JPS62263924A - Production of tough steel pipe - Google Patents

Production of tough steel pipe

Info

Publication number
JPS62263924A
JPS62263924A JP10454586A JP10454586A JPS62263924A JP S62263924 A JPS62263924 A JP S62263924A JP 10454586 A JP10454586 A JP 10454586A JP 10454586 A JP10454586 A JP 10454586A JP S62263924 A JPS62263924 A JP S62263924A
Authority
JP
Japan
Prior art keywords
temperature
toughness
range
martensite
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10454586A
Other languages
Japanese (ja)
Inventor
Yasutaka Okada
康孝 岡田
Takeshi Tatsugami
龍神 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10454586A priority Critical patent/JPS62263924A/en
Publication of JPS62263924A publication Critical patent/JPS62263924A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a tough steel pipe which has high strength and toughness and excellent corrosion resistance and is considerably decreased in the anisotropy of the toughness by subjecting a specifically composed billet successively to heating, hot rolling, quick cooling, reheating and diametral reducing under specific conditions. CONSTITUTION:The billet which contains (hereafter wt%) 0.2-0.55% C, 0.01-0.6% Si, 0.3-1.8% Mn, 0.005-0.06% solAl, and consists of the balance Fe and inevitable impurities is heated in a 1,050-1,250 deg.C range. AFter the heated billet is hot rolled at >=800 deg.C finishing temp. with a Pilger mill and mandrel mill, the billet is quickly cooled down to <=350 deg.C under the conditions under which the billet is cooled at >=200 deg.C/min cooling rate in a 800-500 deg.C range to form the structure consisting of substantially >=50vol% martensite and the balance mainly bainite. The rolled steel is further reheated to the temp. range of the Ac1 transformation point - (AC1 transformation point -200 deg.C) at which the austenite is substantially not formed; thereafter the steel is subjected to diametral reducing at >=5% reduction in area by using a reducer and is air-cooled to obtain the rolled steel pipe essentially consisting of martensite.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、従来調質鋼管と同等の高強度および高靭性
、さらに著しく低い靭性の異方性を有し。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has high strength and high toughness equivalent to conventional tempered steel pipes, and also has significantly lower toughness anisotropy.

かつこれよりすぐれた耐食性を有し、一方従来圧延鋼管
との比較においては、これよりすぐれた耐食性、並びに
一段とすぐれた強度および靭性、さらに著しく小さい靭
性の異方性を有する強靭鋼管の製造方法に関するもので
ある。
The present invention also relates to a method for producing a strong steel pipe which has superior corrosion resistance, superior strength and toughness, and significantly smaller anisotropy of toughness when compared with conventionally rolled steel pipes. It is something.

〔従来の技術〕[Conventional technology]

一般に、油井管や油送管、さらに各種の機械構造用鋼管
として、調質鋼管や圧延鋼管が用いられている。
In general, tempered steel pipes and rolled steel pipes are used as oil country tubular goods, oil pipes, and steel pipes for various mechanical structures.

従来、調質鋼管の製造方法としては1例えば。Conventionally, there is one method for manufacturing tempered steel pipes, for example.

重量%で(比下%は重量%を示す)。In weight % (relative % indicates weight %).

fllc:0.2〜0.3%。fllc: 0.2-0.3%.

Si:0.2〜0.6J Mn : 0.8〜]、、 5%。Si: 0.2-0.6J Mn: 0.8~], 5%.

soA、A6: 0.05%以下。soA, A6: 0.05% or less.

を含有し、さらに必要に応じて。Contains and further if necessary.

Cr:1%以下、 Mo : 0.296’a 下。Cr: 1% or less, Mo: below 0.296’a.

V:0.06%U下。V: 0.06% U lower.

Ti:0.1%以下。Ti: 0.1% or less.

のうちの1種または2種以上を含有し、残りがFeと不
可避不純物からなる組成を有する鋼片を。
A steel piece containing one or more of the following, with the remainder consisting of Fe and unavoidable impurities.

(2)第1図に工程熱曲線図で示されるように。(2) As shown in the process heat curve diagram in FIG.

1200〜1250℃の範囲内の温度に加熱し。Heat to a temperature within the range of 1200-1250°C.

(3)  ピルガ−ミル、マンドレルミル、おヨヒレデ
ューサを用いて熱間圧延した後、空冷し。
(3) After hot rolling using a pilger mill, a mandrel mill, and a yaw reducer, it is air-cooled.

(4)  ついで、焼入れ温度:920℃1焼戻し温度
二600〜700℃の条件で調質熱処理を施すことによ
って、実質的に焼戻しマルテンサイトを主体とする組織
を有する調質鋼管を製造する以 上(1)〜(4)の基本工程から方法が知られ。
(4) Then, by performing tempering heat treatment under the following conditions: quenching temperature: 920°C, tempering temperature: 2, 600 to 700°C, a tempered steel pipe having a structure consisting essentially of tempered martensite can be manufactured ( The method is known from the basic steps of 1) to (4).

また、圧延鋼管の製造法としては1例えば。For example, there is one method for manufacturing rolled steel pipes.

(1γ C:0.2〜0.55%。(1γ C: 0.2-0.55%.

Si:0.2〜0.6  %。Si: 0.2-0.6%.

Mn:1〜1.9%。Mn: 1-1.9%.

soA、M: 0.05%以下。soA, M: 0.05% or less.

を含有し、さらに必要に応じて。Contains and further if necessary.

V:0.1%以下。V: 0.1% or less.

Nb:0.1%以下 のうちの1種以上を含有し、残りがFeと不可避不純物
からなる組成を有する鋼片を。
A steel piece having a composition containing one or more of Nb: 0.1% or less, and the remainder consisting of Fe and unavoidable impurities.

(2)′  同じく第2図に工程熱曲線図で示されるよ
うに、1200〜1250℃の範囲内の温度に加熱し。
(2)' Similarly, as shown in the process heat curve diagram in FIG. 2, it was heated to a temperature within the range of 1200 to 1250°C.

(3)′  ピルガ−ミルおよびマンドレルミルを用(
、>1熱間田延した後、通常はそのまま、場合(−よっ
ては800℃以上の温度でレデュサー圧延を行なI/)
(3)' Using a pilger mill and a mandrel mill (
, > 1 After hot rolling, it is usually left as is (in some cases, reducer rolling is performed at a temperature of 800°C or higher)
.

C4)′  必要に応じて空冷して、400℃以上の温
度まで冷却し、実質的にフェライトと、ノ犬−ライトま
たはオーステナイトからなる組織とし、(5)′  引
続いて少なくともAC1変態点以上1通常はAc 3変
態点以tの温度に再加熱した後。
C4)' Air cooling as necessary to a temperature of 400° C. or higher to obtain a structure consisting essentially of ferrite, canine-rite or austenite, and (5)' Subsequently, at least AC1 transformation point 1 Usually after reheating to a temperature above the Ac 3 transformation point.

(6)′  レデューサを用い、20%以上の断面減少
率で縮径加工な行ない、’ai&空冷することによって
、実質的にフェライトとパーライトからなる組織を有す
る圧延鋼管を製造する。
(6) A rolled steel pipe having a structure substantially consisting of ferrite and pearlite is manufactured by performing diameter reduction with a cross-section reduction rate of 20% or more using a 'reducer' and cooling with 'ai & air.

以上(1)′〜(6)′の基本工程からなる方法が知ら
れている。
A method comprising the basic steps (1)' to (6)' above is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記の(1)〜(4)の基本工程からなる方法
で製造された調質鋼管は、高強度および高靭性。
However, tempered steel pipes manufactured by the method consisting of the basic steps (1) to (4) above have high strength and high toughness.

並びに靭性の異方性が小さい特長をもつものの。Also, it has the feature of small anisotropy in toughness.

耐食性が必ずしも十分でなく、さらに調質熱処理を必要
とするので、コスト高となるばかりでなく。
Corrosion resistance is not necessarily sufficient, and additional heat treatment is required, which not only increases costs.

寸法精度の点で形状的制約を受けるものである。It is subject to shape constraints in terms of dimensional accuracy.

また、上記の11)′〜(6)′の基本工程からなる方
法で製造された圧延鋼管は、耐食性が良好でなく、強度
および靭性も相対的に低く、カつ靭性の異方性が大きい
。このように従来方法では1強度、靭性。
In addition, rolled steel pipes manufactured by the method consisting of the basic steps 11)' to (6)' above do not have good corrosion resistance, have relatively low strength and toughness, and have a large anisotropy in cut toughness. . In this way, the conventional method achieves 1 strength and toughness.

耐食性、および異方性のすべてを満足して具備する鋼管
を製造するのは困難であるのが現状である。
At present, it is difficult to manufacture steel pipes that satisfy both corrosion resistance and anisotropy.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から。 Therefore, the inventors of the present invention, from the above-mentioned viewpoint.

調質熱処理を必要とすることなく、圧延ままで、強度、
靭性、および耐食性を有し、かつ耐食性の少い圧延鋼管
を製造すべく研究を行なった結果。
As rolled, without the need for refining heat treatment, strength,
This is the result of research aimed at producing rolled steel pipes that have good toughness and corrosion resistance, but also low corrosion resistance.

Ia)C:0.2〜015596゜ Si:0.01〜0.6  %。Ia) C: 0.2~015596° Si: 0.01-0.6%.

Mn:  0.3〜1.8 %。Mn: 0.3-1.8%.

sol.Al: ’0.0 0 5〜0.0 6 %、
な含有し、さらに、必要に応じて。
sol. Al: '0.005~0.06%,
Contains additional information as required.

Cr:0.2〜1.5%。Cr: 0.2-1.5%.

Mo :  0.2〜196゜ V : 0.01〜0.15 %、 Nb:0.01〜0.1  %。Mo: 0.2~196° V: 0.01-0.15%, Nb: 0.01-0.1%.

Ti:0.01〜0.1%。Ti: 0.01-0.1%.

B:0.0005〜0.003%。B: 0.0005-0.003%.

のうちの1種または2種以上を含有し、残りがFeと不
可避不純物からなる組成を有する鋼片を。
A steel piece containing one or more of the following, with the remainder consisting of Fe and unavoidable impurities.

(bl  第3図に工程熱曲線図で示されるように。(bl As shown in the process heat curve diagram in Figure 3.

1050〜1250℃の範囲内の温度に加熱し、lcl
  ピルガ−ミルおよびマンドレルミルを用い。
Heating to a temperature within the range of 1050-1250°C, lcl
Using a pilger mill and a mandrel mill.

800℃以七の仕り温度で熱間圧延を行なった後。After hot rolling at a finish temperature of 800°C or higher.

[dl  800〜500℃の温度範囲を200℃/分
限tの冷却速度とする冷却条件で350℃以下の温度ま
で急冷して、実質的(二50容量%以とのマルテンサイ
トと、残りが主としてベイナイトからなる組織を有する
ものとし。
[dl The temperature range of 800 to 500°C is rapidly cooled to a temperature of 350°C or less at a cooling rate of 200°C/min. Assume that it has a structure made of bainite.

