JP4495106B2 - Steel pipe for machine structure excellent in machinability and manufacturing method thereof - Google Patents

Steel pipe for machine structure excellent in machinability and manufacturing method thereof Download PDF

Info

Publication number
JP4495106B2
JP4495106B2 JP2006089012A JP2006089012A JP4495106B2 JP 4495106 B2 JP4495106 B2 JP 4495106B2 JP 2006089012 A JP2006089012 A JP 2006089012A JP 2006089012 A JP2006089012 A JP 2006089012A JP 4495106 B2 JP4495106 B2 JP 4495106B2
Authority
JP
Japan
Prior art keywords
steel pipe
machinability
area ratio
cooling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006089012A
Other languages
Japanese (ja)
Other versions
JP2007262491A (en
JP2007262491A5 (en
Inventor
康浩 篠原
文士 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006089012A priority Critical patent/JP4495106B2/en
Publication of JP2007262491A publication Critical patent/JP2007262491A/en
Publication of JP2007262491A5 publication Critical patent/JP2007262491A5/ja
Application granted granted Critical
Publication of JP4495106B2 publication Critical patent/JP4495106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、機械構造部材、特に歯車、シリンダー等の機械部品およびシャフト等の中空構造部材に好適な機械構造用鋼管およびその製造方法に関する。   The present invention relates to a steel pipe for machine structure suitable for machine structure members, particularly machine parts such as gears and cylinders and hollow structure members such as shafts, and a method for producing the same.

従来、自動車や産業機械に使用される機械部品は、棒鋼を素材とし、鍛造、切削加工後、調質熱処理して製造されていた。近年、自動車等の軽量化を目的として機械部品の中空化が進められつつあり、素材の棒鋼から鋼管への変更が検討されている。   Conventionally, machine parts used for automobiles and industrial machines are manufactured by using steel bar as a raw material, forging, cutting, and tempering heat treatment. In recent years, hollowing of machine parts is being promoted for the purpose of reducing the weight of automobiles and the like, and a change from a steel bar to a steel pipe is being studied.

機械部品の多くは切削加工がなされるため、切削加工に優れた機械構造用鋼管が提案されている(例えば、特許文献1〜5)。特許文献1は伸管加工により高硬度化させ、切削性を改善したものであるが、この方法では、工程増による製造コストアップは避けられない。特許文献2および3はCaの添加、特許文献4はBi,Pb,Teの添加により切削性の改善を目指したものであるが、いずれも切削性の改善効果が得られる程度に不純物元素を添加する必要があり、靭性や疲労特性の劣化が避けられない。またBi,Pb,Te等、環境負荷物質の添加はリサイクルの観点からも好ましくない。   Since many machine parts are machined, steel pipes for machine structures excellent in machining are proposed (for example, Patent Documents 1 to 5). In Patent Document 1, the hardness is increased by tube drawing and the machinability is improved. However, in this method, an increase in manufacturing cost due to an increase in processes is inevitable. Patent Documents 2 and 3 aim to improve machinability by adding Ca, and Patent Document 4 aims to improve machinability by adding Bi, Pb, and Te. Both add impurity elements to such an extent that an effect of improving machinability is obtained. Deterioration of toughness and fatigue characteristics is inevitable. Also, addition of environmentally hazardous substances such as Bi, Pb, Te, etc. is not preferable from the viewpoint of recycling.

特許文献5は、伸管と応力除去焼鈍により金属組織をベイナイトとすることで切削性に優れたシリンダーロッド用鋼管を製造するものである。しかし、金属組織をベイナイトとすると、強度向上には限界がある。また、伸管を必要とすることから製造コストの上昇は避けられない。また、上記の提案は何れも、組織制御の観点から系統的に切削性を評価したものではない。   Patent document 5 manufactures the steel tube for cylinder rods which was excellent in machinability by making a metal structure a bainite by a drawn pipe and stress relief annealing. However, when the metal structure is bainite, there is a limit to improving the strength. In addition, since a tube extension is required, an increase in manufacturing cost is inevitable. In addition, none of the above proposals systematically evaluate machinability from the viewpoint of tissue control.

特開平3−81008号公報Japanese Patent Laid-Open No. 3-81008 特開平3−177539号公報JP-A-3-177539 特開平3−177540号公報JP-A-3-177540 特開平5−5157号公報JP-A-5-5157 特開平4−191323号公報JP-A-4-191323

本発明は、高価な合金を添加することなく、金属組織を制御して、機械加工、特に鋼管内面の切削加工を向上させた機械構造用鋼管と、その製造方法を提供するものである。   The present invention provides a steel pipe for machine structure in which machining, particularly cutting of an inner surface of a steel pipe, is improved by controlling the metal structure without adding an expensive alloy, and a manufacturing method thereof.

本発明者らは、上記課題を解決するために鋼の金属組織と切削性との関係について鋭意検討し、特に、ブローチ加工に最適な金属組織が焼き戻しマルテンサイトと焼き戻しベイナイトとの混合組織であり、一部フェライトを含んでも良いことを明らかにした。また、鋼管の残留応力を小さくし、安価に製造するため、高温の鋼管を加速冷却するプロセスの適用を指向し、その最適な冷却条件を種々検討し、安定的に切削性を確保できる金属組織を得るための、最適なC、Mn、Cr、Moの添加量と焼き入れ時の冷却速度および焼き戻し温度の組み合わせを見いだした。   In order to solve the above problems, the present inventors have intensively studied the relationship between the metal structure of steel and machinability, and in particular, the optimum metal structure for broaching is a mixed structure of tempered martensite and tempered bainite. It was clarified that some ferrite may be included. In addition, in order to reduce the residual stress of steel pipes and to manufacture them at low cost, we aim to apply a process for accelerated cooling of high-temperature steel pipes, study various optimum cooling conditions, and ensure a stable metal-cutting structure. The optimum combination of C, Mn, Cr, and Mo, the cooling rate during quenching, and the tempering temperature were found.

本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。   This invention is made | formed based on the said knowledge, The place made into the summary is as follows.

(1) 質量%で、C:0.15〜0.45%、Si:0.1〜0.4%、Mn:0.5〜1.0%、Cr:0.8〜1.5%、Mo:0.05〜0.5%、S:0.005〜0.03%を含有し、下記(1)式で定義されるα[%]が580以上、640以下であり、残部が鉄および不可避的不純物からなり、金属組織が、面積率20〜70%の焼き戻しベイナイト、面積率25%以下(0%を含む)のフェライト、残部焼き戻しマルテンサイトからなることを特徴とする切削性に優れた機械構造用鋼管。
α=830−270C−90Mn−70Cr−83Mo…(1)
ここで、C、M、Cr、Moは各元素の含有量である。
(1) By mass%, C: 0.15-0.45%, Si: 0.1-0.4%, Mn: 0.5-1.0%, Cr: 0.8-1.5% , Mo: 0.05 to 0.5%, S: 0.005 to 0.03%, α [%] defined by the following formula (1) is 580 or more and 640 or less, and the balance is Cutting made of iron and inevitable impurities, and having a metal structure composed of tempered bainite with an area ratio of 20 to 70%, ferrite with an area ratio of 25% or less (including 0%), and the balance tempered martensite. Excellent steel pipe for machine structure.
α = 830-270C-90Mn-70Cr-83Mo (1)
Here, C, M, Cr, and Mo are the contents of each element.

