JP5070824B2 - Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same - Google Patents

Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same Download PDF

Info

Publication number
JP5070824B2
JP5070824B2 JP2006323828A JP2006323828A JP5070824B2 JP 5070824 B2 JP5070824 B2 JP 5070824B2 JP 2006323828 A JP2006323828 A JP 2006323828A JP 2006323828 A JP2006323828 A JP 2006323828A JP 5070824 B2 JP5070824 B2 JP 5070824B2
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
cold
rolling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006323828A
Other languages
Japanese (ja)
Other versions
JP2008138237A (en
Inventor
展之 中村
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006323828A priority Critical patent/JP5070824B2/en
Publication of JP2008138237A publication Critical patent/JP2008138237A/en
Application granted granted Critical
Publication of JP5070824B2 publication Critical patent/JP5070824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ギアやプレート等の自動車駆動系部品用素材として好適な、冷延鋼板に係り、とくに打抜き加工後の寸法精度に優れ、しかも、打抜き加工後の平坦度および端面性状に優れた冷延鋼板およびその製造方法に関する。   The present invention relates to a cold-rolled steel sheet that is suitable as a material for automobile drive system parts such as gears and plates, and is particularly excellent in dimensional accuracy after punching, and excellent in flatness and end face properties after punching. The present invention relates to a rolled steel sheet and a manufacturing method thereof.

従来から、自動車のトランスミッション部品として使用されているギアやプレート等は、鋼板を所定の形状に打抜いた後、所望の硬さに調整するため、硬化を目的とした焼入れや時効析出等の熱処理を施すことによって製造されている。
しかし、近年、製造コストの削減を目的として、これら硬化を目的とした熱処理に代えて、安価な冷間圧延を利用して所望の硬さに調整する試みがなされている。しかし、冷間圧延を利用して所望の硬さに調整する方法では、打抜き加工後の部品に大きな反りが発生する場合があり、そのため、プレステンパーと呼ばれる熱処理を施すことが必要となった。しかし、このプレステンパーを施しても、部品形状の矯正が困難な場合があり、問題となっていた。また、ギアが噛み合う端面部分では、端面性状の劣化に起因して耐摩耗性が低下する場合があり、問題となっていた。
Conventionally, gears and plates used as transmission parts for automobiles are heat treated such as quenching and aging precipitation for the purpose of hardening in order to adjust the desired hardness after punching the steel sheet into a predetermined shape. It is manufactured by applying.
However, in recent years, for the purpose of reducing the manufacturing cost, an attempt has been made to adjust to a desired hardness by using inexpensive cold rolling instead of the heat treatment for curing. However, in the method of adjusting to a desired hardness using cold rolling, there is a case where a large warp is generated in a part after stamping, and therefore it is necessary to perform a heat treatment called a press temper. However, even if this press temper is applied, it is sometimes difficult to correct the shape of the component, which is a problem. Further, the end face portion with which the gear meshes has a problem in that wear resistance may be reduced due to deterioration of end face properties.

このような問題に対し、例えば特許文献1には、C、Si、Mn、P、Sを適正範囲に調整した組成を有し、ベイニティックフェライト又はベイナイトの均一組織、又はベイニティックフェライト又はベイナイトの面積占有率が85%以上である組織とする精密打抜き用高強度鋼板が提案されている。特許文献1に記載された技術によれば、打抜き後に行われていた硬さ調整のための熱処理を省略することができ、製造コストの上昇を伴うことなく、表面性状が良好な精密打抜き製品が得られるとしている。   For such a problem, for example, Patent Document 1 has a composition in which C, Si, Mn, P, and S are adjusted to an appropriate range, and bainitic ferrite or a uniform structure of bainite, or bainitic ferrite or A high-strength steel sheet for precision punching having a structure in which the area occupancy of bainite is 85% or more has been proposed. According to the technique described in Patent Document 1, the heat treatment for adjusting the hardness that has been performed after punching can be omitted, and a precision punched product with good surface properties can be obtained without increasing the manufacturing cost. It is supposed to be obtained.

また、特許文献2には、C、Si、Mn、P、Sを適正範囲に調整した組成を有するスラブに、熱延仕上温度:800〜1050℃、巻取り温度:350〜500℃とし、圧延終了から巻取りまでの平均冷却速度を40℃/s以上の条件とする熱間圧延を施して、ベイニティックフェライト又はベイナイトを主相とする組織を有する熱延鋼板とし、ついで冷間圧延を施す精密打抜き用高強度鋼板の製造方法が提案されている。特許文献2に記載された技術によれば、打抜き後に行われていた硬さ調整のための熱処理を省略することができ、製造コストの上昇を伴うことなく、表面性状が良好な精密打抜き製品が得られるとしている。   In Patent Document 2, a slab having a composition in which C, Si, Mn, P, and S are adjusted to an appropriate range, a hot rolling finishing temperature: 800 to 1050 ° C., a winding temperature: 350 to 500 ° C., rolling Hot rolling is performed with an average cooling rate from the end to winding of 40 ° C / s or more to obtain a hot rolled steel sheet having a structure with bainitic ferrite or bainite as the main phase, and then cold rolling. A method for manufacturing a high-strength steel sheet for precision punching is proposed. According to the technique described in Patent Document 2, the heat treatment for adjusting the hardness that has been performed after punching can be omitted, and a precision punched product having a good surface property can be obtained without an increase in manufacturing cost. It is supposed to be obtained.

また、特許文献3には、C:0.15〜0.4%、Si:0.5%以下、Mn:1.0%以下、P:0.05%以下に調整した鋼を熱間圧延する際に、粗圧延後の粗バーのエッジ部を加熱して仕上圧延を行い、その後ランナウト冷却中の鋼板エッジ部の冷却条件を制御して巻取り、フェライト分率が50%以下、鋼板幅方向各位置におけるフェライト分率の差の最大値が30%以下であるミクロ組織を有する熱延鋼板とし、さらに冷間圧延を施し、鋼板板面硬さが170〜280HV、鋼板幅方向各位置における板面硬さ差を15HV以下とする、打抜き後の平坦度に優れる薄鋼板の製造方法が提案されている。特許文献2に記載された技術によれば、打抜き後に行われていた硬さ調整のための熱処理を省略することができるとしている。
特許第3483656号公報 特許第3801667号公報 特開2004−285416号公報
Patent Document 3 discloses that when hot rolling a steel adjusted to C: 0.15-0.4%, Si: 0.5% or less, Mn: 1.0% or less, P: 0.05% or less, The edge part of the steel sheet is heated and finish-rolled, and then the winding condition is controlled by controlling the cooling condition of the steel sheet edge part during runout cooling. The ferrite fraction is 50% or less. A hot-rolled steel sheet having a microstructure with a maximum value of 30% or less is further subjected to cold rolling so that the sheet surface hardness is 170 to 280 HV and the sheet surface hardness difference at each position in the sheet width direction is 15 HV or less. A method of manufacturing a thin steel sheet having excellent flatness after punching has been proposed. According to the technique described in Patent Document 2, the heat treatment for adjusting the hardness that has been performed after the punching can be omitted.
Japanese Patent No. 3483656 Japanese Patent No. 3801667 JP 2004-285416 A

例えば、自動車のオートマティックトランスミッション(AT)部品としてのプレートは、フリクションプレートとセパレータープレートを交互に数枚重ねた構造を有しており、摩擦抵抗を利用してトルクを伝達する部品である。そのため、両プレートは、板面の耐摩耗性だけでなく、トルクを効率良く伝達するために優れた平坦度が要求される。したがって、このようなプレートに適用される鋼板(冷延まま鋼板)には、打抜き加工後の平坦度に優れることが強く要求されている。さらにプレートのギア端面部では耐摩耗性も要求され、打抜き加工後の端面性状に優れることが要望されている。   For example, a plate as an automatic transmission (AT) part of an automobile has a structure in which several friction plates and separator plates are alternately stacked, and is a part that transmits torque using frictional resistance. For this reason, both plates need not only wear resistance of the plate surfaces but also excellent flatness in order to transmit torque efficiently. Therefore, a steel plate applied to such a plate (a cold rolled steel plate) is strongly required to have excellent flatness after punching. Furthermore, wear resistance is also required at the gear end face portion of the plate, and it is desired that the end face property after punching is excellent.

特許文献1および特許文献2に記載された技術では、熱間圧延時の冷却速度や巻取り温度等を調整しベイナイト等からなる所望の低温変態生成組織として、打抜き面のダレや剪断面比率等の打抜き面性状を良好とし精密打抜き性を向上させている。しかし、特許文献1および特許文献2に記載された技術では、コイルの長手方向や幅方向の各位置で熱間圧延時の冷却速度や巻取り温度等の変動が生じると、長手方向や幅方向の材質変動が大きくなり、冷間圧延後の硬さ変動や打抜き部品の寸法精度にバラツキが生じるという問題や、打抜き加工後の平坦度が低下する等の問題があった。   In the techniques described in Patent Document 1 and Patent Document 2, as the desired low-temperature transformation generation structure composed of bainite or the like by adjusting the cooling rate or coiling temperature during hot rolling, the sagging of the punched surface, the shear surface ratio, etc. The punching surface quality of the sheet is good and the precision punching property is improved. However, in the techniques described in Patent Document 1 and Patent Document 2, if fluctuations such as a cooling rate or a winding temperature during hot rolling occur at each position in the longitudinal direction or the width direction of the coil, the longitudinal direction or the width direction There are problems such as a large variation in material, a variation in hardness after cold rolling and a variation in dimensional accuracy of punched parts, and a decrease in flatness after punching.

また、特許文献3に記載された技術では、仕上げ圧延条件やランナウトでの冷却条件によっては、粗大なフェライトやパーライトが不均一に形成される場合があり、必ずしも打抜き加工後の平坦度に優れた薄鋼板が安定して得られないという問題があった。なお、特許文献3には、打抜き加工後の端面性状についての言及はない。
本発明は、上記した従来技術の問題を解決し、硬化を目的とした熱処理を行うことなく、所望の硬さを有ししかも、打抜き加工後の平坦度に優れかつ端面性状に優れた冷延鋼板およびその製造方法を提供することを目的とする。
Moreover, in the technique described in Patent Document 3, coarse ferrite and pearlite may be formed unevenly depending on finish rolling conditions and cooling conditions in runout, and the flatness after punching is not always excellent. There was a problem that a thin steel plate could not be obtained stably. In Patent Document 3, there is no mention of the end face properties after the punching process.
The present invention solves the above-mentioned problems of the prior art, has a desired hardness without performing a heat treatment for curing, and has excellent flatness after punching and excellent end face properties. It aims at providing a steel plate and its manufacturing method.

本発明者らは、上記した目的を達成するために、冷間圧延まま鋼板の、打抜き加工後の平坦度に影響する各種要因について鋭意研究を重ねた。その結果、冷間圧延まま鋼板の打抜き加工後の平坦度は、冷延鋼板の素材である熱延鋼板の組織(熱延板組織)に大きく影響されるという知見を得た。組織が不均一な熱延鋼板を冷間圧延した場合には、冷延鋼板の残留応力分布が不均一となり、打抜き加工後の部品の平坦度が低下する。そして、本発明者らは、熱延板組織が不均一となる要因としてセメンタイトの分散に着目し、熱延鋼板の基地中のセメンタイトの分散密度が、打抜き加工後の平坦度に最も大きく影響することを知見した。そして、冷延まま鋼板の打抜き加工後の平坦度は、熱延鋼板の組織を、セメンタイトが微細分散した、基地中に平均で2.0×104個/mm2以上分散した組織とすることにより、顕著に向上することを新規に見出した。また、この場合、良好な端面性状を確保できることも見出した。 In order to achieve the above-described object, the present inventors have conducted intensive research on various factors that affect the flatness of a steel sheet as cold-rolled after punching. As a result, it was found that the flatness after the punching of the steel sheet as cold-rolled is greatly influenced by the structure of the hot-rolled steel sheet (hot-rolled sheet structure) that is the material of the cold-rolled steel sheet. When a hot-rolled steel sheet having a non-uniform structure is cold-rolled, the residual stress distribution of the cold-rolled steel sheet becomes non-uniform, and the flatness of the part after punching is lowered. And the present inventors pay attention to the dispersion of cementite as a factor that causes the hot-rolled sheet structure to be non-uniform, and the dispersion density of cementite in the base of the hot-rolled steel sheet has the greatest influence on the flatness after punching. I found out. And the flatness after punching of the steel sheet as cold-rolled, the structure of the hot-rolled steel sheet is a finely dispersed cementite, an average of 2.0 × 10 4 / mm 2 or more dispersed in the base, It has been newly found that it is remarkably improved. In this case, it was also found that good end face properties can be secured.

上記したセメンタイトが微細分散した熱延板組織は、例えば、微細均一な初析フェライトおよび微細均一なパーライト組織とするか、あるいは均一微細なベイニティックフェライトおよびベイナイト組織とすることにより達成できると考えられる。しかし、熱延板の組織を、体積率で80%を超えるベイニティックフェライトおよびベイナイトを含む組織とするには、熱間圧延時の巻取り温度を低下せざるを得ない。熱間圧延時の巻取り温度を低下すると、熱延板自体の形状が劣化し、冷間圧延後に鋼板中の残留応力分布が不均一になり、打抜き加工後の平坦度が低下することになる。このようなことから、本発明者らは、打抜き加工後の平坦度に特に優れた冷延鋼板を得るためには、熱延時にベイニティックフェライトやベイナイトの生成を抑制し、微細均一な初析フェライト・パーライト組織とすることが最も有効であることに想到した。また、打抜き加工後の平坦度に優れ、かつ耐摩耗性が要求される使途には、微細均一な初析フェライトとパーライトに加え、熱延時に適正量のベイナイト(ベイニティックフェライトまたはベイナイト)を均一に生成させた組織とすることが望ましいという知見も得た。   The above-mentioned hot-rolled sheet structure in which cementite is finely dispersed can be achieved by, for example, a fine uniform pro-eutectoid ferrite and a fine uniform pearlite structure, or a uniform fine bainitic ferrite and bainite structure. It is done. However, in order to make the structure of the hot-rolled sheet into a structure containing bainitic ferrite and bainite exceeding 80% by volume, the coiling temperature during hot rolling must be lowered. When the coiling temperature during hot rolling is lowered, the shape of the hot-rolled sheet itself is deteriorated, the residual stress distribution in the steel sheet becomes non-uniform after cold rolling, and the flatness after punching is lowered. . Therefore, in order to obtain a cold-rolled steel sheet that is particularly excellent in flatness after punching, the present inventors suppressed the formation of bainitic ferrite and bainite during hot rolling, and produced a fine and uniform initial steel sheet. It was thought that it is most effective to have a ferrite-pearlite structure. For applications that require excellent flatness after punching and wear resistance, in addition to fine and uniform pro-eutectoid ferrite and pearlite, an appropriate amount of bainite (bainitic ferrite or bainite) should be used during hot rolling. It was also found that it is desirable to obtain a uniform tissue.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)熱延鋼板に30〜70%の圧下率で冷間圧延を施してなる冷延鋼板であって、前記熱延鋼板が、質量%で、C:0.10〜0.20%、Si:0.5%以下、Mn:0.20〜1.5%、P:0.03%以下、S:0.020%以下、Cr:0.05〜0.5%を含み、残部がFe及び不可避的不純物からなる組成と、初析フェライトとパーライトとからなる基地を有し、前記パーライトの平均粒径が5μm以下で、前記初析フェライトの平均粒径が10μm以下であり、かつ前記基地中に存在するセメンタイトが平均で、2.0×104個/mm2以上分散した組織と、を有する引張強さ:440MPa以上の熱延鋼板であることを特徴とする、打抜き加工後の平坦度に優れかつ端面性状に優れた冷延鋼板。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) A cold-rolled steel sheet obtained by subjecting a hot-rolled steel sheet to cold rolling at a rolling reduction of 30 to 70% , wherein the hot-rolled steel sheet is in mass%, C: 0.10 to 0.20%, Si: 0.5% hereinafter, Mn: 0.20~1.5%, P: 0.03% or less, S: 0.020% or less, Cr: includes 0.05% to 0.5%, and the balance being Fe and unavoidable impurities, pro-eutectoid ferrite and pearlite Toka Ranaru It has a base, an average particle diameter of the perlite is at 5μm or less, the average particle size of the pro-eutectoid ferrite is at 10μm or less, and an average of cementite present in the base, 2.0 × 10 4 cells / mm 2 A cold-rolled steel sheet having excellent flatness after punching and excellent end face properties, characterized by being a hot-rolled steel sheet having a tensile strength of 440 MPa or more and having a dispersed structure as described above.

(2熱延鋼板に30〜70%の圧下率で冷間圧延を施してなる冷延鋼板であって、前記熱延鋼板が、質量%で、C:0.10〜0.20%、Si:0.5%以下、Mn:0.20〜1.5%、P:0.03%以下、S:0.020%以下、Cr:0.05〜0.5%を含み、残部がFe及び不可避的不純物からなる組成と、初析フェライトとパーライトと、さらに、ベイニティックフェライトまたはベイナイトとからなる基地を有し、前記パーライトが体積率で50%以上で、前記ベイニティックフェライトまたはベイナイトが体積率で30%以下で、かつパーライトとベイニティックフェライトまたはベイナイトの合計が、体積率で80%以上である組織分率を有し、前記パーライトの平均粒径が5μm以下で、前記初析フェライトの平均粒径が10μm以下であり、かつ前記基地中に存在するセメンタイトが平均で、2.0×10 4 個/mm 2 以上分散した組織と、を有する引張強さ:440MPa以上の熱延鋼板であることを特徴とする、打抜き加工後の平坦度に優れかつ端面性状に優れた冷延鋼板。
(2 ) A cold-rolled steel sheet obtained by subjecting a hot-rolled steel sheet to cold rolling at a rolling reduction of 30 to 70%, wherein the hot-rolled steel sheet is mass%, C: 0.10 to 0.20%, Si: 0.5% Hereinafter, Mn: 0.20 to 1.5%, P: 0.03% or less, S: 0.020% or less, Cr: 0.05 to 0.5%, the balance consisting of Fe and inevitable impurities, proeutectoid ferrite and pearlite, has a base ing from the bainitic ferrite or bainite, 50% or more by the pearlite volume fraction, the bainitic 30% or less in the ferrite or bainite volume fraction, and pearlite and bainitic ferrite or the sum of bainite, have a structure fraction is at least 80% by volume, average particle diameter of the perlite is at 5μm or less, or less average particle size 10μm of the pro-eutectoid ferrite, and in the base The average cementite present in the A cold rolled steel sheet with excellent flatness after punching and excellent end face properties, characterized by a hot rolled steel sheet with a tensile strength of 440 MPa or more, and a structure having × 10 4 pieces / mm 2 or more dispersed .

(3)(1)または2)において、前記組成に加えてさらに、質量%で、Ti:0.01〜0.1%、B:0.0005〜0.005%のうちから選ばれた1種または2種を含有することを特徴とする冷延鋼板。
(3) (1) or Oite (2), in addition to the composition, by mass%, Ti: 0.01~0.1%, B : 1 kind or two kinds selected from among 0.0005 to 0.005% A cold-rolled steel sheet characterized by containing.

)鋼素材に熱間圧延工程を施して熱延鋼板としたのち、該熱延鋼板に冷間圧延工程を施して冷延鋼板とするにあたり、前記鋼素材を、質量%で、C:0.10〜0.20%、Si:0.5%以下、Mn:0.20〜1.5%、P:0.03%以下、S:0.020%以下、Cr:0.05〜0.5%を含み、残部がFe及び不可避的不純物からなる組成を有する鋼素材とし、前記熱間圧延工程を、仕上圧延の仕上圧延終了温度をAr3変態点以上とする熱間圧延と、該仕上圧延終了後、8s以内に500〜650℃まで冷却し、ついで巻取り温度:500〜650℃で巻き取る冷却・巻取処理とを施す工程とし、前記冷間圧延工程を、前記熱延鋼板に酸洗処理を施し、ついで、圧下率:30〜70%の冷間圧延を施す工程とすることを特徴とする打抜き加工後の平坦度に優れかつ端面性状に優れた冷延鋼板の製造方法。
( 4 ) After subjecting a steel material to a hot-rolled steel sheet by subjecting it to a hot-rolled steel sheet, and then subjecting the hot-rolled steel sheet to a cold-rolled steel sheet by making a cold-rolled steel sheet, the steel material in mass%, C: 0.10-0.20%, Si: 0.5% or less, Mn: 0.20-1.5%, P: 0.03% or less, S: 0.020% or less, Cr: 0.05-0.5%, the balance consisting of Fe and inevitable impurities The steel material having the above-mentioned hot rolling process is performed by hot rolling in which the finishing rolling finishing temperature of the finishing rolling is Ar 3 transformation point or more, and after finishing the finishing rolling, the steel is cooled to 500 to 650 ° C. within 8 s, Winding temperature: Cooling / winding treatment for winding at 500 to 650 ° C. The cold rolling step is pickled on the hot-rolled steel sheet, and then the rolling reduction: 30 to 70%. A method for producing a cold-rolled steel sheet having excellent flatness after punching and excellent end face properties, characterized in that it is a step of performing cold rolling.

)()において、前記熱間圧延工程を、仕上圧延のAr3変態点〜(Ar3変態点+50℃)の温度域での累積圧下率を25%以上とし、仕上圧延終了温度をAr3変態点〜(Ar3変態点+50℃)の温度域とする熱間圧延と、該仕上圧延終了後、8s以内に550〜650℃まで冷却し、巻取り温度:500〜650℃で巻き取る冷却・巻取処理とを施す工程とすることを特徴とする冷延鋼板の製造方法。
( 5 ) In ( 4 ), the hot rolling step is performed by setting the cumulative rolling reduction in the temperature range from Ar 3 transformation point to (Ar 3 transformation point + 50 ° C.) of finish rolling to 25% or more, and finishing rolling finish temperature Hot rolling with a temperature range of Ar 3 transformation point to (Ar 3 transformation point + 50 ° C) and after finishing finish rolling, cooling to 550 to 650 ° C within 8 s, winding temperature: 500 to 650 ° C A method for producing a cold-rolled steel sheet, characterized by comprising a step of performing a cooling and winding process.

)()において、前記熱間圧延工程を、仕上圧延の仕上圧延終了温度をAr3変態点以上とする熱間圧延と、該仕上圧延終了後、4s以内に500〜600℃まで冷却し、巻取り温度:500〜650℃で巻き取る冷却・巻取処理とを施す工程とすることを特徴とする冷延鋼板の製造方法
( 6 ) In ( 4 ), the hot rolling step is performed by hot rolling in which the finish rolling finish temperature of finish rolling is equal to or higher than the Ar 3 transformation point, and cooling to 500 to 600 ° C. within 4 s after the finish rolling is finished. And the manufacturing method of the cold-rolled steel sheet characterized by setting it as the process of performing the cooling and winding processing which winds at winding temperature: 500-650 degreeC .

)()ないし()のいずれかにおいて、前記組成に加えてさらに、質量%で、Ti:0.01〜0.1%、B:0.0005〜0.005%のうちから選ばれた1種または2種を含有することを特徴とする冷延鋼板の製造方法。
( 7 ) In any one of ( 4 ) to ( 6 ), in addition to the above composition, one or two selected from Ti: 0.01 to 0.1% and B: 0.0005 to 0.005% by mass% A method for producing a cold-rolled steel sheet, comprising:

本発明によれば、板面の硬さ確保を目的とした熱処理を行うことなく、所望の硬さを有ししかも、打抜き加工後の平坦度および端面性状に優れた冷延鋼板を容易に製造でき、産業上格段の効果を奏する。本発明になる冷延鋼板は、プレートやギア等の、自動車のオートマティックトランスミッション(AT)部品用素材として、極めて好適である。   According to the present invention, it is possible to easily produce a cold-rolled steel sheet having a desired hardness and excellent in flatness and end face properties after punching without performing heat treatment for ensuring the hardness of the plate surface. Yes, and it has a remarkable industrial effect. The cold-rolled steel sheet according to the present invention is extremely suitable as a material for automobile automatic transmission (AT) parts such as plates and gears.

本発明鋼板は、冷延鋼板、すなわち、適正範囲の合金元素を含有した組成の熱延鋼板に、好ましくは酸洗を行ったのち、冷間圧延を施してなる、冷延まま鋼板である。以下、本発明鋼板の組成限定理由について説明する。なお、質量%は単に%で記す。
C:0.10〜0.20%
Cは、鋼板硬さを決定する重要な元素であり、自動車用部品として十分な硬さを確保するためには、0.10%以上の含有を必要とする。一方、0.20%を超える多量の含有は、粗大なパーライトが不均一に分散した組織となる場合があり、打抜き加工後の平坦度や端面性状が低下することがある。このため、Cは0.10〜0.20%の範囲に限定した。
The steel sheet of the present invention is a cold-rolled steel sheet, that is, a hot-rolled steel sheet having a composition containing an alloy element in an appropriate range, preferably pickled and then cold-rolled and then cold-rolled steel sheet. Hereinafter, the reasons for limiting the composition of the steel sheet of the present invention will be described. The mass% is simply expressed as%.
C: 0.10 to 0.20%
C is an important element that determines the hardness of the steel sheet, and needs to be contained in an amount of 0.10% or more in order to ensure sufficient hardness as an automotive part. On the other hand, a large content exceeding 0.20% may result in a structure in which coarse pearlite is unevenly dispersed, and the flatness and end face properties after punching may be lowered. For this reason, C was limited to the range of 0.10 to 0.20%.

Si:0.5%以下
Siは、鋼中に固溶して鋼板の強化に寄与する元素であるが、0.5%を超える多量の含有は、鋼板表面に濃化して赤スケールの発生を促進し、鋼板の表面性状を劣化させる。このため、Siは0.5%以下に限定した。なお、好ましくは0.2%以下である。
Mn:0.20〜1.5%
Mnは、鋼中に固溶して鋼板の強化に寄与するとともに、焼入れ性の向上に有効な元素であり、このような効果を得るためには、0.20%以上の含有を必要とする。0.20%未満の含有では、初析フェライト量が過度に増加し、セメンタイトが不均一に分散した組織となるとともに、所望の硬さが確保できなくなる。一方、1.5%を超えて過剰に含有すると、パーライトがバンド状に形成され、セメンタイトが不均一に分散した組織となる。このため、Mnは0.20〜1.5%の範囲に限定した。なお、好ましくは0.40〜1.0%である。
Si: 0.5% or less
Si is an element that contributes to strengthening of the steel sheet by solid solution in the steel. However, a large content exceeding 0.5% concentrates on the surface of the steel sheet to promote the generation of red scale and deteriorate the surface properties of the steel sheet. Let For this reason, Si was limited to 0.5% or less. In addition, Preferably it is 0.2% or less.
Mn: 0.20-1.5%
Mn is a solid solution in steel and contributes to strengthening of the steel sheet, and is an element effective for improving hardenability. In order to obtain such an effect, Mn is required to be contained in an amount of 0.20% or more. If the content is less than 0.20%, the amount of pro-eutectoid ferrite is excessively increased, resulting in a structure in which cementite is dispersed non-uniformly and the desired hardness cannot be ensured. On the other hand, if the content exceeds 1.5%, pearlite is formed in a band shape, resulting in a structure in which cementite is dispersed unevenly. For this reason, Mn was limited to the range of 0.20 to 1.5%. In addition, Preferably it is 0.40 to 1.0%.

P:0.03%以下
Pは、偏析しやすい元素であり、Pの偏析によりバンド状組織の形成が促進され、セメンタイトが不均一に分散した組織となりやすい。このため、本発明ではPは極力低減することが望ましいが、0.03%までは許容できる。このため、Pは0.03%以下に限定した。なお、好ましくは0.02%以下である。
P: 0.03% or less P is an element that is easily segregated. Formation of a band-like structure is promoted by the segregation of P, and a structure in which cementite is unevenly dispersed is likely to be formed. Therefore, in the present invention, it is desirable to reduce P as much as possible, but it is acceptable up to 0.03%. For this reason, P was limited to 0.03% or less. In addition, Preferably it is 0.02% or less.

S:0.020%以下
Sは、MnS等の硫化物系介在物を形成し、打抜き加工性を低下させる元素であり、本発明ではSは極力低減することが望ましいが、0.020%までは許容できる。このため、Sは0.020%以下に限定した。なお、好ましくは0.010%以下である。
Cr:0.05〜0.5%
Crは、焼入れ性向上、さらにはセメンタイトの微細化による平坦度の向上および端面性状向上、さらには耐摩耗性向上に寄与する有効な元素であり、このような効果を得るためには、0.05%以上の含有を必要とする。0.05%未満の含有では、初析フェライト量が過度に増加し、セメンタイトが不均一に分散した組織となるため、打抜き加工後の平坦度や端面性状が低下する。一方、0.5%を超えて含有すると、製造コストの高騰が著しくなる。このため、Crは0.05〜0.5%の範囲に限定した。なお、好ましくは0.05〜0.3%である。
S: 0.020% or less S is an element that forms sulfide inclusions such as MnS and lowers the punching workability. In the present invention, S is desirably reduced as much as possible, but 0.020% is acceptable. For this reason, S was limited to 0.020% or less. In addition, Preferably it is 0.010% or less.
Cr: 0.05-0.5%
Cr is an effective element that contributes to improving hardenability, further improving flatness and edge properties by making cementite finer, and further improving wear resistance. To obtain such an effect, 0.05% The above content is required. If the content is less than 0.05%, the amount of pro-eutectoid ferrite is excessively increased, and a structure in which cementite is dispersed non-uniformly is obtained, so that the flatness and end face properties after punching process are lowered. On the other hand, if the content exceeds 0.5%, the production cost increases remarkably. For this reason, Cr was limited to the range of 0.05 to 0.5%. In addition, Preferably it is 0.05 to 0.3%.

上記した成分が基本成分であるが、上記した成分に加えてさらに、Ti:0.01〜0.1%、B:0.0005〜0.005%のうちから選ばれた1種または2種を含有できる。
Ti:0.01〜0.1%、B:0.0005〜0.005%のうちから選ばれた1種または2種
Ti、Bはいずれも、焼入れ性向上に寄与する元素であり、必要に応じて1種または2種を選択して含有できる。
Although the above-mentioned component is a basic component, in addition to the above-mentioned component, it can further contain one or two selected from Ti: 0.01 to 0.1% and B: 0.0005 to 0.005%.
One or two selected from Ti: 0.01 to 0.1%, B: 0.0005 to 0.005%
Ti and B are both elements that contribute to improving hardenability, and can be selected from one or two as required.

Tiは、TiNを形成し焼入れ時のγ粒の粗大化防止に寄与するとともに、BNの形成を抑制し、Bの焼入れ性向上効果の増大に寄与し、焼入れ性向上に必要なB量を低く押さえることができるという効果を有する。このような効果を得るためにTiを含有する場合には、0.01%以上含有することが望ましい。一方、0.1%を超えて含有すると、製造コストの高騰が著しくなる。このようなことから、含有する場合には、Tiは0.01〜0.1%の範囲に限定することが好ましい。   Ti forms TiN and contributes to preventing the coarsening of γ grains during quenching, suppresses the formation of BN, contributes to an increase in the effect of improving the hardenability of B, and reduces the amount of B necessary for improving the hardenability. It has the effect of being able to hold down. In order to obtain such an effect, when Ti is contained, it is desirable to contain 0.01% or more. On the other hand, if the content exceeds 0.1%, the production cost increases remarkably. For these reasons, when Ti is contained, Ti is preferably limited to a range of 0.01 to 0.1%.

Bは、結晶粒界に偏析し、微量で焼入れ性向上に有効に寄与する元素である。特にTiと複合含有した場合にその効果は顕著となる。このような効果を得るためには0.0005%以上含有することが望ましい。一方、0.005%を超えて含有しても、その効果が飽和し、含有量に見合う効果が期待できなくなる。このため、含有する場合には、Bは0.0005〜0.005%の範囲に限定することが好ましい。   B is an element that segregates at the grain boundaries and contributes effectively to improving the hardenability in a small amount. In particular, when combined with Ti, the effect becomes remarkable. In order to acquire such an effect, it is desirable to contain 0.0005% or more. On the other hand, even if the content exceeds 0.005%, the effect is saturated and an effect commensurate with the content cannot be expected. For this reason, when it contains, it is preferable to limit B to 0.0005 to 0.005% of range.

上記した成分以外の残部は、Fe及び不可避的不純物からなる。なお、不可避的不純物としては、O:0.1%以下、N:0.1%以下、Al:0.1%以下等が許容できる。
本発明鋼板は、上記した組成を有し、初析フェライトとパーライトと、あるいはさらにベイニティックフェライトまたはベイナイトとからなる基地を有し、かつ該基地中に存在するセメンタイトが平均で、2.0×104個/mm2以上分散した組織を有し、引張強さ:440MPa以上の熱延鋼板に冷間圧延を施してなる冷延鋼板である。
The balance other than the components described above consists of Fe and inevitable impurities. Inevitable impurities include O: 0.1% or less, N: 0.1% or less, Al: 0.1% or less, and the like.
The steel sheet of the present invention has the above composition, has a base composed of pro-eutectoid ferrite and pearlite, or further bainitic ferrite or bainite, and an average of cementite present in the base is 2.0 × 10 A cold-rolled steel sheet having a structure in which 4 pieces / mm 2 or more are dispersed and cold-rolled to a hot-rolled steel sheet having a tensile strength of 440 MPa or more.

所望の硬さを有する冷延鋼板を容易に製造するために、素材である熱延鋼板は、上記した組成と組織を有し、かつ引張強さ:440MPa以上の高強度を有する鋼板とする。熱延鋼板の引張強さが440MPa未満では、所望の硬さを確保するために、熱延鋼板に高い圧下率の冷間圧延を施す必要がある。しかし、冷間圧延の圧下率を過度に高めると残留歪量が大きくなり、打抜き加工後の平坦度が低下する。このため、素材である熱延鋼板は、440MPa以上の高強度を有する鋼板とした。   In order to easily manufacture a cold-rolled steel sheet having a desired hardness, a hot-rolled steel sheet as a raw material has a composition and a structure as described above and has a tensile strength of 440 MPa or more. If the tensile strength of the hot-rolled steel sheet is less than 440 MPa, it is necessary to cold-roll the hot-rolled steel sheet at a high reduction rate in order to ensure the desired hardness. However, when the rolling reduction of cold rolling is excessively increased, the amount of residual strain increases, and the flatness after punching decreases. For this reason, the hot-rolled steel sheet as the material is a steel sheet having a high strength of 440 MPa or more.

つぎに、本発明鋼板の素材である熱延鋼板の組織限定理由について説明する。
本発明鋼板の素材である熱延鋼板は、基地中のセメンタイトの分散状態を所定の分散密度以上に調整した、セメンタイトが均一に分散した鋼板とする。熱延鋼板中のセメンタイトの分散形態は、冷間圧延後の鋼板の残留応力の分布状態に影響をおよぼす。熱延鋼板中に硬質なセメンタイトが不均一に存在すると、熱延鋼板を冷間圧延するに際して導入される歪が不均一となり、冷延鋼板の残留応力分布が不均一となる。このため、打抜き加工後の平坦度が低下する。また、セメンタイトが不均一に存在すると、端面性状も劣化する。そこで本発明では、熱延鋼板の基地中に存在するセメンタイトの分散を、平均で、2.0×104個/mm2以上に限定した。なお、この分散密度は、例えば、50μm×50μmの視野内に50個以上が存在する場合に相当する。
Next, the reason for limiting the structure of the hot-rolled steel sheet that is the material of the steel sheet of the present invention will be described.
The hot-rolled steel sheet, which is the material of the steel sheet of the present invention, is a steel sheet in which cementite is uniformly dispersed in which the dispersion state of cementite in the base is adjusted to a predetermined dispersion density or more. The dispersion form of cementite in the hot-rolled steel sheet affects the distribution of residual stress in the steel sheet after cold rolling. If hard cementite is present non-uniformly in the hot-rolled steel sheet, the strain introduced when the hot-rolled steel sheet is cold-rolled becomes non-uniform, and the residual stress distribution of the cold-rolled steel sheet becomes non-uniform. For this reason, the flatness after a punching process falls. Further, when cementite is present non-uniformly, the end face properties are also deteriorated. Therefore, in the present invention, the dispersion of cementite existing in the base of the hot-rolled steel sheet is limited to 2.0 × 10 4 pieces / mm 2 or more on average. This dispersion density corresponds to, for example, the case where 50 or more are present in a 50 μm × 50 μm visual field.

基地中のセメンタイトの分散が平均で、2.0×104個/mm2未満では、硬質なセメンタイトが不均一に存在することになり、冷間圧延するに際して導入される歪が不均一となり、冷延鋼板の残留応力分布が不均一となる。なお、ここでいう「セメンタイト」とは、セメンタイトとして単独で粒状、片状に存在するもの以外に、パーライト中に層状に存在するセメンタイトをも含むものとする。層状セメンタイトは、連続して存在するものを1個とし、層状セメンタイトに断裂が存在するときは、それぞれを1個とカウントする。なお、初析フェライトにはセメンタイトの析出は認められない。 If the average dispersion of cementite in the base is less than 2.0 × 10 4 pieces / mm 2 , hard cementite will be present non-uniformly, the strain introduced during cold rolling will be non-uniform, and cold rolling will occur. The residual stress distribution of the steel sheet becomes uneven. The term “cementite” here includes cementite that is present in a layered manner in pearlite, in addition to those that are present in granular and flake form as cementite. As for the layered cementite, one is present continuously, and when the layered cementite is torn, each is counted as one. In addition, no precipitation of cementite is observed in the pro-eutectoid ferrite.

本発明鋼板の素材である熱延鋼板の基地は、打抜き加工後の平坦度を特に重視する使途では、ベイニティックフェライト、ベイナイトおよびマルテンサイトなどの低温変態組織の生成を抑制した、均一微細な初析フェライトとパーライトからなる組織とすることが好ましい。これにより、冷延鋼板の残留応力分布に影響する硬質なセメンタイトの均一分散が図れ、打抜き加工後の平坦度に優れた冷延鋼板となる。ここで、「均一微細な初析フェライト」とは、平均粒径が10μm以下、好ましくは1μm以上である初析フェライトをいう。また、「均一微細なパーライト」とは、平均粒径:5μm以下、好ましくは0.1μm以上であるパーライトをいう。なお、上記した初析フェライトとパーライトからなる組織とした場合における、パーライトの組織分率は、体積率で20%以上50%未満程度とすることが好ましい。パーライトが20%未満では、所望の硬さが確保できないうえ、セメンタイトの均一分散が困難となり、打抜き加工後の平坦度が低下する。一方、50%以上では、局所的にパーライトが密集した組織が形成されやすくなり、不均一な組織に起因して打抜き加工後の平坦度が低下しやすくなる。   The base of the hot-rolled steel sheet, which is the material of the steel sheet of the present invention, has a uniform and fine structure that suppresses the formation of low-temperature transformation structures such as bainitic ferrite, bainite and martensite in applications where the flatness after stamping is particularly important. A structure composed of pro-eutectoid ferrite and pearlite is preferable. As a result, uniform dispersion of hard cementite that affects the residual stress distribution of the cold-rolled steel sheet can be achieved, and a cold-rolled steel sheet having excellent flatness after punching can be obtained. Here, “uniformly fine pro-eutectoid ferrite” refers to pro-eutectoid ferrite having an average particle size of 10 μm or less, preferably 1 μm or more. “Uniformly fine pearlite” refers to pearlite having an average particle size of 5 μm or less, preferably 0.1 μm or more. Note that the pearlite structure fraction in the above-described structure composed of pro-eutectoid ferrite and pearlite is preferably about 20% or more and less than 50% by volume. If the pearlite is less than 20%, the desired hardness cannot be ensured, and it is difficult to uniformly disperse the cementite, resulting in a decrease in flatness after punching. On the other hand, if it is 50% or more, a structure in which pearlite is locally concentrated is likely to be formed, and flatness after punching tends to be lowered due to the non-uniform structure.