(el  ついで、実質的にオーステナイトの形成がな
いように、 AC1変態点〜(Ac1変態点−200℃
)の範囲内の温度に再加熱した後。
(el Then, AC1 transformation point ~ (Ac1 transformation point - 200℃
) after reheating to a temperature within the range.

(f)  レデューサを用い、596以上の断面減少率
で縮径加工を行ない、12ti&空冷する、以上(al
〜ば)の基本工程にて製造された圧延鋼管は、実質的に
マルテンサイトを主体とし、残りが主としてベイナイト
からなる組織をもつよう(二なり。
(f) Using a reducer, reduce the diameter with a cross-section reduction rate of 596 or more, and cool it with air at 12ti and above (al
The rolled steel pipe manufactured in the basic process of (a) to (a) has a structure consisting essentially of martensite, with the remainder mainly consisting of bainite.

かつ高強度と高靭性を有し、耐食性にもすぐれ。It also has high strength, high toughness, and excellent corrosion resistance.

さらに異方性の著しく少ないものであるという知見を得
たのである。
Furthermore, they found that it has significantly less anisotropy.

この発明は、上記知見にもとづいてなされたものであっ
て、以下に成分組成および製造条件を上記の通りに限定
した理由を説明する。
This invention was made based on the above findings, and the reason why the component composition and manufacturing conditions were limited as described above will be explained below.

A、成分組成 al  C C成分には、鋼管の強度を向上させる作用があるが、そ
の含有量が0.2%未満では降伏応力で60Kqf /
−以上の高強度を確保することができず、一方その含有
量が0.55%を越えると、マンドレ/L。
A. Ingredient composition al C The C component has the effect of improving the strength of steel pipes, but if its content is less than 0.2%, the yield stress will be 60 Kqf /
- If the content exceeds 0.55%, Mandre/L.

田延後の急冷の際に焼割れが生じるようになることから
、その含有量を0.2〜0.55%と定めた。
Since quench cracking occurs during rapid cooling after rolling, the content was determined to be 0.2 to 0.55%.

(bl   5i Si成分には、脱酸作用のほか、焼入れ性を向上させる
作用があるが、その含有量が010196未満では前記
作用に所望の効果が得られず、一方その含有量が0.6
%を越えると、結晶粒の微細化が妨げられ、微細均一に
分散していた炭化物が粗大化するようになって靭性およ
び耐食性が低下するようになるばかりでなく、焼入れ性
にもより一層の向を効果は見られないことから、その含
有量を0.01〜0.696と定めた。
(The bl 5i Si component has a deoxidizing effect as well as an effect of improving hardenability, but if its content is less than 010196, the desired effect cannot be obtained; on the other hand, if its content is less than 0.6
%, the refinement of crystal grains is hindered, and carbides that were previously finely and uniformly dispersed become coarser, resulting in a decrease in toughness and corrosion resistance, as well as a further decrease in hardenability. Since no effect was observed in this direction, the content was determined to be 0.01 to 0.696.

(cl   Mn Mn成分には、焼入れ性を向上させ、もってマンドレル
圧延後の冷却途中でマルテンサイトを析出し易くする作
用があるが、その含有量が0.3%未満では、所望の焼
入れ性を確保することができず。
(Cl Mn The Mn component has the effect of improving hardenability and thereby making it easier to precipitate martensite during cooling after mandrel rolling, but if its content is less than 0.3%, the desired hardenability cannot be achieved. Unable to secure.

一方その含有量が1.8%を越えると、冷却速度のいか
んではマルテンサイトに比してベイナイトが生成し易く
なって靭性が著しく劣化するようになることから、その
含有lを0.3〜1.8%と定めた。
On the other hand, if the content exceeds 1.8%, depending on the cooling rate, bainite will be more likely to be generated than martensite, and the toughness will be significantly deteriorated. It was set at 1.8%.

(dl  so7.A/ M成分には、脱酸作用のほか、旧オーステナイト粒径を
微細化する作用があるが、その含有量がso/、AIl
!含有量で0.00596未満では前記作用に所望の効
果が得られず、その含有量が同じ< soA、A41で
0.06%を越えても前記作用により一層の向上効果は
現われず、その効果が飽和することから。
(The dl so7.A/M component has the effect of refining the prior austenite grain size in addition to its deoxidizing effect.
! If the content is less than 0.00596, the desired effect cannot be obtained in the above action, and even if the content exceeds 0.06% for the same <soA, A41, the effect of further improving the action will not appear, and the effect will be from becoming saturated.

その含有量を、  SOA、A7で0.005〜0.0
696と定めた。
Its content is 0.005 to 0.0 for SOA, A7
696.

le)  0r Cr成分には、焼入れ性および耐食性な向上させる作用
があるので必要に応じて含有されるが、その含有量が0
.2%未満では前記作用に所望の効果が得られず、一方
その含有量が1.596を越えると。
le) 0r The Cr component has the effect of improving hardenability and corrosion resistance, so it is included as necessary, but if the content is 0
.. If the content is less than 2%, the desired effect cannot be obtained, while if the content exceeds 1.596.

焼入れ性が上がり過ぎて焼割れが生じるようになるほか
、耐食性および靭性が低下するようになることから、そ
の含有量を0.2〜1.5%と定めた。
The content was set at 0.2 to 1.5% because hardenability increases too much and quench cracking occurs, and corrosion resistance and toughness decrease.

(fl  Moおよび■ これらの成分には、マンドレル田延i麦の急冷において
マルテンサイトを生成し易くすると共に。
(fl Mo and ■) These components facilitate the production of martensite during the rapid cooling of mandrel barley.

ACl 〜(Ac1−200℃)の範囲内の温度への再
加熱時の強度低下を小さくシ、より高い温度での再加熱
を可能し、もってレデューサ圧延を容易にする作用があ
るので、必要に応、じて含有されるが、その含有量が、
それぞれMo : 0.296未満およびV:0.01
%未満では前記作用に所望の効果が得られず、一方その
含有量がそれぞれMO:1%およびV:0.15%を越
えると1強度は向上するものの。
ACl - (Ac1-200℃) It has the effect of minimizing the strength loss when reheating to a temperature within the range of (Ac1-200℃), enabling reheating at a higher temperature, and thereby facilitating reducer rolling. However, the content is
Mo: less than 0.296 and V: 0.01, respectively
If the content is less than 1%, the desired effect cannot be obtained. On the other hand, if the content exceeds MO: 1% and V: 0.15%, the strength will improve.

靭性が低下するようになることから、その含有量を、そ
れぞれMo : 0.2〜1%、V−0,01〜0.1
5%と定めた。
Since the toughness decreases, the content is set to Mo: 0.2 to 1% and V-0.01 to 0.1, respectively.
It was set at 5%.

(g)  NbおよびTi これらの成分には、マンドレル圧延後のオーステナイト
粒径を微細にして、靭性を向上させると共に、焼割れを
防止する作用があるので、必要に応じて含有されるが、
その含有量がNb:0.01%未満、およびTi:0.
01%未満では前記作用に所望の効果が得られず、一方
その含有量が、 Nbにあっては0.1%を越えても、
その作用が飽和し、またTiにあっては0.1%を越え
ると靭性が低下するようになることから、その含有量を
、それぞれNb: 0.01〜0.196. Ti :
0.01〜0.1%と定めた。
(g) Nb and Ti These components have the effect of making the austenite grain size finer after mandrel rolling, improving toughness, and preventing quench cracking, so they are included as necessary.
The content is Nb: less than 0.01% and Ti: 0.
If the Nb content is less than 0.1%, the desired effect cannot be obtained; on the other hand, even if the Nb content exceeds 0.1%,
Since the action becomes saturated and the toughness decreases when Ti exceeds 0.1%, the content is adjusted to Nb: 0.01 to 0.196. Ti:
It was set at 0.01 to 0.1%.

(h)  B S成分には、マンドレル圧延後の冷却途中でのフェライ
トの生成を抑制し、マルテンサイト組織を得やすくする
作用があるので、必要に応じて含有されるが、その含有
量が0.0005%未満では前記作用に所望の効果が得
られず、一方その含有量が0.003%を越えると靭性
が低下するようになることから、その含有量を0.00
05〜0.003%と定めた。
(h) The B S component has the effect of suppressing the formation of ferrite during cooling after mandrel rolling and making it easier to obtain a martensitic structure, so it is included as necessary, but if its content is 0 If the content is less than 0.0005%, the desired effect cannot be obtained, while if the content exceeds 0.003%, the toughness will decrease, so the content should be reduced to 0.00%.
It was set at 0.05 to 0.003%.

fil  不可避不純物 不可避不純物として、N、P、およびS成分の含有は避
けられないが、N成分については、鋼塊の割れ防止およ
びS成分による焼入れ性確保のために0.06%以下と
するのが望ましく、またS成分は、偏析バンドの防止お
よび靭性向上の点から。
fil Unavoidable impurities As unavoidable impurities, the inclusion of N, P, and S components is unavoidable, but the N component should be kept at 0.06% or less to prevent cracking of the steel ingot and ensure hardenability due to the S component. is desirable, and the S component is desirable from the viewpoint of preventing segregation bands and improving toughness.

0.025%以下、望ましくは0.015%以下とする
のがよく、さらにS成分は、田延方角方向の靭性向りの
点から、0.01%は下、望ましくは0.00596以
下とするのがよい。
The S component should be 0.025% or less, preferably 0.015% or less, and furthermore, the S component should be 0.01% or less, preferably 0.00596 or less, from the viewpoint of toughness in the Tananobe direction. It is better to do so.

B、製造条件 (al  加熱温度 この加熱は、鋼片を中心部まで均一に加熱して。B. Manufacturing conditions (al Heating temperature This heating is done by uniformly heating the steel piece to the center.

ミクロ偏析などを除去した状態で1次工程の穿孔および
田延を行なわしめるために施されるものであり、その温
度が1050℃未満でも結晶粒の微細化による靭性向上
には有効であるが、変形抵抗が著しく上昇するようにな
るので望ましくなく。
It is applied to perform the primary process of drilling and rolling with micro-segregation removed, and even if the temperature is below 1050°C, it is effective in improving toughness by refining the crystal grains. This is undesirable because the deformation resistance increases significantly.

一方その温度が1250℃を越えると、スケールの発生
が著しくなって1歩留低下および表面肌荒れをきたすよ
うになることから、加熱温度を1050〜1250℃と
定めた。
On the other hand, if the temperature exceeds 1250°C, scale formation becomes significant, resulting in a decrease in yield and surface roughness, so the heating temperature was set at 1050 to 1250°C.

