WO2007088985A1 - Steel sheet with excellent suitability for fine blanking and process for producing the same - Google Patents

Steel sheet with excellent suitability for fine blanking and process for producing the same Download PDF

Info

Publication number
WO2007088985A1
WO2007088985A1 PCT/JP2007/051835 JP2007051835W WO2007088985A1 WO 2007088985 A1 WO2007088985 A1 WO 2007088985A1 JP 2007051835 W JP2007051835 W JP 2007051835W WO 2007088985 A1 WO2007088985 A1 WO 2007088985A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
ferrite
carbide
steel
steel sheet
Prior art date
Application number
PCT/JP2007/051835
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Seto
Takeshi Yokota
Nobuyuki Nakamura
Nobusuke Kariya
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38327552&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007088985(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to US12/159,010 priority Critical patent/US20090173415A1/en
Priority to EP07713798A priority patent/EP1980635B1/en
Priority to CN2007800041809A priority patent/CN101379208B/en
Publication of WO2007088985A1 publication Critical patent/WO2007088985A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a steel plate suitable for use in automobile parts and the like, and is particularly suitable for fine blanking workability that is suitable for being subjected to precision punching (hereinafter also referred to as fine blanking: E or FB processing). It relates to an excellent steel sheet.
  • E or FB processing precision punching
  • fine-blanking is a very difficult processing method compared to cutting from the viewpoint of improving dimensional accuracy, manufacturing process defects, etc. . .
  • Patent Document 1 '0';: 0. ⁇ 0. 90 weight 0/0, Si: 0.4 wt 0/0 less, Mn: 0. from 3 to 1.0 Thread loss containing 0 weight, spheroidization rate 80% or more, average particle size 0. -1.0 / zm
  • Patent Document 1 A high-carbon steel sheet that has a woven structure in which carbonized carbon is dispersed in a ferrite matrix and has a notch drawing of 20 or more and a precision punching workability of 1 is proposed. According to the technique described in Patent Document 1, the precision punchability is improved and the mold is also improved. '
  • Patent Document 1 has a problem of poor formability after fine blanking. .
  • Patent Document 2 includes: C: 0.08 to 0.19%, Si, Mn, A1 having proper S ⁇ , Cr: 0.05 to 0-80%,
  • 3 ⁇ 4 has a problem that the molding processability after the iso-blanking process is inferior.
  • Patent Document 3 includes C: 0 to 0.45%, and the contents of Si, Mn, P, S, Al, and N are within appropriate ranges.
  • High carbon steel sheets with a structure with an average grain size of 10-20 ⁇ and excellent formability in rolling and fine blanking have been proposed.
  • the high-carbon steel sheet described in Patent Document 3 is excellent in fine blanking workability, and it is said that mold wrinkles in fine blanking work are also improved.
  • the high charcoal steel plate described in Patent Document 3 has a problem that it has poor F-fre-low characteristics after fine blanking.
  • Patent Document 1 all of the steel sheets described in Patent Document 1,... Patent Document 2, and Patent Document 3 have a fine blanking workability that is satisfactory in the fine blanking process under severe conditions.
  • the gold plate has not been sufficiently improved, and the problem remains that the formability after the fine blanking process is inferior! /
  • Patent Document 4 includes C: 0.20 to 0.33%, Si: Mn, P, S, 'sol. Al, N content is adjusted to an appropriate range, and Cr: 0.15.
  • a steel plate having a composition containing ⁇ 0.7% and having a ferrite-bainite mixed yarn male which may contain pearlite and excellent in elongation larangability has been proposed.
  • the hole expansion rate is increased and the stretch flangeability is improved.
  • Patent Document 5 includes ferrite particles containing C: 0.2 to 0.7%, an average particle size of carbide of 0.1 ⁇ m or more and less than 1.2 ⁇ m, and ferrite particles containing no carbide.
  • a high-carbon steel sheet having a structure with a volume fraction of 15% or less and excellent in stretch flangeability has been proposed.
  • the high charcoal Kashioka plate described in Patent Document 5 suppresses the generation of voids at the end face during punching, and can slow the growth of cracks in hole expansion processing, and has a stretch flangeability. It is supposed to improve.
  • Patent Document 6 includes C: containing 0.2% or more, mainly composed of ferrite and carbide, having a carbide particle size of 0 or less, a celite particle size of 0.5 to 1 and 0 fibers.
  • a high charcoal 3 ⁇ 4 ⁇ oka board with excellent punching and firing properties has been proposed. As a result, both the punching ability determined by the height of 3 ⁇ 4 and gold and the 3 ⁇ 4 ⁇ ⁇ ⁇ property are improved.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-265240
  • Patent Document 2 JP 59-76861 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-140037
  • Patent Document 4 JP 9 - 49 No. 0Deruta5 ⁇ -
  • Patent Document 5 Japanese Patent Laid-Open No. 2001-214234
  • Patent Document 6 Japanese Patent Application Laid-Open No. 9-316595 Disclosure of Invention
  • the techniques described in Patent Document 4 and Patent Document 5 are all based on the premise that conventional punching is performed, and the clearance is Fine blanking is almost zero. It does not consider the application of processing. Therefore, it is difficult to ensure the same stretch flangeability after severe fine-buffing, and there is a problem that even if it can be confirmed, gold » ⁇ is shortened.
  • -'One- ⁇ : Further, in the technique described in Patent Document 6, it is necessary to make the ferrite grain size in the range of 0.5 to 1 ⁇ , and it is necessary to stably and industrially manufacture a steel sheet having such ferrite i ⁇ . Is difficult, and it has been given the title “L” when it leads to a decrease in product yield.
  • the present invention has been made in view of the above-mentioned conventional problems, and provides a method for producing a steel sheet opioid having excellent fine blanking workability and excellent forming workability after fine blanking. »Aim to do.
  • FB workability metal and «on fine blanking workability
  • FB workability and the carbide opipherite grain size in the ferrite grains are closely related. Then, a steel material having a predetermined range of 3 ⁇ 43 ⁇ 4 is made into an m3 ⁇ 4i slab with nearly 100% pearlite weave, with hot rolling finish rolling conditions and subsequent cooling as appropriate conditions, and further subjected to hot plate annealing under appropriate conditions. If the average ferrite particle size is 10 zm or less, the spheroidization rate of the carbide is above, and the area of the carbide that forms a strong ferrite grain boundary is 40% or more in proportion to the oxide area.
  • hot rolling consisting of 5 passes 3 ⁇ 4E rolled and 7 passes ⁇ ⁇ rolled, 3 ⁇ 4J ⁇ 4.2imi
  • finish rolling of hot rolling was set to 860 ° C, ⁇ is 600 ° C, and the cooling after the above rolling cooled (5 ° C / s) ⁇ 250 with / 3 to be changed!] And specifications.
  • the cooling stop dredging that performed cooling other than air cooling was set to 650.
  • these boat steel plates were pickled and then subjected to batch annealing (720 ° CX 5 to 40 hours) as plate annealing. These steel sheets that were annealed with ⁇ sheets were observed for metal paper weave and evaluated for FB workability.
  • the area of each ferrite grain was measured, the equivalent circle diameter was determined from the obtained area, and each grain size was determined.
  • the obtained ferrite grain sizes were arithmetically averaged, and the value was defined as the average ferrite wrinkle of the steel sheet.
  • the measured ferrite grains were 5000 pieces each.
  • the maximum length a and the minimum length b of each carbide are calculated using the image W device in each field of view of the paper weave observation (magnification: 3000 times), the ratio a / b is calculated, and a / b
  • the number of carbide particles with a particle size of 3 or less was expressed as a percentage (%) of the number of ⁇ compounds measured and used as the spheroidization rate (%) of the carbide.
  • the measured number of carbide grains was 9000 each.
  • the amount of ferrite grain boundary carbide defined by The area of the carbide grains was measured in 30 fields of view (magnification: 3000 times).
  • a test plate (size: 100X80nm) was taken from the obtained steel plate and a fine blanking test (FB test) was performed.
  • FB test fine blanking test
  • the surface roughness (ten-point average roughness Rz) of the end face (punched surface) of the punched sample was measured to improve FB workability.
  • test piece has a clearance; in order to eliminate the influence of the W deviation, both sides were ground in equal amounts in advance to obtain a plate thickness of 4.0 ⁇ 0.010 m.
  • the surface roughness is measured at four end faces excluding the R section, and at each end face, as shown in Fig. 4, from the punch side surface 0.5; Scan the surface of TO (X direction) 10m on the surface with a stylus type surface meter repeatedly 35 times in the book direction (t direction) at 100 ⁇ pitch, and according to JIS B 0601-1994.
  • Rz was measured.
  • the surface roughness Rz of the measurement surface was calculated by adding the Rz values of each running spring to the average value. Measure the four end faces in the same way as above and
  • Rz ave (Rz 1+ Rz 2+ Rz 3+ Rz 4) / 4
  • the average surface roughness defined by: Rz ave (; z m ) was calculated.
  • the force that makes the appearance of a fractured surface at the punched end face 10% or less “Excellent FB workability”
  • the surface roughness of the test piece of 3 ⁇ 4 ⁇ ⁇ ⁇ different from the above is measured. 3 ⁇ 4 ⁇ is the same as the above, from the surface 0, 5 TM to the plate thickness direction, and on the strong surface in the range of (mm) -0. Iran) 3 ⁇ 4g
  • the 10-nm region is repeatedly scanned in the thickness direction at 100 m pitch to obtain Rz of each surface, and Rzave can be obtained from Rz of each surface.
  • the present invention has been completed based on the above findings and further research. That is, the gist of Honjo is as follows.
  • the steel that has an average grain size of 5 m or less in carbides that crystallize the grain boundaries of tiflB ferrite.
  • the filBl ⁇ material is applied to the steel material by hot rolling the steel material and rolling the steel material to make a steel plate, and annealing the boat plate ⁇ plate;
  • the steel sheet is excellent in FB workability, and it is not necessary to perform end face processing after FB processing, which enables ⁇ I during the manufacturing period, improves productivity, and reduces manufacturing costs. [There is also an effect that 1 reduction is possible.
  • Figure 1 is a graph showing the relationship between FB workability (surface roughness of the punched surface) and ferrite grain boundary carbide content.
  • Figure 2 is a graph showing the relationship between FB workability (surface roughness of the punched surface) and carbide spheroidization rate.
  • Figure 3 is a graph showing the relationship between FB workability (surface roughness of the punched surface) and average ferrite crystal grain size. '
  • FIG. 4 is an explanatory view for schematically explaining the surface roughness measurement region of the punched surface after FB processing.
  • C is an element that affects the hardness after annealing and in the present invention, and in the present invention, it needs to contain 0.1% or more. If C is less than 0 ⁇ 1%, the hardness required for automobile parts cannot be obtained. On the other hand, if the content exceeds 0.5%, the steel sheet becomes hard, so that it is impossible to secure an industrially sufficient mold life. For this reason, C is limited to the range of 0.1 to 0.5%.
  • Si acts as a deoxidizing agent, and when it is contained in a large amount exceeding '0.5%, which is an element that increases strength (hardness) by solid solution strengthening, the ferrite phase becomes hard and FB workability decreases.
  • '0.5% an element that increases strength (hardness) by solid solution strengthening
  • the ferrite phase becomes hard and FB workability decreases.
  • the Si content exceeds 0.5%, a surface defect called red scale occurs in the thermal stage. For this reason, Si was limited to 0.5% or less. In addition, Preferably it is 0.35% or less.
  • Mn is an element that effectively increases the strength of the steel and improves the i3 ⁇ 4AL properties by increasing the solid solution strength. In order to obtain such effects, it is desirable to contain 0.2% or more, but more than 1.5% If it is contained excessively, the solid solution strength becomes too strong and the ferrite strength becomes harder, and the FB processability decreases. For this reason, Mn was limited to the range of 0.2 to 1.5%. Preferably, it is 0.6 to 0.9% P: 0.03% or less
  • P segregates at grain boundaries and lowers the workability, so it is desirable to observe as much as possible in the present invention, but it is acceptable up to 0.03%. Therefore, P is limited to 0.03% or less. Preferably, it is 0.02% or less.
  • S is an element that forms sulfides such as MnS in steel as inclusions and lowers the FB workability. It is desirable to reduce it as much as possible, but it is acceptable up to 0.02%. For these reasons, S was limited to 0.02% or less. In addition, Preferably it is 0.01% or less.
  • one or two types selected from Al, and / or Cr, Mo, Ni, Ti and B are used in the present invention.
  • the above can be contained.
  • A1 is an element that acts as a deoxidizing agent and combines with N to form A1N, thereby contributing to prevention of the formation of ⁇ of austenite grains.
  • the soot is fixed, so that the soot becomes soot and has the effect of preventing the amount of soot that is effective for improving feAL properties.