(2) 焼き戻しベイナイトの面積率が20〜50%であり、フェライトの面積率が1〜20%であることを特徴とする上記(1)に記載の切削性に優れた機械構造用鋼管。 (2) The steel pipe for machine structure having excellent machinability according to (1) above, wherein the area ratio of tempered bainite is 20 to 50% and the area ratio of ferrite is 1 to 20%.

(3) 鋼管外表面から1mmまでの領域における残留応力の絶対値が150MPa以下であることを特徴とする上記(1)または(2)に記載の切削性に優れた機械構造用鋼管。 (3) The steel pipe for machine structure excellent in machinability according to (1) or (2) above, wherein an absolute value of residual stress in a region from the outer surface of the steel pipe to 1 mm is 150 MPa or less.

(4) 上記(1)〜(3)の何れか1項に記載の切削性に優れた機械構造用鋼管の製造方法であって、請求項1に記載の化学成分を有し、下記(1)式で定義されるα[%]が580以上、640以下である鋼管を、800℃以上の温度から200℃以下の温度まで、円周方向に回転させながら、下記(2)式を満足する冷却速度V[℃/s]で鋼管外表面から強制冷却した後、550〜700℃に再加熱することを特徴とする切削性に優れた機械構造用鋼管の製造方法。
α=830−270C−90Mn−70Cr−83Mo…(1)
1.0<V<0.4159α−231.95…(2)
ここで、C、M、Cr、Moは各元素の含有量である。
(4) The method of manufacturing a steel pipe for machine structure having excellent machinability according to any one of (1) to (3) above, comprising the chemical component according to claim 1, and the following (1 ) While satisfying the following formula (2) while rotating the steel pipe defined by the formula [alpha] [%] from 580 to 640 in the circumferential direction from a temperature of 800 ° C. to 200 ° C. A method for producing a steel pipe for machine structure excellent in machinability, wherein the steel pipe is forcibly cooled from the outer surface of the steel pipe at a cooling rate V [° C / s] and then reheated to 550 to 700 ° C.
α = 830-270C-90Mn-70Cr-83Mo (1)
1.0 <V <0.4159α-231.95 (2)
Here, C, M, Cr, and Mo are the contents of each element.

(5) 熱間での延伸工程で造管した鋼管を、そのまま円周方向に回転させながら鋼管外表面から加速冷却した後、再加熱することを特徴とする上記(4)に記載の切削性に優れた機械構造用鋼管の製造方法。 (5) The machinability according to (4) above, wherein the steel pipe formed in the hot drawing process is accelerated and cooled from the outer surface of the steel pipe while rotating in the circumferential direction as it is, and then reheated. Method for manufacturing steel pipes for machine structures with excellent performance.

(6) 鋼管が、鋼片を熱間で穿孔、圧延し、更に熱間での延伸工程により造管したものであることを特徴とする上記(5)に記載の切削性に優れた機械構造用鋼管の製造方法。 (6) The steel structure having excellent machinability according to (5) above, wherein the steel pipe is formed by hot piercing and rolling a steel slab and further pipe forming by a hot drawing process. Steel pipe manufacturing method.

本発明により、特に内表面の切削性に優れた機械構造用鋼管を安価に提供できるようになり、産業上の貢献が極めて顕著である。   According to the present invention, it is possible to provide a machine structural steel pipe excellent in machinability on the inner surface at low cost, and the industrial contribution is extremely remarkable.

本発明者らは、外径146mm、肉厚12mmの鋼管に種々の熱処理を施し、金属組織を変化させて、鋼の切削性におよぼす金属組織の影響について調査した。切削性については、鋼管内面を歯車形状にブローチ加工し、切削面精度を調査して評価した。鋼管の一部を切断して試料を採取し、鋼管内面の切削面の凹凸を触針式表面粗さ測定器によって測定した。金属組織は走査型電子顕微鏡で観察し、各組織の面積率は画像解析により求めた。   The present inventors performed various heat treatments on a steel pipe having an outer diameter of 146 mm and a wall thickness of 12 mm, and investigated the influence of the metal structure on the machinability of the steel by changing the metal structure. The machinability was evaluated by broaching the inner surface of a steel pipe into a gear shape and investigating the accuracy of the cut surface. A sample was collected by cutting a part of the steel pipe, and the unevenness of the cut surface on the inner surface of the steel pipe was measured with a stylus type surface roughness measuring instrument. The metal structure was observed with a scanning electron microscope, and the area ratio of each structure was determined by image analysis.

切削面精度は切削面の凹凸が10μm以下であれば良好とし、100個の加工品のうち、良好な個数の割合を合格率[%]として評価した。切削面の凹凸が10μm以下の良好な切削面精度を示す加工品の割合が95〜99%であるものを「○」、100%であるものを「◎」、94%以下であるものを「×」として表1に示した。   The accuracy of the cut surface was good when the unevenness of the cut surface was 10 μm or less, and the ratio of the good number of 100 processed products was evaluated as a pass rate [%]. “○” indicates that the ratio of the processed product having a cutting surface unevenness of 10 μm or less that exhibits good cutting surface accuracy is 95 to 99%, “◎” indicates that it is 100%, and “94” indicates that it is 94% or less. It showed in Table 1 as x.

Figure 0004495106
Figure 0004495106

表1に示すように切削面精度の合格率が95%以上である金属組織は、面積率20〜70%の焼き戻しベイナイトと焼き戻しマルテンサイトの混合組織のもの、更にフェライトを含むものであることがわかる。さらに面積率で20〜50%の焼き戻しベイナイトと1〜20%のフェライト、焼き戻しマルテンサイトの混合組織では合格率が100%になる。   As shown in Table 1, the metal structure having a cutting surface accuracy pass rate of 95% or more is a mixed structure of tempered bainite and tempered martensite having an area ratio of 20 to 70%, and further includes ferrite. Recognize. Furthermore, in the mixed structure of tempered bainite of 20 to 50%, ferrite of 1 to 20% and tempered martensite by area ratio, the pass rate becomes 100%.

以上のことから鋼管の金属組織として、焼き戻しベイナイトの面積率を20〜70%、フェライトの面積率は0〜25%とし、残部を焼き戻しマルテンサイトに限定した。さらに切削性を向上させるには焼き戻しベイナイトの面積率を20〜50%、フェライトの面積率を1〜20%、残部を焼き戻しマルテンサイトにすることが好ましい。   From the above, as the metal structure of the steel pipe, the area ratio of tempered bainite was 20 to 70%, the area ratio of ferrite was 0 to 25%, and the remainder was limited to tempered martensite. In order to further improve the machinability, it is preferable that the area ratio of tempered bainite is 20 to 50%, the area ratio of ferrite is 1 to 20%, and the balance is tempered martensite.

本発明において、焼き戻しマルテンサイトと焼き戻しベイナイトとは、走査型電子顕微鏡による組織観察で、ラス内のセメンタイトの析出形態により区別できる。すなわち、セメンタイトの長軸方向が複数あるのが焼き戻しマルテンサイトであり、焼き戻しベイナイトはセメンタイトの長軸方向がひとつである。また、フェライトはベイナイトのようなラス状ではなく、塊状であり、パーライトは粒界に板状のセメンタイトが析出している。   In the present invention, tempered martensite and tempered bainite can be distinguished from each other by the form of cementite deposited in the lath by structural observation with a scanning electron microscope. That is, tempered martensite has a plurality of cementite major axis directions, and tempered bainite has one major axis direction of cementite. In addition, ferrite is not a lath like bainite but a lump, and pearlite has plate-like cementite precipitated at grain boundaries.

また、本発明では特に硬さを規定していないが、少なくとも鋼管内表面から3mmまでのビッカース硬さは220以上280以下であることが好ましい。ビッカース硬さは、280を超えると工具寿命が低下することがある。一方、ビッカース硬さが220以下ではむしれが発生して、切削面精度を損なうことがある。   In the present invention, the hardness is not particularly defined, but the Vickers hardness of at least 3 mm from the inner surface of the steel pipe is preferably 220 or more and 280 or less. When the Vickers hardness exceeds 280, the tool life may be reduced. On the other hand, when the Vickers hardness is 220 or less, peeling may occur and the accuracy of the cutting surface may be impaired.

次に本発明において鋼管の化学成分を限定した理由を述べる。なお、以下に示す「%」は、特段の説明がない限り、「質量%」を意味する。   Next, the reason why the chemical composition of the steel pipe is limited in the present invention will be described. Note that “%” shown below means “% by mass” unless otherwise specified.

C:Cは強度向上に極めて有効な元素であり、本発明の鋼管の主な適用先である歯車やシリンダー等の構造物として十分な強度を得るためには、最低0.15%必要である。しかし、0.45%を超えると焼き入れ時の冷却で割れる問題が生じる。したがって、Cは0.15〜0.45%に限定する。   C: C is an extremely effective element for improving strength, and at least 0.15% is necessary to obtain sufficient strength as a structure such as a gear or a cylinder, which is a main application destination of the steel pipe of the present invention. . However, if it exceeds 0.45%, there will be a problem of cracking due to cooling during quenching. Therefore, C is limited to 0.15 to 0.45%.

Si:Siは脱酸元素であり、固溶強化にも寄与する。本発明では、十分な強度を得るため、Si量の下限を0.1%とした。しかし、Siを過剰に添加すると加工性を損なうため上限を0.4%に制限した。   Si: Si is a deoxidizing element and contributes to solid solution strengthening. In the present invention, in order to obtain sufficient strength, the lower limit of the Si amount is set to 0.1%. However, if Si is added excessively, the workability is impaired, so the upper limit was limited to 0.4%.

Mn:Mnは強度を向上させるためには必須の元素であり、その下限は0.5%である。しかし、1.0%よりも多いと十分なマルテンサイトおよびベイナイトが生成せず、加工品の切削面精度が大幅に劣化するので1.0%を上限とした。   Mn: Mn is an essential element for improving the strength, and its lower limit is 0.5%. However, if it exceeds 1.0%, sufficient martensite and bainite are not generated, and the accuracy of the cut surface of the processed product is greatly deteriorated, so 1.0% was made the upper limit.

Cr:Crは強度を向上させ、また窒化処理による表面硬度の上昇に有効な元素であり、0.8%以上添加することが必要である。しかし、1.5%を超えるとマルテンサイトの生成が過剰になり加工品の切削面精度を劣化させるので、上限を1.5%とした。   Cr: Cr is an element that improves the strength and is effective in increasing the surface hardness by nitriding treatment, and it is necessary to add 0.8% or more. However, if it exceeds 1.5%, the generation of martensite becomes excessive and the cutting surface accuracy of the workpiece is deteriorated, so the upper limit was made 1.5%.

Mo:Moは焼き入れ性を向上させ、高強度化に寄与する元素であり、その効果を得るには最低0.05%以上の添加が必要である。しかし、0.5%を超えるとマルテンサイトおよびベイナイトの生成が不十分になり、加工面精度を大幅に劣化させるので上限を0.5%とした。   Mo: Mo is an element that improves the hardenability and contributes to an increase in strength. To obtain the effect, addition of at least 0.05% is necessary. However, if it exceeds 0.5%, the generation of martensite and bainite becomes insufficient and the machined surface accuracy is greatly deteriorated, so the upper limit was made 0.5%.

S:Sは切削性向上に有効な元素であり、その効果を得るためには0.005%以上の添加が必要である。しかし、過度に添加すると焼き戻し後に割れるという問題が発生するため上限を0.03%とした。   S: S is an element effective for improving the machinability, and 0.005% or more must be added to obtain the effect. However, if added excessively, the problem of cracking after tempering occurs, so the upper limit was made 0.03%.

更に、本発明では、切削性に最適な金属組織を得るために、C、Mn、Cr、Moを下記の式(1)に定義されるα[%]が、580≦α≦640を満足するよう限定した。
α=830−270C−90Mn−70Cr−83Mo…(1)
αは焼入れ性の指標であり、640超では焼き入れ性が低く、フェライトが過剰に生成し、切削性を向上するために必要な焼き戻しマルテンサイトおよび焼き戻しベイナイトを確保できない。一方、αが580未満では焼き入れ性が高く、切削性を向上するために必要な焼き戻しベイナイト分率を確保できない。したがって、αを580以上640以下に限定した。
Furthermore, in the present invention, in order to obtain a metal structure optimal for machinability, α [%] defined by the following formula (1) for C, Mn, Cr, and Mo satisfies 580 ≦ α ≦ 640. It was limited as follows.
α = 830-270C-90Mn-70Cr-83Mo (1)
α is an index of hardenability, and when it exceeds 640, hardenability is low, and ferrite is excessively generated, so that tempered martensite and tempered bainite necessary for improving machinability cannot be secured. On the other hand, if α is less than 580, the hardenability is high, and the tempered bainite fraction necessary for improving the machinability cannot be ensured. Therefore, α is limited to 580 or more and 640 or less.

焼き入れ・焼き戻し工程で製造される鋼管には、焼き入れ時の冷却中の偏熱によって生じた残留応力が存在している。残留応力の発生は焼入れ時の冷却均一性と焼き戻し温度に大きく影響される。残留応力が高いと、機械加工中に残留応力が解放されるので部品形状の精度を損なう。加工中の残留応力の解放に伴う部品形状の変化を抑えるには、鋼管外表面から1mm深さまでの領域における残留応力の絶対値が150MPa以下であることが好ましい。ここで、残留応力の絶対値が150MPa以下であることは、残留応力が−150MPa〜+150MPaの範囲内であることを意味し、本発明では、残留応力の数値が正であるものを圧縮残留応力、負であるものを引張残留応力と定義している。   In steel pipes manufactured in the quenching / tempering process, there is residual stress generated by uneven heat during cooling during quenching. The occurrence of residual stress is greatly influenced by the cooling uniformity during tempering and the tempering temperature. If the residual stress is high, the residual stress is released during machining, so the accuracy of the part shape is impaired. In order to suppress the change in the part shape accompanying the release of the residual stress during processing, the absolute value of the residual stress in the region from the outer surface of the steel pipe to the depth of 1 mm is preferably 150 MPa or less. Here, the absolute value of the residual stress being 150 MPa or less means that the residual stress is in the range of −150 MPa to +150 MPa, and in the present invention, the residual stress value is positive when the residual stress value is positive. Negative tension is defined as tensile residual stress.

次に、製造方法について説明する。本発明では上記化学成分を有する鋼管を熱間加工後又は加熱し、800℃以上から冷却する際の条件が重要であり、特に加速冷却の冷却速度の制御は、機械加工面の切削面精度を向上させるための根幹技術である。なお、冷却速度は、鋼管の内表面位置のものである。   Next, a manufacturing method will be described. In the present invention, the condition when the steel pipe having the above chemical components is hot-worked or heated and cooled from 800 ° C. or higher is important. In particular, the cooling rate of the accelerated cooling is controlled by the cutting surface accuracy of the machining surface. This is a fundamental technology for improvement. In addition, a cooling rate is a thing of the inner surface position of a steel pipe.

加速冷却の冷却速度が1.0℃/sより小さい場合フェライトの生成が顕著となり、切削性を確保するために必要な焼き戻しマルテンサイトおよび焼き戻しベイナイトが得られない。したがって、下限を1.0℃/sに限定した。一方、上限は、上述の加工精度向上に最適な金属組織を確保するため密接な関係のある上記(1)式で定義されるα[%]によって決定される。   When the cooling rate of accelerated cooling is less than 1.0 ° C./s, the formation of ferrite becomes remarkable, and tempered martensite and tempered bainite necessary for ensuring machinability cannot be obtained. Therefore, the lower limit was limited to 1.0 ° C./s. On the other hand, the upper limit is determined by α [%] defined by the above equation (1), which is closely related, in order to secure the optimum metal structure for improving the processing accuracy.

本発明者らは、切削面精度、化学成分、加速冷却速度の関係を鋭意調査した結果、切削面精度を確保できる加速冷却の冷却速度V[℃/s]の上限が、(0.4159α−231.95)であることを見いだした。以上のことから、加速冷却の冷却速度V[℃/s]は、1.0以上、(0.4159α−231.95)以下に限定した。   As a result of intensive investigations on the relationship between cutting surface accuracy, chemical composition, and accelerated cooling rate, the present inventors have determined that the upper limit of the cooling rate V [° C./s] of accelerated cooling that can ensure cutting surface accuracy is 231.95). From the above, the cooling rate V [° C./s] of the accelerated cooling is limited to 1.0 or more and (0.4159α-231.95) or less.

加速冷却の方法は、鋼管を円周方向に回転させながら外表面のみから冷却することに規定した。これは、円周方向、長手方向に渡って均一に冷却するためであり、鋼管を回転させなければ鋼管下面が過剰に冷え、また鋼管の内面側からの冷却でも下面に水が貯まり十分な冷却速度得られない問題があるためである。冷却方法は、水を鋼管の外表面に直接当てる方法、鋼管外周の接線方向に当てる方法、ミスト冷却など任意に選定できる。   The accelerated cooling method was defined as cooling from the outer surface only while rotating the steel pipe in the circumferential direction. This is to cool uniformly in the circumferential direction and the longitudinal direction. If the steel pipe is not rotated, the lower surface of the steel pipe will be excessively cooled, and even when cooling from the inner surface side of the steel pipe, water will accumulate on the lower surface and sufficient cooling will occur. This is because there is a problem that speed cannot be obtained. The cooling method can be arbitrarily selected, for example, a method in which water is directly applied to the outer surface of the steel pipe, a method in which the water is applied in a tangential direction on the outer periphery of the steel pipe, or mist cooling.

加速冷却開始前の鋼管の温度を800℃以上に限定した理由は、加速冷却開始時の金属組織をオーステナイト単相とするためである。鋼管の温度が高すぎるとオーステナイト粒が粗大化しフェライトが生成しにくくなるので、900℃以下が望ましい。   The reason for limiting the temperature of the steel pipe before the start of accelerated cooling to 800 ° C. or more is that the metal structure at the start of accelerated cooling is an austenite single phase. If the temperature of the steel pipe is too high, the austenite grains become coarse and it is difficult to produce ferrite, so 900 ° C. or lower is desirable.

加速冷却の停止温度は、200℃以下に限定した。これは、加速冷却の停止温度が200℃を超えると、焼き入れ時に炭化物が微細に析出し、結果、焼き戻し後の機械加工の工具寿命を低下させるためである。   The accelerated cooling stop temperature was limited to 200 ° C. or lower. This is because if the accelerated cooling stop temperature exceeds 200 ° C., carbides are finely precipitated during quenching, and as a result, the tool life of machining after tempering is reduced.

鋼管内表面の冷却開始温度及び冷却停止温度は、加速冷却前後、すなわち冷却装置の入側及び出側で、鋼管内表面の温度を接触温度計で測定すれば良く、その温度差と冷却装置の通過速度から冷却速度を算出することができる。鋼管外面の温度を放射温度計によって測定し、鋼管内面の温度を熱伝導計算によって求めても良い。また、種々の外径及び肉厚を有する鋼管の内面及び外面に熱電対を取り付け、種々の加熱温度、冷媒の噴出条件、冷却時間に対応する冷却曲線を作成し、本発明の範囲内となる条件を決定することもできる。   The cooling start temperature and cooling stop temperature of the inner surface of the steel pipe may be measured before and after accelerated cooling, that is, the temperature on the inner surface of the steel pipe with a contact thermometer before and after the cooling device. The cooling rate can be calculated from the passing speed. The temperature of the outer surface of the steel pipe may be measured by a radiation thermometer, and the temperature of the inner surface of the steel pipe may be obtained by heat conduction calculation. Also, thermocouples are attached to the inner and outer surfaces of steel pipes having various outer diameters and thicknesses, and cooling curves corresponding to various heating temperatures, refrigerant ejection conditions, and cooling times are created, and are within the scope of the present invention. Conditions can also be determined.

焼き戻しの温度は550℃以上、700℃以下に限定した。550℃未満では不十分で均一な焼き戻しで残留応力解放が得られないため、下限を550℃とした。一方、700℃を超えると再結晶が進み、焼き戻し組織が失われるため、上限を700℃とした。   Tempering temperature was limited to 550 ° C. or higher and 700 ° C. or lower. If the temperature is lower than 550 ° C., the residual stress cannot be released by uniform tempering, so the lower limit is set to 550 ° C. On the other hand, when the temperature exceeds 700 ° C., recrystallization proceeds and the tempered structure is lost, so the upper limit was set to 700 ° C.

本発明の鋼管は、継ぎ目無し鋼管が好ましく、その造管工程は、熱間での穿孔−圧延−延伸が一般的である。また、冷間または熱間で穿孔し、熱間押し出しプレスにより製造された継ぎ目無し鋼管、ホットコイル等の鋼板を冷間または熱間でロールにて管状に成形した後、両端面を溶接することにより製造された溶接鋼管でも良い。   The steel pipe of the present invention is preferably a seamless steel pipe, and the pipe forming process is generally hot piercing-rolling-stretching. Also, drilling cold or hot, seamless steel pipes manufactured by hot extrusion press, steel plates such as hot coils, etc. are formed into a tubular shape with a roll cold or hot, then both end faces are welded It may be a welded steel pipe manufactured by:

鋼管は、一旦鋼管製造工程を終了した後、加熱炉または誘導加熱によって昇温しても良く、熱間で鋼片を穿孔、圧延し、延伸工程によって造管した直後の最終段階で800℃以上であれば、インラインでそのまま冷却することも可能である。鋼板を冷間成形し、電縫溶接により造管して加熱しても良く、鋼板を冷間成形し、電縫溶接後、加熱して冷却するか、熱間での延伸工程によって造管した直後、インラインでそのまま冷却しても良い。   The steel pipe may be heated by a heating furnace or induction heating once the steel pipe manufacturing process is finished, and the steel slab is pierced and rolled hot, and at the final stage immediately after pipe forming by the drawing process, 800 ° C. or higher. If so, it is possible to cool in-line as it is. The steel sheet may be cold-formed, piped by ERW welding and heated, or the steel sheet may be cold-formed and heated by ERW welding, then cooled by heating, or piped by a hot drawing process. Immediately afterwards, it may be cooled as it is in-line.

本発明では鋼管形状を特に限定していないが、肉厚は5mm以上20mm以下が好ましい。その理由は20mm以上の肉厚では、外表面側と内表面側との冷却速度の差が大きくなるためである。また鋼管の肉厚が5mm以下では、内外面の削り代を差し引くと肉厚が薄すぎて、機械部品用に適さないことがあるためである。   In the present invention, the steel pipe shape is not particularly limited, but the wall thickness is preferably 5 mm or more and 20 mm or less. The reason is that when the thickness is 20 mm or more, the difference in cooling rate between the outer surface side and the inner surface side becomes large. Further, when the thickness of the steel pipe is 5 mm or less, if the machining allowance on the inner and outer surfaces is subtracted, the thickness is too thin and may not be suitable for machine parts.

鋼管の長さは、外径の5倍以上が好ましい。この理由は、鋼管を外表面から水冷するときに均一に冷却するためである。鋼管の長さが外径の5倍より小さいと、外表面から噴射する水が内面に入ったりすることで鋼管長手方向、周方向で冷却が大きくばらつく。   The length of the steel pipe is preferably at least 5 times the outer diameter. This is because the steel pipe is uniformly cooled when water-cooled from the outer surface. If the length of the steel pipe is smaller than 5 times the outer diameter, the water sprayed from the outer surface enters the inner surface, and the cooling varies greatly in the longitudinal direction and the circumferential direction of the steel pipe.

(実施例1)
表2に示す化学成分を有し、外径156mm、肉厚12mmの鋼管を製造し、切削性を評価した。造管方法は、鋼板を冷間成形し、電縫溶接する電縫溶接プロセス(ERW)および鋼片を熱間で穿孔し、圧延し、延伸するシームレスプロセス(SML)である。これらの鋼管を室温から加熱炉にて加熱した後、鋼管の外表面からリング水冷却にて所定の冷却速度で冷却した。その後、加熱炉にて所定の温度に鋼管を再加熱し、空冷で室温まで冷却した。鋼管の造管方法、加速冷却前の加熱温度、加速冷却の冷却速度および停止温度、再加熱は表3に示した条件で行った。表3のVmaxは、0.4159α−231.95の計算値であり、冷却速度の上限を意味する。
Example 1
Steel pipes having the chemical components shown in Table 2 and having an outer diameter of 156 mm and a wall thickness of 12 mm were manufactured, and machinability was evaluated. The pipe making method includes an electric resistance welding process (ERW) in which a steel sheet is cold-formed and electro-welded, and a seamless process (SML) in which a steel piece is hot drilled, rolled and stretched. After heating these steel pipes from room temperature in a heating furnace, they were cooled from the outer surface of the steel pipes at a predetermined cooling rate by ring water cooling. Thereafter, the steel pipe was reheated to a predetermined temperature in a heating furnace and cooled to room temperature by air cooling. The steel pipe forming method, the heating temperature before accelerated cooling, the cooling rate and stop temperature of accelerated cooling, and the reheating were performed under the conditions shown in Table 3. Vmax in Table 3 is a calculated value of 0.4159α-231.95, which means the upper limit of the cooling rate.

製造した鋼管の肉厚中心部の金属組織は、電縫鋼管の溶接部を除く円周方向の任意の位置で、長手方向の端部100mmを除く任意の位置から小片を採取し、研磨、エッチングを行い、走査型電子顕微鏡および光学顕微鏡を用いて観察した。金属組織の観察は走査型電子顕微鏡にて最大の倍率を5000倍として行い、焼き戻しマルテンサイト(M)、焼き戻しベイナイト(B)、フェライト(F)、パーライト(P)に分類した。焼き戻しベイナイトおよびフェライトの面積率は、画像解析によって求めた。   The metal structure at the center of the thickness of the manufactured steel pipe is a small piece taken from any position in the circumferential direction except the welded part of the ERW steel pipe, except for the 100 mm long end, and polished and etched. And observed using a scanning electron microscope and an optical microscope. The metal structure was observed with a scanning electron microscope at a maximum magnification of 5000, and was classified into tempered martensite (M), tempered bainite (B), ferrite (F), and pearlite (P). The area ratio of tempered bainite and ferrite was determined by image analysis.

残留応力は鋼管の外表面から0.5mm削った位置についてX線を用いて測定した。応力の方向は周方向である。表3の残留応力欄の数値が正であるものは圧縮の残留応力、負であるものは引張の残留応力を意味する。   Residual stress was measured using X-rays at a position 0.5 mm away from the outer surface of the steel pipe. The direction of stress is the circumferential direction. A positive value in the column of residual stress in Table 3 means a compressive residual stress, and a negative value means a tensile residual stress.

切削性については、鋼管を50mm長さに切り、内外面を1mmずつ切削した後、歯車形状となるよう内面をブローチ加工し、ブローチ加工面精度を調査して評価した。面精度については、切削面の凹凸が10μm以下であれば良好とし、100個の加工で良好な個数の割合を切削性の合格率[%]を評価した。また、ブローチ加工前後の外径を測定して、その差が50μm以内であれば良好とし、100個の加工で良好な個数の割合を変形量の合格率[%]を評価した。   Regarding the machinability, the steel pipe was cut to a length of 50 mm and the inner and outer surfaces were cut by 1 mm, and then the inner surface was broached to form a gear shape, and the broached surface accuracy was investigated and evaluated. Regarding the surface accuracy, if the unevenness of the cut surface was 10 μm or less, it was considered good, and the ratio of a good number in 100 processes was evaluated for the pass rate [%] of the machinability. Further, the outer diameter before and after broaching was measured, and if the difference was within 50 μm, it was considered good, and the percentage of good number in 100 machining was evaluated as the pass rate [%] of deformation.

切削性および変形量のいずれも合格率が95〜99%であれば判定を○、いずれも合格率が100%のものの判定を◎とし、いずれかの合格率が94%以下のものの判定を×とした。   If both the machinability and the deformation amount have a pass rate of 95 to 99%, the judgment is “good”, the judgment that the pass rate is 100% is “◎”, and the judgment that any pass rate is 94% or less is ×. It was.

本発明例であるNo.1〜8は適正な化学成分および熱処理条件で製造された鋼管であり、適正な金属組織を有し、切断性に優れていた。   No. which is an example of the present invention. 1 to 8 are steel pipes manufactured with appropriate chemical components and heat treatment conditions, and had an appropriate metal structure and excellent cutting properties.

No.9は、C量が高くαが580以下と焼入れ性が高く、強制冷却の冷却速度が規定より速かったため、焼き戻しマルテンサイト単相となり切削性に難があり、残留応力が高く変形が大きかった例である。No.10は、C量が低すぎてαが640以上と焼入れ性が低いため、フェライトとパーライトの組織となり切削性に難があった例である。No.11は、Mn量が高くαが580以下と焼入れ性が高いため、焼き戻しベイナイトの面積率が低くなり切削性に難があった例である。   No. No. 9 had a high C content and a high hardenability with α of 580 or less, and the cooling rate of forced cooling was faster than specified. Therefore, it became a tempered martensite single phase and had poor machinability, high residual stress, and large deformation. It is an example. No. No. 10 is an example in which the amount of C is too low and α is 640 or more and the hardenability is low, so that it becomes a structure of ferrite and pearlite and the machinability is difficult. No. No. 11 is an example in which the area ratio of tempered bainite is low and the machinability is difficult because the amount of Mn is high and α is 580 or less and the hardenability is high.

No.12は、Si量が高く、またMn量が低くてαが640以上と焼入れ性が低く、強制冷却停止温度が高かったため、フェライトの面積率が高くかつ焼き戻しベイナイトの面積率が低くなり、切削性に難があった例である。No.13は、Cr量が低すぎ、また強制冷却開始温度が低いため、フェライトとパーライトの組織になり切削性に難があった例である。   No. No. 12, since the Si content is high, the Mn content is low, the hardenability is low at 640 or higher, and the forced cooling stop temperature is high, the ferrite area ratio is high and the tempered bainite area ratio is low. This is an example of difficulty in sex. No. No. 13 is an example in which the amount of Cr is too low and the forced cooling start temperature is low, resulting in a structure of ferrite and pearlite and difficult to cut.

No.14は、Cr量およびMo量が高すぎたためαが580以下と焼入れ性が高く、冷却速度が規定より速く、焼き戻しマルテンサイト単相となり切削性に難があり、さらに再加熱温度が低かったため残留応力が高く変形が大きかった例である。   No. No. 14, because the amount of Cr and Mo was too high, α was 580 or less and the hardenability was high, the cooling rate was faster than specified, the tempered martensite single phase was difficult to cut, and the reheating temperature was low. This is an example in which the residual stress is high and the deformation is large.

No.15は、冷却速度が遅すぎたため、フェライトとパーライトの組織になり切削性に難があった例である。No.16は、冷却速度が速すぎたため、焼き戻しマルテンサイト単相となり切削性に難があり、また残留応力が高く変形が大きかった例である。No.17は、加熱温度が低くかつ強制冷却停止温度が高かったため、フェライト面積率が高くなり切削性に難があった例である。No.18は、再加熱温度が高かったため、フェライト分率が高くなりかつ焼き戻しベイナイトの面積率が低く切削性に難があった例である。No.19は、冷却速度が速すぎ焼き戻しマルテンサイト単相となり切削性に難があって、また再加熱温度が低すぎたため残留応力が高く変形が大きかった例である。   No. No. 15 is an example in which the cooling rate was too slow, resulting in a structure of ferrite and pearlite and difficult to cut. No. No. 16 is an example in which the cooling rate was too high, so that it became a tempered martensite single phase, and the machinability was difficult, and the residual stress was high and the deformation was large. No. No. 17 is an example in which the heating area was low and the forced cooling stop temperature was high, so that the ferrite area ratio was high and the machinability was difficult. No. No. 18 is an example in which the reheating temperature was high, the ferrite fraction was high, the area ratio of tempered bainite was low, and the machinability was difficult. No. No. 19 is an example in which the cooling rate is too fast and the tempered martensite single phase is obtained, the machinability is difficult, and the reheating temperature is too low so that the residual stress is high and the deformation is large.

Figure 0004495106
Figure 0004495106

Figure 0004495106
Figure 0004495106

(実施例2)
表2に示す化学成分の鋼を溶製し、転炉−連続鋳造プロセスにより直径170mmのブルームを鋳造した。これらブルームを1240℃に加熱し、マンネスマン−プラグミル方式により穿孔−圧延したシームレス鋼管、または表2に示す化学成分の熱延鋼板を冷間で中空形状に成形した後電縫溶接した電縫鋼管を素材とし、950℃に再加熱し、縮径圧延した後、リング冷却により外表面側から水冷した。
(Example 2)
Steels having chemical components shown in Table 2 were melted and a 170 mm diameter bloom was cast by a converter-continuous casting process. These blooms were heated to 1240 ° C. and punched and rolled by the Mannesmann-plug mill method, or hot rolled steel sheets with the chemical components shown in Table 2 were cold formed into hollow shapes and then electro-welded and welded. The material was reheated to 950 ° C., reduced in diameter, and then cooled from the outer surface side by ring cooling.

縮径圧延後の鋼管サイズは、外径156mm、肉厚12mmとした。その後、加熱炉にて所定の温度に鋼管を加熱し、空冷で室温まで冷却した。製造した鋼管の金属組織観察および分類、焼き戻しベイナイトおよびフェライトの面積率並びに残留応力の測定および切削性の評価は実施例1と同様にして行った。結果を表4に示す。表4のVmaxは、0.4159α−231.95の計算値であり、冷却速度の上限を意味する。   The steel pipe size after the diameter reduction rolling was 156 mm in outer diameter and 12 mm in thickness. Thereafter, the steel pipe was heated to a predetermined temperature in a heating furnace and cooled to room temperature by air cooling. Observation and classification of the manufactured steel pipe, measurement of area ratio of tempered bainite and ferrite, measurement of residual stress, and evaluation of machinability were performed in the same manner as in Example 1. The results are shown in Table 4. Vmax in Table 4 is a calculated value of 0.4159α-231.95, which means the upper limit of the cooling rate.

本発明例であるNo.19〜26は適正な化学成分および熱処理条件で製造された鋼管であり、適正な金属組織を有し、切断性に優れていた。   No. which is an example of the present invention. Nos. 19 to 26 are steel pipes manufactured with appropriate chemical components and heat treatment conditions, and had an appropriate metal structure and excellent cutting properties.

No.27は、C量が高くαが580以下と焼入れ性が高く、冷却速度が規定より速かったため、焼き戻しマルテンサイト単相となり切削性に難があり、残留応力が高く変形が大きかった例である。No.28は、C量が低すぎてαが640以上と焼入れ性が低いため、フェライトとパーライトの組織となり切削性に難があった例である。   No. No. 27 is an example in which the amount of C is high and α is 580 or less, the hardenability is high, and the cooling rate is faster than specified, so that it becomes a tempered martensite single phase, the machinability is difficult, the residual stress is high, and the deformation is large. . No. No. 28 is an example where the amount of C is too low and α is 640 or more and the hardenability is low, so that it becomes a structure of ferrite and pearlite and the machinability is difficult.

No.29は、Mn量が高くαが580以下と焼入れ性が高いため、焼き戻しベイナイトの面積率が低くなり切削性に難があった例である。No.30は、Si量が高く、またMn量が低くてαが640以上と焼入れ性が低く、強制冷却停止温度が高かったため、フェライトの面積率が高くかつ焼き戻しベイナイトの面積率が低く切削性に難があった例である。   No. No. 29 is an example in which the area ratio of tempered bainite is low and the machinability is difficult because the amount of Mn is high and α is 580 or less and the hardenability is high. No. No. 30 has a high Si content, a low Mn content and a low hardenability with α of 640 or higher, and a high forced cooling stop temperature, so that the area ratio of ferrite is high and the area ratio of tempered bainite is low and machinability is improved. This is an example of difficulties.

No.31は、Cr量が低すぎ、また強制冷却開始温度が低いため、フェライトとパーライトの組織になり切削性に難があった例である。No.32は、Cr量およびMo量が高すぎたためαが580以下と焼入れ性が高く、冷却速度が規定より速く、焼き戻しマルテンサイト単相となり切削性に難があり、さらに再加熱温度が低かったため残留応力が高く変形が大きかった例である。   No. No. 31 is an example in which the amount of Cr is too low and the forced cooling start temperature is low, so that it becomes a structure of ferrite and pearlite and the machinability is difficult. No. No. 32, because the amount of Cr and Mo was too high, α was 580 or less, the hardenability was high, the cooling rate was faster than specified, the tempered martensite single phase was difficult to cut, and the reheating temperature was low. This is an example in which the residual stress is high and the deformation is large.

No.33は、冷却速度が遅すぎたため、フェライトとパーライトの組織になり切削性に難があった例である。No.34は、冷却速度が速すぎたため、焼き戻しマルテンサイト単相となり切削性に難があり、また残留応力が高く変形が大きかった例である。   No. No. 33 is an example in which the cooling rate was too slow, resulting in a structure of ferrite and pearlite and difficult to cut. No. No. 34 is an example in which the cooling rate was too high, so that it became a tempered martensite single phase and had poor machinability, high residual stress, and large deformation.

No.35は、強制冷却開始温度が低く、かつ強制冷却停止温度が高かったため、フェライト面積率が高くなり切削性に難があった例である。No.36は、再加熱温度が高かったため、フェライト分率が高くなりかつ焼き戻しベイナイトの面積率が低く切削性に難があった例である。No.37は、冷却速度が速すぎて、焼き戻しマルテンサイト単相となり切削性に難があり、また再加熱温度が低すぎたため残留応力が高く変形が大きかった例である。   No. No. 35 is an example in which the forced cooling start temperature was low and the forced cooling stop temperature was high, so that the ferrite area ratio was high and the machinability was difficult. No. No. 36 is an example in which the reheating temperature was high, the ferrite fraction was high, the area ratio of tempered bainite was low, and machinability was difficult. No. No. 37 is an example in which the cooling rate is too high, the tempered martensite single phase is obtained, the machinability is difficult, and the reheating temperature is too low so that the residual stress is high and the deformation is large.

Figure 0004495106
Figure 0004495106

Claims (6)