(b)  仕上温度 加熱された鋼片はピアサ−にて穿孔され、さらにピルガ
−ミルおよびマンドレルミルにて圧延されるが、この場
合の仕上温度は、圧延後の急冷処理によって所定のミク
ロ組織を得るためには8(10℃以上としなければなら
ない。これが8oo℃未満になると、BE延延中るいは
急冷中にフェライトが生成するようになって靭性が大幅
に劣化するようになるからである。また、仕上温度に上
限値はないが、1100℃を越えると、極端な粗粒とな
ることから、850〜1050 ’Cとするのが望まし
い。さらに、マンドレルによる圧延率は、これが小さく
ても、その後の工程で結晶粒は微細になるが、鋼管とし
ての表面肌および焼割れ防止の点からは、その圧延率を
、断面減少率で3096以上とするのが望ましい。
(b) Finishing temperature The heated steel billet is pierced with a piercer and then rolled with a pilger mill and a mandrel mill. In order to obtain a hardness of 8°C (10°C or higher), if the temperature is lower than 8°C, ferrite will begin to form during BE stretching or quenching, resulting in a significant deterioration of toughness. There is no upper limit for the finishing temperature, but if it exceeds 1100°C, the grains will become extremely coarse, so it is desirable to set it at 850 to 1050'C.Furthermore, even if the rolling rate with the mandrel is small, Although the crystal grains become fine in subsequent steps, from the viewpoint of improving the surface texture of the steel pipe and preventing quench cracking, it is desirable that the rolling reduction is 3096 or more in area reduction ratio.

(d  急冷条件 十分な靭性を確保する目的で、フェライト+パーライト
組織の生成を避け、マルテンサイトとベイナイトからな
り、かつマルテンサイトが50容量%以J:、好ましく
は9096以上な占める組織とするためには、800〜
500’Cの温度範囲を200℃u上の冷却速度で急冷
し、かっオーステナイトな完全に変態させて前記のマル
テンサイトを主体とした組織とするためには350’C
1l下の温度まで冷却する必要があり、この冷却条件の
いずれでも外れると、所望の上記組織が得られず。
(d) Rapid cooling conditions In order to ensure sufficient toughness, the formation of a ferrite + pearlite structure is avoided, and the structure is composed of martensite and bainite, and martensite accounts for 50% by volume or more, preferably 9096 or more. From 800 to
The temperature range of 500'C is rapidly cooled at a cooling rate of 200°C or more, and in order to completely transform into austenite and form the above-mentioned martensite-based structure, the temperature range is 350'C.
It is necessary to cool the sample to a temperature below 1 liter, and if any of these cooling conditions are not met, the desired structure will not be obtained.

高靭性の確保は不可能となるのである。It becomes impossible to ensure high toughness.

(dl  再加熱温度 上記のように、従来の圧延鋼管の製造方法では。(dl Reheating temperature As mentioned above, in the traditional rolled steel pipe manufacturing method.

少なくとも再加熱温度をAc1変態点以上、通常はAc
 3変態点以七にしてオーステナイトを生成させていた
が、これより低いAC1変態点以下にしてAc 1変態
点−200℃以上の温度範囲内の再加熱温度としてオー
ステナイトの形成がないものとすると。
At least the reheating temperature is above the Ac1 transformation point, usually Ac
Although austenite was formed at a temperature of 3 or more transformation points, it is assumed that no austenite is formed as the reheating temperature is set to a lower AC1 transformation point or lower and within a temperature range of Ac1 transformation point - 200° C. or more.

急冷で得た組織(マルテンサイ):50%以上)との組
合せで靭性が大幅に向上し、さらに圧延方向と直角方向
の靭性も著しく改善されるようじなるものであり、した
がって再加熱温度がAc1変態点な越えると、オーステ
ナイトが生成するようになって所望の靭性を確保するこ
とができず、一方再加熱温度がAc1変態点−200℃
未満では、マルテンサイトの分解が不十分で1次工程の
レデューサによる変形抵抗が著しく上昇すると共に、変
形能の劣化により圧延中に割れが発生するようになるこ
とから、再加熱温度をAc1変態点〜(Ac1変態点−
200℃)と定めた。なお、製品の冷間加工性が重要な
ものについては、再加熱時間を0.5〜2時間とするの
が望ましく、これによってマルテンサイトの分解を十分
に行なうのがよい。
In combination with the structure obtained by rapid cooling (martensis: 50% or more), the toughness is significantly improved, and the toughness in the direction perpendicular to the rolling direction is also significantly improved. If the temperature exceeds the Ac1 transformation point -200°C, austenite will begin to form and the desired toughness cannot be secured.
If the temperature is below the Ac1 transformation point, the decomposition of martensite will be insufficient and the deformation resistance due to the reducer in the primary process will increase significantly, and cracks will occur during rolling due to deterioration of deformability. ~(Ac1 metamorphosis point-
200℃). For products where cold workability is important, it is desirable to set the reheating time to 0.5 to 2 hours, so that martensite can be sufficiently decomposed.

(el  レデューサによる断面減少率レデューサによ
る縮径加工を行なわない場合には、調質鋼管と同様な組
織、並びに強度、靭性。
(Reduction rate of area by el reducer) If diameter reduction processing is not performed by the reducer, the structure, strength, and toughness are similar to that of tempered steel pipes.

および耐食性を示すにすぎないが、レデューサによって
断面減少率で5%L/J、七の縮径加工を行なうと、加
工に伴う変形・再結晶による結晶粒の微細化、マルテン
サイトの分解の促進、および炭化物の微細分散化がはか
られるようになって、一段と。
However, when the reducer is used to reduce the diameter by 5% L/J and 7, the deformation and recrystallization accompanying the processing lead to finer grains and promote the decomposition of martensite. , and the finer dispersion of carbides.

耐食性が向上するようになるものであり、したがって断
面減少率で596未満の縮径加工では所望の耐食性向上
効果が得られないことから、レデューサによる断面減少
率を5%以上とした。なお、レデューサによる縮径加工
後の冷却は、空冷で所望の特性が得られるが1強制冷却
を行なってもよく。
Corrosion resistance is improved, and since the desired effect of improving corrosion resistance cannot be obtained by diameter reduction processing with a reduction in area of less than 596, the reduction in area by the reducer is set to 5% or more. Note that while the desired characteristics can be obtained by air cooling after the diameter reduction process using the reducer, forced cooling may also be performed.

これによって若干の特性向上があっても、特性が損なわ
れることはない。
Even if the characteristics are slightly improved by this, the characteristics are not impaired.

〔実施例〕〔Example〕

つぎに、この発明の方法な実施例により具体的に説明す
る。
Next, the method of the present invention will be explained in detail using embodiments.

通常の溶解法および鋳造法にて、それぞれ第1表に示さ
れる成分組成を有し、かつ直径=18〇−×長さ=2m
の寸法なもった本発明鋼片A−M。
With the usual melting method and casting method, each has the component composition shown in Table 1, and diameter = 180 - x length = 2 m
Steel billets A-M of the present invention having dimensions of .

および構成成分のうちのいずれかの成分含有量(第1表
に※印を付したもの)がこの発明の範囲から外れた成分
組成を有する比較鋼片N−3&調製し、ついでこれらの
鋼片な用い、それぞれ第2表に示される条件で本発明法
1〜19.比較法1〜11、および従来法1,2を実施
し、外径:160 mm X肉厚ニア間の鋼管な製造し
た。
Comparative steel billet N-3& having a component composition (those marked with * in Table 1) outside the scope of this invention was prepared, and then these steel billets were prepared. Methods 1 to 19 of the present invention were used under the conditions shown in Table 2, respectively. Comparative Methods 1 to 11 and Conventional Methods 1 and 2 were carried out to produce steel pipes with an outer diameter of 160 mm and a wall thickness near.

なお、比較法1〜6は、製造条件はこの発明の範囲内に
あるが、鋼片として上記の比較鋼片N〜Sを用いた場合
を示し、比較法7〜11は1本発明鋼片Aを用い、製造
条件のうちのいずれかの条件(第2表ζ二※印を付した
もの)がこの発明の範囲から外れた場合を示し、また従
来法1は、第1図の工程熱曲線図にしたがって圧延鋼管
を製造した場合を示し、さらに従来法2は同様に第2図
の工程熱曲線図にしたかつて調質鋼管を製造した場合を
示すものである。
In addition, comparative methods 1 to 6 show cases in which the above-mentioned comparative steel pieces N to S are used as steel pieces, although the manufacturing conditions are within the scope of the present invention, and comparative methods 7 to 11 show cases in which one of the steel pieces of the present invention is used. A is used to indicate the case where any of the manufacturing conditions (marked with ζ2* in Table 2) is outside the scope of this invention, and conventional method 1 is A case is shown in which a rolled steel pipe is manufactured according to the curve diagram, and furthermore, Conventional Method 2 is shown in a case in which a tempered steel pipe is manufactured in the same manner as shown in the process heat curve diagram in FIG.

つぎに、この結果得られた各種の鋼管について、ミクロ
組織を観察すると共に、引張特性、並びに圧延方向と直
角方向の破面遷移温度を測定し、さらに1幅=7酵×厚
さ:1解×長さ=75咽の寸法を有し、かつ中心部に縦
に2個の応力集中用キリ穴な設けた試験片を用い、この
試験片の中心部に120Kg/−以下の範囲で変化させ
て、 H2Sで飽和した0、5%酢酸水溶液中に200
時間浸漬の条件で腐食試験を行ない、割れの有煕より限
界応力値を求めた。これらの結果を第2表に示した。
Next, we observed the microstructure of the various steel pipes obtained as a result, and measured the tensile properties and fracture surface transition temperature in the direction perpendicular to the rolling direction. A test piece with dimensions of x length = 75 mm and two vertical stress concentration drill holes in the center was used, and a change of 120 kg/- or less was applied to the center of the test piece. in a 0.5% acetic acid aqueous solution saturated with H2S.
A corrosion test was conducted under the condition of time immersion, and the critical stress value was determined from the cracking resistance. These results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第2表に示される結果から1本発明法1〜1′tJで製
造された圧延鋼管は、いずれも従来法1で製造された圧
延鋼管と同等のすぐれた耐食性を有し。
From the results shown in Table 2, the rolled steel pipes manufactured by Methods 1 to 1'tJ of the present invention all have excellent corrosion resistance equivalent to the rolled steel pipes manufactured by Conventional Method 1.

かつこれよりよりはるかにすぐれた強度および靭性な有
し、さらに靭性の異方性が著しく少なく。
It also has far superior strength and toughness, and has significantly less anisotropy in toughness.

また従来法2で製造された調質鋼管との比較においては
、これと同等Iy)、J:の高強度、高靭性、および低
異方性を有し、一方耐食性については、これより一段と
すぐれたものになっている。このように本発明法1〜1
9で製造された圧延鋼管は、いずれも高強度および高靭
性を有し、かつ耐食性にすぐれ、さらに異方性もきわめ
て低いことが明らかである。
In addition, in comparison with heat-treated steel pipe manufactured by conventional method 2, it has high strength, high toughness, and low anisotropy of Iy) and J:, which are equivalent to this, while corrosion resistance is even better than this. It has become something like this. In this way, methods 1 to 1 of the present invention
It is clear that the rolled steel pipes manufactured in Example No. 9 all have high strength and high toughness, excellent corrosion resistance, and also extremely low anisotropy.

