ratio (denoted as the number of crack occurrences / 10) was investigated, and the result was used to evaluate. Table 2 shows the results of these investigations. Table 2 shows that the product pipe manufactured according to the present invention has high tensile strength and excellent composite secondary workability.
[0026]
[Table 1]
Figure 2004292922
[0027]
[Table 2]
Figure 2004292922
[0028]
【The invention's effect】
According to the present invention, it is possible to stably produce a high-strength steel pipe having a high tensile strength of TS: 550 MPa or more, and which does not crack when subjected to composite secondary processing and has excellent composite secondary workability. An excellent effect is achieved.

Claims (2)

質量%で、C:0.01〜0.60%、Si:0.01〜2.0 %、Mn:0.01〜3.0 %、Al:0.005 〜0.10%、S:0.0050%以下、P:0.1 %以下を含む組成の帯鋼を電縫溶接してなる鋼管を、縮径率:25%以上の条件で縮径圧延するにあたり、まず、縮径率:10%以上、圧延開始温度:下記〔式1〕で定義されるA点以上、圧延終了温度:(下記〔式2〕で定義されるA点−50℃)以上前記A点以下の条件で縮径圧延し、次いで前記A点以上に再加熱し、次いで縮径率:5%以上、圧延終了温度:前記A点以上の条件で縮径圧延することを特徴とする複合二次加工性に優れた高張力鋼管の製造方法。

〔式1〕
点(℃)=910 −203 ×√(%C)−15.2×(%Ni)+44.7×(%Si)+104 ×(%V)+31.5×(%Mo)−〔30×(%Mn)+11×(%Cr)+20×(%Cu)−700 ×(%P)−400 ×(%Al)−400 ×(%Ti)〕
〔式2〕
点(℃)=723 −10.7×(%Mn)−16.9×(%Ni)+29.1×(%Si)+16.9 ×(%Cr)
ここに、右辺の(%元素記号)は当該元素の鋼中成分含有量(質量%)であり、含有されない元素については0が代入される。
In mass%, C: 0.01 to 0.60%, Si: 0.01 to 2.0%, Mn: 0.01 to 3.0%, Al: 0.005 to 0.10%, S: When a steel pipe formed by electric resistance welding of a steel strip having a composition containing 0.0050% or less and P: 0.1% or less is subjected to diameter reduction at a rate of 25% or more, first, the diameter reduction is performed. 10% or more, rolling start temperature: 3 points or more of A defined by the following [Equation 1], rolling end temperature: ( 1 point of -50 ° C defined by the following [2]) or more and the 3 points of the above A And then re-heated to the above-mentioned A 3 point or more, and then reduced-diameter rolling under the condition of a diameter reduction ratio: 5% or more and a rolling end temperature: the above A 3 point or more. A method for manufacturing high-tensile steel pipes with excellent secondary workability.
(Equation 1)
A 3 points (° C.) = 910 −203 × Δ (% C) −15.2 × (% Ni) + 44.7 × (% Si) + 104 × (% V) + 31.5 × (% Mo) − [30 × (% Mn) + 11 × (% Cr) + 20 × (% Cu) −700 × (% P) −400 × (% Al) −400 × (% Ti)]
[Equation 2]
A 1 point (° C.) = 723 −10.7 × (% Mn) −16.9 × (% Ni) + 29.1 × (% Si) + 16.9 × (% Cr)
Here, (% element symbol) on the right side is the content of the element in steel (% by mass), and 0 is substituted for the element not contained.
前記組成にさらに、質量%で、Cu:1%以下、Ni:1%以下、Cr:2%以下、Mo:1%以下、Nb:0.1 %以下、V:0.5 %以下、Ti:0.2 %以下、B:0.005 %以下、REM :0.02%以下、Ca:0.01%以下のうち1種または2種以上が含まれることを特徴とする請求項1記載の複合二次加工性に優れた高張力鋼管の製造方法。In addition to the above composition, in mass%, Cu: 1% or less, Ni: 1% or less, Cr: 2% or less, Mo: 1% or less, Nb: 0.1% or less, V: 0.5% or less, Ti : 0.2% or less, B: 0.005% or less, REM: 0.02% or less, Ca: 0.01% or less, wherein one or more of them are contained. Method for producing high-strength steel pipe excellent in composite secondary workability.
JP2003089577A 2003-03-28 2003-03-28 Manufacturing method of high strength steel pipe with excellent composite secondary workability Expired - Fee Related JP4140419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089577A JP4140419B2 (en) 2003-03-28 2003-03-28 Manufacturing method of high strength steel pipe with excellent composite secondary workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089577A JP4140419B2 (en) 2003-03-28 2003-03-28 Manufacturing method of high strength steel pipe with excellent composite secondary workability

Publications (2)

Publication Number Publication Date
JP2004292922A true JP2004292922A (en) 2004-10-21
JP4140419B2 JP4140419B2 (en) 2008-08-27

Family

ID=33403391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089577A Expired - Fee Related JP4140419B2 (en) 2003-03-28 2003-03-28 Manufacturing method of high strength steel pipe with excellent composite secondary workability

Country Status (1)

Country Link
JP (1) JP4140419B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392135C (en) * 2005-06-30 2008-06-04 宝山钢铁股份有限公司 Ultra-high strength strip steel and its production process
US20120000567A1 (en) * 2009-03-25 2012-01-05 Shinya Sakamoto Electric resistance welded steel pipe excellent in deformability and fatigue properties after quenching
AU2006201550B2 (en) * 2005-04-15 2012-03-22 Bluescope Steel Limited Structural steel
CN103014296A (en) * 2012-12-19 2013-04-03 齐齐哈尔轨道交通装备有限责任公司 Thermal treatment process for axle steel
RU2572270C1 (en) * 2014-09-02 2016-01-10 Открытое акционерное общество "Уральская Сталь" (ОАО "Уральская сталь") Rolled plates manufacturing method
RU2639754C1 (en) * 2016-12-20 2017-12-22 Публичное акционерное общество "Северсталь" Method of producing low-alloyed corrosion-resistant steel for producing rolled stock
RU2680457C1 (en) * 2018-04-25 2019-02-21 Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") High-strength oil country tubular good in cold-resistant performance (options)
CN115971263A (en) * 2023-03-20 2023-04-18 太原理工大学 Online gradient temperature control equipment for seamless metal composite tube and rolling and heat treatment method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006201550B2 (en) * 2005-04-15 2012-03-22 Bluescope Steel Limited Structural steel
CN100392135C (en) * 2005-06-30 2008-06-04 宝山钢铁股份有限公司 Ultra-high strength strip steel and its production process
US20120000567A1 (en) * 2009-03-25 2012-01-05 Shinya Sakamoto Electric resistance welded steel pipe excellent in deformability and fatigue properties after quenching
US9757780B2 (en) * 2009-03-25 2017-09-12 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded steel pipe excellent in deformability and fatigue properties after quenching
CN103014296A (en) * 2012-12-19 2013-04-03 齐齐哈尔轨道交通装备有限责任公司 Thermal treatment process for axle steel
RU2572270C1 (en) * 2014-09-02 2016-01-10 Открытое акционерное общество "Уральская Сталь" (ОАО "Уральская сталь") Rolled plates manufacturing method
RU2639754C1 (en) * 2016-12-20 2017-12-22 Публичное акционерное общество "Северсталь" Method of producing low-alloyed corrosion-resistant steel for producing rolled stock
RU2680457C1 (en) * 2018-04-25 2019-02-21 Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") High-strength oil country tubular good in cold-resistant performance (options)
CN115971263A (en) * 2023-03-20 2023-04-18 太原理工大学 Online gradient temperature control equipment for seamless metal composite tube and rolling and heat treatment method thereof
CN115971263B (en) * 2023-03-20 2023-06-23 太原理工大学 Online gradient temperature control equipment for seamless metal composite pipe and rolling and heat treatment method thereof

Also Published As

Publication number Publication date
JP4140419B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
US6290789B1 (en) Ultrafine-grain steel pipe and process for manufacturing the same
JP6261640B2 (en) Ferritic stainless steel sheet and steel pipe for exhaust parts with excellent workability and manufacturing method thereof
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
EP2749668B1 (en) Hot coil for line pipe and manufacturing method therefor
EP2799575B1 (en) Hot rolled high tensile strength steel sheet and method for manufacturing same
WO2001096624A1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
JP2006299415A (en) Method for producing hot-rolled steel sheet for low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP6384637B1 (en) ERW steel pipe for coiled tubing and manufacturing method thereof
CN113302315B (en) Hot-rolled steel sheet, welded joint, and method for producing same
JP3375554B2 (en) Steel pipe with excellent strength-ductility balance
JP5211843B2 (en) Welded steel pipe with excellent crush resistance and method for producing the same
JP2002038242A (en) Stainless steel tube for structural member of automobile excellent in secondary working property
CN116234644A (en) Electric resistance welded steel pipe and method for manufacturing same
JP4140419B2 (en) Manufacturing method of high strength steel pipe with excellent composite secondary workability
JP6384635B1 (en) Hot rolled steel sheet for coiled tubing
JP2000096143A (en) Manufacture of steel tube
CN114729426B (en) Hot-rolled steel sheet for resistance-welded steel pipe, method for producing same, line pipe, and building structure
JP6825751B1 (en) Hot-rolled steel strip for cold roll-formed square steel pipe and its manufacturing method, and cold roll-formed square steel pipe manufacturing method
JP2687841B2 (en) Low yield ratio high strength steel pipe manufacturing method
JP3780956B2 (en) High strength steel plate with excellent SR resistance and method for producing the same
JP2000096142A (en) Method for reducing steel tube
JP3330522B2 (en) Manufacturing method of high fatigue strength steel pipe
JP3937964B2 (en) High strength and high toughness martensitic stainless steel seamless pipe manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees