JPH01132717A - Production of high-strength austenitic stainless seamless steel pipe - Google Patents

Production of high-strength austenitic stainless seamless steel pipe

Info

Publication number
JPH01132717A
JPH01132717A JP28856487A JP28856487A JPH01132717A JP H01132717 A JPH01132717 A JP H01132717A JP 28856487 A JP28856487 A JP 28856487A JP 28856487 A JP28856487 A JP 28856487A JP H01132717 A JPH01132717 A JP H01132717A
Authority
JP
Japan
Prior art keywords
finish rolling
pipe
steel pipe
stock
seamless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28856487A
Other languages
Japanese (ja)
Inventor
Akishi Sasaki
佐々木 晃史
Tetsuo Shimizu
哲雄 清水
Isao Takada
高田 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28856487A priority Critical patent/JPH01132717A/en
Publication of JPH01132717A publication Critical patent/JPH01132717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the title seamless steel pipe which has high yield strength and excellent ductility and corrosion resistance by reheating a steel pipe stock for finish rolling having a prescribed component compsn., then working the stock until the work strain at the time of the finish rolling attains a specified value or above, subjecting the stock to the finish rolling according to said work strain and cooling the pipe under specific conditions. CONSTITUTION:The above-mentioned seamless steel pipe contg., by weight %, 0.01-0.08 C, 0.1-1.0 Si, 0.2-2.0 Mn, 16.0-26.0 Cr, 6.0-22.0 Ni, and <=0.30 N is produced in the following manner: The pipe stock for finish rolling is first reheated to 950-1160 deg.C and is so worked that the work strain (e) at the time of the finish rolling expressed by the equation I (where the sectional area of the pipe stock is designated as A(cm<2>)) attains >=2.0. The pipe stock is then subjected to the finish rolling in such a manner that the temp. T( deg.C) of the finish pipe on the outlet side satisfies the equation II according to the (e). The pipe is thereafter cooled under the conditions under which the average cooling rate v( deg.C/s) in the temp. region of 900-500 deg.C after the finish rolling satisfies the equation III according to the C (weight%) in the steel. As a result, the austentic stainless seamless steel pipe having the yield point extremely higher than the yield point of the conventional seamless steel pipe is obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高強度オーステナイト系ステンレス継目無鋼管
の製造方法に係り、特に熱間造管後のオフラインの固溶
化熱処理を省略して、従来の固溶化熱処理材と同等の耐
食性を存し、かつ、強度に対して従来よりも著しく高耐
力を有するオーステナイト系ステンレス継目無鋼管の製
造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing high-strength austenitic seamless stainless steel pipes, and in particular, eliminates the offline solution heat treatment after hot pipe forming, thereby eliminating the need for conventional solution heat treatment. The present invention relates to a method for manufacturing seamless austenitic stainless steel pipes that have corrosion resistance equivalent to that of solution heat-treated materials and have significantly higher yield strength than conventional ones.

〈従来の技術〉 継目賞鋼管は−191こマンドレルミル方式、プラグミ
ル方式等の圧延法、あるいは、ユージンセジェルネ方式
、エアハルトブンシュベンチ方に等の熱間押出法で製造
されるが、比較的小径サイズの造管には生産性、寸法精
度が優れているマンドレルミル方式の圧延法が広く利用
されている。
<Prior art> Seamed steel pipes are manufactured by rolling methods such as the -191 mandrel mill method and plug mill method, or by hot extrusion methods such as the Eugene Sejerne method and the Erhard-Wunschbench method. Mandrel mill rolling is widely used for manufacturing small-diameter pipes because of its excellent productivity and dimensional accuracy.

オーステナイト系ステンレス継目無鋼管をマンドレルミ
ル方式にて製造する場合は、たとえば、第1図に示すよ
うに、素材ビレット2は回転炉床式加熱炉4において所
定の温度まで加熱された後、マンネスマンピアサ6によ
り穿孔圧延されて中空素管8Aとなる。あるいは、この
中空素管8Aは中空素管製造用連続鋳造機5等によって
直接製造されてもよい。この中空素管8Aは厚肉がっ短
尺であるので、延伸圧延機であるマンドレルミルlOに
より減肉延伸される。マンドレルミルlOは中空素管8
Aにマンドレルバ−12を挿入した状態で延伸圧延する
圧延機であり、通常6〜8基のロールスタンドから構成
されており、各ロールスタンドは2本の孔型ロール!4
を備え、隣接するロールスタンド間ではこの孔型ロール
14の回転軸を圧延軸に垂直な面内で相互に90度づつ
ずらして配置している。中空素管8Aはマンドレルミル
10で元の長さの2〜4倍の長さに延伸され、仕上圧延
用素管8Bとなる。仕上圧延用素管8Bは、必要に応じ
て再加熱炉16によって所定の温度に再加熱された後、
仕上圧延機であるストレッチレデューサ18によって仕
上圧延され、冷却床で常温まで冷却される。ストレッチ
レデューサ18によって素管の外径は最大で75%も絞
られ、素材ビレットの長さの40倍以上にも延伸され、
さらにその外表面はストレッチレデューサ18の最終側
の数スタンドの真円孔型ロールによって定形されるため
比較的硬れた外径寸法精度の仕上管20が得られる。そ
の後仕上管20は、耐蝕性および所定の機械的性値を附
加する目的である固溶化熱処理のために熱処理炉にて再
ヒ1O1O°C〜1150°Cに加熱保持され、その後
水冷によって常温まで冷却される。さらに矯正後、酸洗
等により表面のスケールを除去されて最終製品となる。
When manufacturing seamless austenitic stainless steel pipes using a mandrel mill method, for example, as shown in FIG. The tube is pierced and rolled by the saw 6 to become a hollow tube 8A. Alternatively, the hollow shell tube 8A may be directly manufactured by the continuous casting machine 5 for producing hollow tubes. Since this hollow tube 8A has a thick wall and a short length, it is stretched to reduce its thickness by a mandrel mill IO, which is a stretching mill. Mandrel mill lO is a hollow tube 8
It is a rolling mill that performs elongation rolling with a mandrel bar 12 inserted in A, and is usually composed of 6 to 8 roll stands, and each roll stand has two grooved rolls! 4
The rotary axes of the grooved rolls 14 are arranged between adjacent roll stands so as to be shifted by 90 degrees from each other in a plane perpendicular to the rolling axis. The hollow blank tube 8A is stretched to a length 2 to 4 times its original length by a mandrel mill 10, and becomes a blank tube 8B for finish rolling. After the raw pipe 8B for finish rolling is reheated to a predetermined temperature in the reheating furnace 16 as necessary,
Finish rolling is performed by the stretch reducer 18, which is a finish rolling mill, and the material is cooled to room temperature on a cooling bed. The stretch reducer 18 reduces the outer diameter of the raw pipe by up to 75% and stretches it to more than 40 times the length of the material billet.
Further, since its outer surface is shaped by several stands of perfect circular hole rolls on the final side of the stretch reducer 18, a finished tube 20 that is relatively hard and has an accurate outer diameter can be obtained. Thereafter, the finished tube 20 is heated and maintained at a temperature of 10°C to 1150°C in a heat treatment furnace for solution heat treatment for the purpose of adding corrosion resistance and predetermined mechanical property values, and then cooled to room temperature by water cooling. cooled down. After straightening, scale on the surface is removed by pickling or the like to produce the final product.

〈発明が解決しようとする問題点〉 しかしながら、上記の再加熱固溶化熱処理はオフライン
で実施されるため、設備コストがかさむとともに処理能
率の点でも好ましくない。また、材質上の点からは、従
来実施されている固溶化熱処理を行ったものは、耐力が
一般に低く高強度を要求される用途にはC,N等の元素
を添加して成分的に対応するしかなかった。
<Problems to be Solved by the Invention> However, since the above-mentioned reheating solution heat treatment is performed off-line, the equipment cost increases and it is not preferable in terms of processing efficiency. In addition, from the viewpoint of materials, materials that have been subjected to conventional solution heat treatment generally have low yield strength, and for applications that require high strength, elements such as C and N can be added to improve the composition. I had no choice but to do it.

近年、ステンレス鋼管を高強度化して使用したいとの要
求が強(、配管用、熱伝達用、構造用などのいずれの用
途においても高強度化が検討されている。この高強度化
をオフラインで熱処理を省略して製造費用を低減できる
方法で達成できれば、コストダウンと特性向上が同時に
得られることになりそのメリットは大きい。
In recent years, there has been a strong demand for higher strength stainless steel pipes (higher strength is being considered for all uses such as piping, heat transfer, and structural use.) If this can be achieved by a method that reduces manufacturing costs by omitting heat treatment, it would be a great advantage to reduce costs and improve characteristics at the same time.

ところで、従来の一般的な固溶化熱処理を省略してオー
ステナイト系ステンレス鋼板を製造する方法が、例えば
特開昭55−107729号公報に開示されている。し
かしこの内容は鋼板の製造方法に関するもので、しかも
高強度は達成できない、また、鋼板の製造方法に関して
は、例えば特開昭60−197817号や特開昭60−
26619号公報に開示されているが、継目無鋼管とは
製造プロセスが全(異なるために新規な考えが必要であ
った。また、面記特開昭60−197817や、特開昭
60−26619では高強度は得られるものの、前者に
ついては延性や靭性の低下が著しく、耐食性も再加熱固
溶化熱処理材より劣ること、また後者については、耐食
性が劣ることなどの問題点があった。
By the way, a method of manufacturing an austenitic stainless steel sheet by omitting the conventional general solution heat treatment is disclosed in, for example, Japanese Patent Laid-Open No. 107729/1983. However, this content is related to the manufacturing method of steel plates, and high strength cannot be achieved.
26619, but since the manufacturing process was completely different from that of seamless steel pipes, a new idea was required. Although high strength can be obtained with the former, there are problems such as a significant decrease in ductility and toughness and inferior corrosion resistance to reheated solution heat treated materials, and the latter has poor corrosion resistance.

本発明は、上記のような事情に鑑みなされたものであっ
て、オーステナイト系ステンレス鋼の継目無鋼管に対し
オンライン的に従来の再加熱固溶化熱処理材と同等の耐
食性を得て、かつ高強度化した特性を存する製造方法を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides online seamless steel pipes made of austenitic stainless steel with corrosion resistance equivalent to that of conventional reheating solution treatment materials, and with high strength. The purpose of the present invention is to provide a manufacturing method that exhibits unique characteristics.

く問題点を解決するための手段〉 本発明者らは、オーステナイト系ステンレス鋼の継目無
鋼管をマンネスマンマンドレルミル法を用いて製造する
に際して、製造工程を詳細に見直し、ステンレス鋼め固
溶化の目的が再結晶と炭化物の固溶化であること、なら
びに継目無鋼管の場合についてこの条件を満足しつつ強
度化を達成するための製造条件を鋭意検討した結果、本
発明を達成するに至った。
Means for Solving Problems〉 The present inventors reviewed the manufacturing process in detail when manufacturing seamless austenitic stainless steel pipes using the Mannesmann mandrel mill method, and determined the purpose of solid solution treatment of stainless steel. The present invention was achieved as a result of intensive study of the fact that recrystallization and solid solution formation of carbides, and the manufacturing conditions for achieving strength while satisfying this condition in the case of seamless steel pipes.

すなわち、本発明は、重量%で、C: 0.01〜0.
08%、 Si : 0.1〜1.0%、 Mn : 
0.2〜2.0%。
That is, in the present invention, C: 0.01 to 0.01% by weight.
08%, Si: 0.1-1.0%, Mn:
0.2-2.0%.

Cr : 16.0〜26.0%、 Ni : 6.0
〜22.0%、N:0.30%以下を含有するオーステ
ナイト系ステンレス継目無鋼管を製造するに当たり、仕
上圧延用素管を950〜1160°Cに再加熱した後、
仕上圧延用素管の断面積をAO(cd) 、仕上管の断
面積をA (cd)とするときに次式 %式%) で表わされる仕上圧延時の加工歪εが0.2以上になる
ように加工し、かつεに応して出側の仕上管温度T(”
C)が次式 %式%() を満たす条件で仕上圧延を実施する段階と、この仕上圧
延後の900〜500’Cの温度域を平均冷却速度v(
’C/s)が鋼中の炭素含有l1C(重量%)に応して
次式 %式%) を満たす条件で冷却する段階と、を有することを特mと
する高強度オーステナイト系ステンレス継目無鋼管の製
造方法である。
Cr: 16.0-26.0%, Ni: 6.0
~ 22.0%, N: 0.30% or less, in manufacturing an austenitic stainless steel seamless steel pipe, after reheating the raw pipe for finish rolling to 950 to 1160 ° C.
When the cross-sectional area of the raw pipe for finish rolling is AO (cd) and the cross-sectional area of the finished pipe is A (cd), the processing strain ε during finish rolling, expressed by the following formula (%), is 0.2 or more. The finished tube temperature T(”
The step of finishing rolling under conditions where C) satisfies the following formula % formula % () and the temperature range of 900 to 500'C after this finishing rolling are determined by the average cooling rate v (
A high-strength austenitic stainless steel seamless steel sheet, characterized by having a step of cooling under conditions where 'C/s) satisfies the following formula % formula %) according to the carbon content l1C (weight %) in the steel. This is a method for manufacturing steel pipes.

く作  用〉 次に本発明における成分限定理由について説明する。な
お、以下に示す成分の%は全て重量%である。
Function> Next, the reason for limiting the ingredients in the present invention will be explained. Note that all percentages of the components shown below are percentages by weight.

C二 Cはオーステナイト相を安定し、強度を増加させるのに
有効であり、そのため0.01%以上必要であるが、量
が増大するとCr炭化物が形成されやすくなり、900
〜soo’cの炭化物析出領域での冷却速度を増加させ
ることが必要になるので、Cは0.08%以下に限定し
た。
C2C is effective in stabilizing the austenite phase and increasing its strength, and therefore 0.01% or more is required, but as the amount increases, Cr carbides are more likely to be formed, and 900%
Since it is necessary to increase the cooling rate in the carbide precipitation region of ~soo'c, C was limited to 0.08% or less.

Si : Siは通常脱酸元素として0.1%以上必要であるが、
1.0%を越える添加は熱間加工性を低下させるので、
1.0%以下に限定した。
Si: Si is normally required as a deoxidizing element in an amount of 0.1% or more, but
Addition of more than 1.0% will reduce hot workability.
It was limited to 1.0% or less.

Mn = Mnは脱酸と熱間加工性の向上のため0.2%以上必要
であるが、2.0%を越える添加は耐食性を阻害するの
で、2.0%以下に限定した。
Mn=Mn is required to be 0.2% or more to improve deoxidation and hot workability, but addition of more than 2.0% impairs corrosion resistance, so it is limited to 2.0% or less.

Cr : Crはステンレス鋼の耐食性を保つのに必須の元素であ
り、オーステナイト系ステンレス鋼においては硫酸、塩
酸等の非酸化性の酸に対する耐食性は16.0%未満で
は不十分である。しかし、26.0%を越える添加は耐
食性が飽和の傾向を示す一方、オーステナイト組織を保
つため高価なNiを増加する必要があり、コスト上昇を
招く、これらの理由から、crは16.0〜26.0%
の範囲に限定した。
Cr: Cr is an essential element for maintaining the corrosion resistance of stainless steel, and in austenitic stainless steel, corrosion resistance to non-oxidizing acids such as sulfuric acid and hydrochloric acid is insufficient if it is less than 16.0%. However, if the addition exceeds 26.0%, the corrosion resistance tends to be saturated, while it is necessary to increase the amount of expensive Ni in order to maintain the austenitic structure, leading to an increase in cost.For these reasons, cr is 16.0~ 26.0%
limited to the range of

Ni: Niよオーステナイト組織を安定化する作用を有すると
共に、硫酸、塩酸等の非酸化性の酸に対する耐食性を改
善するが、6.0%未満では十分でない、しかし、22
.0%を越える添加は耐食性が飽和の傾向を示しコスト
上昇になることから上限を22.0%とし、6.0〜2
2.0%の範囲に限定した。
Ni: Ni has the effect of stabilizing the austenite structure and improves corrosion resistance against non-oxidizing acids such as sulfuric acid and hydrochloric acid, but if it is less than 6.0%, it is not sufficient.
.. If the addition exceeds 0%, the corrosion resistance tends to be saturated and the cost increases. Therefore, the upper limit is set at 22.0%, and the
It was limited to a range of 2.0%.

N: Nは強度上昇と耐食性の向上に効果のある元素であるが
、0.30%を越える添加は製造性を低下させるので0
.30%以下とした。
N: N is an element that is effective in increasing strength and improving corrosion resistance, but addition of more than 0.30% will reduce manufacturability, so it should not be added.
.. It was set to 30% or less.

本発明を実施するに当っては上記本発明成分だけでもよ
いし、他に4%以下のMo、2.5%以下のCu、  
0.8%以下のNb、  0.5%以下のTiを添加し
ても効果は同じである。添加元素の成分範囲について以
下に述べる。
In carrying out the present invention, only the above-mentioned present invention components may be used, or in addition, Mo of 4% or less, Cu of 2.5% or less,
The effect is the same even if 0.8% or less of Nb and 0.5% or less of Ti are added. The component range of the added elements will be described below.

hO: Moは耐食性、特に耐孔食性の向上に著しレイ効果のあ
る元素であるが、高価な元素であるため多量の添加はコ
スト増加となるので4%以下に限定した。
hO: Mo is an element that has a remarkable lay effect in improving corrosion resistance, especially pitting corrosion resistance, but since it is an expensive element, adding a large amount will increase the cost, so it was limited to 4% or less.

Cu: CuはMoと同じく耐食性、特に耐孔食性の向上に著し
い効果のある元素であるが、高価な元素であるため多量
の添加はコスト増加となるので2.5%以下に限定した
Cu: Like Mo, Cu is an element that has a remarkable effect on improving corrosion resistance, especially pitting corrosion resistance, but since it is an expensive element, adding a large amount will increase the cost, so it was limited to 2.5% or less.

Nb : NbはNb炭化物を形成し、Cr炭化物の生成を抑制し
て耐粒界腐食性の向上や結晶粒の微細化のために添加さ
れるが、Cと有効に結びつくためのNb1lはC(%)
×lOで十分であり、多量の添加は製造性の低下を招く
ので上限を0.8%に限定した。
Nb: Nb forms Nb carbide, suppresses the formation of Cr carbide, and is added to improve intergranular corrosion resistance and refine crystal grains. %)
×lO is sufficient, and addition of a large amount leads to a decrease in productivity, so the upper limit was limited to 0.8%.

Ti : TiはNbと同じ<Ti炭化物を形成し、Cr炭化物の
生成を抑制して耐粒界腐食性の向上や結晶粒の微細化の
ために添加されるがCと育効に結びつくためのTi量は
C(%)×5で十分であり、多量の添加は製造性の低下
を招くので上限を0.5%に限定した。
Ti: Same as Nb, Ti forms Ti carbide and is added to suppress the formation of Cr carbide to improve intergranular corrosion resistance and refine crystal grains, but it is also added to improve growth effect with C. It is sufficient for the amount of Ti to be C (%) x 5, and since addition of a large amount leads to a decrease in productivity, the upper limit was limited to 0.5%.

次に、製造条件の限定理由を説明する。Next, the reason for limiting the manufacturing conditions will be explained.

再加熱炉での再加熱温度を950〜1160°C:第2
図に、5115304 mについて再加熱炉での加熱温
度を変えてホットストレッチレデエーサ(以下、HSR
と略称する)圧延した本発明に基づくオンライン固溶化
処理材の機械的性質を示す0図かられかるように、再加
熱温度が1160℃より低下すると、0.2%PS、 
TSは上昇しはじめ、再加熱温度の低下とともに増大す
る。このような傾向は、他のオーステナイト系ステンレ
ス鋼でも得られており、約1160℃より低くなると強
度が増加し、それよりも高い温度では高強度化は得られ
ない、したがって、再加熱温度は1160’C以下でな
ければならない。
Reheating temperature in the reheating furnace: 950-1160°C: 2nd
The figure shows the hot stretch redeaser (HSR
As can be seen from Figure 0, which shows the mechanical properties of the rolled online solution treated material based on the present invention, when the reheating temperature drops below 1160°C, 0.2%PS,
TS begins to rise and increases with decreasing reheat temperature. This tendency has also been observed in other austenitic stainless steels; strength increases below approximately 1160°C, and high strength cannot be obtained at temperatures higher than that; therefore, the reheating temperature is 1160°C. ' Must be below C.

一方、950°Cよりも低い再加熱温度では、再加熱の
目的である再結晶状態と炭化物の再固溶化状態の達成が
不十分となる。その結果、機械的性質では延性、靭性が
低下し、耐食性では、粒界炭化物のため著しく耐食性が
低下する。
On the other hand, if the reheating temperature is lower than 950°C, it will be insufficient to achieve the recrystallization state and the solid solution state of the carbide, which are the objectives of reheating. As a result, mechanical properties such as ductility and toughness are reduced, and corrosion resistance is significantly reduced due to grain boundary carbides.

上記の理由により、再加熱炉での再加熱温度は950℃
以上1160°Cでなければならない。
For the above reasons, the reheating temperature in the reheating furnace is 950℃.
It must be at least 1160°C.

仕上圧延時の加工歪εを0.2以上となるように加工す
る: 仕上圧延用素管の断面積をAo(cm2)、H3R圧延
後の仕上管の断面積をA(cd)とすると、仕上圧延時
の加工歪君は下記(11弐で表される。
Process so that the working strain ε during finish rolling is 0.2 or more: If the cross-sectional area of the raw tube for finish rolling is Ao (cm2), and the cross-sectional area of the finished tube after H3R rolling is A (cd), The processing strain during finish rolling is shown below (represented by 112).

ε= 1!、、l(A o/ A ) −−−−−−−
−・−−−−−−−・−・・・・・−・・−−−−−−
−−・−・・・(1)HSRで仕上圧延用素管を仕上管
に圧延するとき、高強度化状態を得るためには最低0.
2以上の加工歪εを加える必要がある。
ε=1! ,,l(Ao/A)------
−・−−−−−−−・−・・・・・−・・−−−−−−
--・-... (1) When rolling a raw tube for finish rolling into a finished tube by HSR, in order to obtain a high strength state, at least 0.
It is necessary to add a processing strain ε of 2 or more.

HSR出側の仕上管温度Tを加工歪εに応じて、次式 %式% を満たす条件で仕上圧延を実施する: 第3図は、5US304 Nについて、外径:90am
、肉厚3〜10m、および外径:146aa、肉厚5m
の仕上圧延用素管を用いて、再加熱温度を950〜11
60°Cとして、HSR圧延での加工歪εと仕上管温度
Tとを変化させて仕上圧延を実施した後の未再結晶組織
残留の存無を示したものである。ここで、加工歪εは仕
上管の外径絞り率を変えることにより、仕上温度Tは仕
上圧延時のデスケーリング水量。
Finish rolling is carried out under the condition that the finish tube temperature T on the HSR outlet side satisfies the following formula % according to the processing strain ε: Figure 3 shows 5US304N, outer diameter: 90am.
, wall thickness 3-10m, and outer diameter: 146aa, wall thickness 5m
Using a raw pipe for finish rolling, the reheating temperature was set to 950 to 11
60° C., and shows the presence or absence of unrecrystallized structure remaining after finish rolling was performed while changing the work strain ε and finish tube temperature T in HSR rolling. Here, the processing strain ε is determined by changing the outside diameter drawing ratio of the finished tube, and the finishing temperature T is determined by the amount of descaling water during finish rolling.

ロール冷却水量等を調整することにより変化させた。This was changed by adjusting the amount of roll cooling water, etc.

この図において、再結晶組織(O印)と未再結晶組織残
留(・印)との境界線は、下記(2)式で近似して表さ
れる。
In this figure, the boundary line between the recrystallized structure (marked with O) and the residual unrecrystallized structure (marked with *) is approximately expressed by the following equation (2).

T=22(lexp(2・ε)  +900  (’C
)  −−・(2)図から明らかなように、仕上管温度
Tが高いほど、また加工歪εが大きいほど再結晶組織が
得られ、仕上管温度Tが(2)式より大きい領域であれ
ば十分な再結晶組織となるが、(2)弐より小さい領域
では未再結晶Mi畷が残留する。
T=22(lexp(2・ε) +900 ('C
) ---(2) As is clear from the figure, the higher the finished tube temperature T and the greater the working strain ε, the more recrystallized structure is obtained, and even if the finished tube temperature T is in the region larger than the expression (2), However, in the region smaller than (2) 2, unrecrystallized Mi ridges remain.

ところで、再結晶が十分行われると強度が低下するので
、高強度化のためには適度に未再結晶組織を残す必要が
ある。それ故、高強度オーステナイト系ス、テンレス継
目無鋼管を得るために仕上管温度Tを下記(3)式の条
件を満足させる必要がある。
By the way, if sufficient recrystallization is performed, the strength decreases, so in order to increase the strength, it is necessary to leave an appropriate amount of unrecrystallized structure. Therefore, in order to obtain a high-strength austenitic stainless steel seamless steel pipe, it is necessary for the finished pipe temperature T to satisfy the condition of equation (3) below.

T<220−exp(−2・g)  +900  (”
C)  −−−43)900〜500°Cの温度域にお
いて平均冷却速度V(”C/s)が鋼中の炭素含有1t
c(重量%)に応じてV≧C’ XIO’ を満たす条
件で冷却する=900〜500’Cの温度域での平均冷
却速度v(’C/s)がC「炭化物の析出に及ぼす影響
を各種の炭素量のオーステナイト系ステンレス鋼につい
て調べた結果、炭素fc(重量%)に応じて、下記(4
)式 %式%(4) を満足する場合にはC「炭化物の析出による粒界腐食を
生じず、上記(4)式を満足しない遅い平均冷却速度V
で冷却した場合は、C「炭化物が析出して粒界腐食を生
じることが判明した。したがって、本発明では900〜
500°Cの温度域での平均冷却速凌を(4)式で規定
した。
T<220-exp(-2・g) +900 (”
C) ---43) In the temperature range of 900 to 500°C, the average cooling rate V ("C/s) is 1 t of carbon content in steel.
Cooling under conditions that satisfy V≧C' As a result of investigating austenitic stainless steels with various carbon contents, the following (4
) formula % If formula (4) is satisfied, C is a slow average cooling rate V that does not cause intergranular corrosion due to carbide precipitation and does not satisfy formula (4) above.
It has been found that when cooled at C, carbides precipitate and intergranular corrosion occurs.
The average cooling rate in a temperature range of 500°C was defined by equation (4).

なお、ここで900°Cを越える高温域あるいは500
℃未満の低温域における冷却速度はCr炭化物の析出に
影響を与えないので、従うて900〜500℃の温度域
についてのみ冷却速度を限定した。
In addition, here, high temperature range exceeding 900°C or 500°C
Since the cooling rate in a low temperature range below .degree. C. does not affect the precipitation of Cr carbides, the cooling rate was therefore limited only to the temperature range of 900 to 500.degree.

〈実施例〉 第1表に示すA−Hの5種のオーステナイト系ステンレ
ス鋼の成分をもつ供試材を用いて、第2表に示す製造条
件でステンレス継目無鋼管を製造した。第2表の製造条
件において、実験Ntxl −1゜は本発明例、隠11
−16は比較例、 No、17.18は従来例である。
<Example> Using test materials having five types of austenitic stainless steel components A to H shown in Table 1, seamless stainless steel pipes were manufactured under the manufacturing conditions shown in Table 2. Under the manufacturing conditions in Table 2, the experiment Ntxl -1° is the invention example, Hidden 11
-16 is a comparative example, and No. 17.18 is a conventional example.

なお、表中の基準温度T、は、前記(2)式を用いて求
めた値である。
Note that the reference temperature T in the table is a value determined using the above equation (2).

比較例に対して、本発明の条件を満足していない項目は
*印を付して示したが、kllは素管再加熱温度が11
70°Cで仕上管温度が1ototの例、阻12とに1
3は900〜500℃の平均冷却速度が前記(4)式を
満足しない例、Na14は素管再加熱温度が下限を下ま
わる例、Na15は仕上管温度が1070℃で基準温度
Ttを上まわる例、’&16はH3R圧延での加工歪ε
が0.14でεの下限値0.2を下まわる例である。
Regarding the comparative example, items that do not satisfy the conditions of the present invention are marked with an *, but for kll, the raw pipe reheating temperature is 11
An example where the finished tube temperature is 1 tot at 70°C,
3 is an example where the average cooling rate of 900 to 500°C does not satisfy the above formula (4), Na14 is an example where the raw tube reheating temperature is below the lower limit, and Na15 is an example where the finished tube temperature is 1070°C and exceeds the reference temperature Tt. Example, '&16 is the processing strain ε in H3R rolling
is 0.14, which is less than the lower limit value of 0.2.

従来例のk17.18は、現在通常行われている再加熱
による固溶化処理を行った場合である。
The conventional example k17.18 is a case where solution treatment by reheating, which is currently commonly performed, is performed.

上記の各種の製造条件による実験材のそれぞれの機械的
性質および耐食性を調査して、その試験結果を第2表に
併せて示した。耐食性試験結果でO印は耐食性良好、X
印は大幅に劣ることを示している。
The mechanical properties and corrosion resistance of each of the experimental materials under the various manufacturing conditions described above were investigated, and the test results are also shown in Table 2. In the corrosion resistance test results, an O mark indicates good corrosion resistance, and an X mark indicates good corrosion resistance.
The mark indicates that it is significantly inferior.

第2表において明らかなように、本発明例はいずれも再
加熱固溶化熱処理材である従来例Nα17゜18に比べ
て、0.2%耐力が35kgf/am”以上と高強度化
されており、延性とのバランスも優れており、耐食性も
良好であることがわかる。一方、本発明の条件を満足し
ない比較例は、いずれも本発明例に比較して機械的性質
または耐食性が劣っている。
As is clear from Table 2, all of the examples of the present invention have higher strength, with a 0.2% yield strength of 35 kgf/am'' or more, compared to the conventional example Nα17゜18, which is a reheated solution heat-treated material. , it can be seen that the balance with ductility is excellent and the corrosion resistance is also good.On the other hand, all of the comparative examples that do not satisfy the conditions of the present invention are inferior in mechanical properties or corrosion resistance compared to the inventive examples. .