初析フェライトの平均粒径が10μmを超えて大きくなると、セメンタイトおよびパーライトが不均一に分散した組織となりやすく、打抜き加工後の平坦度が低下しやすいため、初析フェライトの平均粒径を10μm以下に限定することが好ましい。なお、初析フェライトを微細化するほど、打抜き加工後の平坦度は改善されるが、平均粒径が1μm未満となるまでの微細化は、仕上圧延時に極めて大きな加工を施す必要があり、製造安定性の観点から、初析フェライトの平均粒径は1μm以上とすることがより好ましい。   If the average grain size of pro-eutectoid ferrite exceeds 10μm, cementite and pearlite tend to be unevenly dispersed, and the flatness after punching tends to decrease. It is preferable to limit to. As the pro-eutectoid ferrite is refined, the flatness after the punching process is improved. However, the refinement until the average grain size becomes less than 1 μm requires an extremely large process at the time of finish rolling. From the viewpoint of stability, the average particle size of pro-eutectoid ferrite is more preferably 1 μm or more.

また、パーライトの平均粒径が5μmを超えて大きくなると、セメンタイトおよびパーライトが不均一に分散した組織となりやすく、打抜き加工後の平坦度が低下しやすい。このため、パーライトの平均粒径を5μm以下に限定することが好ましい。なお、パーライトを微細化するほど、打抜き加工後の平坦度は改善されるが、平均粒径が0.1μm未満となるまでの微細化は、仕上圧延時に極めて大きな加工を施す必要があり、製造安定性の観点から、パーライトの平均粒径は0.1μm以上とすることがより好ましい。なお、本発明鋼板では、初析フェライト・パーライト組織の場合、フェライト粒界上にセメンタイトが観察される場合があるが、パーライト組織として扱う。   In addition, when the average particle size of pearlite exceeds 5 μm, a structure in which cementite and pearlite are dispersed unevenly tends to be formed, and the flatness after punching tends to be lowered. For this reason, it is preferable to limit the average particle diameter of pearlite to 5 micrometers or less. As the pearlite is refined, the flatness after the punching process is improved. However, the refinement until the average grain size becomes less than 0.1 μm requires a very large process during finish rolling. From the viewpoint of properties, the average particle size of pearlite is more preferably 0.1 μm or more. In the steel sheet of the present invention, in the case of a pro-eutectoid ferrite / pearlite structure, cementite may be observed on the ferrite grain boundary, but it is treated as a pearlite structure.

また、平坦度とともに耐摩耗性に優れることが要求され、端面性状が特に重視される使途には、セメンタイトが均一微細に分散した組織とすることが好ましく、熱延鋼板の基地を、初析フェライトとパーライトと、さらに、ベイニティックフェライトまたはベイナイトと、からなる組織とすることが好ましい。とくにこの場合、パーライトとベイニティックフェライトまたはベイナイトの体積率を合計で80%以上とし、パーライトは、体積率で50%以上とすることが好ましい。この場合、初析フェライトが多くなりすぎると、セメンタイトが不均一に分散し打抜き加工後の端面性状が劣化するため、パーライトとベイニティックフェライトまたはベイナイトは、合計で体積率で80%以上にすることが好ましい。一方、ベイニティックフェライトまたはベイナイトが多くなりすぎると、熱延板の板形状が低下しやすく、打抜き加工後の平坦度が低下しやすい。このため、パーライトは体積率で50%以上とすることが好ましい。また、この観点からは、ベイニティックフェライト、またはベイナイトの体積率は30%以下とすることが好ましい。   In addition, it is required to have excellent wear resistance as well as flatness, and it is preferable to use a structure in which cementite is uniformly and finely dispersed for use in which end face properties are particularly important. And pearlite, and bainitic ferrite or bainite. Particularly in this case, it is preferable that the total volume ratio of pearlite and bainitic ferrite or bainite is 80% or more, and that of pearlite is 50% or more in volume ratio. In this case, if too much proeutectoid ferrite is added, cementite will be dispersed unevenly and the end face properties after punching will deteriorate, so the total volume ratio of pearlite and bainitic ferrite or bainite should be 80% or more. It is preferable. On the other hand, when the amount of bainitic ferrite or bainite is excessive, the shape of the hot-rolled sheet is likely to be lowered, and the flatness after the punching process is likely to be lowered. For this reason, pearlite is preferably 50% or more by volume. From this point of view, the volume fraction of bainitic ferrite or bainite is preferably 30% or less.

なお、初析フェライトとパーライトと、さらに、ベイニティックフェライトまたはベイナイトと、からなる組織とする場合、初析フェライトとパーライトの平均粒径は、パーライトの平均粒径:5μm以下好ましくは0.1μm以上で、初析フェライトの平均粒径:10μm以下好ましくは1μm以上とすることがより好ましい。初析フェライトとパーライトが、上記した平均粒径を超えて大きくなると、セメンタイトの不均一分散が顕著となり、打抜き加工後の平坦度が低下する。   In the case of a structure composed of pro-eutectoid ferrite and pearlite, and bainitic ferrite or bainite, the average particle size of pro-eutectoid ferrite and pearlite is pearlite average particle size: 5 μm or less, preferably 0.1 μm or more. Thus, the average particle size of pro-eutectoid ferrite: 10 μm or less, preferably 1 μm or more is more preferable. When proeutectoid ferrite and pearlite are larger than the above average particle diameter, non-uniform dispersion of cementite becomes remarkable, and the flatness after the punching process is lowered.

つぎに、本発明鋼板の好ましい製造方法について、説明する。
本発明では、鋼素材に熱間圧延工程を施して熱延鋼板としたのち、該熱延鋼板に冷間圧延工程を施して冷延鋼板とする。
本発明で使用する鋼素材の製造方法はとくに限定する必要はなく公知の方法がいずれも適用できるが、上記した組成の溶鋼を、転炉、電気炉等の常用の溶製法で溶製し、必要に応じて真空脱ガス炉等の二次精錬を施し、連続鋳造法、造塊−分塊圧延等の常用の鋳造(圧延)方法でスラブ等の鋼素材とすることが好ましい。
Below, the preferable manufacturing method of this invention steel plate is demonstrated.
In the present invention, a hot rolling process is performed on a steel material to obtain a hot rolled steel sheet, and then a cold rolling process is performed on the hot rolled steel sheet to obtain a cold rolled steel sheet.
The manufacturing method of the steel material used in the present invention is not particularly limited and any known method can be applied, but the molten steel having the above composition is melted by a conventional melting method such as a converter or an electric furnace, It is preferable that secondary refining such as a vacuum degassing furnace is performed as necessary, and a steel material such as a slab is formed by a conventional casting (rolling) method such as a continuous casting method or ingot-bundling rolling.

鋼素材は、熱間圧延工程を施され、熱延鋼板とされる。なお、鋼素材を、鋳造後直ちに、あるいはさらに補熱を目的とした加熱を施された後に、熱間圧延を行う直送圧延を行ってもよい。
熱間圧延工程のための加熱温度は、とくに限定する必要はないが、1000〜1300℃の範囲の温度とすることが好ましい。加熱温度が1000℃未満では、変形抵抗が高くなり、生産性が低下する。一方、1300℃を超えて高温となると、スケールの成長が促進し、鋼板の表面性状が低下する。
The steel material is subjected to a hot rolling process to be a hot rolled steel sheet. The steel material may be subjected to direct feed rolling in which hot rolling is performed immediately after casting or after heating for the purpose of supplementary heating.
The heating temperature for the hot rolling process is not particularly limited, but is preferably in the range of 1000 to 1300 ° C. When the heating temperature is less than 1000 ° C., the deformation resistance increases and the productivity decreases. On the other hand, when the temperature is higher than 1300 ° C., the growth of scale is promoted and the surface properties of the steel sheet are lowered.

熱間圧延工程は、粗圧延と仕上圧延とからなるが、粗圧延は、所望の寸法形状のシートバーとすることができればよく、粗圧延の圧延条件はとくに限定されない。なお、打抜き加工後の平坦度向上の観点からは、仕上圧延前に、バーヒータやエッジヒータ等によりシートバーの加熱を行うことが好ましい。また、打抜き加工後の平坦度向上の観点からは、粗圧延後に先行する圧延材(シートバー)の尾端と後行する圧延材(シートバー)の先端部とを接合して熱間圧延する、連続圧延とすることが好ましい。   The hot rolling process includes rough rolling and finish rolling. The rough rolling is not particularly limited as long as it can be a sheet bar having a desired dimension and shape. From the viewpoint of improving the flatness after punching, it is preferable to heat the sheet bar with a bar heater, an edge heater or the like before finish rolling. Further, from the viewpoint of improving flatness after punching, hot rolling is performed by joining the tail end of the preceding rolled material (sheet bar) and the leading end portion of the following rolled material (sheet bar) after rough rolling. It is preferable to use continuous rolling.

熱間圧延工程における仕上圧延は、仕上圧延終了温度をAr3変態点以上とする圧延とする。仕上圧延終了温度がAr3変態点未満では、板厚精度が低下する。このため、仕上圧延終了温度はAr3変態点以上に限定することが好ましい。
なお、均一微細なフェライト・パーライト組織とするためには、熱間圧延工程の仕上圧延における、Ar3変態点〜(Ar3変態点+50℃)の温度域での累積圧下率を25%以上とし、仕上圧延終了温度を、Ar3変態点〜(Ar3変態点+50℃)の温度域とすることが好ましい。これにより、変態前のオーステナイト粒径が小さくなり、それに伴って変態後のフェライトおよびパーライト粒径が小さくなり、初析フェライトの平均粒径が10μm以下で、かつパーライトの平均粒径が5μm以下とすることができる。
The finish rolling in the hot rolling process is a rolling with the finish rolling end temperature being not less than the Ar 3 transformation point. If the finish rolling finish temperature is lower than the Ar 3 transformation point, the plate thickness accuracy decreases. For this reason, it is preferable that the finish rolling finish temperature is limited to the Ar 3 transformation point or higher.
In order to obtain a uniform and fine ferrite-pearlite structure, the cumulative rolling reduction in the temperature range from the Ar 3 transformation point to (Ar 3 transformation point + 50 ° C) in the finish rolling in the hot rolling process should be 25% or more. The finish rolling end temperature is preferably in the temperature range of Ar 3 transformation point to (Ar 3 transformation point + 50 ° C.). As a result, the austenite grain size before transformation becomes smaller, and accordingly, the ferrite and pearlite grain sizes after transformation become smaller, the average grain size of proeutectoid ferrite is 10 μm or less, and the average grain size of pearlite is 5 μm or less. can do.

なお、変態点は、熱膨張法で測定した値を基本とするが、本発明範囲の組成では、次式を用いて算出した値とよく一致することを確認したので、次式で計算した値を用いる。
Ar3変態点=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
ここで、C、Mn、Cu、Cr、Ni、Mo:各元素の含有量(質量%)
なお、含有しない元素がある場合には当該元素は零として計算するものとする。
The transformation point is based on the value measured by the thermal expansion method, but in the composition within the scope of the present invention, it was confirmed that it was in good agreement with the value calculated using the following formula. Is used.
Ar 3 transformation point = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
Here, C, Mn, Cu, Cr, Ni, Mo: Content of each element (mass%)
When there is an element that does not contain, the element is calculated as zero.

熱間圧延工程では、上記した仕上圧延により所望の板厚の熱延鋼板としたのち、該熱延鋼板に、さらに、仕上圧延終了後、8s以内に500〜650℃まで冷却し、ついで巻取り温度:500〜650℃で巻き取る冷却・巻取処理を施す。
圧延終了後の冷却は、水等による冷却、あるいは大気、ガス等による冷却とすることが好ましい。これらの方法を用いた冷却では、仕上圧延終了から冷却停止までの時間、すなわち冷却速度を所望の範囲に調整することが容易である。
In the hot rolling process, the hot-rolled steel sheet having a desired thickness is obtained by finish rolling as described above, and then the hot-rolled steel sheet is further cooled to 500 to 650 ° C. within 8 s after finishing rolling, and then wound up. Temperature: Cooling and winding treatment is performed at 500 to 650 ° C.
The cooling after the end of rolling is preferably cooling with water or the like, or cooling with air or gas. In the cooling using these methods, it is easy to adjust the time from the finish rolling to the cooling stop, that is, the cooling rate within a desired range.

仕上圧延終了後、冷却停止までの時間が、8sを超えて長くなると、冷却速度が低下するため、初析フェライトが過剰に生成し、セメンタイトが不均一に分散した組織が形成されやすくなる。このため、仕上圧延終了後、冷却停止までの時間を8s以内に限定することが好ましい。なお、適正量のベイニティックフェライトまたはベイナイトを生成させる場合には、圧延終了後、冷却開始までの時間は4s以内とすることが好ましい。圧延終了後、冷却開始までの時間が4sを超えて長くなると、その後の冷却の冷却速度が低下し、適正量のベイニティックフェライトまたはベイナイトを生成させることができなくなる。   If the time until finish of cooling after finishing rolling is longer than 8 s, the cooling rate decreases, so that proeutectoid ferrite is excessively generated and a structure in which cementite is dispersed unevenly is likely to be formed. For this reason, it is preferable to limit the time from the end of finish rolling to the cooling stop within 8 s. When an appropriate amount of bainitic ferrite or bainite is generated, it is preferable that the time from the end of rolling to the start of cooling be within 4 s. If the time until the start of cooling becomes longer than 4 s after the end of rolling, the cooling rate of subsequent cooling decreases, and an appropriate amount of bainitic ferrite or bainite cannot be generated.

また、冷却停止温度が500℃未満と低温になると、マルテンサイトが生成したり、ベイニティックフェライトまたはベイナイトが過剰に生成し、熱延鋼板の板形状が低下するとともに、巻取時に割れを生じる場合があるなど、操業上の問題を生じる。一方、冷却停止温度が650℃を超えて高温になると、初析フェライトが過剰に生成し、セメンタイトが不均一に分散した組織が形成される。このため、冷却停止温度は500〜650℃の温度域とすることが好ましい。なお、冷却停止後は巻取りまで放冷とすることが好ましい。なお、熱延鋼板の組織を、初析フェライトとパーライトとする場合には、冷却停止温度は550℃以上とすることが好ましい。   In addition, when the cooling stop temperature is as low as less than 500 ° C, martensite is generated, bainitic ferrite or bainite is excessively generated, and the shape of the hot-rolled steel sheet is lowered and cracking occurs during winding. This may cause operational problems. On the other hand, when the cooling stop temperature exceeds 650 ° C. and becomes high, proeutectoid ferrite is generated excessively, and a structure in which cementite is dispersed non-uniformly is formed. For this reason, the cooling stop temperature is preferably in the temperature range of 500 to 650 ° C. In addition, after cooling stops, it is preferable to let it cool until winding. When the structure of the hot-rolled steel sheet is pro-eutectoid ferrite and pearlite, the cooling stop temperature is preferably 550 ° C. or higher.

また、適正量のベイニティックフェライトまたはベイナイトを生成させる場合には、冷却停止温度は、500〜600℃とすることが好ましい。冷却停止温度が500℃未満では、上記したように、マルテンサイトが生成したり、ベイニティックフェライトまたはベイナイトが過剰に生成し、熱延鋼板の板形状が低下する。また、600℃を超えて高温になると、初析フェライトの生成量が過剰となり、パーライトとベイニティックフェライトまたはベイナイトの合計を体積率で80%以上とすることが困難となり、セメンタイトが不均一に分散した組織となりやすい。   In addition, when an appropriate amount of bainitic ferrite or bainite is generated, the cooling stop temperature is preferably 500 to 600 ° C. When the cooling stop temperature is less than 500 ° C., as described above, martensite is generated, bainitic ferrite or bainite is excessively generated, and the plate shape of the hot-rolled steel sheet is lowered. When the temperature exceeds 600 ° C, the amount of pro-eutectoid ferrite becomes excessive, making it difficult to make the total of pearlite and bainitic ferrite or bainite 80% or more by volume, resulting in uneven cementite. It tends to be a distributed organization.

巻取り温度は、500〜650℃の範囲の温度とすることが好ましい。巻取り温度が500℃未満では、マルテンサイトが生成したり、ベイニティックフェライトまたはベイナイトが過剰に生成し、巻取り時に割れが生じたり、あるいは板形状等が劣化する。一方、650℃を超えて高温になると、初析フェライトの生成量が増加し、セメンタイトが不均一に分散した組織となりやすくなる。なお、熱延鋼板の組織を初析フェライトとパーライトとする場合には、巻取温度を550〜650℃とすることがより好ましい。   The winding temperature is preferably in the range of 500 to 650 ° C. When the winding temperature is less than 500 ° C., martensite is generated, bainitic ferrite or bainite is excessively generated, cracking occurs during winding, or the plate shape or the like is deteriorated. On the other hand, when the temperature is higher than 650 ° C., the amount of pro-eutectoid ferrite is increased, and a structure in which cementite is dispersed unevenly tends to be obtained. In addition, when making the structure | tissue of a hot-rolled steel plate into pro-eutectoid ferrite and pearlite, it is more preferable that winding temperature shall be 550-650 degreeC.

冷却・巻取処理を施された熱延鋼板は、ついで、好ましくは酸洗を行い、冷間圧延を行う冷間圧延工程を施され、冷間加工硬化を活用して所望の硬さを有する冷延鋼板とされる。冷間圧延の条件(圧下率)は、所望の硬さに応じて、適宜選択すればよく、とくに限定されない。自動車用部品として所望の硬さを確保するためには、冷間圧延の圧下率は30%以上とすることが好ましいが、70%を超えると、残留歪が大きくなりすぎて、打抜き加工後の平坦度が低下するため、70%以下にすることが好ましい。   The hot-rolled steel sheet that has been subjected to the cooling / winding treatment is then subjected to a cold rolling process in which it is preferably pickled and cold-rolled, and has a desired hardness by utilizing cold work hardening. Cold-rolled steel sheet. The cold rolling conditions (rolling rate) may be appropriately selected according to the desired hardness, and are not particularly limited. In order to ensure the desired hardness for automotive parts, the rolling reduction of cold rolling is preferably 30% or more, but if it exceeds 70%, the residual strain becomes too large and Since the flatness is lowered, it is preferably made 70% or less.

表1に示す化学組成を有するスラブ(鋼素材)を、加熱温度:1250℃で加熱し、均質化したのち、表2に示す条件で、熱間圧延工程を施し熱延鋼板(板厚:4.5mm)とした。得られた熱延鋼板について、組織観察および引張試験を実施した。
ついで、これら熱延鋼板に酸洗処理を施し、表2に示す条件(圧下率)で冷間圧延を施し冷延鋼板(板厚:1.8mm、板厚公差0.05mm)とした。なお、冷間圧延後、レベラーにて形状矯正を行った。
A slab (steel material) having the chemical composition shown in Table 1 was heated at a heating temperature of 1250 ° C. and homogenized, and then subjected to a hot rolling process under the conditions shown in Table 2 to obtain a hot-rolled steel sheet (sheet thickness: 4.5). mm). The obtained hot-rolled steel sheet was subjected to a structure observation and a tensile test.
Subsequently, the hot-rolled steel sheets were pickled and cold-rolled under the conditions shown in Table 2 (rolling ratio) to obtain cold-rolled steel sheets (thickness: 1.8 mm, thickness tolerance 0.05 mm). After cold rolling, the shape was corrected with a leveler.

得られた冷延鋼板について、平坦度試験、打抜き後の端面性状評価試験、および耐摩耗性評価試験(硬さ試験)を実施し、打抜き加工後の平坦度、打抜き後の端面性状、および耐摩耗性を評価した。試験方法は次のとおりとした。
(1)組織観察
得られた熱延鋼板から組織観察用試験片を採取し、該試験片の圧延方向に平行な板厚断面を研磨・腐食(ナイタール)したのち、走査型電子顕微鏡(SEM)を用いて、組織を各30視野以上撮像(倍率:1500〜5000倍)した。画像処理により、基地組織の種類およびそれら組織の体積分率を測定した。また、撮像した写真から、初析フェライトおよびパーライトの粒径も画像解析により求めた。初析フェライトおよびパーライトの粒径は、各粒の面積を測定し、得られた面積から各粒の円相当径を求め、それらの値を算術平均し、各相の平均粒径とした。なお、ここでポリゴナルフェライトとして観察される組織を初析フェライトとした。
The obtained cold-rolled steel sheet is subjected to a flatness test, an end surface property evaluation test after punching, and an abrasion resistance evaluation test (hardness test), and the flatness after punching, the end surface property after punching, and the resistance Abrasion was evaluated. The test method was as follows.
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained hot-rolled steel sheet, and the thickness cross section parallel to the rolling direction of the specimen is polished and corroded (Nital), and then a scanning electron microscope (SEM) The tissue was imaged over 30 fields of view (magnification: 1500-5000 times). The types of base tissues and the volume fractions of these tissues were measured by image processing. Moreover, the particle diameters of proeutectoid ferrite and pearlite were also determined from imaged photographs by image analysis. The grain sizes of proeutectoid ferrite and pearlite were determined by measuring the area of each grain, obtaining the equivalent circle diameter of each grain from the obtained area, and arithmetically averaging these values to obtain the average grain diameter of each phase. Here, the structure observed as polygonal ferrite was defined as pro-eutectoid ferrite.

また、基地中に分散するセメンタイトの分散密度を求めた。撮像した組織写真から画像処理により、各視野内に存在するセメンタイトの個数を測定し、得られた各視野内のセメンタイトの個数を算術平均し、各熱延鋼板の視野内の平均個数とし、セメンタイト分散密度(個/mm2)に換算した。なお、セメンタイトは、単独で粒状、片状に存在するもの以外に、パーライト中に層状に存在するセメンタイトをも含む。層状セメンタイトは、セメンタイトが連続して存在するものを1個とし、層状セメンタイトに断裂が存在するときは、それぞれを1個とカウントするものとする。フェライト粒界に存在するセメンタイトもパーライトと同様にカウントした。 The dispersion density of cementite dispersed in the base was also determined. The number of cementite present in each field of view is measured by image processing from the captured tissue photograph, the number of cementites in each field of view obtained is arithmetically averaged, and the average number in the field of view of each hot-rolled steel sheet is obtained. It was converted into a dispersion density (pieces / mm 2 ). Note that the cementite includes cementite existing in layers in the pearlite, in addition to those existing in granular and flake form alone. As for the layered cementite, one piece of cementite is continuously present, and when the layered cementite is broken, each piece is counted as one piece. Cementite present at the ferrite grain boundaries was also counted in the same manner as pearlite.

(2)引張試験
得られた熱延鋼板から圧延方向に引張方向が一致するようにJIS5号引張試験を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張強さTSを求めた。
(3)平坦度試験
得られた冷延鋼板から試験片(大きさ:120×120mm)を採取し、該試験片から、クリアランス10%の条件下で円盤試験片(φ100mm)を打抜き、打抜かれた円盤試験片の平坦度を測定した。平坦度は、打抜かれた円盤試験片を、図1に示す角筒状治具(ギャップ:1.95×105×400mm)のギャップ内に落とし、その通過具合によって評価した。円盤試験片がギャップ内を通過した場合を○、円盤試験片が途中で引っ掛かり、ギャップを通過しなかった場合を×として平坦度を評価した。
(2) Tensile test A JIS No. 5 tensile test was taken from the obtained hot-rolled steel sheet so that the tensile direction coincided with the rolling direction, and the tensile test was conducted in accordance with the provisions of JIS Z 2241. Asked.
(3) Flatness test A test piece (size: 120 x 120 mm) is taken from the obtained cold-rolled steel sheet, and a disk test piece (φ100 mm) is punched out from the test piece under a condition of 10% clearance. The flatness of the disc test piece was measured. The flatness was evaluated by dropping the punched disk specimen into a gap of a rectangular tube jig (gap: 1.95 × 105 × 400 mm) shown in FIG. The flatness was evaluated by ◯ when the disk specimen passed through the gap, and x when the disk specimen was caught in the middle and did not pass through the gap.

(4)打抜き加工後の端面性状評価試験
得られた冷延鋼板から試験片(大きさ:120×120mm)を採取し、該試験片から、クリアランス10%の条件下で試片(大きさ:50×50mm)を打抜き、打抜かれた試片の端面(剪断面)について、打抜き方向と直交する方向に、触針式表面粗度計を用い、JIS B 0601−1994の規定に準拠して、表面粗さRz (十点平均粗さ)を測定した。測定位置は、圧延方向に対して、0°、90°、180°、270°の4箇所の打抜き端面とした。
(4) End face property evaluation test after punching process A test piece (size: 120 × 120 mm) is taken from the obtained cold-rolled steel sheet, and a test piece (size: size: 10%) is taken from the test piece. 50 × 50mm), and using the stylus type surface roughness meter in the direction perpendicular to the punching direction for the end face (shear surface) of the punched specimen, in accordance with the provisions of JIS B 0601-1994, The surface roughness Rz (ten-point average roughness) was measured. The measurement positions were four punched end faces of 0 °, 90 °, 180 °, and 270 ° with respect to the rolling direction.

各位置で得られた表面粗さRzを算術平均した値Rz ave(=(A1+A2+A3+A4)/4 ここで、A1、A2、A3、A4:各面のRz)を、その鋼板の打抜き端面の表面粗さとした。打抜き加工後の端面のRz aveが、15μm以下である場合を打抜き加工後の端面性状に優れるとして○、Rz aveが、15μm超えである場合を打抜き加工後の端面性状に劣るとして×として評価した。   Rz ave (= (A1 + A2 + A3 + A4) / 4 where A1, A2, A3, A4: Rz of each surface) obtained by arithmetically averaging the surface roughness Rz obtained at each position The surface roughness of the punched end face of When the Rz ave of the end face after punching is 15 μm or less, it is evaluated as ○ when the end face property after punching is excellent, and when the Rz ave exceeds 15 μm, it is evaluated as x when it is inferior to the end face property after punching. .

(5)耐摩耗性評価試験(硬さ試験)
得られた冷延鋼板から試験片(大きさ:50×50mm)を採取し、該試験片の板面を研磨後、ビッカース硬さ計(試験力:9.8N)を用いて各10点測定し、算術平均して、各鋼板の板面平均硬さHVを求めた。ここで、板面平均硬さHV値が、250HV以上の場合を耐摩耗性良として評価した。
(5) Wear resistance evaluation test (hardness test)
Take a test piece (size: 50 x 50 mm) from the cold-rolled steel plate obtained, and after polishing the plate surface of the test piece, measure 10 points each using a Vickers hardness tester (test force: 9.8 N). The plate surface average hardness HV of each steel plate was obtained by arithmetic averaging. Here, the case where the plate surface average hardness HV value was 250 HV or higher was evaluated as good wear resistance.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005070824
Figure 0005070824

Figure 0005070824
Figure 0005070824

Figure 0005070824
Figure 0005070824

本発明例はいずれも、打抜き加工後の平坦度に優れ、さらに打抜き加工後の端面性状に優れ、さらには板面硬さが高く、耐摩耗性に優れている。一方、本発明の範囲を外れる比較例は、打抜き加工後の平坦度が低下しているか、あるいは打抜き加工後の端面性状が低下しているか、あるいは耐摩耗性が低下しているか、あるいはいずれも打抜き加工後の平坦度、打抜き加工後の端面性状、耐摩耗性がともに、低下している。   Each of the inventive examples is excellent in flatness after punching, further excellent in end face properties after punching, and further has high plate surface hardness and excellent wear resistance. On the other hand, the comparative example outside the scope of the present invention is that the flatness after punching is lowered, the end face property after punching is lowered, or the wear resistance is lowered, or both Both flatness after punching, end face properties after punching, and wear resistance are reduced.

実施例で使用した、平坦度試験用治具の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the jig | tool for a flatness test used in the Example.

Claims (7)

熱延鋼板に30〜70%の圧下率で冷間圧延を施してなる冷延鋼板であって、前記熱延鋼板が、質量%で、
C:0.10〜0.20%、 Si:0.5%以下、
Mn:0.20〜1.5%、 P:0.03%以下、
S:0.020%以下、 Cr:0.05〜0.5%
を含み、残部がFe及び不可避的不純物からなる組成と、初析フェライトとパーライトとからなる基地を有し、前記パーライトの平均粒径が5μm以下で、前記初析フェライトの平均粒径が10μm以下であり、かつ前記基地中に存在するセメンタイトが平均で、2.0×104個/mm2以上分散した組織と、を有する引張強さ:440MPa以上の熱延鋼板であることを特徴とする、打抜き加工後の平坦度に優れかつ端面性状に優れた冷延鋼板。
A cold-rolled steel sheet obtained by subjecting a hot-rolled steel sheet to cold rolling at a rolling reduction of 30 to 70% , wherein the hot-rolled steel sheet is in mass%,
C: 0.10 to 0.20%, Si: 0.5% or less,
Mn: 0.20 to 1.5%, P: 0.03% or less,
S: 0.020% or less, Cr: 0.05-0.5%
Anda the balance being Fe and inevitable impurities, has a pro-eutectoid ferrite and pearlite Toka Ranaru base, an average particle diameter of the perlite is 5μm or less, an average particle size of the pro-eutectoid ferrite is 10μm or less , and the and in cementite present average in the base, 2.0 × 10 4 cells / mm 2 or more dispersed organizations and tensile having a strength: characterized in that it is a hot-rolled steel sheet more than 440 MPa, punching Cold-rolled steel sheet with excellent flatness after processing and excellent end face properties.
熱延鋼板に30〜70%の圧下率で冷間圧延を施してなる冷延鋼板であって、前記熱延鋼板が、質量%で、
C:0.10〜0.20%、 Si:0.5%以下、
Mn:0.20〜1.5%、 P:0.03%以下、
S:0.020%以下、 Cr:0.05〜0.5%
を含み、残部がFe及び不可避的不純物からなる組成と、初析フェライトとパーライトと、さらに、ベイニティックフェライトまたはベイナイトとからなる基地を有し、前記パーライトが体積率で50%以上で、前記ベイニティックフェライトまたはベイナイトが体積率で30%以下で、かつパーライトとベイニティックフェライトまたはベイナイトの合計が、体積率で80%以上である組織分率を有し、前記パーライトの平均粒径が5μm以下で、前記初析フェライトの平均粒径が10μm以下であり、かつ前記基地中に存在するセメンタイトが平均で、2.0×10 4 個/mm 2 以上分散した組織と、を有する引張強さ:440MPa以上の熱延鋼板であることを特徴とする、打抜き加工後の平坦度に優れかつ端面性状に優れた冷延鋼板。
A cold-rolled steel sheet obtained by subjecting a hot-rolled steel sheet to cold rolling at a rolling reduction of 30 to 70%, wherein the hot-rolled steel sheet is in mass%,
C: 0.10 to 0.20%, Si: 0.5% or less,
Mn: 0.20 to 1.5%, P: 0.03% or less,
S: 0.020% or less, Cr: 0.05-0.5%
In hints, and the balance being Fe and unavoidable impurities, the pro-eutectoid ferrite and pearlite, further comprising a base ing from the bainitic ferrite or bainite, the pearlite 50% or more by volume, the bays 30% or less in bainitic ferrite or bainite volume fraction, and the sum of pearlite and bainitic ferrite or bainite, have a structure fraction is at least 80% by volume, average particle diameter of the perlite Is a structure in which the average particle size of the pro-eutectoid ferrite is 10 μm or less and the cementite existing in the matrix is dispersed in an average of 2.0 × 10 4 pieces / mm 2 or more. : A cold-rolled steel sheet having excellent flatness after punching and excellent end face properties, characterized by being a hot-rolled steel sheet of 440 MPa or more .
前記組成に加えてさらに、質量%で、Ti:0.01〜0.1%、B:0.0005〜0.005%のうちから選ばれた1種または2種を含有することを特徴とする請求項1または2に記載の冷延鋼板。 The composition according to claim 1 or 2 , further comprising one or two selected from Ti: 0.01 to 0.1% and B: 0.0005 to 0.005% by mass% in addition to the composition. Cold rolled steel sheet. 鋼素材に熱間圧延工程を施して熱延鋼板としたのち、該熱延鋼板に冷間圧延工程を施して冷延鋼板とするにあたり、
前記鋼素材を、質量%で、
C:0.10〜0.20%、 Si:0.5%以下、
Mn:0.20〜1.5%、 P:0.03%以下、
S:0.020%以下、 Cr:0.05〜0.5%
を含み、残部がFe及び不可避的不純物からなる組成を有する鋼素材とし、
前記熱間圧延工程を、仕上圧延の仕上圧延終了温度をAr3変態点以上とする熱間圧延と、該仕上圧延終了後、8s以内に500〜650℃まで冷却し、ついで巻取り温度:500〜650℃で巻き取る冷却・巻取処理とを施す工程とし、
前記冷間圧延工程を、前記熱延鋼板に酸洗処理を施し、ついで、圧下率:30〜70%の冷間圧延を施す工程とすることを特徴とする打抜き加工後の平坦度に優れかつ端面性状に優れた冷延鋼板の製造方法。
After subjecting the steel material to a hot-rolled steel sheet by subjecting it to a hot-rolled steel sheet, the cold-rolled steel sheet by subjecting the hot-rolled steel sheet to a cold-rolled steel sheet,
The steel material in mass%,
C: 0.10 to 0.20%, Si: 0.5% or less,
Mn: 0.20 to 1.5%, P: 0.03% or less,
S: 0.020% or less, Cr: 0.05-0.5%
A steel material having a composition consisting of Fe and inevitable impurities in the balance,
In the hot rolling process, the hot rolling at which the finish rolling finish temperature of the finish rolling is set to the Ar 3 transformation point or higher, and the finish rolling is cooled to 500 to 650 ° C. within 8 s, and then the winding temperature: 500 It is a process to perform cooling and winding processing to wind up at ~ 650 ° C,
The cold Ma圧 rolling step, the pickling process applied to the hot-rolled steel sheet, then rolling reduction: flatness after punching, wherein step and to Rukoto applying between 30% to 70% cold rolling A method for producing a cold-rolled steel sheet having excellent end face properties.
前記熱間圧延工程を、仕上圧延のAr3変態点〜(Ar3変態点+50℃)の温度域での累積圧下率を25%以上とし、仕上圧延終了温度をAr3変態点〜(Ar3変態点+50℃)の温度域とする熱間圧延と、該仕上圧延終了後、8s以内に550〜650℃まで冷却し、ついで巻取り温度:500〜650℃で巻き取る冷却・巻取処理とを施す工程とすることを特徴とする請求項に記載の冷延鋼板の製造方法。 In the hot rolling step, the cumulative rolling reduction in the temperature range from the Ar 3 transformation point of finishing rolling to (Ar 3 transformation point + 50 ° C.) is 25% or more, and the finish rolling finish temperature is set to Ar 3 transformation point to (Ar 3 A temperature range of (transformation point + 50 ° C), and after the finish rolling, cooling to 550 to 650 ° C within 8 s, and then winding and cooling at a winding temperature of 500 to 650 ° C The method for producing a cold-rolled steel sheet according to claim 4 , wherein 前記熱間圧延工程を、仕上圧延の仕上圧延終了温度をAr3変態点以上とする熱間圧延と、該仕上圧延終了後、4s以内に500〜600℃まで冷却し、巻取り温度:500〜650℃で巻き取る冷却・巻取処理とを施す工程とすることを特徴とする請求項に記載の冷延鋼板の製造方法。 In the hot rolling step, the hot rolling at which the finish rolling finish temperature of the finish rolling is set to the Ar 3 transformation point or more, and the finish rolling is cooled to 500 to 600 ° C. within 4 s, and the winding temperature: 500 to The method for producing a cold-rolled steel sheet according to claim 4 , wherein a cooling / winding process of winding at 650 ° C. is performed. 前記組成に加えてさらに、質量%で、Ti:0.01〜0.1%、B:0.0005〜0.005%のうちから選ばれた1種または2種を含有することを特徴とする請求項ないしのいずれかに記載の冷延鋼板の製造方法。
In addition to the above composition, by mass%, Ti: 0.01~0.1%, B : 4 claims, characterized by containing one or two selected from among 0.0005 to 0.005% to any 6 A method for producing the cold rolled steel sheet according to claim 1.
JP2006323828A 2006-11-30 2006-11-30 Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same Active JP5070824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006323828A JP5070824B2 (en) 2006-11-30 2006-11-30 Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323828A JP5070824B2 (en) 2006-11-30 2006-11-30 Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008138237A JP2008138237A (en) 2008-06-19
JP5070824B2 true JP5070824B2 (en) 2012-11-14

Family

ID=39600013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323828A Active JP5070824B2 (en) 2006-11-30 2006-11-30 Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same

Country Status (1)

Country Link
JP (1) JP5070824B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5046400B2 (en) * 2009-03-02 2012-10-10 日新製鋼株式会社 Method for producing cold-rolled steel sheet with excellent recrystallization softening resistance and cold-rolled steel sheet for automatic transmission
BR112012019585A2 (en) * 2010-01-25 2020-10-06 Nippon Steel Corporation steel sheet for cold forging and process for its production.
JP6120604B2 (en) * 2013-02-19 2017-04-26 日新製鋼株式会社 Cold-rolled steel sheet for automatic transmission member and manufacturing method thereof
JP5633594B2 (en) 2013-04-02 2014-12-03 Jfeスチール株式会社 Cold-rolled steel sheet excellent in punchability and heat-strain resistance and method for producing the same
US11060157B2 (en) 2016-03-31 2021-07-13 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full hard cold-rolled steel sheet, method for producing steel sheet, and method for producing coated steel sheet
JP7436824B2 (en) 2020-03-26 2024-02-22 日本製鉄株式会社 Steel plate for hot stamped parts and its manufacturing method
CN113862580A (en) * 2021-09-08 2021-12-31 唐山不锈钢有限责任公司 Hot-rolled steel strip for 590 MPa-grade cold-rolled dual-phase steel and production method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976861A (en) * 1982-10-27 1984-05-02 Nisshin Steel Co Ltd Steel plate for precision blanking
JP3483656B2 (en) * 1995-04-27 2004-01-06 日新製鋼株式会社 High-strength steel sheet for precision punching
JP3655044B2 (en) * 1997-03-21 2005-06-02 日新製鋼株式会社 Steel plate for drive plates with excellent rolling processability
JP4465057B2 (en) * 1999-03-16 2010-05-19 日新製鋼株式会社 High carbon steel sheet for precision punching
JP3680248B2 (en) * 1999-03-16 2005-08-10 Jfeスチール株式会社 Cold rolled steel sheet manufacturing method with excellent flatness of punched parts
JP4322610B2 (en) * 2003-09-19 2009-09-02 日新製鋼株式会社 Cold-rolled steel sheet with excellent impact characteristics and method for producing the same
JP4333379B2 (en) * 2004-01-29 2009-09-16 Jfeスチール株式会社 Method for producing high-strength thin steel sheet with excellent workability, surface texture and flatness
JP4438074B2 (en) * 2006-02-07 2010-03-24 日新製鋼株式会社 Cold-rolled steel sheet for automatic transmission member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008138237A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5076347B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5056876B2 (en) Hot-rolled steel sheet with excellent cold workability and hardenability and method for producing the same
JP2007291495A (en) Hot-rolled ultrasoft high-carbon steel plate and process for production thereof
JP2007277696A (en) Dead soft high-carbon hot-rolled steel sheet and its manufacturing method
WO2014061270A1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP5070824B2 (en) Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same
JP2008069452A (en) Hot-rolled high-carbon steel sheet and process for production of the same
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JP2007270331A (en) Steel sheet superior in fine blanking workability, and manufacturing method therefor
KR101751242B1 (en) Full hard cold-rolled steel sheet and method for manufacturing the same
WO2007088985A1 (en) Steel sheet with excellent suitability for fine blanking and process for producing the same
JP4600196B2 (en) High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
EP2246450B1 (en) Steel sheets and process for manufacturing the same
JP4992274B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP4992275B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5194454B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP4905031B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5125081B2 (en) Cold-rolled steel sheet with excellent flatness after punching and method for producing the same
JP6628018B1 (en) Hot rolled steel sheet
JP5050386B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5157416B2 (en) Steel sheet and manufacturing method thereof
JP2009149924A (en) Steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5070824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250