  • Such an effect becomes remarkable when the content is 0.02% or more, but the content exceeding 0.1% lowers the cleanliness of the steel. For this reason, it is preferable to limit A1 to 0.1% or less.
  • A1 as an inevitable impurity is ⁇ . ⁇ 1% or less.
  • Cr, Mo, Ni, Ti, and B are all elements that contribute to improving the properties or further improving the temper softening resistance, and can be selected and contained as necessary.
  • Cr is an element effective in improving the ⁇ Ab property. In order to obtain such an effect, it is preferable to contain 0.1% or more. However, if it exceeds 3.5%, FB workability Decreases, and temper softening resistance increases excessively. For this reason, when Cr is contained, it is preferably limited to 3.5% or less. More preferably, it is 0.2 to: L. 5%.
  • Mo is an element that effectively acts to improve i3 ⁇ 4AL properties. In order to obtain such an effect, it is preferably contained in an amount of 0.05% or more. However, if it exceeds 0.7%, the steel is hardened. FB workability descend. For this reason, Mo is contained: ⁇ is preferably limited to 0.7% or less. More preferably, the content is 0.1 to 0.3%.
  • Ni! ⁇ A element that improves AU growth. To achieve this effect, it is preferable to contain 0.1% or more. However, if it exceeds 3.5%, it will cause the steel to become harder and the FB workability will be reduced. descend. For this reason, it is preferable to limit the Ni content to 3.5% or less. More preferably, the content is 0.1 to 2.0%.
  • Ti is an element that easily binds to N to form TiN and effectively acts to prevent ⁇ grains from becoming ft during firing A.
  • # ⁇ contained with B is added with 1 ⁇ forming BN, it also has the effect of reducing the additive amount of B necessary for improving 3 ⁇ 4A b property.
  • a content of 0.01% or more is required.
  • the precipitation of TiC will strengthen the ferrite by precipitation strengthening, resulting in gold! Incurs a drop in ⁇ .
  • Ti is preferably limited to a range of 0.01 to 0.1%. More preferably, it is 0.015 to 0.08%.
  • B is an element that segregates at the austenite grain boundaries and improves ⁇ Ai properties in a small amount, and is particularly effective when combined with Ti.
  • it is necessary to contain 0.0005% or more.
  • the content of B it is preferable to limit the content of B to 0.0005 to 0.005%. More preferably, it is 0.0008-0.004%.
  • the balance other than the above components is Fe and inevitable impurities.
  • Inevitable impurities include, for example, N: 0.01% or less, 0: 0.01% or less, and Cu: 0.1% or less.
  • the steel sheet of the present invention has «, mainly composed of ferrite and carbide.
  • Yarn mainly composed of ferrite and carbide means a weave in which ferrite and carbide are 95% or more in terms of ⁇ 3 ⁇ 4 ratio.
  • the ferrite grain size is 1 to 10 / im in terms of the average crystal grain size. If the average ferrite crystal grain size is less than 1 ⁇ , the steel sheet hardens significantly, and the amount of carbide in the ferrite grains increases, so that FB workability, gold 3 ⁇ 4 ⁇ , and formability such as hole expandability after RB processing, etc. Decreases. on the other hand, ⁇ ⁇ ⁇ If it exceeds ⁇ , it softens and gold increases, but as shown in Fig. 3, FB workability decreases. Therefore, the average ferrite crystal is limited to the range of 1 to 10 ⁇ . The preferred range is 1 to 5 111.
  • the spheroidization rate of carbide is 80% or more. If the spheroidization rate is less than 80%, it will become hard, and the deformability will be small and the FB processability will deteriorate. As shown in Fig. 2, when the spheroidization rate is less than 80%, it becomes larger than Rz ave ⁇ ⁇ ⁇ , and the wrinkle workability decreases rapidly. For this reason, in the present invention, the spheroidization rate of the carbide is limited to 80% or more in order to ensure sufficient FB processability. In order to increase the spheroidization rate, annealing for a long time is required, so 80% to 85% is preferable.
  • the ferrite grain boundary carbide content is 40% or more.
  • the amount of ferrite grain boundary carbide is the ratio of the carbide area occupied on the ferrite grain boundary to the area occupied by the carbide, and the following equation (1)
  • the amount of ferrite grain boundary carbide is limited to 40% or more. In addition, Preferably it is 50% or more.
  • the carbides on the ferrite grain boundaries are preferably 5 / m or less in average grain size. This is because when the amount of carbide at the ferrite grain boundary is 40% or more, the carbide on the ferrite grain boundary contributes to the improvement of EB workability and further to the improvement of gold metal # as the grain size becomes smaller. This is due to the new finding that this is a big deal.
  • the smaller the particle size of the carbide the easier it is to dissolve the carbide in the austenite even when heating for a short time in the high-frequency iftAi, and it becomes easy to secure the desired 3 ⁇ 4A OI. This For this reason, it is preferable to limit the average grain size of carbides on the crystal grain boundaries of ferrite to 5 m or less.
  • the molten steel having the yarn thread described above is made difficult by a conventional melting method such as a converter and used as a steel material (slab) by a conventional separation method such as a continuous ⁇ method.
  • the obtained steel material is hot-rolled by heating and rolling the steel material to form a plate.
  • finish rolling is finished at 800-950, and after finishing rolling, it is cooled with an average cooling of 50 ° C / s or more and stopped at 3 ⁇ 4S in the range of 500-700 ° C. It is preferable that the scouring process is performed at 450 to 600 ° C.
  • the end of finishing is adjusted and the subsequent cooling conditions are adjusted. As a result, a hot-rolled sheet having almost 100% pearlite is obtained.
  • the finish of the finish is preferably 3 ⁇ 4 within the range of 800 to 950 ° C, which is the finish area of normal finish rolling.
  • finish rolling finish 3 ⁇ 4g is higher than 950 ° C, the generated scale becomes thicker and pickling property is deteriorated, and a! Layer may be formed on the surface layer of the steel sheet.
  • the finishing temperature of finish rolling is less than 800 ° C, the rolling load increases significantly, and an excessive load on the rolling mill becomes a problem. For this reason, it is preferable to finish the finish rolling within the range of 800-950 ° C V ,.
  • Average cooling after finish rolling 3 ⁇ 4S 50 ° C / s or more
  • the average cooling rate is 50 ° C / s or more. If the average cooling rate is less than 50 ° C / s, the ferrite containing no carbide in the ⁇ ⁇ ⁇ is the average cooling rate from the end of finish rolling to the P (forced stop).
  • the resulting paper weave becomes non-uniform ferrite and pearlite yarns and wrinkles, making it impossible to secure a uniform paper weave consisting of almost 100% pearlite f ⁇ ; With II weaving, no matter how the subsequent plate annealing is done, the amount of carbides in the grains increases, and the amount of carbides that fall into the grain boundaries decreases, thus reducing FB processability.
  • Cooling stop 500 to 700
  • the cooling (forced cooling) is preferably stopped at 500 to 700 ° C. If the cooling stop 3 ⁇ 4 is less than 500, hard beanite will cause martensite and the plate annealing will take a long time, and there will be other problems such as cracking during cutting.
  • the cooling stop exceeds 700 and the temperature becomes high, the ferrite transformation nose is close to 700. Therefore, flare is generated during the cooling after the cooling stop, and it becomes impossible to secure uniform yarns composed of almost 100% pearlite.
  • the cooling stop temperature is preferably limited to a temperature within the range of 500 to 700 ° C. The temperature is more preferably 500 to 650 ° C, and further preferably 500 to 600 ° C.
  • the plate After cooling is stopped, the plate is immediately coiled.
  • the wrinkling is 450 to 600, more preferably 500 to 600 ° C.
  • scraping is less than 450 ° C, cracks occur in the steel plate when scraping, which causes a top problem. On the other hand, if the scraping exceeds 600 ° C, there is a problem that ferrite is generated during scraping.
  • the plate (heated steel plate) thus obtained is subjected to a difficult male after removing the oxide scale on the surface by pickling or shot plast.
  • Appropriate hot-plate annealing is applied to hot-rolled sheets with almost 100% pearlite yarns to promote spheroidization of carbides and suppress ferrite grain growth. You will be able to move up.
  • annealing is performed in the range of 600 to 750 ° C.
  • the TO time of the hot plate is not particularly limited, but is preferably 8 hours or longer in order to sufficiently spheroidize the carbide. Further, if it exceeds 80 hours, the ferrite grains may be excessively & ⁇ converted.
  • the steel material (slab) of the thread band shown in Table 1 was subjected to the rolling shown in Table 2 and a hot-rolled sheet male, resulting in a steel plate (4.3 mm).
  • the adjustment method is as follows.
  • the volume ratio of ferrite and carbide was determined by observing the metal yarn with a SEM (magnification: 3000 times) (number of fields: 30) and dividing the total area of ferrite and carbide by the total field of view. The ratio was determined and this was judged as the ratio of ferrite and carbide.
  • the ferrite grain size was determined by measuring the area of each ferrite grain and calculating the equivalent circle diameter from the obtained area. The obtained ferrite grain sizes were arithmetically averaged, and the value was defined as the average ferrite of the Taoka plate.
  • the spheroidization rate of carbide is determined by the maximum length a and the minimum length b of each carbide using the surface image orientation in each field of view (viewing point: 30 places) of metal thread and weave observation (magnification: 3000 times).
  • the ratio a / b is calculated and the number of carbide grains with a / b of 3 or less is displayed as a percentage (%) of the number of carbides measured.
  • the amount of ferrite grain boundary carbides is determined by observing the metal thread habit (magnification: 3000 times) in the field (view: 30 locations). Using the screen, on the ferrite grain boundary per unit area! 1 ⁇ 2 carbide occupying area S ⁇ and carbide occupying area S to 1 in ferrite grains
  • the diameter passing through the center of gravity of the two points on the outer circumference of the carbide and the equivalent ellipse of the carbide is 2 °.
  • the circle-equivalent diameter was determined by measurement, and this was defined as each carbide; ⁇ , and the average value of the obtained carbide particle size was defined as the average of the carbide on the ferrite grain boundary.
  • a test plate (size: 100X8 was sampled and subjected to FB test.
  • the FB test was a sample of size: 60mmX40nm (corner: lOmn) from a test piece using a 110 t hydraulic press. , Clearance between tools: 0.05% of 0.060nm), processing force: 8.5ton, Lu: Punched under certain conditions.
  • the surface roughness (10-point average roughness Rz) of the end face (punched surface) of the punched sample was measured in the same way as tiifB, and the FB workability was increased.
  • the test piece was subjected to the clearance; in order to eliminate the influence of the deviation, both sides were ground in advance by equal amounts to obtain a plate thickness of 4.0 ⁇ 0. OlOmn.
  • the surface roughness is measured at four end faces excluding the R section, and at each end face (3 ⁇ 4J ⁇ plane), as shown in Fig. 4, from the punch side surface 0.5 mm to 3.9 mm in the Ki ⁇ direction.
  • scan the area of 10mm on the surface (X direction) with a touch surface meter 35 times at 100 / m pitch in the 3 ⁇ 4i ⁇ direction (t direction), and ⁇ in JIS B 0601-199 Then, the surface roughness Rz was measured on each run. Furthermore, the surface roughness Rz of the measurement surface was the average value of the total Rz of each run Farm Measure the four end faces in the same way as above and
  • Rz ave (Rz 1+ Rz 2+ Rz 3+ Rz 4) / 4 (where, Rz 1, Rz 2, Rz 3, Rz 4: each side of) is defined by the average surface roughness: R Z ave (m) was calculated.
  • # ⁇ of the tool (die) used was evaluated.
  • the surface roughness (10-point average roughness Rz) of the sample end face (punched surface) when the number of punches in FB processing reached 30000 times was measured, and gold was evaluated.
  • the method for measuring the surface roughness was the same as that described above.
  • the evaluation was evaluated as 0, 10111 to 16111 or less, and X exceeding 16 / zm as X.
  • Specimens (size: lOOX lOOmn) 'were punched out from the obtained hot oka board by FB processing, and the stretch flangeability was investigated.
  • FB machining was performed under the conditions of clearance between tools: 1.5% of 0.06Qmm), machining force: 8.5 tons, and lubrication: with.
  • the stretch flangeability was determined by fHffi to obtain the hole expansion ratio ⁇ by adding the hole expansion: m test.
  • the hole expansion test after punching a punch hole of ⁇ ⁇ (d 0 ) into the test piece, the punch hole is pushed out with a jig, line V, and when a 3 ⁇ 4J through crack is generated at the punch hole edge Measure the hole diameter d at
  • the surface roughness of the punched surface is Rz: 10 m or less
  • EB addition excellent L ⁇
  • the surface of the punched surface at the time of punching 30000 times is also smooth (Evaluation: ⁇ ) Deterioration of mold life
  • the inventive example is excellent in stretch flangeability after FB processing.
  • the total ratio of ferrite and carbide was 95% or more, and it was ⁇ that it was mainly composed of ferrite and carbide.
  • the grain size of carbides at the ferrite grain boundaries was set by t & fB, the deviation was 5 ⁇ m or less in average grain size.

Abstract

A steel sheet which has excellent suitability for FB and has excellent formability after FB. The steel sheet has: a composition which contains, in terms of mass%, 0.1-0.5% C and 0.2-1.5% Si and Mn and in which Si, P, and S are regulated so as to be in respective proper ranges; ferrite having an average particle diameter of 1-10 µm; and a structure which has a degree of spheroidization of 80% or higher and in which the ferrite grain boundary carbide amount defined by Sgb (%) = {Son/(Son+Sin)} × 100 (wherein Son is the total area occupied by carbide present at the grain boundaries, of the existing carbide, per unit area and Sin is the total area occupied by carbide present in the grains, of the existing carbide, per unit area) is 40% or larger. This steel sheet is excellent in suitability for FB, die life, and formability after FB.

Description

明細書 ファインブランキング加工性に優れた鋼板おょぴその製 法 技術分野  Specification Steel plate opioid manufacturing method with excellent fine blanking workability Technical Field
本発明は、 自動車部品等の用途に謹な鋼板に係り、 とくに精密打抜き加工 (以下、 ファ インブランキング加: E、 あるいは F B加工ともいう) を施される^に好適な、 ファインプ ランキング加工性に優れた鋼板に関する。 背景技術  The present invention relates to a steel plate suitable for use in automobile parts and the like, and is particularly suitable for fine blanking workability that is suitable for being subjected to precision punching (hereinafter also referred to as fine blanking: E or FB processing). It relates to an excellent steel sheet. Background art
娜な機械部品を製造するうえでは、 寸法精度の向上、 製造工程の纖等の観点から、 フ アインブラン ング加工が、 切削加工に比べて極めて^^な加工方法であることが知られて いる。. ' . .  It is known that fine-blanking is a very difficult processing method compared to cutting from the viewpoint of improving dimensional accuracy, manufacturing process defects, etc. . .
通常の打抜き加工では、 工具間のクリアランスは、被打抜き材である金属板の板厚の 5〜 . 10%¾!¾であるが、 ファインプランキング加工は、 通常の打抜き加工とは異なり、 工具間の クリアランスをほぼゼロ (実際は、被打抜き材である金属板の; Kffの 2 %以1¾^) と極め て小さく設定すると共に、 さらに工具切刃付近の材料に圧縮応力を作用させて打抜く加工方 法である。 そして、 フアインブランキング加工は、  In normal punching, the clearance between tools is 5 to 10% ¾! ¾ of the thickness of the metal plate that is the material to be punched. However, fine blanking is different from normal punching. The clearance between them is almost zero (actually, 2% or less of Kff of the metal plate to be punched; 1¾ ^) and punching is performed by applying compressive stress to the material near the tool cutting edge. This is a processing method. And the fine blanking process
( 1 ) 工具切刃からの亀 生を抑制し.て、 通常の打抜き加工で見られる破断面がほぼゼロ となり、加工面 (打抜き.端面) がほぼ 100%剪断面の、 平滑な加工面が得られる、  (1) Suppressing the cracks from the tool cutting edge, the fracture surface seen in normal punching is almost zero, and the machined surface (punched. End face) has a nearly 100% shear surface and a smooth machined surface. can get,
(2Γ寸法精度がよい、 · ( 2 Gamma dimensional accuracy is good, ·
( 3 ) . »な形状を 1工 で寸了抜ける  (3)
などの i を有している。 しかし、 ファインブランキング加工においては、 材料 (金属板)の 受ける加工度は極めて厳しいものとなる。 また、 ファインプランキング加工では、 工具間の クリアランスをほぼゼロとして行うため、金型への負荷が過大となり、 金 が短くなる·という問題がある。  I. However, in the fine blanking process, the degree of processing that the material (metal plate) receives is extremely severe. Also, in fine blanking, the clearance between tools is set to almost zero, so there is a problem that the load on the mold becomes excessive and the mold is shortened.
このため、 ファインプランキング加工を適用される材料 は、 優れたファインプランキン グ加工性を具備するとともに、 金 » ^の低下 防止することが要求.されてきた。  For this reason, materials to which fine blanking is applied have been required to have excellent fine planing workability and to prevent a decrease in gold »^.
... このような要望に対し、 例えば、 特許文献 1には、 '0';: 0. 〜 0. 90重量0 /0、 Si: 0.4重量0 /0 以下、 Mn: 0. 3〜1.0重 0 を含有する糸滅と、 球状化率 80%以上、 平均粒径 0. -1.0 /z mの 炭化^がフェライトマトリックスに分散した織を有し、切欠き引? 51申ぴが 20 以上である、 精密打抜き加工性 1こ優れた高炭素鋼板が提案されている。 特許文献, 1に記載された技術によ れ^ 精密打抜き性が改善され、 さらに金型^も改善されるとしている。' ... to such a demand, for example, Patent Document 1, '0';: 0. ~ 0. 90 weight 0/0, Si: 0.4 wt 0/0 less, Mn: 0. from 3 to 1.0 Thread loss containing 0 weight, spheroidization rate 80% or more, average particle size 0. -1.0 / zm A high-carbon steel sheet that has a woven structure in which carbonized carbon is dispersed in a ferrite matrix and has a notch drawing of 20 or more and a precision punching workability of 1 is proposed. According to the technique described in Patent Document 1, the precision punchability is improved and the mold is also improved. '
しかし、.特許文献 1に記載された髙炭素鋼板は、 ファインプランキング加工後の成形加工性 が劣るという問題があった。 .  However, the carbon steel sheet described in Patent Document 1 has a problem of poor formability after fine blanking. .
また、 特許文献 2には、. C : 0. 08〜0. 19%、 Si、 Mn、 A1を適正 S ^有し、 Cr: 0. 05~0· 80%、 In addition, Patent Document 2 includes: C: 0.08 to 0.19%, Si, Mn, A1 having proper S ^, Cr: 0.05 to 0-80%,
Β: 0. 0005〜0. 005%を含有する鋼片に、 適正な熱間圧延を施して鋼板とした、 精密打抜き用 鋼板が提案されている。 特許文献 2に記載された鋼板は、 降伏強度が低く、 かつ '幽直が髙 くフアインブランキング加工性に優れ、 低歪域 η値が髙く複合成形加工性に優れ、 さらに短 時間 ロェ性にも優 た鋼板であるとされる。 しかし、 許文献 2には、 ファインプラン キング加工性についての具体的な臂¾5は示されていない。 また、 特許: ¾;献 2に記載された鋼Β: Steel sheets for precision punching have been proposed in which steel sheets containing 0.0005 to 0.005% are appropriately hot rolled into steel sheets. The steel sheet described in Patent Document 2 has a low yield strength, is excellent in fine blanking workability, has a low distortion range, has a high η value, and is excellent in composite forming workability. It is said that the steel plate is excellent. However, Permissible Document 2 does not show any specific details about fine planking processability. In addition, the steel described in Patent: ¾;
¾は、 フアイソブランキング加工後の成形加工性が劣るという問題があった。 ¾ has a problem that the molding processability after the iso-blanking process is inferior.
また、 特許文献 3には、 C: 0. 〜 0. 45%を含み、 Si、 Mn、 P、 S、 Al, N含有量を適正範 Patent Document 3 includes C: 0 to 0.45%, and the contents of Si, Mn, P, S, Al, and N are within appropriate ranges.
、 囲に調整した組成を有し、 さらに、 パーライト +セメンタイ
Figure imgf000004_0001
力つフェラ
It has a composition adjusted to the surrounding, and perlite + cementite
Figure imgf000004_0001
Strong blowjob
• .イト粒の平均粒径が 10〜20μ πιである組織を有する、 転^!] |]ェやファインプランキング加工 における成形性に優れた高炭素鋼板が提案されている。 特許文献 3に記載された高炭素鋼板 では、 ファインブランキング加工性に優れ、 .さらにファインブランキング加工における金型 赫も改善されるとしている。 しかし、 特許文献 3.に記載された高炭麵板は、 ファインブ ランキング加工後の^ F幼.ロェ性が劣るという問題があつた。 • High carbon steel sheets with a structure with an average grain size of 10-20μπι and excellent formability in rolling and fine blanking have been proposed. The high-carbon steel sheet described in Patent Document 3 is excellent in fine blanking workability, and it is said that mold wrinkles in fine blanking work are also improved. However, the high charcoal steel plate described in Patent Document 3 has a problem that it has poor F-fre-low characteristics after fine blanking.
さらに、 特許文献 1、、..特許文献 2、 特許文献 3に記載された鋼板は、 いずれも、 «の厳 し 、加工条件のファインブランキング加工においては、 満足できる十分なファインブランキ ング加工性を具備してい とはいえず、 また金» も十分に改善されているわけではない うえ、 ファ-ィンブランキング加工後の成形加工性が劣るという 題が残されて!/ヽた。  Furthermore, all of the steel sheets described in Patent Document 1,... Patent Document 2, and Patent Document 3 have a fine blanking workability that is satisfactory in the fine blanking process under severe conditions. In addition, the gold plate has not been sufficiently improved, and the problem remains that the formability after the fine blanking process is inferior! /
当初、 プアインプランキング加工は、 ギア部品などでも、 ファインブランキング加工後に Initially, the poor blanking process was performed after fine blanking even for gear parts.
- 加工を施されない部品に適用されてきた。 しかし、 では、 自動車部品 (リクライニング-Has been applied to parts that are not processed. But in the auto parts (reclining
' 部品など) へのフアイ ^プランキング加工の適用が拡大される傾向にあり、 ファインブラン ·'Final blanking tends to be widely applied to parts, etc.)
. キン 加工後に伸ぴフラン^ロ工ゃ張出.し加工などを必要 ¾する部品への適用が検討されて いる。 ごのため、 自動車部品として、 ファインブランキング加工性に優れるうえ、 ファインApplication to parts that require flaring after kin processing is being considered. As an automotive part, it has excellent fine blanking workability and fine
..ブランキ,ング加工後の、伸ぴフランジ加工や張出し加: ΐίなどの成形加工性にも優れた鋼板が.. Stretch flange processing and overhanging after blanking and angling: Steel plate with excellent formability such as ΐί
. 熱望されて'いる。 ' I'm eagerly aspired. '
. . .. ノ. 2 伸 r 'フ.ランジ加工性を改善する技術としては、 これまで数多くの鍵がなさ ている。 例 えば、 特許文献 4には、 C : 0.20〜0. 33%を含み、 Si:、 Mn、 P、 S、' sol. Al, N含有量を適正 範囲に 整し、 さらに Cr: 0. 15〜0. 7%を含有する組成を有し、 パーライトを含んでいてよい フェライト ·べィナイト混合糸雄を有する、 伸びラランジ性にすぐれる耐]¾«»鋼板が 提案されている。 特許文献 4に記載された熱延鋼板では、 上記した繊とすることにより、 穴拡げ率が高くなり、 伸 フランジ性が向上するとしている。 また、 特許文献 5には、 C : 0. 2〜0. 7%を含有する滅を有し、 炭化物平均粒径が 0. 1 μ m以上 1. 2 μ m未満、 炭化物を含ま ないフェライト粒の体積率が 15%以下である組織を有する伸ぴフランジ性に優れた高炭^鋼 板が提案されている。 特許文献 5に記載された高炭赫岡板では、 打抜き時の端面におけるボ ィドの発生を抑制し、 ·穴拡げ加工におけるクラックの成長を遅ぐすることができ、 伸ぴフラ ンジ性が.向上するとしている。 No. 2 There have been many keys to improve r / f flange processability. For example, Patent Document 4 includes C: 0.20 to 0.33%, Si: Mn, P, S, 'sol. Al, N content is adjusted to an appropriate range, and Cr: 0.15. A steel plate having a composition containing ˜0.7% and having a ferrite-bainite mixed yarn male which may contain pearlite and excellent in elongation larangability has been proposed. In the hot-rolled steel sheet described in Patent Document 4, by using the above-mentioned fiber, the hole expansion rate is increased and the stretch flangeability is improved. Further, Patent Document 5 includes ferrite particles containing C: 0.2 to 0.7%, an average particle size of carbide of 0.1 μm or more and less than 1.2 μm, and ferrite particles containing no carbide. A high-carbon steel sheet having a structure with a volume fraction of 15% or less and excellent in stretch flangeability has been proposed. The high charcoal Kashioka plate described in Patent Document 5 suppresses the generation of voids at the end face during punching, and can slow the growth of cracks in hole expansion processing, and has a stretch flangeability. It is supposed to improve.
また、 特許文献 6には、 C : 0.2%以上を含む を有し、 フェライトおよび炭化物を主体 とし、 .炭化物粒径が 0. 以下、 クェライト粒径が 0. 5〜 1 であ 0繊を有する打抜き 性と焼 ΛΚ性に優れた高炭 ¾ί岡板が提案されている。 これによ'り、 ノ ¾高さと金 とで 決定される打抜き性と、 ¾Λ^τ性がともに向上するとしている。  Patent Document 6 includes C: containing 0.2% or more, mainly composed of ferrite and carbide, having a carbide particle size of 0 or less, a celite particle size of 0.5 to 1 and 0 fibers. A high charcoal ¾ίoka board with excellent punching and firing properties has been proposed. As a result, both the punching ability determined by the height of ¾ and gold and the ¾Λ ^ τ property are improved.
特許文献 1 特開 2000-265240号公報  Patent Document 1 Japanese Unexamined Patent Publication No. 2000-265240
特許文献 2 特開昭 59-76861号公報  Patent Document 2 JP 59-76861 A
特許文献 3 特開 2001-140037号公報  Patent Document 3 Japanese Patent Laid-Open No. 2001-140037
特許文献 4 特開平9 -490δ5号^― Patent Document 4 JP 9 - 49 No. 0Deruta5 ^ -
特許文献.5 特開.2001- 214234号公報  Patent Document 5 Japanese Patent Laid-Open No. 2001-214234
奪許文献 6 特開平 9 - 316595号公報 発明の開示- しかしながら、 特許文献 4、 特許文献 5に記載された技術はいずれも、 従来の打抜き加工 を施すことを前提にしたものであり、 クリアランスがほぼゼロとなるファインプランキング '加工の適用を考慮したものではない。 したがって、 厳しいファインブフンキング加工後 、 同様の伸ぴフランジ性を確保することは難しく、 たとえ確 できても金 » ^が短くなると いう問題がある。 - '一— ― , : また、 特許文献 6に記載された技術では、 フェライト粒径を 0. 5~ 1 μ ηιの範囲にする必要 があり、 このようなフェライト i ^を有する鋼板を安定して工業的に製造することは困難で あり、 製品歩留の低下に繋がるとレヽぅ P題があつた。 Patent Document 6 Japanese Patent Application Laid-Open No. 9-316595 Disclosure of Invention However, the techniques described in Patent Document 4 and Patent Document 5 are all based on the premise that conventional punching is performed, and the clearance is Fine blanking is almost zero. It does not consider the application of processing. Therefore, it is difficult to ensure the same stretch flangeability after severe fine-buffing, and there is a problem that even if it can be confirmed, gold »^ is shortened. -'One- ―,: Further, in the technique described in Patent Document 6, it is necessary to make the ferrite grain size in the range of 0.5 to 1 μηι, and it is necessary to stably and industrially manufacture a steel sheet having such ferrite i ^. Is difficult, and it has been given the title “L” when it leads to a decrease in product yield.
本発明は、 上記した従 術の問題に鑑みて成されたものであり、 ファインプランキング 加工性に優れ、 さらにフアインブランキング加工後の成形加工性にも優れた鋼板おょぴその 製造方法を »することを目的とする。  The present invention has been made in view of the above-mentioned conventional problems, and provides a method for producing a steel sheet opioid having excellent fine blanking workability and excellent forming workability after fine blanking. »Aim to do.
本発明者らは、 上記した目的を するために、 ファインブランキング加工性 (以下、 FB 加工性と略す) に及ぼす金属, «の影響、 とくにフェライト、 炭化物の形態および分布状態 の影響にっレヽて鋭意研究した。  In order to achieve the above-mentioned purpose, the present inventors have been aware of the influence of metal and «on fine blanking workability (hereinafter abbreviated as FB workability), particularly the influence of the morphology and distribution of ferrite and carbide. And studied earnestly.
その結果、 FB加工性およ は、 フェライト粒内に »する炭化物おょぴフェライ ト粒径と密接な関係にあることを見出した。 そして、 所定範囲の ¾¾を有する鋼素材に、 熱 間圧延の仕上圧延条件およびその後の冷却を適正条件として、 ほぼ 100%のパーライト雜織を 有する m¾i罔板とし、 さらに適正条件の熱 板焼鈍を施して、 金属, «を、 平均フェライト 粒径が 10 zm以下、 炭化物の球状化率が 以上とし、 力つフェライト粒界に 4する炭化 物の面積が 化物面積に ¾ "る比率で 40%以上となる、 フェライト粒内の炭化物量を制限 した、 フェライト +球状化セメンタイト (球状炭ィ匕物) 糸纖とすることにより、 FB加工性お よび金 S 命が顕著に向上することを見出した。 また、 フェライト粒内の炭化物量を制限す ることにより、 FB加工後の成形加工性も顕著に向上することを新たに見出した。  As a result, we found that FB workability and the carbide opipherite grain size in the ferrite grains are closely related. Then, a steel material having a predetermined range of ¾¾ is made into an m¾i slab with nearly 100% pearlite weave, with hot rolling finish rolling conditions and subsequent cooling as appropriate conditions, and further subjected to hot plate annealing under appropriate conditions. If the average ferrite particle size is 10 zm or less, the spheroidization rate of the carbide is above, and the area of the carbide that forms a strong ferrite grain boundary is 40% or more in proportion to the oxide area. It has been found that FB workability and gold S life are remarkably improved by using ferrite + spheroidized cementite (spherical charcoal), which has a limited amount of carbide in the ferrite grains. It was also found that by limiting the amount of carbide in the ferrite grains, the formability after FB processing is significantly improved.
FB加工では、 クリアランスゼロ、 圧縮応力状態で材料力幼ロェされる。 そのため、 材料には. 大きな変形を受けたのちに、 亀裂力発生する。 大きな変形中に、 多数の亀裂が発生すると、 FB加工性は大幅に低下することになる。 亀裂の発生防止には、 炭化物の球状化や炭化物粒径 の »田化が重要であるといわれている。 しかし、 FB加工においては、 たとえ 100%球状化し た鶴田炭ィ匕物であっても、 それらがフェライト粒内に »する ¾ ^には、微小亀裂の発生は 避けられなレ、。 そのため、 FB加工後さらに伸ぴフランジ加工が施される: ^には、 FB加工時 に発生した微小亀裂同士が連結して伸ぴフランジ性の低下をもたらすことになると本発明者 らは考えた。 また、 金 ^に関しても、 フェライト粒內に炭化物が多数雜すると、 工具 切刃の膝が促進され、 金» ^が低下することになると本発明者らは推察した。  In FB processing, the material strength is reduced with zero clearance and compressive stress. For this reason, the material generates cracking force after undergoing a large deformation. If a large number of cracks occur during large deformation, the FB workability will be greatly reduced. It is said that spheroidization of carbide and grain size of carbide are important for preventing cracks. However, in FB processing, even if the Tsuruta charcoal is 100% spheroidized, they are in the ferrite grains. For this reason, the present inventors thought that after the FB processing, the stretch flange processing is further performed: ^, the microcracks generated during the FB processing are connected to each other, resulting in a decrease in stretch flangeability. . In addition, regarding the gold, the present inventors have inferred that when a large amount of carbide is added to the ferrite granule, the knee of the tool cutting edge is promoted and the gold is lowered.
まず、 本発明の基礎となった実 結果について説明する。  First, the actual results on which the present invention is based will be described.
質量%で、 0. 34% C— 0. 2%Si— 0.8%Mnを含有する高炭辯岡スラブ (S35C相当) に、 To the high-coal Mineoka slab (equivalent to S35C) containing 0.34% C—0.2% Si—0.8% Mn in mass%
115Q°Cに加熱後、 5パスの ¾E延、 7パスの仕 ±^延からなる熱間圧延を施し、 ¾J¥ 4. 2imi の 鋼板とした。 なお、 熱間圧延の仕上圧延終了 は 860°C、 卷取 は 600°Cとし、仕 上圧延後に冷却 を空冷 ( 5 °C/s) 〜250で/3まで変化させて !]した。 なお、 空冷以外の 冷却 (強制冷却) を行った の冷却停止赚は 650 とした。 ついでこれら艇鋼板に酸洗 を施した後、 «板焼鈍としてバッチ焼鈍 (720°CX 5 ~40h) を行った。 これら β板焼鈍 を施された鋼板にっレ、て、 金属紙織を観察するとともに FB加工性を評価した。 After heating to 115Q ° C, hot rolling consisting of 5 passes ¾E rolled and 7 passes ± ^ rolled, ¾J ¥ 4.2imi The steel plate. Incidentally, finish rolling of hot rolling was set to 860 ° C,卷取is 600 ° C, and the cooling after the above rolling cooled (5 ° C / s) ~250 with / 3 to be changed!] And specifications. In addition, the cooling stop dredging that performed cooling other than air cooling (forced cooling) was set to 650. Next, these boat steel plates were pickled and then subjected to batch annealing (720 ° CX 5 to 40 hours) as plate annealing. These steel sheets that were annealed with β sheets were observed for metal paper weave and evaluated for FB workability.
金属糸慮観察は、 得られた鋼板から試験片を採取し、 ¾ ^験片の圧延方向に ffiな断面を 研磨し、 ナイタール腐食したのち、 ¾J¥ 1/4位置について、 走查型電子顕纖 (SEM) で金属 ,«を観察し、 フェライト粒径'、 および炭化物の球状化率を測定した。  For metal yarn observation, specimens were collected from the obtained steel plate, ¾ ^ after polishing a ffi-section in the rolling direction of the specimen and undergoing nital corrosion, about ¾J ¥ 1/4 position, a scanning electron microscope The metal and «were observed with SEM (SEM), and the ferrite grain size 'and the spheroidization rate of the carbide were measured.
フェライト¾ ^は、 各フェライト粒についてその面積を測定し、 得られた面積から円相当 径を求め、 おのおのの粒径とした。 得られた各フェライト粒径を算術平均し、 その値を、 そ の鋼板の平均フェライト雖とした。 なお、 測定したフェライト粒は各 5000個とした。 また、 紙織観察の各視野 (倍率:3000倍) で画 «W装置を用いて、 各炭化物の最大長さ aと最小長さ bを求め、 その比 a/bを計算し、 a/bが 3以下の炭化物粒数を、 測定した ^^化 物個数に財る割合 (%) で表示し、 炭化物の球状化率 (%) とした。 なお、測定した炭化 物の粒数は各 9000個とした。  For each ferrite grain, the area of each ferrite grain was measured, the equivalent circle diameter was determined from the obtained area, and each grain size was determined. The obtained ferrite grain sizes were arithmetically averaged, and the value was defined as the average ferrite wrinkle of the steel sheet. The measured ferrite grains were 5000 pieces each. In addition, the maximum length a and the minimum length b of each carbide are calculated using the image W device in each field of view of the paper weave observation (magnification: 3000 times), the ratio a / b is calculated, and a / b The number of carbide particles with a particle size of 3 or less was expressed as a percentage (%) of the number of ^^ compounds measured and used as the spheroidization rate (%) of the carbide. The measured number of carbide grains was 9000 each.
また、 糸且織観察の 野で、 フェライト粒界上に する炭化物およびフェライト粒内に ffiする炭化物を識リし、 画働 I»置を用いて、 単位面積あたりに i½する炭化物につい て、 フェライト粒界上に«する炭化物の占有面積 S、 およびフェライト粒内に する炭 化物の占有面積 Stoを測定し、 次式 ' Also, in the field of yarn and weave observation, we know the carbides on the ferrite grain boundaries and the carbides that become fficient within the ferrite grains. the area occupied by the carbides that «on the grain boundaries S ∞, and the occupied area S to the carbides to the ferrite grains were measured, and the following formula '
(%) = {Sノ (Sm+Sto) } X100 (%) = {S (S m + S to )} X100
で定義されるフェライト粒界炭化物量 を算出した。 なお、 炭化物粒の面積測定は各 30視野 (倍率: 3000倍) とした。 The amount of ferrite grain boundary carbide defined by The area of the carbide grains was measured in 30 fields of view (magnification: 3000 times).
また、 得られた鋼板から試験板 (大きさ: 100X80nm) を採取し、 ファインブランキングテ スト (FBテスト) を実施した。 FBテストは、 110 t油圧プレス機を用いて、 試験片から、 大 きさ: 60nrnX40im (コーナー部 R: 10mm) のサンプルを、 クリアランス: 0. 060mm の 1. 5%) 、 カロェカ: 8. 5ton、 潤滑:有りの条件で打班いた。 打抜力れたサンプルの端面 (打抜 き面) について、 表面粗さ (十点平均粗さ Rz) を測定して、 FB加工性を麵した。 なお、試 験片は、 クリアランスに^る; W偏差の影響を除くため、 予め両面を等量づっ研削し、 板 厚を 4. 0±0. 010mとした。 表面粗さの測定は、 R部を除く 4つの端面とし、 各端面で図 4に示すように、 パンチ側表 面 0. 5 から; I®?方向に 3. 9 までの範囲でカゝっ表面に TOに (X方向) 10mの領域を、 触針 式表面 計で繰返し簿方向 (t方向) に 100 ιηピッチで 35回走査し、 JIS B 0601-1994 に して、 各 锒における表面粗さ Rzを測定した。 さらに、 測定面の表面粗さ Rzは、 各々の走蟹泉の Rzを合計して、 その平均値とした。 上記と同様の方法で 4つの端面を測定し て、 次式 In addition, a test plate (size: 100X80nm) was taken from the obtained steel plate and a fine blanking test (FB test) was performed. In the FB test, using a 110 t hydraulic press machine, a sample of size: 60nrnX40im (corner part R: 10mm) from the test piece, clearance: 1.5% of 0.060mm), Karoeka: 8.5ton 、 Lubrication: I struck under the condition. The surface roughness (ten-point average roughness Rz) of the end face (punched surface) of the punched sample was measured to improve FB workability. Note that the test piece has a clearance; in order to eliminate the influence of the W deviation, both sides were ground in equal amounts in advance to obtain a plate thickness of 4.0 ± 0.010 m. The surface roughness is measured at four end faces excluding the R section, and at each end face, as shown in Fig. 4, from the punch side surface 0.5; Scan the surface of TO (X direction) 10m on the surface with a stylus type surface meter repeatedly 35 times in the book direction (t direction) at 100 ιη pitch, and according to JIS B 0601-1994. Rz was measured. Furthermore, the surface roughness Rz of the measurement surface was calculated by adding the Rz values of each running spring to the average value. Measure the four end faces in the same way as above and
Rz ave= (Rz 1+ Rz 2+ Rz 3+ Rz 4) / 4  Rz ave = (Rz 1+ Rz 2+ Rz 3+ Rz 4) / 4
(ここで、 Rz 1, Rz 2, Rz 3, Rz 4:各面の )  (Where Rz 1, Rz 2, Rz 3, Rz 4: each side)
で定義される平均表面粗さ: Rz ave (; z m) を算出した。 The average surface roughness defined by: Rz ave (; z m ) was calculated.
一般には、 打抜き端面における破断面の出現が 10%以下の ¾ ^を 「FB加工性に優れる」 と する力 本発明では、 平均表面粗さ: Rz aveが、 10 m以下と、 小さくなるほど FB加工性に 優れるとする。 なお上記と異なる ¾ϋの試験片の表面粗さを測定する ¾ ^は、 上記と同様に 表面 0, 5™から板厚方向に、 (mm) -0. Iran) ¾gの範囲で力つ表面に に 10nmの領 域を板厚方向に繰り返し 100 mピッチで走査して各面の Rzを求め、 各面の Rzから Rz aveを 求めればよい。  In general, the force that makes the appearance of a fractured surface at the punched end face 10% or less “Excellent FB workability” In the present invention, the smaller the average surface roughness: Rz ave becomes 10 m or less, FB processing It is supposed to be excellent in properties. Note that the surface roughness of the test piece of ¾ 異 な る different from the above is measured. ¾ ^ is the same as the above, from the surface 0, 5 ™ to the plate thickness direction, and on the strong surface in the range of (mm) -0. Iran) ¾g Then, the 10-nm region is repeatedly scanned in the thickness direction at 100 m pitch to obtain Rz of each surface, and Rzave can be obtained from Rz of each surface.
得られた結果を図 1、 図 2に示す。  The results obtained are shown in Figs.
図 2に示す、 平均表面粗さ: Rz aveと炭化物の球状化率との関係から、 球状化率が 80%以 上となると、 aveが 10 m以下となり、 FB加工性が急激に向上することが分かる。 なお、 図 2に示すデータは平均フェライト粒径が 3 8 πι@^の ¾ ^で'ある。 さらに、 球状化率 が 80%以上で、 カゝっ粒界炭化物量が増加すると、 さらに Rz aveが小さくなり、 FB加工性が 顕著に向上することを知見した。 図 1に示す、 表面粗さ (平均表面粗さ: Rz ave) とフェラ イト粒界炭化物量 ) との関係から、 フェライト粒界炭化物量が 40%以上と、 炭化物のう ち粒界炭化物の占める割合が多くなるにしたカ^、、 Rz aveが 以下となり、 FB加工性が 急激に向上することが分かる。  From the relationship between the average surface roughness: Rz ave and the spheroidization rate of carbide shown in Fig. 2, when the spheroidization rate exceeds 80%, ave becomes 10 m or less, and the FB workability increases drastically. I understand. The data shown in FIG. 2 is ¾ ^ when the average ferrite grain size is 3 8 πι @ ^. Furthermore, we found that when the spheroidization rate is 80% or more and the amount of grain boundary carbide increases, Rz ave becomes smaller and FB workability is remarkably improved. From the relationship between the surface roughness (average surface roughness: Rz ave) and the ferrite grain boundary carbide content shown in Fig. 1, the ferrite grain boundary carbide content is 40% or more, and the grain boundary carbides account for the carbide. As the ratio increases, the Rz ave becomes the following, and it can be seen that the FB workability is drastically improved.
本発明は、 上記した知見に基づき、 さらに研究を重ねて完成されだものである。 すなわち、 本癸明の要旨は次のとおりである。  The present invention has been completed based on the above findings and further research. That is, the gist of Honjo is as follows.