〈発明の効果〉 以上説明したように、本発明によれば、上記実施例から
も明らかなように、オーステナイト系ステンレス継目無
鋼管を製造する際に、仕上圧延用素管を950°C以上
でかつ1160°C以下に再加熱し、再結晶状態と炭化
物の再固溶化状態を達成した後、ホントストレッチレデ
ューサ圧延を行い、そのときの加工歪εが0.2以上で
かつ加工歪εに応じて圧延終了温度を規定し、さらに9
00〜500℃の温度域における平均冷却速度を炭素量
に応じて限定することにより、溶体化処理をオンライン
的に実施できるので、再加熱溶体化処理ならびにそのた
めの熱処理炉が不要となり、しかも降伏強度が高くかつ
延性および耐食性にも優れたオーステナイト系ステンレ
ス鋼の継目無鋼管を得ることが可能である。
<Effects of the Invention> As explained above, according to the present invention, as is clear from the above examples, when producing austenitic seamless stainless steel pipe, the raw pipe for finish rolling is heated to 950°C or higher. And after reheating to 1160 ° C or less to achieve a recrystallized state and a re-solid solution state of carbides, true stretch reducer rolling is performed, and the working strain ε at that time is 0.2 or more and according to the working strain ε to specify the rolling end temperature, and further 9
By limiting the average cooling rate in the temperature range of 00 to 500 degrees Celsius according to the carbon content, solution treatment can be carried out online, eliminating the need for reheating solution treatment and a heat treatment furnace for it, and reducing yield strength. It is possible to obtain seamless austenitic stainless steel pipes that have high ductility and excellent ductility and corrosion resistance.

また、従来オーステナイト系ステンレス鋼管は、0.2
%耐力が低いため構造用部材として使用するのに難点が
あったが、本発明により高強度を得ることができるので
広く構造用材料として使用することが可能である。
In addition, conventional austenitic stainless steel pipes have a
Although it was difficult to use it as a structural member due to its low % yield strength, it can be used widely as a structural material because it can obtain high strength according to the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、マンドレルミル方式による継目無鋼管製造ラ
インの一例を示す概要図、第2図は、ホットストレッチ
レデューサ圧延後の仕上管の@成約特性に及ぼす再加熱
温度の影響を示す特性図、第3図は、ホットストレッチ
レデューサ圧延後の仕上管の未再結晶&lIl残留に及
ぼす加工歪ごと仕上管温度Tとの影響を示す特性図であ
る。 2・・・素材ビレット、   4・・・回転炉床式加熱
炉。 5・・・中空素管製造用連続鋳造機。 6・・・マンネスマンピアサ。 8A・・・中空素管、     8B・・・仕上圧延用
素管。 10・・・マンドレルミル、  12・・・マンドレル
バ−114・・・孔型ロール、    16・・・再加
熱炉118・・・ホントストレッチレデューサ(H3P
)。 20・・・仕上管。 特許出願人    川惰製鉄株式会社 第  2  図 ホノトストレノチレデエーサ圧廷前の回加熱温11(℃
) 第3図 0.2     0.6     1.0     1
.4     1.8加  工  歪 ε
Fig. 1 is a schematic diagram showing an example of a seamless steel pipe production line using the mandrel mill method, Fig. 2 is a characteristic diagram showing the influence of reheating temperature on the closing characteristics of finished pipe after hot stretch reducer rolling, FIG. 3 is a characteristic diagram showing the influence of processing strain and finished tube temperature T on unrecrystallized &lIl residue in the finished tube after hot stretch reducer rolling. 2...Material billet, 4...Rotary hearth type heating furnace. 5... Continuous casting machine for manufacturing hollow tubes. 6... Mannesmann Piasa. 8A: Hollow tube, 8B: Base tube for finish rolling. DESCRIPTION OF SYMBOLS 10... Mandrel mill, 12... Mandrel bar 114... Hole roll, 16... Reheating furnace 118... Real stretch reducer (H3P
). 20... Finished pipe. Patent applicant: Kawasaki Steel Co., Ltd. Figure 2: Heating temperature 11 (°C) before heating
) Figure 3 0.2 0.6 1.0 1
.. 4 1.8 Processing strain ε

Claims (1)

【特許請求の範囲】 重量%で、C:0.01〜0.08%、Si:0.1〜
1.0%、Mn:0.2〜2.0%、Cr:16.0〜
26.0%、Ni:6.0〜22.0%、N:0.30
%以下を含有するオーステナイト系ステンレス継目無鋼
管を製造するに当たり、仕上圧延用素管を950〜11
60℃に再加熱した後、仕上圧延用素管の断面積をA_
o(cm^2)、仕上管の断面積をA(cm^2)とす
るときに次式 ε=ln(A_o/A) で表わされる仕上圧延時の加工歪εが0.2以上になる
ように加工し、かつεに応じて出側の仕上管温度T(℃
)が次式 T<220・exp(−2・ε)+900(℃)を満た
す条件で仕上圧延を実施する段階と、この仕上圧延後の
900〜500℃の温度域を平均冷却速度v(℃/s)
が鋼中の炭素含有量C(重量%)に応じて次式 v≧C^3×10^4(℃/s) を満たす条件で冷却する段階と、 を有することを特徴とする高強度オーステナイト系ステ
ンレス継目無鋼管の製造方法。
[Claims] In weight %, C: 0.01 to 0.08%, Si: 0.1 to 0.08%
1.0%, Mn: 0.2-2.0%, Cr: 16.0-
26.0%, Ni: 6.0-22.0%, N: 0.30
In manufacturing seamless austenitic stainless steel pipes containing 950 to 11%
After reheating to 60℃, the cross-sectional area of the raw tube for finish rolling was changed to A_
o (cm^2), and the cross-sectional area of the finished tube is A (cm^2), the working strain ε during finish rolling, expressed by the following formula ε=ln(A_o/A), is 0.2 or more. The finished tube temperature T (°C
) satisfies the following formula T<220・exp(-2・ε)+900(℃) /s)
A high-strength austenite characterized by having a step of cooling under conditions that satisfy the following formula v≧C^3×10^4 (°C/s) depending on the carbon content C (wt%) in the steel. A method for manufacturing seamless stainless steel pipes.
JP28856487A 1987-11-17 1987-11-17 Production of high-strength austenitic stainless seamless steel pipe Pending JPH01132717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28856487A JPH01132717A (en) 1987-11-17 1987-11-17 Production of high-strength austenitic stainless seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28856487A JPH01132717A (en) 1987-11-17 1987-11-17 Production of high-strength austenitic stainless seamless steel pipe

Publications (1)

Publication Number Publication Date
JPH01132717A true JPH01132717A (en) 1989-05-25

Family

ID=17731884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28856487A Pending JPH01132717A (en) 1987-11-17 1987-11-17 Production of high-strength austenitic stainless seamless steel pipe

Country Status (1)

Country Link
JP (1) JPH01132717A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344449A (en) * 1989-07-12 1991-02-26 Sumitomo Metal Ind Ltd Stainless steel shape and its production
AU2003204369B2 (en) * 2000-03-31 2005-01-27 Toyota Jidosha Kabushiki Kaisha Vehicle Fender Structure
CN106048421A (en) * 2016-07-18 2016-10-26 宝鸡石油钢管有限责任公司 110ksi-grade stainless steel oil pipe and manufacture method thereof
CN110257720A (en) * 2019-06-21 2019-09-20 浦项(张家港)不锈钢股份有限公司 A kind of production technology for exempting from annealing stainless steel materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344449A (en) * 1989-07-12 1991-02-26 Sumitomo Metal Ind Ltd Stainless steel shape and its production
AU2003204369B2 (en) * 2000-03-31 2005-01-27 Toyota Jidosha Kabushiki Kaisha Vehicle Fender Structure
CN106048421A (en) * 2016-07-18 2016-10-26 宝鸡石油钢管有限责任公司 110ksi-grade stainless steel oil pipe and manufacture method thereof
CN110257720A (en) * 2019-06-21 2019-09-20 浦项(张家港)不锈钢股份有限公司 A kind of production technology for exempting from annealing stainless steel materials

Similar Documents

Publication Publication Date Title
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
CN101410536B (en) Method of manufacturing seamless pipe and tube
JPH04231414A (en) Production of highly corrosion resistant oil well pipe
JP2952929B2 (en) Duplex stainless steel and method for producing the same
JP2007196237A (en) Method for producing seamless steel tube for machine structural component
WO2015005119A1 (en) METHOD FOR PRODUCING HIGH-Cr STEEL PIPE
SU1087078A3 (en) Method for making section stock from low-alloy dispersion-solidifiyng steels
JPH01132717A (en) Production of high-strength austenitic stainless seamless steel pipe
JP2003105441A (en) METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JPS63238217A (en) Production of seamless steel pipe of martensitic stainless steel having excellent low-temperature toughness and stress corrosion cracking resistance
JP3326783B2 (en) Manufacturing method of low alloy seamless steel pipe with excellent high temperature strength
JP2000096142A (en) Method for reducing steel tube
JPH0547603B2 (en)
JP3214351B2 (en) Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength
JPH07109008B2 (en) Martensitic stainless steel seamless pipe manufacturing method
JP3214350B2 (en) Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength
JP2002348610A (en) Method for manufacturing martensitic stainless steel tube
JP2004027351A (en) Method for producing high strength and high toughness martensitic stainless steel seamless pipe
JPH11172336A (en) Production of seamless steel tube
JP2979604B2 (en) Manufacturing method of martensitic stainless steel seamless tube
JPS63255322A (en) Manufacture of seamless two-phase stainless steel tube
JPH046218A (en) Production of seamless cr-mo steel tube
JP2018075576A (en) Manufacturing method of seamless steel pipe and manufacturing equipment of seamless steel pipe
JPS62263924A (en) Production of tough steel pipe