質量%で、
C:0.15〜0.45%、
Si:0.1〜0.4%、
Mn:0.5〜1.0%、
Cr:0.8〜1.5%、
Mo:0.05〜0.5%、
S:0.005〜0.03%
を含有し、下記(1)式で定義されるα[%]が580以上、640以下であり、残部が鉄および不可避的不純物からなり、金属組織が、面積率20〜70%の焼き戻しベイナイト、面積率25%以下(0%を含む)のフェライト、残部焼き戻しマルテンサイトからなることを特徴とする切削性に優れた機械構造用鋼管。
α=830−270C−90Mn−70Cr−83Mo…(1)
ここで、C、M、Cr、Moは各元素の含有量である。
% By mass
C: 0.15-0.45%,
Si: 0.1 to 0.4%,
Mn: 0.5 to 1.0%
Cr: 0.8 to 1.5%,
Mo: 0.05-0.5%
S: 0.005 to 0.03%
Tempered bainite containing [alpha] [%] defined by the following formula (1) is 580 or more and 640 or less, the balance is made of iron and inevitable impurities, and the metal structure is 20 to 70% in area ratio A steel tube for machine structure excellent in machinability, comprising ferrite having an area ratio of 25% or less (including 0%) and the balance tempered martensite.
α = 830-270C-90Mn-70Cr-83Mo (1)
Here, C, M, Cr, and Mo are the contents of each element.
焼き戻しベイナイトの面積率が20〜50%であり、フェライトの面積率が1〜20%であることを特徴とする請求項1に記載の切削性に優れた機械構造用鋼管。   The steel pipe for machine structure excellent in machinability according to claim 1, wherein the area ratio of tempered bainite is 20 to 50% and the area ratio of ferrite is 1 to 20%. 鋼管外表面から1mmまでの領域における残留応力の絶対値が150MPa以下であることを特徴とする請求項1または2に記載の切削性に優れた機械構造用鋼管。   The steel pipe for machine structure excellent in machinability according to claim 1 or 2, wherein an absolute value of residual stress in a region from the outer surface of the steel pipe to 1 mm is 150 MPa or less. 請求項1〜3の何れか1項に記載の切削性に優れた機械構造用鋼管の製造方法であって、請求項1に記載の化学成分を有し、下記(1)式で定義されるα[%]が580以上、640以下である鋼管を、800℃以上の温度から200℃以下の温度まで、円周方向に回転させながら、下記(2)式を満足する冷却速度V[℃/s]で鋼管外表面から強制冷却した後、550〜700℃に再加熱することを特徴とする切削性に優れた機械構造用鋼管の製造方法。
α=830−270C−90Mn−70Cr−83Mo…(1)
1.0<V<0.4159α−231.95…(2)
ここで、C、M、Cr、Moは各元素の含有量である。
It is a manufacturing method of the steel pipe for machine structure excellent in machinability of any one of Claims 1-3, Comprising: It has a chemical component of Claim 1, and is defined by following (1) Formula A cooling rate V [° C / ° C] satisfying the following expression (2) while rotating a steel pipe having α [%] of 580 or more and 640 or less in a circumferential direction from a temperature of 800 ° C or higher to a temperature of 200 ° C or lower s], forcibly cooling from the outer surface of the steel pipe, and then reheating to 550 to 700 ° C. A method for producing a steel pipe for machine structure having excellent machinability.
α = 830-270C-90Mn-70Cr-83Mo (1)
1.0 <V <0.4159α-231.95 (2)
Here, C, M, Cr, and Mo are the contents of each element.
熱間での延伸工程で造管した鋼管を、そのまま円周方向に回転させながら鋼管外表面から加速冷却した後、再加熱することを特徴とする請求項4に記載の切削性に優れた機械構造用鋼管の製造方法。   5. The machine with excellent machinability according to claim 4, wherein the steel pipe formed in the hot drawing step is accelerated and cooled from the outer surface of the steel pipe while rotating in the circumferential direction as it is, and then reheated. Manufacturing method of structural steel pipe. 鋼管が、鋼片を熱間で穿孔、圧延し、更に熱間での延伸工程により造管したものであることを特徴とする請求項5に記載の切削性に優れた機械構造用鋼管の製造方法。 6. The steel pipe for machine structural use with excellent machinability according to claim 5, wherein the steel pipe is formed by hot piercing and rolling a steel slab and further making a pipe by a hot drawing process. Method.
JP2006089012A 2006-03-28 2006-03-28 Steel pipe for machine structure excellent in machinability and manufacturing method thereof Active JP4495106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089012A JP4495106B2 (en) 2006-03-28 2006-03-28 Steel pipe for machine structure excellent in machinability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089012A JP4495106B2 (en) 2006-03-28 2006-03-28 Steel pipe for machine structure excellent in machinability and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2007262491A JP2007262491A (en) 2007-10-11
JP2007262491A5 JP2007262491A5 (en) 2007-12-13
JP4495106B2 true JP4495106B2 (en) 2010-06-30

Family

ID=38635751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089012A Active JP4495106B2 (en) 2006-03-28 2006-03-28 Steel pipe for machine structure excellent in machinability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4495106B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020689B2 (en) * 2007-04-17 2012-09-05 新日本製鐵株式会社 Machine structure steel pipe with excellent machinability
JP5725416B2 (en) * 2011-06-28 2015-05-27 新東工業株式会社 Low carbon cast steel shot
JP7213681B2 (en) * 2018-12-26 2023-01-27 株式会社クボタ Steel pipe manufacturing method for steel pipe fittings
WO2022085152A1 (en) * 2020-10-22 2022-04-28 日本製鉄株式会社 Electric resistance welded steel pipe for mechanical structure component and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107411A (en) * 1978-02-10 1979-08-23 Nippon Steel Corp Tempering of large diameter steel tube
JPS61133364A (en) * 1984-12-01 1986-06-20 Aichi Steel Works Ltd High-toughness low-alloy steel and its manufacture
JPS61207515A (en) * 1985-03-11 1986-09-13 Sumitomo Metal Ind Ltd Cooling method for metallic pipe
JPS62263924A (en) * 1986-05-07 1987-11-16 Sumitomo Metal Ind Ltd Production of tough steel pipe
JPH0681078A (en) * 1992-07-09 1994-03-22 Sumitomo Metal Ind Ltd Low yield ratio high strength steel and its production
JPH06184694A (en) * 1993-02-12 1994-07-05 Aichi Steel Works Ltd Low alloy steel with high toughness
JP2000002229A (en) * 1998-06-17 2000-01-07 Daido Steel Co Ltd High strength shaft part and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107411A (en) * 1978-02-10 1979-08-23 Nippon Steel Corp Tempering of large diameter steel tube
JPS61133364A (en) * 1984-12-01 1986-06-20 Aichi Steel Works Ltd High-toughness low-alloy steel and its manufacture
JPS61207515A (en) * 1985-03-11 1986-09-13 Sumitomo Metal Ind Ltd Cooling method for metallic pipe
JPS62263924A (en) * 1986-05-07 1987-11-16 Sumitomo Metal Ind Ltd Production of tough steel pipe
JPH0681078A (en) * 1992-07-09 1994-03-22 Sumitomo Metal Ind Ltd Low yield ratio high strength steel and its production
JPH06184694A (en) * 1993-02-12 1994-07-05 Aichi Steel Works Ltd Low alloy steel with high toughness
JP2000002229A (en) * 1998-06-17 2000-01-07 Daido Steel Co Ltd High strength shaft part and its manufacture

Also Published As

Publication number Publication date
JP2007262491A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4751224B2 (en) High strength seamless steel pipe for machine structure with excellent toughness and weldability and method for producing the same
JP6245271B2 (en) Steel bar
CN108368575B (en) Rolling wire rod for cold forging tempered product
JP4274177B2 (en) Steel pipe for bearing element parts, manufacturing method and cutting method thereof
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP5005543B2 (en) High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
WO2014167891A1 (en) Rolled round steel material for steering rack bar, and steering rack bar
JP2016117944A (en) Method of producing two-phase stainless seamless steel tube
CA2967283C (en) Rolled steel bar or rolled wire rod for cold-forged component
WO2016035316A1 (en) Thick-walled steel pipe for oil well and method of manufacturing same
JP6819198B2 (en) Rolled bar for cold forged tempered products
JP2016164288A (en) Method for producing high strength stainless seamless steel pipe for oil well
CN107746916A (en) A kind of manufacture method of oil cylinder seamless steel pipe
JP4992274B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
KR20190028757A (en) High frequency quenching steel
JP6679935B2 (en) Steel for cold work parts
JP5070824B2 (en) Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same
JP4495106B2 (en) Steel pipe for machine structure excellent in machinability and manufacturing method thereof
JP2007270327A (en) Steel sheet having excellent fine blanking workability and its production method
US20140182414A1 (en) Steel for induction hardening and crankshaft manufactured by using the same
JP4500246B2 (en) Steel pipe for machine structural member and manufacturing method thereof
JP2007056283A (en) High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method
JP6597077B2 (en) Steel pipe for machine structural members with excellent machinability and manufacturing method thereof
JP5020690B2 (en) High strength steel pipe for machine structure and manufacturing method thereof
JP5020689B2 (en) Machine structure steel pipe with excellent machinability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R151 Written notification of patent or utility model registration

Ref document number: 4495106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350