( 1 ) 質量0 /oで、 C: 0. 1 0. 5%、 Si: 0. 5%以下、 Mn: 0.2 1· 5%、 Ρ: 0. 03%以下、 S: 0. 02%以下を含み、残部 Feおよび不可避的不純物からなる ¾¾と、 フェライトおよび炭化物 を主体とする糸纖とを有し、 歸己フェライトの平均粒径が 1 10/ζ ηι、 廳 S炭化物の球状化率 が 80%以上で、 カゝっ前記炭化物のうち、 フェライトの結晶粒界に存在する炭化物の量である、 次 (1) 式 (1) At mass 0 / o, C: 0.1 0.5%, Si: 0.5% or less, Mn: 0.2 1.5%, Ρ: 0.03% or less, S: 0.02% or less And the remainder consisting of Fe and unavoidable impurities, and yarns mainly composed of ferrite and carbide, and the average particle diameter of self-ferrite is 110 / ζ ηι, and the spheroidization rate of S carbide Is the amount of carbides present at the grain boundaries of the ferrite among the above-mentioned carbides.
(%) = (s。n+sj } 100 …… (1) (%) = (s. n + sj} 100 …… (1)
(ここで、 sw:単位面積あたりに #¾する炭化物のうち、 フェライト粒界上に する炭化 物の総占有面積、 :単位面積あたりに する炭化物のうち、 フェライト粒内に »する 炭化物の総占有面積) (Where w w is the total occupied area of carbide on the ferrite grain boundary among carbides # ¾ per unit area, and is the total carbide area within the ferrite grains among carbides per unit area Occupied area)
で定義されるフェライト粒界炭化物量 が 40%以上であることを «とするファインプラン キングカ卩 I†生に優れた鋼 Fine Plan King Carr® † Steel with excellent grain boundary carbide content defined by
(2) (1) において、 tiflBフェライトの結晶粒界に械する炭化物が、 平均粒径で 5 m 以下であることを ί敷とする鋼  (2) In (1), the steel that has an average grain size of 5 m or less in carbides that crystallize the grain boundaries of tiflB ferrite.
(3) (1) または (2) において、 歯己糸城にカロえてさらに、 質量%で、 Α1 : 0·1%以下 を含有する糸滅とすることを 1敷とする鋼板。  (3) A steel sheet having one bed as defined in (1) or (2), wherein the slaughtering further comprises a mass% of Α1: 0 · 1% or less.
(4) (1) ないし (3) のいずれかにおいて、 ffJlEl ^に加えてさらに、 質量0 /0で、In any one of (4) (1) to (3), in addition to FfJlEl ^, mass 0/0,
Cr: 3.5%以下、 Mo: 0.7%以下、 Ni: 3.5%以下、 Ti: 0.01〜0.1%および B: 0.0005〜0.005% のうちから選ばれた 1種または 2種以上を含有する糸! ^とすることを街敷とする鋼 Cr: 3.5% or less, Mo: 0.7% or less, Ni: 3.5% or less, Ti: 0.01 to 0.1% and B: 0.0005 to 0.005% selected from one or more yarns! Steel with ^
(5) 鋼素材に、 該鋼素材を加熱し圧延を施し隱板とする熱間圧延と、 該艇板に焼鈍 を施す β板; ^と、 を順次施す鋼板の製 法において、 filBl罔素材を、 質量%で、 C: (5) In the steel plate manufacturing method, the filBl 罔 material is applied to the steel material by hot rolling the steel material and rolling the steel material to make a steel plate, and annealing the boat plate β plate; In mass%, C:
0.1〜0.5%、 Si: 0.5%以下、 n: 0.2〜1.5%、 P : 0.03%以下、 S: 0.02%以下を含み、 ¾ Feおよび不可避的不純物からなる糸滅を有する鋼素材とし、 tfflS熱間圧延を、 仕 ±ff延の終 了 を 800〜950°Cとし、 該仕上圧延の終了後に、 50°C/s以上の平均 ί^ί で^ ¾し、 500 〜700°Cの範囲の で該冷却を停止し、 450〜60(Cで卷取る処理とすることを赚とするフ アインブランキング加工†生に優れた鋼板の製造方法。 0.1 to 0.5%, Si: 0.5% or less, n: 0.2 to 1.5%, P: 0.03% or less, S: 0.02% or less, and ¾ steel material with yarn destruction consisting of Fe and inevitable impurities, tfflS heat During rolling, the end of finishing ± ff is set to 800 to 950 ° C, and after the finish rolling is finished, an average ί ^ ί of 50 ° C / s or more is obtained, and the range of 500 to 700 ° C is set. The method for producing a steel plate excellent in fine blanking processing, wherein the cooling is stopped at 450 to 60 (the treatment is to remove at C).
(6) (5) において、 に加えてさらに、 質量0 /0で、 A1: 0.1%以下を含有する組 成とすることを難とする鋼板の製^^法。 (6) In (5), in addition further mass 0/0, A1: manufactured ^^ method of the steel sheet to a flame to be set formed containing 0.1% or less.
(7) (5) または (6) において、 歸 且成にカ卩えてさらに、 質量%で、 Cr: 3.5%以下、 Mo: 0.7%以下、 Ni: 3.5%以下、 Ti: 0.01—0.1%および B: 0.0005〜0.005%のうちから選ば れた 1種または 2種以上を含有する糸1 ^とすることを !敷とする鋼板の製^法。  (7) In (5) or (6), in addition to mass, in terms of mass%, Cr: 3.5% or less, Mo: 0.7% or less, Ni: 3.5% or less, Ti: 0.01—0.1% and B: A method of manufacturing a steel sheet using 1 + or more of yarns selected from 0.0005 to 0.005% as 1!
(8) (5) ないし (7) のいずれかにおいて、 Ι&ΙΒβ板焼鈍を、 « : 600~ 750°Cとする処理とすることを赚とする鋼板の製 "法。 本発明によれば、 FB加工性に優れ、 しかも FB加工後の成形加工性にも優れた鋼板を容易に しかも安価に製造でき、 産業上格段の効果を奏する。 また、 本発明によれば、 FB加工性に優 れた鋼板となり、 FB加工後の端面処理を行う必要がなくなり、 製造ェ期の^ Iが可能で生産 性が向上するとともに、 製造コストの肖 [1減が可能となるという効果もある。 図面の簡単な説明 (8) A method for producing a steel sheet according to any one of (5) to (7), wherein the annealing of the iron and iron β plate is performed at a temperature of 600 to 750 ° C. According to the present invention, it is possible to easily and inexpensively manufacture a steel sheet having excellent FB workability and excellent formability after FB processing, and has a remarkable industrial effect. In addition, according to the present invention, the steel sheet is excellent in FB workability, and it is not necessary to perform end face processing after FB processing, which enables ^ I during the manufacturing period, improves productivity, and reduces manufacturing costs. [There is also an effect that 1 reduction is possible. Brief Description of Drawings
図 1は、 FB加工性 (打抜き面の表面粗さ) とフェライト粒界炭化物量との関係を示すグ ラフである。  Figure 1 is a graph showing the relationship between FB workability (surface roughness of the punched surface) and ferrite grain boundary carbide content.
図 2は、 FB加工性 (打抜き面の表面粗さ) と炭化物球状化率との関係を示すグラフであ る。  Figure 2 is a graph showing the relationship between FB workability (surface roughness of the punched surface) and carbide spheroidization rate.
図 3は、 FB加工性 (打抜き面の表面粗さ) と平均フェライト結晶粒径との関係を示すグ ラフである。 '  Figure 3 is a graph showing the relationship between FB workability (surface roughness of the punched surface) and average ferrite crystal grain size. '
図 4は、 FB加工後の打抜き面の表面粗さ測定領域を模式的に説明する説明図である。 発明を実施するための最良の形態  FIG. 4 is an explanatory view for schematically explaining the surface roughness measurement region of the punched surface after FB processing. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 本発明鋼板の糸 限 由について説明する。 なお、 における質量%はとくに 断わらな 、かぎり、 単に%と記す。  First, the thread limitation of the steel sheet of the present invention will be described. Unless otherwise specified, mass% in is simply written as%.
C: 0. 1~0. 5%  C: 0.1 ~ 0.5%
Cは、 無焼鈍後およひ の硬さに影響する元素であり、 本発明では 0. 1%以上の含 有を必要とする。 Cが 0· 1%未満では、 自動車用部品として要求される硬さを得ることができ なくなる。 一方、 0. 5%を超える多量の含有は、 鋼板が硬質化するため、 工業的に十分な金型 寿命が確保できなくなる。 このため、 Cは 0. 1〜0. 5%の範囲に限定した。  C is an element that affects the hardness after annealing and in the present invention, and in the present invention, it needs to contain 0.1% or more. If C is less than 0 · 1%, the hardness required for automobile parts cannot be obtained. On the other hand, if the content exceeds 0.5%, the steel sheet becomes hard, so that it is impossible to secure an industrially sufficient mold life. For this reason, C is limited to the range of 0.1 to 0.5%.
Si: 0. 5%以下  Si: 0.5% or less
Siは、 脱酸剤として作用するとともに、 固溶強化により強度 (硬さ) を増加させる元素で ある力 '0. 5%を超えて多量に含有するとフェライト相が硬質化し、 FB加工性を低下させる。 また 0. 5%を超えて Siを含有すると、熱 段階で赤スケールと呼ばれる表面欠陥を生じる。 このため、 Siは 0. 5%以下に限定した。 なお、 好ましくは 0. 35%以下である。  Si acts as a deoxidizing agent, and when it is contained in a large amount exceeding '0.5%, which is an element that increases strength (hardness) by solid solution strengthening, the ferrite phase becomes hard and FB workability decreases. Let If the Si content exceeds 0.5%, a surface defect called red scale occurs in the thermal stage. For this reason, Si was limited to 0.5% or less. In addition, Preferably it is 0.35% or less.
Mn: 0. 2〜1. 5%  Mn: 0.2 to 1.5%
Mnは、 固溶強ィ匕により鋼の強度を増加するとともに、 i¾A L性向上に有効に作用する元素 である。 このような効果を得るためには、 0. 2%以上含有することが望ましいが、 1. 5%を超 えて過剰に含有すると、 固溶強ィ匕が強くなりすぎてフェライト力 S硬質化し、 FB加工性が低下 する。 このため、 Mnは 0. 2〜 1. 5%の範囲に限定した。 なお、 好ましくは、 0. 6~0. 9%である P : 0.03%以下 Mn is an element that effectively increases the strength of the steel and improves the i¾AL properties by increasing the solid solution strength. In order to obtain such effects, it is desirable to contain 0.2% or more, but more than 1.5% If it is contained excessively, the solid solution strength becomes too strong and the ferrite strength becomes harder, and the FB processability decreases. For this reason, Mn was limited to the range of 0.2 to 1.5%. Preferably, it is 0.6 to 0.9% P: 0.03% or less
Pは、粒界等に偏析し加工性を低下させるため、 本発明では極力観することが望ましい が、 0. 03%までは許容できる。 このようなことから、 Pは 0. 03%以下に限定した。 なお、 好 ましくは 0. 02%以下である。  P segregates at grain boundaries and lowers the workability, so it is desirable to observe as much as possible in the present invention, but it is acceptable up to 0.03%. Therefore, P is limited to 0.03% or less. Preferably, it is 0.02% or less.
S : 0. 02%以下  S: 0.02% or less
Sは、鋼中では MnSなどの硫化物を形成して介在物として し、 FB加工性を低下させる 元素であり、 極力赚することが望ましいが、 0. 02%までは許容できる。 このようなこと力 ら、 Sは 0. 02%以下に限定した。 なお、 好ましくは 0. 01%以下である。  S is an element that forms sulfides such as MnS in steel as inclusions and lowers the FB workability. It is desirable to reduce it as much as possible, but it is acceptable up to 0.02%. For these reasons, S was limited to 0.02% or less. In addition, Preferably it is 0.01% or less.
上記した成分が ¾*糸膽であるが、 本発明では上記した »糸滅に加えて、 Al、 および/ または、 Cr、 Mo、 Ni、 Tiおよび Bのうちから選ばれた 1種または 2種以上を含有できる。  In the present invention, in addition to the above-described »yarn destruction, one or two types selected from Al, and / or Cr, Mo, Ni, Ti and B are used in the present invention. The above can be contained.
A1: 0. 1%以下  A1: 0.1% or less
A1は、 脱酸剤として作用するとともに、 Nと結合して A1Nを形成し、 オーステナイト粒の ¾λ化防止に寄与する元素である。 Βとともに含有する には、 Νを固定し、 Βが Β とな り feA L性向上に有効な Β量の «を防止する効果も有する。 このような効果は 0. 02%以上 の含有で顕著となるが、 0. 1%を超える含有は、鋼の清浄度を低下させる。 このため、 含有す る^^には、 A1は 0. 1%以下に限定することが好ましレヽ。 なお、 不可避的不純物としての A1 は Ο.Ό1%以下である。  A1 is an element that acts as a deoxidizing agent and combines with N to form A1N, thereby contributing to prevention of the formation of λλ of austenite grains. In addition to the soot, the soot is fixed, so that the soot becomes soot and has the effect of preventing the amount of soot that is effective for improving feAL properties. Such an effect becomes remarkable when the content is 0.02% or more, but the content exceeding 0.1% lowers the cleanliness of the steel. For this reason, it is preferable to limit A1 to 0.1% or less. In addition, A1 as an inevitable impurity is Ο.Ό1% or less.
Cr、 Mo、 Ni、 Ti、 Bはいずれも、 性の向上、 あるいはさらに焼戻軟化抵抗の向上に 寄与する元素であり、 必要に応じて選択して含有できる。  Cr, Mo, Ni, Ti, and B are all elements that contribute to improving the properties or further improving the temper softening resistance, and can be selected and contained as necessary.
Cr: 3.5%以下  Cr: 3.5% or less
Crは、 ^A b性の向上に有効な元素であり、 このような効果を得るためは 0. 1%以上含有 することが好まし 、が、 3. 5%を超える含有は、 FB加工性が低下するとともに、 焼戻軟化抵抗 の過度の増大を招く。 このため、 Crは含有する場合には 3. 5%以下に限定することが 0まし い。 なお、 より好ましくは 0. 2〜: L. 5%である。  Cr is an element effective in improving the ^ Ab property. In order to obtain such an effect, it is preferable to contain 0.1% or more. However, if it exceeds 3.5%, FB workability Decreases, and temper softening resistance increases excessively. For this reason, when Cr is contained, it is preferably limited to 3.5% or less. More preferably, it is 0.2 to: L. 5%.
Mo: 0.7%以下  Mo: 0.7% or less
Moは、 i¾A L性の向上に有効に作用する元素であり、 このような効果を得るためには 0. 05%以上含有することが好ましいが、 0. 7%を超える含有は鋼の硬質化を招き、 FB加工性が 低下する。 このため、 Moは含有する: ^には 0. 7%以下に限定することが好まし ヽ。 なお、 より好ましくは 0. 1〜0. 3%である。 Mo is an element that effectively acts to improve i¾AL properties. In order to obtain such an effect, it is preferably contained in an amount of 0.05% or more. However, if it exceeds 0.7%, the steel is hardened. FB workability descend. For this reason, Mo is contained: ^ is preferably limited to 0.7% or less. More preferably, the content is 0.1 to 0.3%.
Ni: 3.5%以下、  Ni: 3.5% or less,
Niは、 !^A U生を向上させる元素であり、 このような効果を得るためには 0. 1%以上含有 することが好ましいが、 3. 5%を超える含有は鋼の硬質化を招き、 FB加工性が低下する。 この ため、 Niは含有する齢には 3. 5%以下に限定することが好ましい。 なお、 より好ましくは 0. 1〜2. 0%である。  Ni! ^ A element that improves AU growth. To achieve this effect, it is preferable to contain 0.1% or more. However, if it exceeds 3.5%, it will cause the steel to become harder and the FB workability will be reduced. descend. For this reason, it is preferable to limit the Ni content to 3.5% or less. More preferably, the content is 0.1 to 2.0%.
Ti: 0.01〜 1%  Ti: 0.01 to 1%
Tiは、 Nと結合し TiNを形成しやすく、 焼 A 時の γ粒の ft 化防止に有効に作用する元 素である。 また、 Bとともに含有する # ^には BNを形成する 1^を«するため、 ; ¾A b性向 上に必要な Bの添ロ量を少なくすることができるという効果も有する。 このような効果を得 るためには 0.01%以上の含有を必要とする。 一方、 0. 1%を超える含有は、 TiCなどの析出に よりフェライトが析出強化されて硬質化し、 金!^の低下を招く。 このため、 含有する場 合には、 Tiは 0.01〜0. 1%の範囲に限定することが好ましい。 なお、 より好ましくは 0.015~ 0. 08%である。  Ti is an element that easily binds to N to form TiN and effectively acts to prevent γ grains from becoming ft during firing A. In addition, since # ^ contained with B is added with 1 ^ forming BN, it also has the effect of reducing the additive amount of B necessary for improving ¾A b property. In order to obtain such an effect, a content of 0.01% or more is required. On the other hand, if the content exceeds 0.1%, the precipitation of TiC will strengthen the ferrite by precipitation strengthening, resulting in gold! Incurs a drop in ^. For this reason, when it is contained, Ti is preferably limited to a range of 0.01 to 0.1%. More preferably, it is 0.015 to 0.08%.
B: 0.0005~0.005%  B: 0.0005 ~ 0.005%
Bは、 オーステナイト粒界に偏析し、 微量で ^A i性を改善させる元素であり、 特に Tiと 複合添加した場合に効果的である。 焼 A b性改善のためには、 0. 0005%以上の含有を必要と する。 一方、 0.005%を超えて含有しても、 その効果が飽和し、 含有量に見合う効果が期待で きなくなり経済的に不利となる。 このため、 含有する^には、 Bは 0.0005〜0.005%の範囲 に限定することが好まし 、。 なお、 より好ましくは 0. 0008-0. 004%である。  B is an element that segregates at the austenite grain boundaries and improves ^ Ai properties in a small amount, and is particularly effective when combined with Ti. In order to improve the burnability, it is necessary to contain 0.0005% or more. On the other hand, even if the content exceeds 0.005%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit the content of B to 0.0005 to 0.005%. More preferably, it is 0.0008-0.004%.
上記した成分以外の残部は Feおよび不可避的不純物である。 なお、 不可避的不純物として は、 例えば、 N : 0.01%以下、 0 : 0. 01%以下、 Cu: 0. 1%以下が許容できる。  The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include, for example, N: 0.01% or less, 0: 0.01% or less, and Cu: 0.1% or less.
次に、 本発明鋼板の糸赚限定理由について説明する。 .  Next, the reason for limiting the yarn thread of the steel sheet of the present invention will be described. .
本発明鋼板は、 フェライトおよび炭化物を主体とする ,«を有する。 フェライトおよび炭 化物を主体とする糸 とは、 フェライトと炭化物とで ίΦ¾率で 95%以上となる 織をいうも のとする。  The steel sheet of the present invention has «, mainly composed of ferrite and carbide. Yarn mainly composed of ferrite and carbide means a weave in which ferrite and carbide are 95% or more in terms of ΦΦ¾ ratio.
本発明では、 フェライトの粒径は、 平均結晶粒径で 1〜: 10 /imとする。 平均フェライト結晶 粒径が 1 μπι未満では、 鋼板が著しく硬化するとともに、 フェライト粒内の炭化物量が増加 し、 FB加工性、 金 ¾ ^、 さらには RB加工後の穴拡げ性等の成形加工性が低下する。 一方、 ΙΟ ΠΙを超えると、 軟質化して金 ^が向上するものの、 図 3に示すように、 FB加工性が 低下する。 このため、 平均フェライト結晶 «は 1 ~10μπιの範囲に限定した。 なお、 好まし くは 1 ~5 111である。 In the present invention, the ferrite grain size is 1 to 10 / im in terms of the average crystal grain size. If the average ferrite crystal grain size is less than 1 μπι, the steel sheet hardens significantly, and the amount of carbide in the ferrite grains increases, so that FB workability, gold ¾ ^, and formability such as hole expandability after RB processing, etc. Decreases. on the other hand, 超 え る If it exceeds 質, it softens and gold increases, but as shown in Fig. 3, FB workability decreases. Therefore, the average ferrite crystal is limited to the range of 1 to 10 μπι. The preferred range is 1 to 5 111.
本発明鋼板では、 炭化物の球状化率を 80%以上とする。 球状化率が 80%未満では、 硬質化 するうえ、 変形能が小さく FB加工性が低下する。 図 2に示すよ,うに、 球状化率が 80%未満で は、 Rz aveカ ΙΟμ πιを超えて大きくなり、 ΕΒ加工性が急激に低下する。 このため、 本発明で は、 十分な FB加工性を確保するために、 炭化物の球状化率を 80%以上に限定した。 なお、 球 状化率を大きくするためには長時間の焼鈍が必要になるため、 好ましくは 80〜85%である。 また、 本発明鋼板では、 フェライト粒界炭化物量 を 40%以上とする。 フェライト粒界炭 化物量 は、 化物の占有面積に ¾ "る、 フェライト結晶粒界上に^ ¾する炭化物の占有 面積の比率であり、 次 (1 ) 式 In the steel sheet of the present invention, the spheroidization rate of carbide is 80% or more. If the spheroidization rate is less than 80%, it will become hard, and the deformability will be small and the FB processability will deteriorate. As shown in Fig. 2, when the spheroidization rate is less than 80%, it becomes larger than Rz ave カ μ πι, and the wrinkle workability decreases rapidly. For this reason, in the present invention, the spheroidization rate of the carbide is limited to 80% or more in order to ensure sufficient FB processability. In order to increase the spheroidization rate, annealing for a long time is required, so 80% to 85% is preferable. In the steel sheet of the present invention, the ferrite grain boundary carbide content is 40% or more. The amount of ferrite grain boundary carbide is the ratio of the carbide area occupied on the ferrite grain boundary to the area occupied by the carbide, and the following equation (1)
Figure imgf000013_0001
Figure imgf000013_0001
(ここで、 S:単位面積あたりに する炭化物のうち、 フェライト結晶粒界上に する 炭化物の総占有翻、 S。n、 :単位 積あたりに «する炭化物のうち、 フェライト粒内に する炭化物の総占有 (Where S ∞ is the total occupation of carbides on the ferrite grain boundary among the carbides per unit area, S. n , among the carbides per unit area, the carbides in the ferrite grains Total occupancy
で定義される値である。 フェライト粒界炭化物量 が 40%未満では、 フェライト粒内に する炭ィ匕物量が多くなり、 図 1に示すように、 Rz aveが 10 mを超えて大きくなり、 1¾加工 性が急激に低下する。 これは、 微細で球状化された炭化物でもフェライト粒内に存在すると、 EB加工時に炭化物の周りに微細な亀裂が発生し、 それらの連結により FB加工性が低下するた めであると考えられる。 FB加工時に炭化物の周りに微細な亀裂が発生し残存することにより、 その後の成形加工でそれらが連結し、 成形加工性が低下するとも考えられる。 また、 フェラ イト粒内に炭化物が被するとフェライト粒自身が硬質化し、 金 の低下を招く。 この ため、 本発明では、 フェライト粒界炭化物量 を 40%以上に限定した。 なお、 好ましくは 50%以上である。 It is a value defined by. When the amount of ferrite grain boundary carbide is less than 40%, the amount of charcoal in the ferrite grain increases, and as shown in Fig. 1, Rz ave increases beyond 10 m, and 1¾ workability decreases rapidly. . This is thought to be because even if fine and spheroidized carbides are present in the ferrite grains, fine cracks are generated around the carbides during EB processing, and the FB workability deteriorates due to their connection. It is thought that fine cracks are generated and remain around the carbide during FB processing, and they are connected in the subsequent molding process, and the moldability is reduced. In addition, if carbide is covered in the ferrite grains, the ferrite grains themselves become hard, leading to a decrease in gold. For this reason, in the present invention, the amount of ferrite grain boundary carbide is limited to 40% or more. In addition, Preferably it is 50% or more.
また、 本発明鋼板では、 フェライトの結晶粒界上に する炭化物は、 平均粒径で 5 / m 以下とすることが好ましい。 というのは、 フェライト粒界炭化物量 が 40%以上である^ は、 フェライト粒界上に雜する炭化物は、 その粒径が小さいほど EB加工性の向上、 さらに は金 Μ# の向上に寄与することが大きいことを新たに見出したことによる。 また、 炭化物 粒径は小さいほど、 高周波 iftAi における短時間加熱に際しても、 炭化物をオーステナイト 中に容易に固溶させることができ、 所望の ¾A OIさを確保することが容易になる。 このよ うなことから、 フェライトの結晶粒界上に ϊ½する炭化物の平均粒径は 5 ^ m以下に限定す ることが好ましい。 In the steel sheet of the present invention, the carbides on the ferrite grain boundaries are preferably 5 / m or less in average grain size. This is because when the amount of carbide at the ferrite grain boundary is 40% or more, the carbide on the ferrite grain boundary contributes to the improvement of EB workability and further to the improvement of gold metal # as the grain size becomes smaller. This is due to the new finding that this is a big deal. In addition, the smaller the particle size of the carbide, the easier it is to dissolve the carbide in the austenite even when heating for a short time in the high-frequency iftAi, and it becomes easy to secure the desired ¾A OI. This For this reason, it is preferable to limit the average grain size of carbides on the crystal grain boundaries of ferrite to 5 m or less.
つぎに、 本発明鋼板の好まし 、製造方法にっ 、て説明する。  Next, preferred and manufacturing methods of the steel sheet of the present invention will be described.
上記した糸诚を有する溶鋼を、 転炉等の常用の溶 法で難し、 連 « ^法等の常用の 離方法で鋼素材 (スラブ) とすることが好ましい。  It is preferable that the molten steel having the yarn thread described above is made difficult by a conventional melting method such as a converter and used as a steel material (slab) by a conventional separation method such as a continuous ^ method.
ついで、 得られた鋼素材には、 鋼素材を加熱し圧延して讀板とする熱間圧延を施す。 熱間圧延は、 仕上圧延の終了 を 800~950 とし、 仕上圧延の終了後に、 50°C/s以上の 平均冷却 で冷却し、 500〜700°Cの範囲の ¾Sで?^ Pを停止し、 450〜600°Cで卷取る処理と することが好ましい。 本発明における熱間圧延では、 仕 ±]ϊ延の終了 と、 その後の冷却 条件を調整することを樹敷とする。 これにより、 ほぼ 100%のパーライト«を有する熱延板 が得られる。  Next, the obtained steel material is hot-rolled by heating and rolling the steel material to form a plate. In hot rolling, finish rolling is finished at 800-950, and after finishing rolling, it is cooled with an average cooling of 50 ° C / s or more and stopped at ¾S in the range of 500-700 ° C. It is preferable that the scouring process is performed at 450 to 600 ° C. In the hot rolling according to the present invention, the end of finishing is adjusted and the subsequent cooling conditions are adjusted. As a result, a hot-rolled sheet having almost 100% pearlite is obtained.
仕上圧延の終了 ¾: 800~950°C  Finish rolling finished ¾: 800 ~ 950 ° C
仕 ±]ΐ延の終了 は、 通常の仕上圧延の終了 域である 800〜950°Cの範囲内の ¾と することが好まし ヽ。 仕上圧延の終了 ¾gが 950°Cを超えて高くなると、 発生するスケールが 厚くなり酸洗性が低下するうえ、 鋼板表層で! ^層を生じる がある。 一方、 仕上圧延の 終了温度が 800°C未満では、 圧延負荷の増大が著しくなり、圧延機への過大な負荷が問題とな る。 このため、 仕上圧延の終了 は 800〜950°Cの範囲内の とすることが好まし V、。 仕上圧延終了後の平均冷却 ¾S: 50°C/s以上  The finish of the finish is preferably ¾ within the range of 800 to 950 ° C, which is the finish area of normal finish rolling. When finish rolling finish ¾g is higher than 950 ° C, the generated scale becomes thicker and pickling property is deteriorated, and a! Layer may be formed on the surface layer of the steel sheet. On the other hand, if the finishing temperature of finish rolling is less than 800 ° C, the rolling load increases significantly, and an excessive load on the rolling mill becomes a problem. For this reason, it is preferable to finish the finish rolling within the range of 800-950 ° C V ,. Average cooling after finish rolling ¾S: 50 ° C / s or more
仕上圧延終了後、 50°C/s以上の平均冷却 ¾で 卩する,。 なお、 該平均?^ ¾¾Sば仕上 圧延の終了 から該 P (強制 の停止 までの平均冷却速度である。 平均冷却速 度が 50°C/s未満では、 ί^ίΡ中に炭化物を含まないフェライトを生じ、 後の紙織がフェラ ィト +パーライトの不均一な糸且熾となり、 ほぼ 100%のパーライトからなる均一な紙織を確保 できなくなる。 f诞; 熾がフェライト +パーライトの不均一な II織では、 その後の 诞板焼 鈍をいかに工夫しても、粒内に する炭化物が多くなり、 粒界に #¾Εする炭化物量が減少 する。 このため、 FB加工性が低下する。 このようなことから、 仕 ±ΙΪ延終了後の平均冷却速 度を 50°C/s以上に限定することが好ましレヽ。 なお、 べィナイトの生成を防止するため 120°C/ s以下とすることがより好ましい。 冷却停止 : 500〜700 上記冷却 (強制冷却) を停止する は 500~700°Cとすることが好ましい。 冷却停止 ¾ が 500 未満では、 硬質なべィナイトゃマルテンサイトを生じて 板焼鈍が長時間となると いう問題や、 卷取時に割れを生じるなど «上の問題を生じる。 一方、 冷却停止 が700 を超えて高温となると、 フェライト変態ノーズが 700 近傍であるため、 冷却停止後の放冷中 にフヱライトを生じ、 ほぼ 100%のパーライトからなる均一な糸纖を確保できなくなる。 この ようなことから、 冷却の停止温度は、 500〜700°Cの範囲内の温度に限定することが好ましい。 なお、 より好ましくは 500~650°C、 さらに好ましくは 500〜600°Cである。 After finishing rolling, the average cooling rate is 50 ° C / s or more. If the average cooling rate is less than 50 ° C / s, the ferrite containing no carbide in the ί ^ ίΡ is the average cooling rate from the end of finish rolling to the P (forced stop). The resulting paper weave becomes non-uniform ferrite and pearlite yarns and wrinkles, making it impossible to secure a uniform paper weave consisting of almost 100% pearlite f 诞; With II weaving, no matter how the subsequent plate annealing is done, the amount of carbides in the grains increases, and the amount of carbides that fall into the grain boundaries decreases, thus reducing FB processability. For this reason, it is preferable to limit the average cooling rate after finishing the rolling to 50 ° C / s or higher, but to prevent the formation of benite, it should be 120 ° C / s or lower. More preferable: Cooling stop: 500 to 700 The cooling (forced cooling) is preferably stopped at 500 to 700 ° C. If the cooling stop ¾ is less than 500, hard beanite will cause martensite and the plate annealing will take a long time, and there will be other problems such as cracking during cutting. On the other hand, when the cooling stop exceeds 700 and the temperature becomes high, the ferrite transformation nose is close to 700. Therefore, flare is generated during the cooling after the cooling stop, and it becomes impossible to secure uniform yarns composed of almost 100% pearlite. . For this reason, the cooling stop temperature is preferably limited to a temperature within the range of 500 to 700 ° C. The temperature is more preferably 500 to 650 ° C, and further preferably 500 to 600 ° C.
冷却を停止したのち、 ,板は直ちにコイル状に卷取られる。 卷取り は 450~600 、 より好ましくは 500〜600°Cとする。  After cooling is stopped, the plate is immediately coiled. The wrinkling is 450 to 600, more preferably 500 to 600 ° C.
卷取り が 450°C未満では、 卷取り時に鋼板に割れが発生し、 «上問題となる。 一方、 卷取り が 600°Cを超えると、 卷取り中にフェライトが生成するという問題がある。  If the scraping is less than 450 ° C, cracks occur in the steel plate when scraping, which causes a top problem. On the other hand, if the scraping exceeds 600 ° C, there is a problem that ferrite is generated during scraping.
このようにして得た 板 (熱 鋼板) は、 酸洗またはショットプラストなどにより表面 の酸化スケールを除去後、 難 ¾t雄を施される。 ほぼ 100%のパーライト糸纖を有する熱涎 板に適正な熱 板焼鈍を施すことにより、炭化物の球状化が促進されるとともに、 フェライ トの粒成長が抑制され、 炭化物の多くをフェライト結晶粒界上に させることができるよ うになる。  The plate (heated steel plate) thus obtained is subjected to a difficult male after removing the oxide scale on the surface by pickling or shot plast. Appropriate hot-plate annealing is applied to hot-rolled sheets with almost 100% pearlite yarns to promote spheroidization of carbides and suppress ferrite grain growth. You will be able to move up.
なお、 板焼鈍では、 焼鈍 を 600〜750°Cの範囲の とする。 が、 600°C未 満では、 十分な炭化物の球状化が できない。 一方、 750°Cを超えて高温となると、 中 にパーライトが再生し、 ファインブランキング加工性、 その他の力 Πェ性が低下する。 なお、 熱 板«の TO時間はとくに限定する必要はないが、 炭化物を十分球状化するためには 8 h以上とすることが好ましい。 また、 80hを超えるとフェライト粒が過度に &λ化する恐れ があるため、 80h以下とすることが好ましい。 実施例  In sheet annealing, annealing is performed in the range of 600 to 750 ° C. However, when the temperature is less than 600 ° C, sufficient spheroidization of carbide cannot be achieved. On the other hand, when the temperature is higher than 750 ° C, pearlite is regenerated inside, and the fine blanking workability and other strengths are reduced. The TO time of the hot plate is not particularly limited, but is preferably 8 hours or longer in order to sufficiently spheroidize the carbide. Further, if it exceeds 80 hours, the ferrite grains may be excessively & λ converted. Example
表 1に示す糸賊の鋼素材 (スラブ) に、 表 2に示 間圧延および熱延板雄を施し、 鋼板 : 4. 3mm) とした。  The steel material (slab) of the thread band shown in Table 1 was subjected to the rolling shown in Table 2 and a hot-rolled sheet male, resulting in a steel plate (4.3 mm).
得られた熱 ¾1同板について、 組織、 FB加工性、 FB加工後の伸ぴフランジ性を調査した。 調»法はつぎのとおりである。  Regarding the obtained heat plate 1, the structure, FB workability, and stretch flangeability after FB processing were investigated. The adjustment method is as follows.
( 1 ) 繊 得られた鋼板から纖観察用試 ¾j†を採取した。 そして、 試験片の圧延方向に TOな断面 を研磨し、 ナイタール腐食したのち、 ォ碟 1/4位置について、 走査型電子騎繊 (SEM) (倍 率、 フェライト : 1000倍、 炭化物: 3000倍) で金属糸纖を観察 (視 »: 30個所) し、 フエ ライトおよび炭化物の体精率、 フェライト粒径、 炭化物の球状化率、 フェライト粒界炭化物 量、 およびフェライト粒界上の炭化物の平均粒径を測定した。 (1) Fiber From the obtained steel plate, a sample for observation of wrinkles j † was collected. Then, after polishing the TO section in the rolling direction of the test piece and subjecting it to nital corrosion, the scanning electronic caulking (SEM) (double, ferrite: 1000 times, carbide: 3000 times) (Observation »: 30 locations) Ferrite and carbide fineness, ferrite grain size, carbide spheroidization rate, ferrite grain boundary carbide amount, and average grain size of carbide on ferrite grain boundary The diameter was measured.
フェライトおよび炭化物の体 率は、 SEM (倍率: 3000倍) で金属糸 Ιϋを観察 (視野数: 30 個所) し、 フェライトの と炭化物の面積を合算した面積を、 全視野面積で除して面積率 を求め、 これをフェライトおよび炭化物の髓率として判断した。  The volume ratio of ferrite and carbide was determined by observing the metal yarn with a SEM (magnification: 3000 times) (number of fields: 30) and dividing the total area of ferrite and carbide by the total field of view. The ratio was determined and this was judged as the ratio of ferrite and carbide.
フェライト粒径は、 各フェライト粒についてその面積を測定し、 得られた面積から円相当 径を求め、 おのおのの! ^とした。 得られた各フェライト粒径を算術平均し、 その値を、 そ の多岡板の平均フエライト «とした。  The ferrite grain size was determined by measuring the area of each ferrite grain and calculating the equivalent circle diameter from the obtained area. The obtained ferrite grain sizes were arithmetically averaged, and the value was defined as the average ferrite of the Taoka plate.
炭化物の球状化率は、 金属糸且織観察 (倍率: 3000倍) の各視野 (視赚:30個所) で面像 角 置を用いて、 各炭化物の最大長さ aと最小長さ bを求め、 その比 a/bを計算し、 a/bが 3以下の炭化物粒数を、 測定した^^化物個数に ¾ "る割合 (%) で表示し、 炭化物の球状 化率 (%) とした。 ■  The spheroidization rate of carbide is determined by the maximum length a and the minimum length b of each carbide using the surface image orientation in each field of view (viewing point: 30 places) of metal thread and weave observation (magnification: 3000 times). The ratio a / b is calculated and the number of carbide grains with a / b of 3 or less is displayed as a percentage (%) of the number of carbides measured. The ratio of carbide spheroidization (%) ■
フェライト粒界炭化物量 は、 金属糸纖観察 (倍率: 3000倍) の 野 (視赚: 30個 所) で、 フェライト粒界上に する炭化物おょぴフェライト粒内に^ ffiする炭化物を liSiJ し、 画働? 置を用いて、 単位面積あたりの、 フェライト粒界上に.! ½する炭化物の占有 面積 S、 およびフェライト粒内に する炭化物の占有面積 Stoを 1淀し、 次 (1 ) 式 The amount of ferrite grain boundary carbides is determined by observing the metal thread habit (magnification: 3000 times) in the field (view: 30 locations). Using the screen, on the ferrite grain boundary per unit area! ½ carbide occupying area S and carbide occupying area S to 1 in ferrite grains
(%) = {s/ (Sm+Sj } X 100 …… ( 1 ) (%) = {s / (S m + Sj} X 100 …… (1)
を用いて算出した Calculated using
また、 フェライト粒界上の各炭化物について、 炭化物の外周上の 2点と炭化物の相当楕円 (炭化物と同面積、 カゝっ一次および二次モーメントが等しい楕円) の重心を通る径を 2° き ぎみに測定して円相当径をもとめ、 これを各々の炭化物; ^とし、 得られた炭化物粒径を平 均した値をフェライト粒界上の炭化物の平均 とした。  In addition, for each carbide on the ferrite grain boundary, the diameter passing through the center of gravity of the two points on the outer circumference of the carbide and the equivalent ellipse of the carbide (the ellipse having the same area as the carbide, the same primary and secondary moments) is 2 °. The circle-equivalent diameter was determined by measurement, and this was defined as each carbide; ^, and the average value of the obtained carbide particle size was defined as the average of the carbide on the ferrite grain boundary.
( 2 ) FB加工性 (2) FB processability
得られた鋼板から試験板 (大きさ:100X8 を採取し、 FBテストを した。 FBテスト は、 110 t油圧プレス機を用いて、 試験片から、 大きさ:60mmX40nm (コーナー部 : lOmn) のサンプルを、 工具間のクリアランス: 0. 060nm の 1. 5%) 、 加工力: 8. 5ton、 潤 滑:有りの条件で打抜いた。 打抜力れたサンプルの端面 (打抜き面) について、 tiifBしたと 同様に表面粗さ (十点平均粗さ Rz) を測定して、 FB加工性を Hffiした。 なお、 試験片は、 ク リァランスに ¾ "る; 偏差の影響を除くため、 予め両面を等量ずつ研削し、 板厚を 4. 0±0. OlOmnとした。 From the obtained steel plate, a test plate (size: 100X8 was sampled and subjected to FB test. The FB test was a sample of size: 60mmX40nm (corner: lOmn) from a test piece using a 110 t hydraulic press. , Clearance between tools: 0.05% of 0.060nm), processing force: 8.5ton, Lu: Punched under certain conditions. The surface roughness (10-point average roughness Rz) of the end face (punched surface) of the punched sample was measured in the same way as tiifB, and the FB workability was increased. In addition, the test piece was subjected to the clearance; in order to eliminate the influence of the deviation, both sides were ground in advance by equal amounts to obtain a plate thickness of 4.0 ± 0. OlOmn.
すなわち、 表面粗さの測定は、 R部を除く 4つの端面とし、 各端面 (¾J¥面) で、 図 4に 示すように、 パンチ側表面 0. 5mmから Ki¥方向に 3. 9讓までの範囲でカゝっ表面に 亍に (X方 向) 10mmの領域を、 触 表面 計で ¾i¥方向 (t方向) に 100 / mピッチで 35回走査し、 JIS B 0601-199 に βして、 各走 镍における表面粗さ Rzを測定した。 さらに、 測定面の 表面粗さ Rzは、 各々の走 »の Rzを合計して、 その平均値とした。 上記と同様の方法で 4 つの端面を測定して、 次式  In other words, the surface roughness is measured at four end faces excluding the R section, and at each end face (¾J ¥ plane), as shown in Fig. 4, from the punch side surface 0.5 mm to 3.9 mm in the Ki ¥ direction. In the range of, scan the area of 10mm on the surface (X direction) with a touch surface meter 35 times at 100 / m pitch in the ¾i ¥ direction (t direction), and β in JIS B 0601-199 Then, the surface roughness Rz was measured on each run. Furthermore, the surface roughness Rz of the measurement surface was the average value of the total Rz of each run ». Measure the four end faces in the same way as above and
Rz ave= (Rz 1+ Rz 2+ Rz 3+ Rz 4) / 4 (ここで、 Rz 1, Rz 2, Rz 3, Rz 4:各面の ) で定義される平均表面粗さ: R Z ave ( m) を算出した。 Rz ave = (Rz 1+ Rz 2+ Rz 3+ Rz 4) / 4 ( where, Rz 1, Rz 2, Rz 3, Rz 4: each side of) is defined by the average surface roughness: R Z ave (m) was calculated.
また、 使用した工具 (金型) の # ^を評価した。 FB加工における打抜き回数が 30000回に 達した時点でのサンプル端面 (打抜き面)の表面粗さ (十点平均粗さ Rz) を測定し、 金 を評価した。 なお、 表面粗さの測定方法は上記した方法と同じとした。 サンプル端面の表面 粗さ (+点平均粗さ Rz) が 10/z m以下を〇、 10 111超ぇ〜16 111以下を 、 16/z m超えを Xと して評価した。  In addition, # ^ of the tool (die) used was evaluated. The surface roughness (10-point average roughness Rz) of the sample end face (punched surface) when the number of punches in FB processing reached 30000 times was measured, and gold was evaluated. The method for measuring the surface roughness was the same as that described above. When the surface roughness (+ point average roughness Rz) of the sample end face was 10 / zm or less, the evaluation was evaluated as 0, 10111 to 16111 or less, and X exceeding 16 / zm as X.
( 3 ) 1¾加工後の伸びフランジ性 ·  (3) Stretch flangeability after 1¾ processing
得られた熱 岡板から、 FB加工で試験片 (大きさ: lOOX lOOmn) 'を打抜き、'伸ぴフランジ 性を調査した。 なお、 FB加工は、 工具間のクリアランス:0. 06Qmm の 1. 5%) 、 加工 力: 8. 5ton、 潤滑:有りの条件で行った。  Specimens (size: lOOX lOOmn) 'were punched out from the obtained hot oka board by FB processing, and the stretch flangeability was investigated. FB machining was performed under the conditions of clearance between tools: 1.5% of 0.06Qmm), machining force: 8.5 tons, and lubrication: with.
伸ぴフランジ性は、 穴拡〖: m験を雄して穴拡げ率 λを求めて fHffiした。 穴拡げ 験は、 試験片に ΙΟππ φ ( d0) のポンチ穴を打抜いたのち、 該ポンチ穴を治具で押し広げる方法で行 V、、 ポンチ穴縁に ¾J¥貫通クラックが発生した時点での穴径 dを測定し、 次式 The stretch flangeability was determined by fHffi to obtain the hole expansion ratio λ by adding the hole expansion: m test. In the hole expansion test, after punching a punch hole of ΙΟππ φ (d 0 ) into the test piece, the punch hole is pushed out with a jig, line V, and when a ¾J through crack is generated at the punch hole edge Measure the hole diameter d at
λ (%) = ( d - d 0) / d 0X 100 λ (%) = (d-d 0 ) / d 0 X 100
で定義される穴拡げ率え (%) を求めた。 The hole expansion rate (%) defined in (1) was obtained.
得られた結果を表 2に併記する。  The results obtained are also shown in Table 2.
本発明例はいずれも、 打抜き面の表面粗さが Rz : 10 m以下であり、 EB加: L†生に優れ、 ま た、 打抜き回数: 30000回時の打ち抜き面表面も滑らか (評価:〇) であり、 金型寿命の低下 In all of the examples of the present invention, the surface roughness of the punched surface is Rz: 10 m or less, EB addition: excellent L †, and the surface of the punched surface at the time of punching: 30000 times is also smooth (Evaluation: 〇 ) Deterioration of mold life
'も認められない。 また、 本発明例は、 FB加工後の伸びフランジ性にも優れている。 なお、 前 記した方法でフェライトおよび炭化物の職率を藤したが、 いずれもフェライトと炭化物 との合計で 率 95%以上となっており、 フェライトおよび炭化物を主体とする になつ ていることを βした。 また、 t&fBした方法でフェライトの結晶粒界に する炭化物の粒 径を■、したが、 、ずれも平均粒径で 5 μ m以下であった。 'Is also not allowed. In addition, the inventive example is excellent in stretch flangeability after FB processing. Before Although the work rates of ferrite and carbide were improved by the method described above, the total ratio of ferrite and carbide was 95% or more, and it was β that it was mainly composed of ferrite and carbide. In addition, although the grain size of carbides at the ferrite grain boundaries was set by t & fB, the deviation was 5 μm or less in average grain size.
一方、 本発明の範囲を外れる比較例は、 打抜き面の表面粗さが Rz : 10 /i mを超えて粗くな り FB加工性が低下し、 また、 金 » ^の低下も認められ、 伸ぴフランジ性が低下している。 なお、 鋼板 No. 15は卷取時割れが発生したため、 板焼鈍以降の処理は行わなかった。  On the other hand, in the comparative example that is outside the scope of the present invention, the surface roughness of the punched surface exceeds Rz: 10 / im, and the FB workability decreases, and the decrease in gold »^ is also observed. Flangeability has deteriorated. Steel plate No. 15 did not undergo any treatment after plate annealing because cracking occurred during cutting.
1 & 表 1 1 & table 1
Figure imgf000019_0001
Figure imgf000019_0001
表 2 Table 2
Figure imgf000020_0001
Figure imgf000020_0001