一方、比較法1〜11で製造された圧延鋼管に見られる
ように、鋼片の成分組成および製造条件のうちの少なく
ともいずれかがこの発明の範囲から外れると1強度、靭
性、耐食性、および異方性のうちの少なくともいずれか
の性質が劣ったものになり、これらの特性をすべて具備
した圧延鋼管は得られないことが明らかである。
On the other hand, as seen in the rolled steel pipes manufactured by Comparative Methods 1 to 11, if at least one of the composition and manufacturing conditions of the steel slab deviates from the scope of the present invention, the strength, toughness, corrosion resistance, and It is clear that at least one of the properties of the orientation becomes inferior, and a rolled steel pipe having all of these properties cannot be obtained.

上述のように、この発明の方法によれば、調質熱処理を
必要とすることなく、圧延ままで、高強度および高靭性
を有し、耐食性にすぐれ、かっ圧延方向と直角方向の特
性上の異方性がきわめて少ない圧延鋼管を製造すること
ができるものである。
As described above, according to the method of the present invention, the as-rolled product has high strength and toughness, excellent corrosion resistance, and excellent properties in the direction perpendicular to the rolling direction without requiring refining heat treatment. This makes it possible to produce rolled steel pipes with extremely low anisotropy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来圧延鋼管の製造工程を示す熱曲線図、第2
図は従来調質鋼管の製造工程を示す熱曲線図、第3図は
この発明の圧延鋼管の製造工程を示す熱曲線図である。
Figure 1 is a thermal curve diagram showing the manufacturing process of conventional rolled steel pipes;
The figure is a thermal curve diagram showing the manufacturing process of a conventional tempered steel pipe, and FIG. 3 is a thermal curve diagram showing the manufacturing process of a rolled steel pipe of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)(a)C:0.2〜0.55%、 Si:0.01〜0.6%、 Mn:0.3〜1.8%、 sol.Al:0.005〜0.06%、 を含有し、残りがFeと不可避不純物からなる組成(以
上重量%)を有する鋼片を、 (b)1050〜1250℃の範囲内の温度に加熱し、
(c)ピルガーミルおよびマンドレルミルを用い、80
0℃以上の仕上温度で熱間圧延を行なった後、(d)8
00℃〜500℃の温度範囲を200℃/分以上の冷却
速度とする冷却条件で350℃以下の温度まで急冷して
、実質的に50容量%以上のマルテンサイトと、残りが
主としてベイナイトからなる組織とし、 (e)ついで、実質的にオーステナイトの形成がないA
c_1変態点〜(Ac_1変態点−200℃)の範囲内
の温度に再加熱した後、 (f)レデューサを用い、5%以上の断面減少率で縮径
加工を行ない、以後空冷することによって、実質的にマ
ルテンサイトを主体とし、残りが主としてベイナイトか
らなる組織を有する圧延鋼管を製造する、 以上(a)〜(f)の基本工程からなることを特徴とす
る、圧延ままで、高強度と高靭性を有し、かつ耐食性に
すぐれ、さらに靭性の異方性が著しく少ない強靭鋼管の
製造方法。
(1) (a) C: 0.2-0.55%, Si: 0.01-0.6%, Mn: 0.3-1.8%, sol. (b) A steel billet having a composition (weight%) containing Al: 0.005 to 0.06% and the remainder consisting of Fe and unavoidable impurities to a temperature within the range of 1050 to 1250 ° C. ,
(c) Using a pilger mill and a mandrel mill, 80
After hot rolling at a finishing temperature of 0°C or higher, (d)8
The product is rapidly cooled to a temperature of 350°C or less in the temperature range of 00°C to 500°C at a cooling rate of 200°C/min or more, and is made of substantially 50% by volume or more of martensite and the remainder mainly of bainite. (e) Then, A with substantially no austenite formation.
After reheating to a temperature within the range of c_1 transformation point to (Ac_1 transformation point - 200°C), (f) using a reducer, perform diameter reduction processing with a cross-section reduction rate of 5% or more, and then air cooling, A method for manufacturing rolled steel pipes having a structure consisting essentially of martensite and the rest mainly consisting of bainite, which is characterized by comprising the basic processes (a) to (f) above, and having high strength and high strength as rolled. A method for producing a strong steel pipe that has high toughness, excellent corrosion resistance, and significantly less anisotropy in toughness.
(2)(a)C:0.2〜0.55%、 Si:0.01〜0.6%、 Mn:0.3〜1.8%、 sol.Al:0.005〜0.06%、 を含有し、さらに、 Cr:0.2〜1.5%、 Mo:0.2〜1%、 V:0.01〜0.15%、 Nb:0.01〜0.1%、 Ti:0.01〜0.1%、 B:0.0005〜0.003%、 のうちの1種または2種以上を含有し、残りがFeと不
可避不純物からなる組成(以上重量%)を有する鋼片を
、 (b)1050〜1250℃の範囲内の温度に加熱し、
(c)ピルガーミルおよびマンドレルミルを用い、80
0℃以上の仕上温度で熱間圧延を行なった後、(d)8
00〜500℃の温度範囲を200℃/分以上の冷却速
度とする冷却条件で350℃以下の温度まで急冷して、
実質的に50容量%以上のマルテンサイトと、残りが主
としてベイナイトからなる組織とし、 (e)ついで、実質的にオーステナイトの形成がないA
c_1変態点〜(Ac_1変態点−200℃)の範囲内
の温度に再加熱した後、 (f)レデューサを用い、5%以上の断面減少率で縮径
加工を行ない、以後空冷することによって、実質的にマ
ルテンサイトを主体とし、残りが主としてベイナイトか
らなる組織を有する圧延鋼管を製造する、 以上(a)〜(f)の基本工程からなることを特徴とす
る、圧延ままで、高強度と高靭性を有し、かつ耐食性に
すぐれ、さらに靭性の異方性が著しく少ない強靭鋼管の
製造方法。
(2) (a) C: 0.2-0.55%, Si: 0.01-0.6%, Mn: 0.3-1.8%, sol. Contains Al: 0.005-0.06%, furthermore, Cr: 0.2-1.5%, Mo: 0.2-1%, V: 0.01-0.15%, Nb: Contains one or more of the following: 0.01-0.1%, Ti: 0.01-0.1%, B: 0.0005-0.003%, and the remainder is Fe and unavoidable impurities. (b) heating a steel billet having a composition (the above weight %) to a temperature within the range of 1050 to 1250°C,
(c) Using a pilger mill and a mandrel mill, 80
After hot rolling at a finishing temperature of 0°C or higher, (d)8
Rapidly cooling the temperature range from 00 to 500 °C to a temperature of 350 °C or less under cooling conditions with a cooling rate of 200 °C / min or more,
A structure consisting of substantially 50% by volume or more of martensite and the remainder mainly of bainite; (e) A with substantially no austenite formation;
After reheating to a temperature within the range of c_1 transformation point to (Ac_1 transformation point - 200°C), (f) using a reducer, perform diameter reduction processing with a cross-section reduction rate of 5% or more, and then air cooling, A method for manufacturing rolled steel pipes having a structure consisting essentially of martensite and the rest mainly consisting of bainite, which is characterized by comprising the basic processes (a) to (f) above, and having high strength and high strength as rolled. A method for producing a strong steel pipe that has high toughness, excellent corrosion resistance, and significantly less anisotropy in toughness.
JP10454586A 1986-05-07 1986-05-07 Production of tough steel pipe Pending JPS62263924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10454586A JPS62263924A (en) 1986-05-07 1986-05-07 Production of tough steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10454586A JPS62263924A (en) 1986-05-07 1986-05-07 Production of tough steel pipe

Publications (1)

Publication Number Publication Date
JPS62263924A true JPS62263924A (en) 1987-11-16

Family

ID=14383451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10454586A Pending JPS62263924A (en) 1986-05-07 1986-05-07 Production of tough steel pipe

Country Status (1)

Country Link
JP (1) JPS62263924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046459A1 (en) * 2005-09-21 2007-04-12 MHP Mannesmann Präzisrohr GmbH Process for the production of cold-finished precision steel tubes
JP2007262491A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Steel pipe for machine structure superior in machinability, and manufacturing method therefor
JP2012509398A (en) * 2008-11-20 2012-04-19 フェストアルピーネ チューブラーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method and apparatus for manufacturing steel pipes with special characteristics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046459A1 (en) * 2005-09-21 2007-04-12 MHP Mannesmann Präzisrohr GmbH Process for the production of cold-finished precision steel tubes
DE102005046459B4 (en) * 2005-09-21 2013-11-28 MHP Mannesmann Präzisrohr GmbH Process for the production of cold-finished precision steel tubes
JP2007262491A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Steel pipe for machine structure superior in machinability, and manufacturing method therefor
JP4495106B2 (en) * 2006-03-28 2010-06-30 新日本製鐵株式会社 Steel pipe for machine structure excellent in machinability and manufacturing method thereof
JP2012509398A (en) * 2008-11-20 2012-04-19 フェストアルピーネ チューブラーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method and apparatus for manufacturing steel pipes with special characteristics

Similar Documents

Publication Publication Date Title
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
EP3354756B1 (en) Online-controlled seamless steel tube cooling process and seamless steel tube manufacturing method with effective grain refinement
JP5880787B2 (en) Steel tube for low alloy oil well and manufacturing method thereof
JP7300451B2 (en) Wire rod for cold heading, processed product using the same, and manufacturing method thereof
JP6103156B2 (en) Low alloy oil well steel pipe
JP2010168624A (en) Rolled steel material for induction hardening and method for manufacturing the same
JP6819198B2 (en) Rolled bar for cold forged tempered products
KR102318036B1 (en) Non-heat treated wire rod having excellent machinability and impact toughness and method for manufacturing thereof
JP2010144226A (en) Rolled steel material to be induction-hardened and method for manufacturing the same
CN105063511B (en) Ultra-low carbon bainite thin gauge steel plate rolled through heavy and medium plate mill and production method of ultra-low carbon bainite thin gauge steel plate
JPS60245722A (en) Manufacture of high tensile wire rod
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPS61284554A (en) Alloy steel for unrefined bolt or the like having superior toughness and steel material for unrefined bolt or the like using same
JPS62263924A (en) Production of tough steel pipe
JPH06136441A (en) Production of high strength and low yield ratio bar steel for reinforcing bar
JPS6396215A (en) Production of tough steel pipe
JPH01123029A (en) Production of seamless stainless steel pipe
JPH05255749A (en) Production of seamless steel tube having high strength and high toughness and excellent in ssc resistance
JP2002348610A (en) Method for manufacturing martensitic stainless steel tube
KR940007365B1 (en) Method of manufacturing steel rod
JP2000219915A (en) Production of seamless steel pipe having high strength and high toughness
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPH04358026A (en) Production of seamless low alloy steel tube having fine-grained structure
JP2004027351A (en) Method for producing high strength and high toughness martensitic stainless steel seamless pipe
JPH01123028A (en) Production of seamless stainless steel pipe