Claims

請求の範囲 The scope of the claims
1 . 質量0 /0で、 1. In the mass 0/0,
C: 0. 1~0. 5%、 Si: 0. 5%以下、  C: 0.1 to 0.5%, Si: 0.5% or less,
Mn: 0.2〜1· 5%、 Ρ: 0. 03%以下、  Mn: 0.2 to 1.5%, 、: 0.03% or less,
S: 0. 02%以下 ,  S: 0.02% or less
を含み、 ¾¾ Feおよび不可避的不純物からなる糸!^と、 フェライトおよび炭化物を主体とす る紙織とを有し、 t&IEフエライトの平均粒径が 1~10 μ m、 tillH炭化物の球状化率が 80%以上 で、 カゝっ Ml己炭化物のうち、 フェライトの結晶粒界に する炭化物の量である、 下記¾¾ Fe and an inevitable impurity yarn! ^ And a paper weave mainly composed of ferrite and carbide, t & IE ferrite has an average particle diameter of 1 to 10 μm, and tillH carbide spheroidization rate Is the amount of carbide at the grain boundary of ferrite among the Ml self-carbides.
( 1 ) 式で定義されるフェライト粒界炭化物量 S^S 40%以上であることを,とするフアイ ンブランキング加工性に優れた鋼板。 (1) A steel plate with excellent fin blanking workability that has a ferrite grain boundary carbide content defined by the formula S ^ S of 40 % or more.
Record
S (%) = {Sノ (S+SJ } X 100 …… ( 1 ) S (%) = {S ノ (S + SJ} X 100 …… (1)
ここで、 s:単位面積あたりに «する炭化物のうち、 フェライト粒界上に する炭化 物の総占有面積、 Where s : the total occupied area of carbides on the ferrite grain boundary among the carbides per unit area,
sto:単位面積あたりに^ ¾する炭化物のうち、 フェライト粒内に する炭化物 の総占有 ®¾ ' s to : Total carbide occupies in ferrite grains out of carbides per unit area ®¾ '
2 . f&IBフエライトの結晶粒界に する炭化物が、 平均粒径で 5 m以下であることを 1敫とする請求項 1に記載の鋼 2. Steel according to claim 1, wherein the carbides at the grain boundaries of f & IB ferrite have an average grain size of 5 m or less.
3 . ItJfBli^に加えてさらに、 質量%で、 A1: 0. 1%以下を含有する糸!^とすることを » とする請求項 1または 2に記載の鋼 fe 3. In addition to ItJfBli ^, the steel fe according to claim 1 or 2, wherein a thread containing, by mass%, A1: 0.1% or less!
4 . ItifS a成にカ卩えてさらに、 質量%で、 Cr: 3. 5%以下、 Mo: 0. 7%以下、 Ni: 3. 5%以下. Ti: 0. 01〜0. 1%および B: 0. 0005-0. 005%のうちから選ばれた 1種または 2種以上を含有す る ¾¾とすることを糊敷とする請求項 1ないし 3のいずれかに記載の鋼 4. In addition to the ItifS a composition, in mass%, Cr: 3.5% or less, Mo: 0.7% or less, Ni: 3.5% or less. Ti: 0.01 to 0.1% and B: The steel according to any one of claims 1 to 3, wherein a paste containing one or two or more selected from 0.0005-0.005% is used as a paste.
5 . 鋼素材に、 該鋼素材を加熱し圧延を施し β板とする熱間圧延と、 該 β板に ¾ を 施«延板焼鈍と、 を順次施す銅板の製 法にお!ヽて、 ΙΐίΙΒ!岡素材を、 質量%で、 5. A method for producing a copper plate, in which a steel material is heated and rolled into a β plate by subjecting the steel material to rolling, and a ¾ is applied to the β plate, and then a sheet annealing is performed! In a hurry 岡 ίΙΒ! Oka material in mass%
C: 0. 1~0.5%、 Si: 0. 5%以下、 C: 0.1 to 0.5%, Si: 0.5% or less,
n: 0.2~1. 5%、 P: 0.03%以下、  n: 0.2 ~ 1.5%, P: 0.03% or less,
S : 0.02%以下  S: 0.02% or less
を含み、 残部 Feおよび不可避的不純物からなる糸诚を有する鋼素材とし、 A steel material having a yarn basket composed of the balance Fe and unavoidable impurities,
t&lB熱間圧延を、 仕 ±ff延の終了 を800〜950でとし、 該仕 ff延の終了後に、 50°C/s以 上の平均冷却 で冷却し、 soo yoc Cの範囲の ¾gで該冷却を停止し、 450〜60Cmで卷取る 処理とすることを«とするフアインプランキング加工性に優れた鋼板の製 法。 t & lB Hot rolling is performed at an end of the rolling ± ff of 800 to 950, and after the end of the rolling, it is cooled with an average cooling of 50 ° C / s or more, and the rolling is performed at ¾ g in the range of soo yoc C. A method for producing a steel plate with excellent fine blanking workability, which is characterized by stopping cooling and scraping at 450 to 60 cm.
6 . jfB滅に加えてさらに、 質量%で、 A1: 0. 1%以下を含有する繊とすることを街 とする請求項 5に記載の鋼板の製 法。 6. The method for producing a steel plate according to claim 5, wherein in addition to jfB destruction, the fiber further comprises A1: 0.1% or less by mass%.
7 - 前記組成にカ卩えてさらに、 質量%で、 Cr: 3. 5%以下、 Mo: 0. 7%以下、 Ni: 3. 5%以下、 Ti: 0. 01~0. 1%および B: 0.0005—0. 005%のうちから選ばれた 1種または 2種以上を含有す る とすることを |敫とする請求項 5または 6に記載の鋼板の製造方法。 7-In addition to the above composition, in mass%, Cr: 3.5% or less, Mo: 0.7% or less, Ni: 3.5% or less, Ti: 0.01 to 0.1% and B The method for producing a steel sheet according to claim 5 or 6, wherein the steel sheet contains at least one selected from 0.0005 to 0.005%.
8 . t&|E«板焼鈍を、 : 600〜750°Cとする処理とすることを销敷とする請求項 5ないし 7の ヽずれかに記載の鋼板の製造方法。 8. The method for producing a steel sheet according to any one of claims 5 to 7, wherein the t & | E «sheet annealing is set to a treatment of 600 to 750 ° C.
PCT/JP2007/051835 2006-01-31 2007-01-29 Steel sheet with excellent suitability for fine blanking and process for producing the same WO2007088985A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/159,010 US20090173415A1 (en) 2006-01-31 2007-01-29 Steel Sheet Excellent In Fine Blanking Performance and Manufacturing Method of the Same
EP07713798A EP1980635B1 (en) 2006-01-31 2007-01-29 Steel sheet with excellent suitability for fine blanking and process for producing the same
CN2007800041809A CN101379208B (en) 2006-01-31 2007-01-29 Steel plate having excellent fine blanking processability and method for manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-023104 2006-01-31
JP2006023104 2006-01-31

Publications (1)

Publication Number Publication Date
WO2007088985A1 true WO2007088985A1 (en) 2007-08-09

Family

ID=38327552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051835 WO2007088985A1 (en) 2006-01-31 2007-01-29 Steel sheet with excellent suitability for fine blanking and process for producing the same

Country Status (5)

Country Link
US (1) US20090173415A1 (en)
EP (1) EP1980635B1 (en)
KR (1) KR101023633B1 (en)
CN (1) CN101379208B (en)
WO (1) WO2007088985A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163538A1 (en) * 2015-04-10 2016-10-13 新日鐵住金株式会社 Steel sheet with excellent cold workability during forming, and process for producing same
WO2016190370A1 (en) * 2015-05-26 2016-12-01 新日鐵住金株式会社 Steel sheet and method for producing same
WO2016190396A1 (en) * 2015-05-26 2016-12-01 新日鐵住金株式会社 Steel sheet and method for producing same
WO2016204288A1 (en) * 2015-06-17 2016-12-22 新日鐵住金株式会社 Steel sheet and manufacturing method
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952236B2 (en) * 2006-12-25 2012-06-13 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
CN103084386B (en) * 2011-10-31 2015-02-25 上海汇众汽车制造有限公司 Method for optimizing surface quality of hot-rolled steel plates
JP6479538B2 (en) * 2015-03-31 2019-03-06 株式会社神戸製鋼所 Steel wire for machine structural parts
JP6515332B2 (en) * 2015-05-26 2019-05-22 日本製鉄株式会社 Low carbon steel sheet excellent in machinability and wear resistance after quenching and tempering, and method for producing the same
CN105624567B (en) * 2016-01-13 2017-06-13 东北大学 A kind of ferrite steel plate of nano-level sphere cementite reinforcing and preparation method thereof
WO2019163828A1 (en) * 2018-02-23 2019-08-29 Jfeスチール株式会社 High-carbon cold-rolled steel sheet and production method therefor
KR102348549B1 (en) * 2019-12-20 2022-01-06 주식회사 포스코 Steel having excellent workability and manufacturing method thereof
CN114058941A (en) * 2020-07-31 2022-02-18 宝山钢铁股份有限公司 Cold-rolled steel plate, manufacturing method thereof and blanking piece for automobile

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550427A (en) * 1978-10-03 1980-04-12 Kawasaki Steel Corp Manufacture of hot rolled medium or high carbon steel strip suitable for use in precision punching
JPS5585626A (en) * 1978-11-14 1980-06-27 Nisshin Steel Co Ltd Manufacture of low alloy steel sheet or hoop for precise punching
JPH08295927A (en) * 1995-04-27 1996-11-12 Nisshin Steel Co Ltd Production of high strength steel plate for precision punching
JP2000265240A (en) * 1999-03-16 2000-09-26 Nisshin Steel Co Ltd Carbon steel sheet excellent in fine blankability
JP2001140037A (en) * 1999-08-31 2001-05-22 Nippon Steel Corp High carbon steel sheet excellent in formability
JP2002155339A (en) * 2000-11-17 2002-05-31 Nisshin Steel Co Ltd Medium and high carbon steel having excellent deep drawability
JP2007031762A (en) * 2005-07-26 2007-02-08 Jfe Steel Kk High-carbon cold-rolled steel sheet superior in workability, and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2866107B2 (en) * 1989-07-13 1999-03-08 新日本製鐵株式会社 Method for producing high-carbon hot-rolled steel sheet in which carbides are uniformly dispersed
JP4067581B2 (en) * 1994-02-09 2008-03-26 日新製鋼株式会社 High strength steel plate for precision punching
JP2000248330A (en) * 1999-03-01 2000-09-12 Nisshin Steel Co Ltd Low alloy steel sheet excellent in workability, rapid heat treatment property, and fatigue characteristic after rapid heat treatment
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550427A (en) * 1978-10-03 1980-04-12 Kawasaki Steel Corp Manufacture of hot rolled medium or high carbon steel strip suitable for use in precision punching
JPS5585626A (en) * 1978-11-14 1980-06-27 Nisshin Steel Co Ltd Manufacture of low alloy steel sheet or hoop for precise punching
JPH08295927A (en) * 1995-04-27 1996-11-12 Nisshin Steel Co Ltd Production of high strength steel plate for precision punching
JP2000265240A (en) * 1999-03-16 2000-09-26 Nisshin Steel Co Ltd Carbon steel sheet excellent in fine blankability
JP2001140037A (en) * 1999-08-31 2001-05-22 Nippon Steel Corp High carbon steel sheet excellent in formability
JP2002155339A (en) * 2000-11-17 2002-05-31 Nisshin Steel Co Ltd Medium and high carbon steel having excellent deep drawability
JP2007031762A (en) * 2005-07-26 2007-02-08 Jfe Steel Kk High-carbon cold-rolled steel sheet superior in workability, and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163538A1 (en) * 2015-04-10 2016-10-13 新日鐵住金株式会社 Steel sheet with excellent cold workability during forming, and process for producing same
JP6070912B1 (en) * 2015-04-10 2017-02-01 新日鐵住金株式会社 Steel sheet excellent in cold workability during forming and method for producing the same
WO2016190370A1 (en) * 2015-05-26 2016-12-01 新日鐵住金株式会社 Steel sheet and method for producing same
WO2016190396A1 (en) * 2015-05-26 2016-12-01 新日鐵住金株式会社 Steel sheet and method for producing same
JP6119923B1 (en) * 2015-05-26 2017-04-26 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
JP6119924B1 (en) * 2015-05-26 2017-04-26 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof
WO2016204288A1 (en) * 2015-06-17 2016-12-22 新日鐵住金株式会社 Steel sheet and manufacturing method

Also Published As

Publication number Publication date
US20090173415A1 (en) 2009-07-09
EP1980635A1 (en) 2008-10-15
KR101023633B1 (en) 2011-03-22
KR20080077254A (en) 2008-08-21
EP1980635A4 (en) 2010-12-01
EP1980635B1 (en) 2012-01-11
CN101379208A (en) 2009-03-04
CN101379208B (en) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2007088985A1 (en) Steel sheet with excellent suitability for fine blanking and process for producing the same
JP5076347B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5609945B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5056876B2 (en) Hot-rolled steel sheet with excellent cold workability and hardenability and method for producing the same
JP2007270329A (en) Manufacturing method of steel plate having excellent fine blanking workability
EP2573200B1 (en) Automobile chasssis part excellent in low cycle fatigue characteristics, and method of production of the same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP2007270331A (en) Steel sheet superior in fine blanking workability, and manufacturing method therefor
KR101751242B1 (en) Full hard cold-rolled steel sheet and method for manufacturing the same
JP4992275B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP4992274B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5070824B2 (en) Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same
EP2246450B1 (en) Steel sheets and process for manufacturing the same
JP5194454B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP4992277B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP4905031B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP4992276B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5125081B2 (en) Cold-rolled steel sheet with excellent flatness after punching and method for producing the same
JP5050386B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5157417B2 (en) Steel sheet and manufacturing method thereof
WO2023026582A1 (en) Hot-rolled steel plate
JP2010174292A (en) Steel sheet to be die-quenched superior in hot-punchability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007713798

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12159010

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087016379

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780004180.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE