WO2016204288A1 - Steel sheet and manufacturing method - Google Patents

Steel sheet and manufacturing method Download PDF

Info

Publication number
WO2016204288A1
WO2016204288A1 PCT/JP2016/068169 JP2016068169W WO2016204288A1 WO 2016204288 A1 WO2016204288 A1 WO 2016204288A1 JP 2016068169 W JP2016068169 W JP 2016068169W WO 2016204288 A1 WO2016204288 A1 WO 2016204288A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
carbides
annealing
ferrite
Prior art date
Application number
PCT/JP2016/068169
Other languages
French (fr)
Japanese (ja)
Inventor
匹田 和夫
元仙 橋本
健悟 竹田
高田 健
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016559467A priority Critical patent/JP6206601B2/en
Priority to BR112017025756-4A priority patent/BR112017025756A2/en
Priority to MX2017015266A priority patent/MX2017015266A/en
Priority to US15/736,945 priority patent/US20180171445A1/en
Priority to CN201680035011.0A priority patent/CN107735505B/en
Priority to EP16811762.0A priority patent/EP3312299A4/en
Priority to KR1020177035488A priority patent/KR101997382B1/en
Publication of WO2016204288A1 publication Critical patent/WO2016204288A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a steel plate and a manufacturing method thereof.
  • Patent Document 1 in mass%, C: 0.20 to 0.45%, Mn: 0.40 to 1.50%, P: 0.03% or less, S: 0.02% or less, P + S: Containing 0.010% or more, Cr: 0.01-0.80%, Ti: 0.005-0.050%, B: 0.0003-0.0050%, and the balance consisting of Fe and inevitable impurities Further, Sn: 0.05% or less, Te: 0.05% or less, and the total content of Sn + Te is 0.005% or more, and a mixed structure of ferrite and pearlite, or a mixture of ferrite and cementite A high carbon steel sheet excellent in workability, hardenability, and toughness after heat treatment characterized by comprising a structure is disclosed.
  • Patent Document 2 in mass%, C: 0.2 to 0.7%, Si: 2% or less, Mn: 2% or less, P: 0.03% or less, S: 0.03% or less, sol .
  • a method for producing a high hardenability high carbon hot-rolled steel sheet characterized by annealing after pickling and annealing at an annealing temperature of 640 ° C. or higher and an Ac1 transformation point or lower to form a spheroidized structure is disclosed.
  • Patent Document 1 uses pearlite having high hardness in the material structure, and is not necessarily excellent in workability.
  • Patent Document 2 does not describe a specific structure form excellent in workability.
  • the present invention provides a steel plate suitable for improving the formability and wear resistance, particularly for obtaining parts such as gears and clutches by thick plate molding, and a method for producing the same. Objective.
  • the ferrite phase has low hardness and high ductility. Therefore, it is possible to improve the material formability by increasing the grain size in a structure mainly composed of ferrite.
  • carbides in the steel sheet are strong particles that prevent slipping, and by allowing carbides to exist at the ferrite grain boundaries, it is possible to prevent the propagation of slips across the crystal grain boundaries and suppress the formation of shear bands. It can improve the cold forgeability and at the same time improve the formability of the steel sheet.
  • cementite is a hard and brittle structure, and if it exists in the state of pearlite, which is a layered structure with ferrite, the steel becomes hard and brittle, so it must be present in a spherical shape. In consideration of cold forgeability and generation of cracks during forging, the particle size needs to be in an appropriate range.
  • the steel structure after coiling after hot rolling is made into a bainite structure in which cementite is dispersed in fine pearlite or fine ferrite with a small lamellar spacing, so that it is at a relatively low temperature (400 to 550 ° C). Take up.
  • cementite dispersed in the ferrite is also easily spheroidized.
  • the cementite is partially spheroidized by annealing at a temperature just below the Ac1 point as the first stage annealing.
  • annealing is performed at a temperature between Ac1 point and Ac3 point (so-called two-phase region of ferrite and austenite), and a part of the ferrite grains is left, and a part thereof is austenite transformed. Thereafter, the ferrite grains left by slow cooling were grown, and austenite was transformed into ferrite by using the ferrite grains as a nucleus, so that cementite was precipitated at the grain boundaries while obtaining a large ferrite phase, and the above structure was realized.
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
  • C 0.10 to 0.40%, Si: 0.01 to 0.30%, Mn: 1.00 to 2.00%, P: 0.020% or less, S: 0.010% or less, Al: 0.001 to 0.10%, N: 0.010% or less, O: 0.020% or less, Cr: 0.50% or less, Mo: 0.10% or less, Nb : 0.10% or less, V: 0.10% or less, Cu: 0.10% or less, W: 0.10% or less, Ta: 0.10% or less, Ni: 0.10% or less, Sn: 0 0.050% or less, Sb: 0.050% or less, As: 0.050% or less, Mg: 0.050% or less, Ca: 0.050% or less, Y: 0.050% or less, Zr: 0.050 %, La: 0.050% or less, Ce: 0.050% or less, the balance being Fe and unavoidable impurities steel plate, The ratio of the number of carbides in the ferrite grain boundary to the number of carbides
  • a production method for producing the steel sheet of (1) or (2) wherein the steel slab having the component composition of (1) or (2) is finish-rolled in a temperature range of 750 ° C. or higher and 850 ° C. or lower.
  • the hot-rolled steel sheet is rolled into a hot-rolled steel sheet at a temperature of 400 ° C. or higher and 550 ° C. or lower, and the wound hot-rolled steel sheet is pickled and the pickled hot-rolled steel sheet is 650 ° C. or higher.
  • a first-stage annealing is performed in a temperature range of 720 ° C. or lower, which is maintained for 3 hours or more and 60 hours or less, and then the hot-rolled steel sheet is held in a temperature range of 725 ° C.
  • a method for producing a steel sheet comprising subjecting a stage of annealing and cooling the hot-rolled steel sheet after annealing to 650 ° C. at a cooling rate of 1 ° C./hour or more and 30 ° C./hour or less.
  • the present invention it is possible to provide a steel plate that is excellent in formability and wear resistance, and that is particularly suitable for obtaining parts such as gears and clutches by thick plate forming and a method for manufacturing the steel plate.
  • C is an element that forms carbides in steel and is effective in strengthening steel and refining ferrite grains.
  • C is made 0.10% or more.
  • it is 0.12 or more.
  • the volume fraction of carbide increases, and when a load is instantaneously applied, a large amount of cracks that become the starting point of fracture are generated, and the impact resistance characteristics are reduced.
  • 0.40% or less Preferably it is 0.38% or less.
  • Si 0.01-0.30%
  • Si is an element that acts as a deoxidizer and affects the morphology of carbides.
  • Si is made 0.01% or more.
  • Si is made 0.30% or less.
  • Si is made 0.30% or less.
  • it is 0.28% or less.
  • Mn is an element that enhances hardenability and contributes to improvement in strength. If it is less than 1.00%, it becomes difficult to ensure the strength after quenching and the residual carbide after quenching, so Mn is made 1.00% or more. Preferably it is 1.09% or more.
  • Mn is made 2.00% or less.
  • Mn is made 2.00% or less.
  • it is 1.91% or less.
  • Al 0.001 to 0.10%
  • Al is an element that acts as a deoxidizer for steel and stabilizes ferrite. If it is less than 0.001%, the effect of addition cannot be sufficiently obtained, so Al is made 0.001% or more. Preferably it is 0.004% or more.
  • Al is made 0.10% or less.
  • the following elements are impurities and must be controlled to a certain amount or less.
  • P 0.0001 to 0.020%
  • P is an element that segregates at the ferrite grain boundaries and suppresses the formation of grain boundary carbides. The smaller the amount, the better. However, if P is reduced to less than 0.0001% in the refining process, the refining cost increases significantly. Therefore, P is set to 0.0001% or more. Preferably it is 0.0013% or more.
  • P is made 0.020% or less. Preferably it is 0.018% or less.
  • S is an impurity element that forms non-metallic inclusions such as MnS. Since non-metallic inclusions are the starting point for cracking during cold working, the smaller the amount of S, the better. However, if S is reduced to less than 0.0001%, the refining cost will be significantly increased, so S will be 0.2. 0001% or more. Preferably it is 0.0012% or more.
  • S is made 0.010% or less.
  • S is 0.007% or less.
  • N is an element that causes embrittlement of ferrite due to the inclusion of a large amount, and the smaller the amount, the better.
  • the N content may be 0, but if the content is reduced to less than 0.0001%, the refining cost increases significantly, so the practical lower limit is 0.0001 to 0.0006%.
  • N is made 0.010% or less. Preferably it is 0.007% or less.
  • O is an element that forms a coarse oxide in steel due to its large content, and it is preferable that O be small.
  • the O content may be 0, but if the content is reduced to less than 0.0001%, the refining cost increases significantly, so the practical lower limit is 0.0001 to 0.0011%.
  • O is made 0.020% or less. Preferably it is 0.017% or less.
  • Sn is an element mixed from the steel raw material (scrap). Since it segregates at a grain boundary and causes a decrease in the number ratio of grain boundary carbides, the smaller the number, the better.
  • the Sn content may be 0, but if it is reduced to less than 0.001%, the refining cost will increase significantly, so the practical lower limit is 0.001 to 0.002% or more.
  • Sn is made 0.050% or less. Preferably it is 0.040% or less.
  • Sb is an element mixed from steel raw material (scrap) like Sn. Since it segregates at a grain boundary and causes a decrease in the number ratio of grain boundary carbides, the smaller the number, the better.
  • the Sb content may be 0, but if the content is reduced to less than 0.001%, the refining cost increases significantly, so the substantial lower limit is 0.001 to 0.002% or more.
  • Sb is made 0.050% or less. Preferably it is 0.040% or less.
  • As is an element mixed from steel raw material (scrap), as in Sn and Sb. Since it segregates at a grain boundary and causes a decrease in the number ratio of grain boundary carbides, the smaller the number, the better.
  • the content of As may be 0, but if the content is reduced to less than 0.001%, the refining cost increases significantly, so the practical lower limit is 0.001 to 0.002% or more.
  • the number ratio of grain boundary carbides decreases and cold workability deteriorates, so As is made 0.050% or less. Preferably it is 0.040% or less.
  • the steel sheet of the present invention contains the above elements as basic components, but may further contain the following elements for the purpose of improving the cold forgeability of the steel sheet.
  • the following elements are not essential for obtaining the effects of the present invention, so the content may be zero.
  • Cr 0.50% or less
  • Cr is an element that improves hardenability and contributes to the improvement of strength, and is an element that concentrates in carbides and forms stable carbides even in the austenite phase.
  • Cr is preferably 0.001% or more. More preferably, it is 0.007% or more.
  • Cr is 0.50% or less. Preferably it is 0.45% or less.
  • Mo is an element effective for controlling the morphology of carbides.
  • Mo is preferably 0.001% or more. More preferably, it is 0.010% or more.
  • Mo is made 0.10% or less. Preferably it is 0.08% or less.
  • Nb is an element that is effective for controlling the morphology of carbides, and is an element that refines the structure and contributes to improved toughness.
  • Nb is preferably 0.001% or more. More preferably, it is 0.002% or more.
  • Nb is 0 10% or less. Preferably it is 0.08% or less.
  • V 0.10% or less
  • Nb is an element that is effective for controlling the morphology of carbides, and is an element that contributes to refinement of the structure and improvement of toughness.
  • V is preferably 0.001% or more. More preferably, it is 0.004% or more.
  • V is 0. 10% or less. Preferably it is 0.08% or less.
  • Cu is an element that segregates at the ferrite grain boundaries and contributes to the improvement of strength by forming fine precipitates.
  • Cu is preferably 0.001% or more. More preferably, it is 0.005% or more.
  • Cu is made 0.10% or less. Preferably it is 0.08% or less.
  • W is an element effective for controlling the form of carbide.
  • W is preferably 0.001% or more. More preferably, it is 0.003% or more.
  • W is 0. 10% or less. Preferably it is 0.08% or less.
  • Ta 0.10% or less
  • Nb, V, and W is an element effective for controlling the morphology of carbides.
  • Ta is preferably 0.001% or more. More preferably, it is 0.005% or more.
  • Ta is 0. 10% or less. Preferably it is 0.08% or less.
  • Ni is an element effective for improving the toughness of parts.
  • Ni is preferably 0.001% or more. More preferably, it is 0.004% or more.
  • Ni is made 0.10% or less. Preferably it is 0.08% or less.
  • Mg is an element that can control the form of sulfide by addition of a small amount.
  • Mg is preferably 0.0001% or more. More preferably, it is 0.0008% or more.
  • Mg is made 0.050% or less. Preferably it is 0.040% or less.
  • Ca is an element that can control the form of sulfide with a small amount of addition.
  • Ca is preferably 0.001% or more. More preferably, it is 0.003% or more.
  • Ca is made 0.050% or less. Preferably it is 0.040% or less.
  • Y is an element that can control the form of sulfide by addition of a trace amount.
  • Y is preferably 0.001% or more. More preferably, it is 0.003% or more.
  • Y is made 0.050% or less. Preferably it is 0.035% or less.
  • Zr 0.050% or less
  • Zr is an element that can control the form of sulfide by adding a small amount.
  • Zr is preferably 0.001% or more. More preferably, it is 0.004% or more.
  • Zr is made 0.050% or less. Preferably it is 0.045% or less.
  • La is an element that is effective for controlling the form of sulfide when added in a small amount, but is also an element that segregates at the grain boundary and causes a decrease in the number ratio of grain boundary carbides.
  • La is preferably 0.001% or more. More preferably, it is 0.004% or more.
  • La is made 0.050% or less. Preferably it is 0.045% or less.
  • Ce is an element that can control the form of the sulfide with a small amount of addition, but is also an element that segregates at the grain boundary and causes a decrease in the number ratio of grain boundary carbides.
  • Ce is preferably 0.001% or more. More preferably, it is 0.004% or more.
  • Ce is made 0.050% or less. Preferably it is 0.046% or less.
  • the balance of the component composition of the steel sheet of the present invention is Fe and inevitable impurities.
  • Fe may replace with a part of said Fe, and may contain 1 type or 2 types of Ti and B.
  • Ti 0.10% or less
  • Ti is an element effective for controlling the form of carbide, and is also an element contributing to improvement of toughness by refining the structure.
  • Ti is preferably 0.001% or more. More preferably, it is 0.005% or more.
  • Ti is made 0.10% or less. Preferably it is 0.08% or less.
  • B is an element that contributes to improving the toughness by increasing the hardenability during the heat treatment of the parts, making the structure uniform.
  • B is preferably 0.0001% or more. More preferably, it is 0.0006% or more.
  • B is made 0.010% or less. Preferably it is 0.009% or less.
  • the structure of the steel sheet of the present invention is substantially a structure composed of ferrite and carbide.
  • carbides include compounds in which Fe atoms in cementite are substituted with alloy elements such as Mn and Cr, and alloy carbides (M 23 C 6 , M 6 C MC, etc. [M: Fe and other metal elements added as alloys]).
  • a shear band is formed in the macro structure of the steel sheet, and slip deformation is concentrated near the shear band. Slip deformation is accompanied by dislocation growth, and a region having a high dislocation density is formed in the vicinity of the shear band. As the amount of strain applied to the steel sheet increases, slip deformation is promoted and the dislocation density increases.
  • the formation of a shear band is understood as a phenomenon in which a slip generated in one crystal grain overcomes the grain boundary and continuously propagates to adjacent crystal grains. Therefore, in order to suppress the formation of shear bands, it is necessary to prevent the propagation of slip across the grain boundary.
  • Carbides in the steel sheet are strong particles that prevent slipping, and by allowing the carbides to exist at the ferrite grain boundaries, it is possible to prevent the propagation of slips across the crystal grain boundaries and suppress the formation of shear bands. It becomes possible to improve cold forgeability. At the same time, the formability of the steel sheet is improved.
  • the formability of a steel sheet is largely due to the accumulation of strain (accumulation of dislocations) in the crystal grains. If the propagation of strain to adjacent crystal grains is prevented at the grain boundaries, the amount of strain in the crystal grains is reduced. Increase. As a result, the work hardening rate is increased and the moldability is improved.
  • the spheroidization rate of the carbide on the grain boundary is less than 80%, strain is concentrated locally on the rod-like or plate-like carbide, and voids and / or cracks are likely to occur.
  • the spheroidization rate of the carbide is preferably 80% or more, and more preferably 90% or more.
  • the average particle diameter of the carbide is less than 0.1 ⁇ m, the hardness of the steel sheet is remarkably increased and the workability is lowered, so the average particle diameter of the carbide is preferably 0.1 ⁇ m or more. More preferably, it is 0.17 ⁇ m or more.
  • the average particle diameter of the carbide exceeds 2.0 ⁇ m, coarse carbides are generated as a starting point during cold processing, cracking occurs, and cold workability is deteriorated. Therefore, the average particle diameter of the carbide is 2.0 ⁇ m or less. preferable. More preferably, it is 1.95 ⁇ m or less.
  • Carbide is observed with a scanning electron microscope. Prior to observation, a sample for tissue observation was wet-polished with emery paper and polished with diamond abrasive grains having an average particle size of 1 ⁇ m, and the observation surface was finished to a mirror surface, and the tissue was then washed with a 3% nitric acid-alcohol solution. Etch.
  • the magnification for observation is selected to be a magnification capable of discriminating ferrite and carbides from 3000 times. At the selected magnification, 8 images of a 30 ⁇ m ⁇ 40 ⁇ m field of view in a 1/4 layer thickness are taken at random.
  • the area of each carbide contained in the region is measured in detail by image analysis software typified by Mitani Corporation (Win ROOF).
  • the spheroidization rate of the carbide was obtained by calculating the ratio of the carbide that approximates an ellipse having the same area and the same moment of inertia, and the ratio of the maximum length to the maximum length in the perpendicular direction is less than 3. .
  • carbides having an area of 0.01 ⁇ m 2 or less were excluded from the evaluation targets.
  • the number of carbides present on the ferrite grain boundaries was counted, and the number of carbides in the ferrite grains was determined by subtracting the number of carbides on the grain boundaries from the total number of carbides. Based on the measured number, the number ratio of the carbide on the ferrite grain boundary to the carbide in the ferrite grain was determined.
  • the cold workability can be improved by setting the ferrite grain size to 5.0 ⁇ m or more in the structure after annealing the cold-rolled steel sheet. If the ferrite particle size is less than 5 ⁇ m, the hardness increases and cracks and cracks are likely to occur during cold working, so the ferrite particle size is set to 5 ⁇ m or more. Preferably it is 7 micrometers or more.
  • the ferrite grain size is set to 50 ⁇ m or less. Preferably it is 37 micrometers or less.
  • the ferrite grain size was measured by polishing the sample observation surface to a mirror surface using the polishing method described above, etching with a 3% nitric acid-alcohol solution, and observing the structure of the observation surface with an optical microscope or a scanning electron microscope.
  • the line segment method is applied to the image and measured.
  • cementite which is a carbide of iron
  • the area ratio is set to 6% or less.
  • perlite Since perlite has a unique lamellar structure, it can be distinguished by SEM and optical microscope observation.
  • the area ratio of pearlite can be obtained by calculating the region of the lamellar structure in an arbitrary cross section.
  • the cold workability can be improved by setting the Vickers hardness of the steel sheet to 100 HV or more and 170 HV or less. If the Vickers hardness is less than 100 HV, buckling is likely to occur during cold working, so the Vickers hardness is 100 HV or more. Preferably it is 110HV or more.
  • the Vickers hardness exceeds 170 HV, the ductility is lowered and internal cracks are likely to occur during cold working, so the Vickers hardness is set to 170 HV or less. Preferably it is 168HV or less.
  • the manufacturing method of the present invention is based on the basic idea that the steel strip having the above-described composition is used to consistently manage the hot rolling conditions and the annealing conditions and to control the structure of the steel sheet.
  • a steel slab in which molten steel having a required composition is continuously cast is subjected to hot rolling.
  • the slab after continuous casting may be directly subjected to hot rolling, or may be subjected to hot rolling after being once cooled and heated.
  • the heating temperature is preferably 1000 ° C. or more and 1250 ° C. or less, and the heating time is preferably 0.5 hours or more and 3 hours or less.
  • the temperature of the steel slab subjected to hot rolling is preferably 1000 ° C. or more and 1250 ° C.
  • the slab temperature or the slab heating temperature exceeds 1250 ° C, or if the slab heating time exceeds 3 hours, decarburization from the slab surface layer becomes significant, and during heating before carburizing and quenching, austenite grains on the steel sheet surface layer Grows abnormally and impact resistance decreases.
  • the slab temperature or the slab heating temperature is preferably 1250 ° C. or less, and the heating time is preferably 3 hours or less. More preferably, it is 1200 degrees C or less and 2.5 hours or less.
  • the steel slab temperature or the steel slab heating temperature is preferably 1000 ° C. or more, and the heating time is preferably 0.5 hours or more. More preferably, it is 1050 ° C. or more and 1 hour or more.
  • Finish rolling in hot rolling is completed in a temperature range of 750 ° C. or higher and 850 ° C. or lower.
  • the finish rolling temperature is set to 750 ° C. or higher. In terms of promoting recrystallization, the temperature is preferably 770 ° C. or higher.
  • finish rolling temperature exceeds 850 ° C.
  • a thick scale is generated in the run-out table (ROT) through the plate, resulting in wrinkles on the surface of the steel plate, after cold forging and carburizing and tempering.
  • ROT run-out table
  • finish rolling temperature shall be 850 degrees C or less. Preferably it is 830 degrees C or less.
  • the cooling rate is preferably 10 ° C./second or more and 100 ° C./second or less.
  • the cooling rate is preferably 10 ° C./second or more. . More preferably, it is 20 ° C./second or more.
  • the cooling rate is determined at each water injection section from the time when the hot-rolled steel sheet after finish rolling passes through the non-water injection section to receive water cooling in the water injection section to the time when it is cooled on the ROT to the winding target temperature. It refers to the cooling capacity received from the cooling equipment, and does not indicate the average cooling rate from the water injection start point to the temperature taken up by the winder.
  • the winding temperature is 400 ° C or higher and 550 ° C or lower. This is a temperature lower than a general winding temperature, and is a condition that is not normally performed particularly when the C content is high.
  • the structure of the steel sheet can be a bainite structure in which carbides are dispersed in fine ferrite.
  • the austenite that has not been transformed before winding is transformed into hard martensite, and when the hot-rolled steel sheet coil is discharged, cracks occur in the surface layer of the hot-rolled steel sheet, resulting in impact resistance. Sexuality decreases.
  • the winding temperature is 400 ° C. or higher. Preferably it is 430 degreeC or more.
  • the coiling temperature is 550 ° C. or less. Preferably it is 520 degrees C or less.
  • the steel plate after pickling is cold-rolled before the annealing treatment, the ferrite grains become finer, so that the steel plate becomes difficult to soften. Therefore, in the present invention, it is not preferable to perform cold rolling before annealing, and it is preferable to perform annealing treatment without pickling after pickling.
  • the first stage annealing is performed in a temperature range of 650 to 720 ° C., preferably the A c1 point or less.
  • the carbide is coarsened and partially spheroidized, and the alloy elements are concentrated in the carbide, thereby improving the thermal stability of the carbide.
  • the heating rate up to the annealing temperature (hereinafter referred to as “first stage heating rate”) is 30 ° C./hour or more and 150 ° C./hour or less. If the first stage heating rate is less than 30 ° C./hour, it takes time to raise the temperature and the productivity is lowered. Therefore, the first stage heating rate is set to 3 ° C./hour or more. Preferably, it is 10 ° C./hour or more.
  • the first stage heating rate exceeds 150 ° C./hour, the temperature difference between the outer peripheral portion and the inside of the hot-rolled steel sheet coil increases, and slag and seizure due to the difference in thermal expansion occurs. Unevenness is formed on the surface.
  • cracks are generated as a starting point, and cold forgeability is deteriorated, and impact resistance after carburizing and quenching and tempering is reduced. It shall be below °C / hour. Preferably it is 130 degrees C / hour or less.
  • the annealing temperature in the first stage annealing (hereinafter referred to as “first stage annealing temperature”) is 650 ° C. or more and 720 ° C. or less. If the first stage annealing temperature is less than 650 ° C., the carbide is not sufficiently stabilized, and it becomes difficult to leave the carbide in the austenite during the second stage annealing. For this reason, the first stage annealing temperature is set to 650 ° C. or higher. Preferably it is 670 degreeC or more.
  • the first-stage annealing temperature is set to 720 ° C. or less. . Preferably it is 700 degrees C or less.
  • the annealing time in the first stage annealing (hereinafter referred to as “first stage annealing time”) is 3 hours or more and 60 hours or less. If the first stage annealing time is less than 3 hours, the carbide is not sufficiently stabilized, and it becomes difficult to leave the carbide in the austenite during the second stage annealing. For this reason, the first stage annealing time is set to 3 hours or more. Preferably it is 5 hours or more.
  • the first stage annealing time is set to 60 hours or less. Preferably it is 55 hours or less.
  • the temperature is raised to 725 to 790 ° C., preferably in the temperature range from A c1 to A 3 , and austenite is generated in the structure.
  • the carbides in the fine ferrite grains are dissolved in the austenite, but the carbides coarsened by the first stage annealing remain in the austenite.
  • the ferrite grain size When cooled without performing the second stage annealing, the ferrite grain size does not increase and an ideal structure cannot be obtained.
  • the heating rate of the second stage annealing to the annealing temperature (hereinafter referred to as “second stage heating rate”) is 1 ° C./hour or more and 80 ° C./hour or less.
  • austenite is generated and grows from the ferrite grain boundary.
  • by slowing the heating rate up to the annealing temperature it becomes possible to suppress austenite nucleation and increase the grain boundary coverage of the carbide in the structure formed by annealing after annealing.
  • the second stage heating rate is slow. However, if it is less than 1 ° C./hour, it takes time to raise the temperature and the productivity decreases, so the second stage heating rate is 1 ° C./hour or more. And Preferably, it is 10 ° C./hour or more.
  • the second stage heating rate exceeds 80 ° C./hour, in the hot-rolled steel sheet coil, the temperature difference between the outer peripheral portion and the inside increases, and scouring and seizure due to a large difference in thermal expansion due to transformation occurs. Unevenness is formed on the surface of the steel plate. At the time of cold forging, cracks are generated starting from this unevenness, cold forgeability and formability are reduced, and impact resistance after carburizing and quenching and tempering is also reduced, so the second stage heating rate is 80 ° C / Less than hours. Preferably it is 70 degrees C / hour or less.
  • the annealing temperature in the second stage annealing (hereinafter referred to as “second stage annealing temperature”) is 725 ° C. or higher and 790 ° C. or lower.
  • second stage annealing temperature is set to 725 ° C. or higher. Preferably it is 735 ° C or more.
  • the second stage annealing temperature is set to 790 ° C. or less. Preferably it is 770 degrees C or less.
  • the annealing time in the second stage annealing is 3 hours or more and less than 50 hours. If the second stage annealing time is less than 3 hours, the amount of austenite produced is small, and the dissolution of carbides in the ferrite grains does not proceed sufficiently, making it difficult to increase the number of carbides at the ferrite grain boundaries, In addition, the ferrite grain size is reduced. For this reason, the second stage annealing time is set to 3 hours or more. Preferably it is 5 hours or more.
  • the second stage annealing time exceeds 50 hours, it becomes difficult to leave the carbide in the austenite and the manufacturing cost increases, so the second stage annealing time is set to less than 50 hours. Preferably it is 40 hours or less.
  • the steel sheet is cooled to 650 ° C. at a cooling rate of 1 ° C./hour or more and 30 ° C./hour or less.
  • the austenite generated in the second stage annealing is transformed into ferrite, carbon atoms are adsorbed on the carbide remaining in the austenite, and the carbide and austenite cover the ferrite grain boundary, and finally In addition, a structure in which a large number of carbides exist in the ferrite grain boundary can be obtained.
  • the cooling rate is slow, but if it is less than 1 ° C./hour, the time required for cooling increases and the productivity decreases, so the cooling rate is 1 ° C./hour or more. Preferably, it is 10 ° C./hour or more.
  • the cooling rate exceeds 30 ° C./hour, austenite transforms into pearlite, the hardness of the steel sheet increases, cold forgeability decreases, and impact resistance after carburizing and quenching and tempering decreases. Therefore, the cooling rate is set to 30 ° C./hour or less. Preferably it is 20 degrees C / hour or less.
  • the steel sheet cooled to 650 ° C. is cooled to room temperature.
  • the cooling rate at this time is not limited.
  • the atmosphere in the two-stage annealing is not particularly limited to a specific atmosphere.
  • any atmosphere of 95% or more nitrogen atmosphere, 95% or more hydrogen atmosphere, or air atmosphere may be used.
  • the manufacturing method that consistently manages the hot rolling conditions and annealing conditions of the present invention and performs the structure control of the steel sheet, the formability during cold forging combined with drawing and thickening is achieved. Further, it is possible to produce a steel sheet that is excellent and further has excellent hardenability necessary for improving impact resistance after carburizing, quenching, and tempering.
  • an Example is an example of the conditions employ
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Cold workability is evaluated by taking a JIS No. 5 tensile specimen from an as-annealed material with a thickness of 3 mm and conducting a tensile test to evaluate the total elongation in the 0 ° direction from the rolling direction and the 90 ° direction from the rolling direction.
  • the cold workability is said to be superior when both directions are 35% or more and the total elongation difference
  • the evaluation of the hardenability was performed by grinding the material as it was annealed with a plate thickness of 3 mm to a plate thickness of 1.5 mm, holding at 880 ° C. for 10 minutes in a vacuum atmosphere, and quenching at a cooling rate of 30 ° C./second, If the martensite fraction is 60% or more, it is said that the hardenability is superior.
  • Example 1 A continuous cast slab (steel ingot) having the composition shown in Table 1 was heated at 1240 ° C. for 1.8 hours, then subjected to hot rolling, and after finishing hot rolling at 890 ° C., it was wound at 510 ° C.
  • a hot rolled coil having a thickness of 3.0 mm was manufactured. The hot rolled coil is pickled, the hot rolled coil is placed in a box-type annealing furnace, the atmosphere is controlled to 95% hydrogen-5% nitrogen, heated from room temperature to 705 ° C., and maintained at 705 ° C. for 36 hours. The temperature distribution in the hot-rolled coil was made uniform, and then heated to 760 ° C. and held at 760 ° C. for 10 hours.
  • the sample was cooled to 650 ° C. at a cooling rate of 10 ° C./hour, and then cooled to room temperature to prepare a sample for characteristic evaluation.
  • tissue of the sample was measured by the method mentioned above.
  • Table 2 shows the results of measuring or evaluating the Vickers hardness of the manufactured sample, the ratio of the number of carbides on the ferrite grain boundary to the number of carbides in the ferrite grains, the pearlite area ratio, cold workability, and hardenability. .
  • the inventive steels B-1, E-1, F-1, H-1, J-1, K-1, L-1, M-1, N-1, P-1, R-1, T-1, W-1, X-1, Y-1, Z-1, AB-1, and AC-1 all have a ferrite grain boundary relative to the number of carbides in the ferrite grain.
  • the ratio of the number of carbides exceeds 1, and the Vickers hardness is 170 HV or less, which is excellent in cold workability and hardenability.
  • Comparative Steel G-1 had a high C content and cold workability decreased.
  • the comparative steel O-1 has a high Mo content and Cr content and high carbide stability. Therefore, the carbide does not dissolve during quenching, the austenite generation amount is small, and the hardenability is inferior.
  • Comparative steels Q-1 and AD-1 have a high amount of Si and Al and a high A3 point. Therefore, the amount of austenite produced during quenching is small, and the hardenability is inferior.
  • Comparative Example U-1 the amount of S is high, coarse MnS is generated in the steel, and the cold workability is low.
  • Comparative Example AA-1 has a low Mn content and inferior hardenability.
  • Comparative Example I-1 had a low hot-rolling finishing temperature, resulting in decreased productivity.
  • the hot rolling finishing temperature was high, and scale wrinkles were formed on the steel sheet surface.
  • the hot rolling coiling temperature is low, the low temperature transformation structure such as bainite and martensite is increased and embrittled, and cracks occur frequently when the hot rolled coil is discharged, resulting in increased productivity. Declined.
  • Example 2 In order to investigate the influence of the annealing conditions, a steel slab having the composition shown in Table 1 was heated at 1240 ° C. for 1.8 hours, then subjected to hot rolling, and after finishing hot rolling at 820 ° C., 45 The steel sheet was cooled to 520 ° C. at a cooling rate of ° C./second, wound at 510 ° C. to produce a hot-rolled coil with a plate thickness of 3.0 mm, and subjected to a two-step type box annealing under the annealing conditions shown in Table 3, A sample having a thickness of 3.0 mm was produced.
  • Table 3 shows the carbide diameter, ferrite particle diameter, Vickers hardness, ratio of the number of carbides on the ferrite grain boundary to the number of carbides in the ferrite grains, pearlite area ratio, cold workability, and hardenability. The result of having been measured or evaluated is shown.
  • R-2, S-2, V-2, Z-2, and AC-2 the ratio of the number of carbides in the ferrite grain boundary to the number of carbides in the ferrite grains exceeds 1, and the Vickers hardness Is 170 HV or less, and is excellent in cold workability and hardenability.
  • Comparative Steel G-1 had a high C content and cold workability decreased.
  • the comparative steel O-1 had a high Mo content and Cr content, and cold workability decreased.
  • the carbide since the carbide has high stability, the carbide does not dissolve during quenching, the austenite generation amount is small, and the hardenability is inferior.
  • Comparative Steel Q-1 had a high Si content and a high hardness of ferrite, so that the workability was lowered. Further, since the A3 point is high, the amount of austenite produced during quenching is small, and the hardenability is inferior. Since the comparative steel AD-1 has a high Al content and a high A3 point, the amount of austenite produced during quenching is small and the hardenability is inferior. Comparative steel U-1 had a high amount of S, and coarse MnS was produced in the steel, resulting in a decrease in cold workability. Comparative steel AA-1 has a low Mn content and inferior hardenability.
  • the comparative steel T-2 has a low holding temperature during the first stage annealing of the two-step type box annealing, the carbide coarsening treatment below the Ac1 temperature is insufficient, and the thermal stability of the carbide is low. By being insufficient, the carbides remaining at the second stage of annealing decreased, the pearlite transformation could not be suppressed in the structure after the slow cooling, and the cold workability was lowered.
  • the comparative steel A-2 has a high holding temperature during the first stage annealing of the two-step type box annealing, austenite is generated during the annealing, and the stability of the carbide cannot be increased. The carbide remaining at the time of annealing decreased, and the pearlite transformation could not be suppressed in the structure after the slow cooling, resulting in a decrease in cold workability.
  • the comparative steel L-2 has a short holding time during the first stage annealing of the two-step type box annealing, the carbide coarsening treatment below the Ac1 temperature is insufficient, and the thermal stability of the carbide is low. By being insufficient, the carbides remaining at the second stage of annealing decreased, the pearlite transformation could not be suppressed in the structure after the slow cooling, and the cold workability was lowered.
  • the comparative steel W-2 had a long holding time during the first stage annealing during the two-step annealing, and the productivity decreased.
  • the comparative steel X-2 has a low holding temperature during the second stage annealing during the two-step annealing, and the amount of carbides at the grain boundaries cannot be increased because the austenite generation amount is small, resulting in a decrease in cold workability. did.
  • the comparative steel AB-2 has a high holding temperature during the second stage annealing of the two-step type box annealing, and the dissolution of carbides is accelerated, so that the remaining carbides are reduced, and the pearlite transformation occurs in the structure after the slow cooling. could not be suppressed, and cold forgeability was reduced.
  • the comparative steel P-2 has a low holding temperature during the second stage annealing of the two-step type box annealing, a small amount of austenite is generated, and the number ratio of carbides at the ferrite grain boundaries cannot be increased. Inter-workability decreased.
  • the comparative steel Y-2 has a long holding time during the second stage annealing of the two-step type box annealing, and the dissolution of carbides is accelerated, so that the remaining carbides are reduced, and the pearlite transformation occurs in the structure after the slow cooling. could not be suppressed, and cold forgeability was reduced.
  • Comparative steel D-2 had a high cooling rate from the end of the second stage annealing of the two-step type box annealing to 650 ° C., and pearlite transformation occurred during cooling, resulting in a decrease in cold workability.
  • the present invention it is possible to manufacture and provide a steel sheet having excellent formability and wear resistance. Since the steel sheet of the present invention is a steel sheet suitable as a material for automobile parts, blades, and other machine parts manufactured through processing steps such as punching, bending, and pressing, the present invention has industrial applicability. It is expensive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A steel sheet, in which moldability and abrasion resistance have been improved, is characterized in that: the steel sheet has a prescribed component composition; the metal texture of the steel sheet satisfies the ratio of the number of ferrite grain boundary carbides to the number of carbides inside the ferrite particles being greater than 1 and the ferrite grain diameter being 5 µm to 50 µm; and the Vickers hardness of the steel sheet is 100 HV to 170 HV.

Description

鋼板及び製造方法Steel plate and manufacturing method
 本発明は、鋼板及びその製造方法に関する。 The present invention relates to a steel plate and a manufacturing method thereof.
 ギヤやクラッチなどの自動車用部品は、打抜き、鍛造、プレス加工等の加工工程を経て製造される。その加工工程において、製品品質の向上、安定化、製造コストの低減を計るには、素材である炭素鋼板の加工性の向上が求められる。また、これらの部品は、焼入れ焼戻し後、高強度で使用されるため、優れた焼入れ性が要求される。 Automotive parts such as gears and clutches are manufactured through processing steps such as punching, forging, and pressing. In the machining process, improvement of workability of the carbon steel plate as a material is required to improve the product quality, stabilize it, and reduce the manufacturing cost. Moreover, since these parts are used with high strength after quenching and tempering, excellent hardenability is required.
 炭素鋼板の加工性の確保と焼入れ性の確保のため、従来、多くの提案がなされている。 Many proposals have been made to secure the workability and hardenability of carbon steel sheets.
 特許文献1には、質量%で、C:0.20~0.45%、Mn:0.40~1.50%、P:0.03%以下、S:0.02%以下、P+S:0.010%以上、Cr:0.01~0.80%、Ti:0.005~0.050%、B:0.0003~0.0050%を含有し、残部Fe及び不可避的不純物からなり、さらに、Sn:0.05%以下、Te:0.05%以下を含有し、かつ、Sn+Teの合計が0.005%以上含有し、フェライトとパーライトの混合組織、又は、フェライトとセメンタイトの混合組織からなることを特徴とする加工性、焼入れ性、熱処理後の靭性の優れた高炭素鋼板が開示されている。 In Patent Document 1, in mass%, C: 0.20 to 0.45%, Mn: 0.40 to 1.50%, P: 0.03% or less, S: 0.02% or less, P + S: Containing 0.010% or more, Cr: 0.01-0.80%, Ti: 0.005-0.050%, B: 0.0003-0.0050%, and the balance consisting of Fe and inevitable impurities Further, Sn: 0.05% or less, Te: 0.05% or less, and the total content of Sn + Te is 0.005% or more, and a mixed structure of ferrite and pearlite, or a mixture of ferrite and cementite A high carbon steel sheet excellent in workability, hardenability, and toughness after heat treatment characterized by comprising a structure is disclosed.
 特許文献2には、質量%で、C:0.2~0.7%、Si:2%以下、Mn:2%以下、P:0.03%以下、S:0.03%以下、sol.Al:0.08%以下、N:0.01%以下含有し、残部が鉄及び不可避不純物からなる鋼に、熱間圧延を、仕上げ温度(Ar3変態点-20℃)以上で行った後、冷却速度120℃/秒を超え、かつ、冷却終了温度620℃以下で冷却を行い、次いで、巻取温度600℃以下で巻取り、体積率20%を超えるベイナイト相を有する組織に制御した後、酸洗後、焼鈍温度640℃以上Ac1変態点以下で焼鈍を行い、球状化組織とすることを特徴とする高焼入れ性高炭素熱延鋼板の製造方法が開示されている。 In Patent Document 2, in mass%, C: 0.2 to 0.7%, Si: 2% or less, Mn: 2% or less, P: 0.03% or less, S: 0.03% or less, sol . A steel containing Al: 0.08% or less, N: 0.01% or less, the balance being iron and inevitable impurities, after hot rolling at a finishing temperature (Ar3 transformation point −20 ° C.) or more, After cooling at a cooling rate of 120 ° C./second and a cooling end temperature of 620 ° C. or less, then winding at a coiling temperature of 600 ° C. or less, and controlling to a structure having a bainite phase exceeding 20% in volume ratio, A method for producing a high hardenability high carbon hot-rolled steel sheet characterized by annealing after pickling and annealing at an annealing temperature of 640 ° C. or higher and an Ac1 transformation point or lower to form a spheroidized structure is disclosed.
特許第4319940号公報Japanese Patent No. 4319940 特許第3879459号公報Japanese Patent No. 3879459
 しかし、特許文献1に記載の高炭素鋼板は、素材組織に、硬度が高いパーライトも用いられており、必ずしも加工性に優れているわけではない。特許文献2に、加工性に優れる具体的な組織形態は記載されていない。 However, the high carbon steel sheet described in Patent Document 1 uses pearlite having high hardness in the material structure, and is not necessarily excellent in workability. Patent Document 2 does not describe a specific structure form excellent in workability.
 本発明は、従来技術の現状に鑑み、成形性と耐摩耗性を向上させ、特に厚肉板成形によりギヤ、クラッチ等の部品を得るのに好適な鋼板と、その製造方法を提供することを目的とする。 In view of the current state of the art, the present invention provides a steel plate suitable for improving the formability and wear resistance, particularly for obtaining parts such as gears and clutches by thick plate molding, and a method for producing the same. Objective.
 上記の課題を解決し、駆動系部品等の素材に適した鋼板を得るためには、焼入れ性を高めるのに必要なCを含有した鋼板において、フェライトの粒径を大きくし、炭化物(主としてセメンタイト)を適切な粒径で球状化し、パーライト組織を少なくすればよいことが理解できる。これは、以下の理由による。 In order to solve the above problems and to obtain a steel sheet suitable for a material such as a drive train component, in the steel sheet containing C necessary for improving the hardenability, the ferrite grain size is increased, and carbide (mainly cementite) is obtained. ) Can be spheroidized with an appropriate particle size to reduce the pearlite structure. This is due to the following reason.
 フェライト相は硬度が低く、延性が高い。したがって、フェライトを主体とした組織で、その粒径を大きくすることにより、素材成形性を高めることが可能となる。 The ferrite phase has low hardness and high ductility. Therefore, it is possible to improve the material formability by increasing the grain size in a structure mainly composed of ferrite.
 炭化物は、金属組織中に適切に分散させることにより、素材成形性を維持しつつ、優れた耐摩耗性や転動疲労特性を付与することができるので、駆動系部品にはなくてはならない組織である。また、鋼板中の炭化物は、すべりを妨げる強固な粒子であり、炭化物をフェライト粒界に存在させることで、結晶粒界を越えるすべりの伝播を防止して、剪断帯の形成を抑制することができ、冷間鍛造性を向上させ、同時に、鋼板の成形性も向上させる。 By properly dispersing carbide in the metal structure, it can provide excellent wear resistance and rolling fatigue characteristics while maintaining material formability. It is. Also, carbides in the steel sheet are strong particles that prevent slipping, and by allowing carbides to exist at the ferrite grain boundaries, it is possible to prevent the propagation of slips across the crystal grain boundaries and suppress the formation of shear bands. It can improve the cold forgeability and at the same time improve the formability of the steel sheet.
 ただし、セメンタイトは硬くて脆い組織であり、フェライトとの層状組織であるパーライトの状態で存在すると、鋼が硬く、脆くなるので、球状で存在させる必要がある。冷間鍛造性や、鍛造時のき裂の発生を考慮すると、その粒径は適切な範囲である必要がある。 However, cementite is a hard and brittle structure, and if it exists in the state of pearlite, which is a layered structure with ferrite, the steel becomes hard and brittle, so it must be present in a spherical shape. In consideration of cold forgeability and generation of cracks during forging, the particle size needs to be in an appropriate range.
 しかしながら、上記の組織を実現するための製造方法はこれまでに開示されていない。そこで、本発明者らは、上記の組織を実現するための製造方法について鋭意研究した。 However, a manufacturing method for realizing the above organization has not been disclosed so far. Therefore, the present inventors have intensively studied a manufacturing method for realizing the above structure.
 その結果、熱間圧延後の巻取り後の鋼板の金属組織をラメラ間隔の小さい微細なパーライトまたは細かなフェライト中にセメンタイトが分散したベイナイト組織にするため、比較的低温(400~550℃)で巻取る。比較的低温で巻取ることにより、フェライト中に分散したセメンタイトも球状化しやすくなる。続いて、1段目の焼鈍としてAc1点直下の温度での焼鈍でセメンタイトを部分的に球状化する。次いで、2段目の焼鈍としてAc1点とAc3点間の温度(いわゆるフェライトとオーステナイトの二相域)での焼鈍で、フェライト粒の一部を残しつつ、一部をオーステナイト変態させる。その後緩冷却して残したフェライト粒を成長させつつ、そこを核にしてオーステナイトをフェライト変態させることにより、おおきなフェライト相を得つつ粒界にセメンタイトを析出させ、上記組織の実現できることを見出した。 As a result, the steel structure after coiling after hot rolling is made into a bainite structure in which cementite is dispersed in fine pearlite or fine ferrite with a small lamellar spacing, so that it is at a relatively low temperature (400 to 550 ° C). Take up. By winding at a relatively low temperature, cementite dispersed in the ferrite is also easily spheroidized. Subsequently, the cementite is partially spheroidized by annealing at a temperature just below the Ac1 point as the first stage annealing. Next, as the second stage annealing, annealing is performed at a temperature between Ac1 point and Ac3 point (so-called two-phase region of ferrite and austenite), and a part of the ferrite grains is left, and a part thereof is austenite transformed. Thereafter, the ferrite grains left by slow cooling were grown, and austenite was transformed into ferrite by using the ferrite grains as a nucleus, so that cementite was precipitated at the grain boundaries while obtaining a large ferrite phase, and the above structure was realized.
 すなわち、焼入れ性と成形性を同時に満足する鋼板の製造方法は、熱延条件や焼鈍条件などを単一にて工夫しても実現困難であり、熱延・焼鈍工程などのいわゆる一貫工程にて最適化を達成することにより実現可能であることを知見した。 In other words, a steel sheet manufacturing method that satisfies both hardenability and formability is difficult to achieve even if the hot rolling conditions and annealing conditions are devised by a single method. It was found that this can be achieved by achieving optimization.
 本発明は、上記知見に基づいてなされたもので、その要旨は次のとおりである。 The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
 (1)質量%で、C:0.10~0.40%、Si:0.01~0.30%、Mn:1.00~2.00%、P:0.020%以下、S:0.010%以下、Al:0.001~0.10%、N:0.010%以下、O:0.020%以下、Cr:0.50%以下、Mo:0.10%以下、Nb:0.10%以下、V:0.10%以下、Cu:0.10%以下、W:0.10%以下、Ta:0.10%以下、Ni:0.10%以下、Sn:0.050%以下、Sb:0.050%以下、As:0.050%以下、Mg:0.050%以下、Ca:0.050%以下、Y:0.050%以下、Zr:0.050%以下、La:0.050%以下、Ce:0.050%以下を含有し、残部がFe及び不可避的不純物である鋼板であって、上記鋼板の金属組織がフェライト粒内の炭化物の個数に対するフェライト粒界の炭化物の個数の比率が1超、フェライト粒径が5μm以上50μm以下、及びパーライトの面積率が6%以下を満たし、上記鋼板のビッカース硬さが100HV以上170HV以下であることを特徴とする鋼板。 (1) By mass%, C: 0.10 to 0.40%, Si: 0.01 to 0.30%, Mn: 1.00 to 2.00%, P: 0.020% or less, S: 0.010% or less, Al: 0.001 to 0.10%, N: 0.010% or less, O: 0.020% or less, Cr: 0.50% or less, Mo: 0.10% or less, Nb : 0.10% or less, V: 0.10% or less, Cu: 0.10% or less, W: 0.10% or less, Ta: 0.10% or less, Ni: 0.10% or less, Sn: 0 0.050% or less, Sb: 0.050% or less, As: 0.050% or less, Mg: 0.050% or less, Ca: 0.050% or less, Y: 0.050% or less, Zr: 0.050 %, La: 0.050% or less, Ce: 0.050% or less, the balance being Fe and unavoidable impurities steel plate, The ratio of the number of carbides in the ferrite grain boundary to the number of carbides in the ferrite grain to the number of carbides in the ferrite grains is more than 1, the ferrite grain size is 5 μm to 50 μm, and the pearlite area ratio is 6% or less. A steel plate having a hardness of 100 HV or more and 170 HV or less.
 (2)前記Feの一部に代えて、Ti:0.10%以下、及びB:0.010%以下、の1種又は2種を含有することを特徴とする前記(1)の鋼板。 (2) The steel sheet according to (1) above, which contains one or two of Ti: 0.10% or less and B: 0.010% or less in place of a part of the Fe.
 (3)前記(1)又は(2)の鋼板を製造する製造方法であって、前記(1)又は(2)の成分組成の鋼片を、750℃以上850℃以下の温度域で仕上げ圧延を完了する熱間圧延を施し熱延鋼板とし、上記熱延鋼板を400℃以上550℃以下で巻き取り、巻き取った熱延鋼板に酸洗を施し、酸洗した熱延鋼板を650℃以上720℃以下の温度域で、3時間以上60時間以下保持する1段目の焼鈍を施し、次いで、熱延鋼板を725℃以上790℃以下の温度域で、3時間以上50時間以下保持する2段目の焼鈍を施し、焼鈍後の熱延鋼板を、1℃/時間以上30℃/時間以下の冷却速度で650℃まで冷却することを特徴とする鋼板の製造方法。 (3) A production method for producing the steel sheet of (1) or (2), wherein the steel slab having the component composition of (1) or (2) is finish-rolled in a temperature range of 750 ° C. or higher and 850 ° C. or lower. The hot-rolled steel sheet is rolled into a hot-rolled steel sheet at a temperature of 400 ° C. or higher and 550 ° C. or lower, and the wound hot-rolled steel sheet is pickled and the pickled hot-rolled steel sheet is 650 ° C. or higher. A first-stage annealing is performed in a temperature range of 720 ° C. or lower, which is maintained for 3 hours or more and 60 hours or less, and then the hot-rolled steel sheet is held in a temperature range of 725 ° C. or more and 790 ° C. or less for 3 hours or more and 50 hours or less 2 A method for producing a steel sheet, comprising subjecting a stage of annealing and cooling the hot-rolled steel sheet after annealing to 650 ° C. at a cooling rate of 1 ° C./hour or more and 30 ° C./hour or less.
 本発明によれば、成形性と耐摩耗性に優れ、特に厚肉板成形によりギヤ、クラッチ等の部品を得るのに好適な鋼板及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a steel plate that is excellent in formability and wear resistance, and that is particularly suitable for obtaining parts such as gears and clutches by thick plate forming and a method for manufacturing the steel plate.
 以下、本発明について詳細説明する。はじめに、本発明鋼板の成分組成の限定理由について説明する。以下。成分についての「%」は、「質量%」を意味する。 Hereinafter, the present invention will be described in detail. First, the reasons for limiting the component composition of the steel sheet of the present invention will be described. Less than. “%” For a component means “mass%”.
 [C:0.10~0.40%]
 Cは、鋼中で炭化物を形成し、鋼の強化及びフェライト粒の微細化に有効な元素である。冷間加工における梨地の発生を抑制し、冷間加工部品の表面美観を確保するためには、フェライト粒径の粗大化を抑制する必要があるが、0.10%未満では、炭化物の体積率が不足し、箱焼鈍中の炭化物の粗大化を抑制することができないので、Cは0.10%以上とする。好ましくは0.12以上である。
[C: 0.10 to 0.40%]
C is an element that forms carbides in steel and is effective in strengthening steel and refining ferrite grains. In order to suppress the occurrence of satin in cold working and ensure the surface aesthetics of the cold worked parts, it is necessary to suppress the coarsening of the ferrite grain size, but if it is less than 0.10%, the volume fraction of carbides Is insufficient, and coarsening of carbide during box annealing cannot be suppressed, so C is made 0.10% or more. Preferably it is 0.12 or more.
 一方、0.40%を超えると、炭化物の体積率が増加し、瞬時的に荷重を負荷させた際に破壊の起点となるクラックが多量に生成し、耐衝撃特性が低下するので、Cは0.40%以下とする。好ましくは0.38%以下である。 On the other hand, if it exceeds 0.40%, the volume fraction of carbide increases, and when a load is instantaneously applied, a large amount of cracks that become the starting point of fracture are generated, and the impact resistance characteristics are reduced. 0.40% or less. Preferably it is 0.38% or less.
 [Si:0.01~0.30%]
 Siは、脱酸剤として作用し、また、炭化物の形態に影響を及ぼす元素である。脱酸効果を得るために、Siは0.01%以上とする。好ましくは0.05%以上である。
[Si: 0.01-0.30%]
Si is an element that acts as a deoxidizer and affects the morphology of carbides. In order to obtain a deoxidizing effect, Si is made 0.01% or more. Preferably it is 0.05% or more.
 一方、0.30%を超えると、フェライトの延性が低下し、冷間加工時に割れが起こりやすくなり、冷間加工性が低下するので、Siは0.30%以下とする。好ましくは0.28%以下である。 On the other hand, if it exceeds 0.30%, the ductility of ferrite is lowered, cracking is likely to occur during cold working, and cold workability is lowered, so Si is made 0.30% or less. Preferably it is 0.28% or less.
 [Mn:1.00~2.00%]
 Mnは、焼入れ性を高め、強度の向上に寄与する元素である。1.00%未満では、焼入れ後の強度と焼入れ後の残留炭化物の確保が困難となるので、Mnは1.00%以上とする。好ましくは1.09%以上である。
[Mn: 1.00 to 2.00%]
Mn is an element that enhances hardenability and contributes to improvement in strength. If it is less than 1.00%, it becomes difficult to ensure the strength after quenching and the residual carbide after quenching, so Mn is made 1.00% or more. Preferably it is 1.09% or more.
 一方、2.00%を超えると、Mn偏析が極度のバンド状になり、加工性が著しく低下するので、Mnは2.00%以下とする。好ましくは1.91%以下である。 On the other hand, if it exceeds 2.00%, Mn segregation becomes an extreme band shape and the workability is remarkably deteriorated, so Mn is made 2.00% or less. Preferably it is 1.91% or less.
 [Al:0.001~0.10%]
 Alは、鋼の脱酸剤として作用し、フェライトを安定化する元素である。0.001%未満では、添加効果が十分に得られないので、Alは0.001%以上とする。好ましくは0.004%以上である。
[Al: 0.001 to 0.10%]
Al is an element that acts as a deoxidizer for steel and stabilizes ferrite. If it is less than 0.001%, the effect of addition cannot be sufficiently obtained, so Al is made 0.001% or more. Preferably it is 0.004% or more.
 一方、0.10%を超えると、介在物が多量に生成し、冷間加工性が低下するので、Alは0.10%以下とする。好ましくは0.08%以下である。 On the other hand, if it exceeds 0.10%, a large amount of inclusions are produced and cold workability is lowered, so Al is made 0.10% or less. Preferably it is 0.08% or less.
 以下の元素は、不純物であり、一定量以下に制御する必要がある。 The following elements are impurities and must be controlled to a certain amount or less.
 [P:0.0001~0.020%]
 Pは、フェライト粒界に偏析し、粒界炭化物の形成を抑制する元素である。少ないほど好ましいが、精錬工程において、Pを0.0001%未満に低減すると、精錬コストが大幅に上昇するので、Pは0.0001%以上とする。好ましくは0.0013%以上である。
[P: 0.0001 to 0.020%]
P is an element that segregates at the ferrite grain boundaries and suppresses the formation of grain boundary carbides. The smaller the amount, the better. However, if P is reduced to less than 0.0001% in the refining process, the refining cost increases significantly. Therefore, P is set to 0.0001% or more. Preferably it is 0.0013% or more.
 一方、0.020%を超えると、粒界炭化物の個数比率が低下し、冷間加工性が低下するので、Pは0.020%以下とする。好ましくは0.018%以下である。 On the other hand, if it exceeds 0.020%, the number ratio of grain boundary carbides decreases and cold workability decreases, so P is made 0.020% or less. Preferably it is 0.018% or less.
 [S:0.0001~0.010%]
 Sは、MnSなどの非金属介在物を形成する不純物元素である。非金属介在物は、冷間加工時、割れ発生の起点となるので、Sは少ないほど好ましいが、Sを0.0001%未満に低減すると、精錬コストが大幅に上昇するので、Sは0.0001%以上とする。好ましくは0.0012%以上である。
[S: 0.0001 to 0.010%]
S is an impurity element that forms non-metallic inclusions such as MnS. Since non-metallic inclusions are the starting point for cracking during cold working, the smaller the amount of S, the better. However, if S is reduced to less than 0.0001%, the refining cost will be significantly increased, so S will be 0.2. 0001% or more. Preferably it is 0.0012% or more.
 一方、0.010%を超えると、冷間加工性が低下するので、Sは0.010%以下とする。好ましくは0.007%以下である。 On the other hand, if it exceeds 0.010%, cold workability deteriorates, so S is made 0.010% or less. Preferably it is 0.007% or less.
 [N:0.0001~0.010%]
 Nは、多量の含有により、フェライトの脆化を引き起こす元素であり、少ないほど好ましい。Nの含有量は0でもよいが、0.0001%未満に低減すると、精錬コストが大幅に上昇するので、実質的な下限は0.0001~0.0006%である。一方、0.010%を超えると、フェライトが脆化し、冷間加工性が低下するので、Nは0.010%以下とする。好ましくは0.007%以下である。
[N: 0.0001 to 0.010%]
N is an element that causes embrittlement of ferrite due to the inclusion of a large amount, and the smaller the amount, the better. The N content may be 0, but if the content is reduced to less than 0.0001%, the refining cost increases significantly, so the practical lower limit is 0.0001 to 0.0006%. On the other hand, if it exceeds 0.010%, ferrite becomes brittle and cold workability deteriorates, so N is made 0.010% or less. Preferably it is 0.007% or less.
 [O:0.0001~0.020%]
 Oは、多量の含有により、鋼中に粗大な酸化物を形成する元素であり、少ないほうが好ましい。Oの含有量は0でもよいが、0.0001%未満に低減すると、精錬コストが大幅に上昇するので、実質的な下限は0.0001~0.0011%である。一方、0.020%を超えると、鋼中に粗大な酸化物が生成し、冷間加工時に割れの起点となるので、Oは0.020%以下とする。好ましくは0.017%以下である。
[O: 0.0001 to 0.020%]
O is an element that forms a coarse oxide in steel due to its large content, and it is preferable that O be small. The O content may be 0, but if the content is reduced to less than 0.0001%, the refining cost increases significantly, so the practical lower limit is 0.0001 to 0.0011%. On the other hand, if it exceeds 0.020%, a coarse oxide is generated in the steel and becomes a starting point of cracking during cold working, so O is made 0.020% or less. Preferably it is 0.017% or less.
 [Sn:0.001~0.050%]
 Snは、鋼原料(スクラップ)から混入する元素である。粒界に偏析し、粒界炭化物の個数比率の低下を招くので、少ないほど好ましい。Snの含有量は0でもよいが、0.001%未満に低減すると、精錬コストが大幅に増加するので、実質的な下限は0.001~0.002%以上である。一方、0.050%を超えると、フェライトが脆化し、冷間加工性が低下するので、Snは0.050%以下とする。好ましくは0.040%以下である。
[Sn: 0.001 to 0.050%]
Sn is an element mixed from the steel raw material (scrap). Since it segregates at a grain boundary and causes a decrease in the number ratio of grain boundary carbides, the smaller the number, the better. The Sn content may be 0, but if it is reduced to less than 0.001%, the refining cost will increase significantly, so the practical lower limit is 0.001 to 0.002% or more. On the other hand, if it exceeds 0.050%, ferrite becomes brittle and cold workability deteriorates, so Sn is made 0.050% or less. Preferably it is 0.040% or less.
 [Sb:0.001~0.050%]
 Sbは、Snと同様に、鋼原料(スクラップ)から混入する元素である。粒界に偏析し、粒界炭化物の個数比率の低下を招くので、少ないほど好ましい。Sbの含有量は0でもよいが、0.001%未満に低減すると、精錬コストが大幅に増加するので、実質的な下限は0.001~0.002%以上である。一方、0.050%を超えると、フェライトが脆化し、冷間加工性が低下するので、Sbは0.050%以下とする。好ましくは0.040%以下である。
[Sb: 0.001 to 0.050%]
Sb is an element mixed from steel raw material (scrap) like Sn. Since it segregates at a grain boundary and causes a decrease in the number ratio of grain boundary carbides, the smaller the number, the better. The Sb content may be 0, but if the content is reduced to less than 0.001%, the refining cost increases significantly, so the substantial lower limit is 0.001 to 0.002% or more. On the other hand, if it exceeds 0.050%, ferrite becomes brittle and cold workability deteriorates, so Sb is made 0.050% or less. Preferably it is 0.040% or less.
 [As:0.001~0.050%]
 Asは、Sn、Sbと同様に、鋼原料(スクラップ)から混入する元素である。粒界に偏析し、粒界炭化物の個数比率の低下を招くので、少ないほど好ましい。Asの含有量は0でもよいが、0.001%未満に低減すると、精錬コストが大幅に増加するので、実質的な下限は0.001~0.002%以上である。一方、0.050%を超えると、粒界炭化物の個数比率が低下し、冷間加工性が低下するので、Asは0.050%以下とする。好ましくは0.040%以下である。
[As: 0.001 to 0.050%]
As is an element mixed from steel raw material (scrap), as in Sn and Sb. Since it segregates at a grain boundary and causes a decrease in the number ratio of grain boundary carbides, the smaller the number, the better. The content of As may be 0, but if the content is reduced to less than 0.001%, the refining cost increases significantly, so the practical lower limit is 0.001 to 0.002% or more. On the other hand, if it exceeds 0.050%, the number ratio of grain boundary carbides decreases and cold workability deteriorates, so As is made 0.050% or less. Preferably it is 0.040% or less.
 本発明鋼板は、上記元素を基本成分とするが、さらに、鋼板の冷間鍛造性を向上させる目的で、以下の元素を含有してもよい。以下の元素は、本発明の効果を得るために必須ではないので、含有量は0でもよい。 The steel sheet of the present invention contains the above elements as basic components, but may further contain the following elements for the purpose of improving the cold forgeability of the steel sheet. The following elements are not essential for obtaining the effects of the present invention, so the content may be zero.
 [Cr:0.50%以下]
 Crは、焼入れ性を高め、強度の向上に寄与する元素であり、また、炭化物に濃化し、オーステナイト相でも安定な炭化物を形成する元素である。添加効果を得るためには、Crは0.001%以上とするのが好ましい。より好ましくは0.007%以上である。一方、0.50%を超えると、炭化物が安定化し、焼入れ時に炭化物の溶解が遅れ、所要の焼入れ強度を達成できないおそれがあるので、Crは0.50%以下とする。好ましくは0.45%以下である。
[Cr: 0.50% or less]
Cr is an element that improves hardenability and contributes to the improvement of strength, and is an element that concentrates in carbides and forms stable carbides even in the austenite phase. In order to obtain the additive effect, Cr is preferably 0.001% or more. More preferably, it is 0.007% or more. On the other hand, if it exceeds 0.50%, the carbide is stabilized, the dissolution of the carbide is delayed at the time of quenching, and the required quenching strength may not be achieved, so Cr is 0.50% or less. Preferably it is 0.45% or less.
 [Mo:0.10%以下]
 Moは、Mnと同様に、炭化物の形態制御に有効な元素である。添加効果を得るためには、Moは0.001%以上とするのが好ましい。より好ましくは0.010%以上である。一方、0.10%を超えると、r値の面内異方性が悪化し、冷間加工性が低下するので、Moは0.10%以下とする。好ましくは0.08%以下である。
[Mo: 0.10% or less]
Mo, like Mn, is an element effective for controlling the morphology of carbides. In order to obtain the effect of addition, Mo is preferably 0.001% or more. More preferably, it is 0.010% or more. On the other hand, if it exceeds 0.10%, the in-plane anisotropy of the r value deteriorates and the cold workability deteriorates, so Mo is made 0.10% or less. Preferably it is 0.08% or less.
 [Nb:0.10%以下]
 Nbは、炭化物の形態制御に有効な元素であり、また、組織を微細化し、靭性の向上に寄与する元素である。添加効果を得るためには、Nbは0.001%以上とするのが好ましい。より好ましくは0.002%以上である。一方、0.10%を超えると、微細なNb炭化物が多数析出し、強度が過度に上昇し、また、粒界炭化物の個数比率が低下し、冷間加工性が低下するので、Nbは0.10%以下とする。好ましくは0.08%以下である。
[Nb: 0.10% or less]
Nb is an element that is effective for controlling the morphology of carbides, and is an element that refines the structure and contributes to improved toughness. In order to obtain the effect of addition, Nb is preferably 0.001% or more. More preferably, it is 0.002% or more. On the other hand, if it exceeds 0.10%, many fine Nb carbides precipitate, the strength excessively increases, the number ratio of grain boundary carbides decreases, and cold workability decreases, so Nb is 0 10% or less. Preferably it is 0.08% or less.
 [V:0.10%以下]
 Vも、Nbと同様に、炭化物の形態制御に有効な元素であり、また、組織を微細化し、靭性の向上に寄与する元素である。添加効果を得るためには、Vは0.001%以上とするのが好ましい。より好ましくは0.004%以上である。一方、0.10%を超えると、微細なV炭化物が多数析出し、強度が過度に上昇し、また、粒界炭化物の個数比率が低下し、冷間加工性が低下するので、Vは0.10%以下とする。好ましくは0.08%以下である。
[V: 0.10% or less]
V, like Nb, is an element that is effective for controlling the morphology of carbides, and is an element that contributes to refinement of the structure and improvement of toughness. In order to obtain the effect of addition, V is preferably 0.001% or more. More preferably, it is 0.004% or more. On the other hand, if it exceeds 0.10%, many fine V carbides precipitate, the strength increases excessively, the number ratio of grain boundary carbides decreases, and cold workability decreases, so V is 0. 10% or less. Preferably it is 0.08% or less.
 [Cu:0.10%以下]
 Cuは、フェライトの結晶粒界に偏析し、また、微細な析出物を形成して、強度の向上に寄与する元素である。添加効果を得るためには、Cuは0.001%以上とするのが好ましい。より好ましくは0.005%以上である。一方、0.10%を超えると、赤熱脆性が生じ、熱延での生産性が低下するので、Cuは0.10%以下とする。好ましくは0.08%以下である。
[Cu: 0.10% or less]
Cu is an element that segregates at the ferrite grain boundaries and contributes to the improvement of strength by forming fine precipitates. In order to obtain the effect of addition, Cu is preferably 0.001% or more. More preferably, it is 0.005% or more. On the other hand, if it exceeds 0.10%, red heat embrittlement occurs and productivity in hot rolling decreases, so Cu is made 0.10% or less. Preferably it is 0.08% or less.
 [W:0.10%以下]
 Wも、Nb、Vと同様に、炭化物の形態制御に有効な元素である。添加効果を得るためには、Wは0.001%以上とするのが好ましい。より好ましくは0.003%以上である。一方、0.10%を超えると、微細なW炭化物が多数析出し、強度が過度に上昇し、また、粒界炭化物の個数比率が低下し、冷間加工性が低下するので、Wは0.10%以下とする。好ましくは0.08%以下である。
[W: 0.10% or less]
W, like Nb and V, is an element effective for controlling the form of carbide. In order to obtain the effect of addition, W is preferably 0.001% or more. More preferably, it is 0.003% or more. On the other hand, if it exceeds 0.10%, a large number of fine W carbides precipitate, the strength excessively increases, the number ratio of grain boundary carbides decreases, and the cold workability decreases, so W is 0. 10% or less. Preferably it is 0.08% or less.
 [Ta:0.10%以下]
 Taも、Nb、V、Wと同様に、炭化物の形態制御に有効な元素である。添加効果を得るためには、Taは0.001%以上とするのが好ましい。より好ましくは0.005%以上である。一方、0.10%を超えると、微細なW炭化物が多数析出し、強度が過度に上昇し、また、粒界炭化物の個数比率が低下し、冷間加工性が低下するので、Taは0.10%以下とする。好ましくは0.08%以下である。
[Ta: 0.10% or less]
Ta, as well as Nb, V, and W, is an element effective for controlling the morphology of carbides. In order to obtain the effect of addition, Ta is preferably 0.001% or more. More preferably, it is 0.005% or more. On the other hand, if it exceeds 0.10%, many fine W carbides precipitate, the strength increases excessively, the number ratio of grain boundary carbides decreases, and cold workability decreases, so Ta is 0. 10% or less. Preferably it is 0.08% or less.
 [Ni:0.10%以下]
 Niは、部品の靭性の向上に有効な元素である。添加効果を得るためには、Niは0.001%以上とするのが好ましい。より好ましくは0.004%以上である。一方、0.10%を超えると、粒界炭化物の個数比率が低下し、冷間加工性が低下するので、Niは0.10%以下とする。好ましくは0.08%以下である。
[Ni: 0.10% or less]
Ni is an element effective for improving the toughness of parts. In order to obtain the additive effect, Ni is preferably 0.001% or more. More preferably, it is 0.004% or more. On the other hand, if it exceeds 0.10%, the number ratio of grain boundary carbides decreases and cold workability decreases, so Ni is made 0.10% or less. Preferably it is 0.08% or less.
 [Mg:0.050%以下]
 Mgは、微量の添加で硫化物の形態を制御できる元素である。添加効果を得るためには、Mgは0.0001%以上とするのが好ましい。より好ましくは0.0008%以上である。一方、0.050%を超えると、フェライトが脆化し、冷間加工性が低下するので、Mgは0.050%以下とする。好ましくは0.040%以下である。
[Mg: 0.050% or less]
Mg is an element that can control the form of sulfide by addition of a small amount. In order to obtain the effect of addition, Mg is preferably 0.0001% or more. More preferably, it is 0.0008% or more. On the other hand, if it exceeds 0.050%, ferrite becomes brittle and cold workability deteriorates, so Mg is made 0.050% or less. Preferably it is 0.040% or less.
 [Ca:0.050%以下]
 Caは、Mgと同様に、微量の添加で硫化物の形態を制御できる元素である。添加効果を得るためには、Caは0.001%以上とするのが好ましい。より好ましくは0.003%以上である。一方、0.050%を超えると、粗大なCa酸化物が生成し、冷間加工時に割れ発生の起点となるので、Caは0.050%以下とする。好ましくは0.040%以下である。
[Ca: 0.050% or less]
Ca, like Mg, is an element that can control the form of sulfide with a small amount of addition. In order to obtain the effect of addition, Ca is preferably 0.001% or more. More preferably, it is 0.003% or more. On the other hand, if it exceeds 0.050%, coarse Ca oxide is produced and becomes a starting point of cracking during cold working, so Ca is made 0.050% or less. Preferably it is 0.040% or less.
 [Y:0.050%以下]
 Yは、Mg、Caと同様に、微量の添加で硫化物の形態を制御できる元素である。添加効果を得るためには、Yは0.001%以上とするのが好ましい。より好ましくは0.003%以上である。一方、0.050%を超えると、粗大なY酸化物が生成し、冷間加工時に割れ発生の起点となるので、Yは0.050%以下とする。好ましくは0.035%以下である。
[Y: 0.050% or less]
Y, like Mg and Ca, is an element that can control the form of sulfide by addition of a trace amount. In order to obtain the effect of addition, Y is preferably 0.001% or more. More preferably, it is 0.003% or more. On the other hand, if it exceeds 0.050%, coarse Y oxide is generated and becomes a starting point of cracking during cold working, so Y is made 0.050% or less. Preferably it is 0.035% or less.
 [Zr:0.050%以下]
 Zrは、Mg、Ca、Yと同様に、微量の添加で硫化物の形態を制御できる元素である。添加効果を得るためには、Zrは0.001%以上とするのが好ましい。より好ましくは0.004%以上である。一方、0.050%を超えると、粗大なZr酸化物が生成し、冷間加工時に割れ発生の起点となるので、Zrは0.050%以下とする。好ましくは0.045%以下である。
[Zr: 0.050% or less]
Zr, like Mg, Ca, and Y, is an element that can control the form of sulfide by adding a small amount. In order to obtain the effect of addition, Zr is preferably 0.001% or more. More preferably, it is 0.004% or more. On the other hand, if it exceeds 0.050%, a coarse Zr oxide is generated and becomes a starting point of cracking during cold working, so Zr is made 0.050% or less. Preferably it is 0.045% or less.
 [La:0.050%以下]
 Laは、微量の添加で硫化物の形態制御に有効な元素であるが、粒界に偏析し、粒界炭化物の個数比率の低下を招く元素でもある。添加効果を得るためには、Laは0.001%以上とするのが好ましい。より好ましくは0.004%以上である。一方、0.050%を超えると、粒界炭化物の個数比率が低下し、冷間加工性が低下するので、Laは0.050%以下とする。好ましくは0.045%以下である。
[La: 0.050% or less]
La is an element that is effective for controlling the form of sulfide when added in a small amount, but is also an element that segregates at the grain boundary and causes a decrease in the number ratio of grain boundary carbides. In order to obtain the effect of addition, La is preferably 0.001% or more. More preferably, it is 0.004% or more. On the other hand, if it exceeds 0.050%, the number ratio of grain boundary carbides decreases and cold workability decreases, so La is made 0.050% or less. Preferably it is 0.045% or less.
 [Ce:0.050%以下]
 Ceは、Laと同様に、微量の添加で硫化物の形態を制御できる元素であるが、粒界に偏析し、粒界炭化物の個数比率の低下を招く元素でもある。添加効果を得るためには、Ceは0.001%以上とするのが好ましい。より好ましくは0.004%以上である。一方、0.050%を超えると、粒界炭化物の個数比率が低下し、冷間加工性が低下するので、Ceは0.050%以下とする。好ましくは0.046%以下である。
[Ce: 0.050% or less]
Ce, like La, is an element that can control the form of the sulfide with a small amount of addition, but is also an element that segregates at the grain boundary and causes a decrease in the number ratio of grain boundary carbides. In order to obtain the effect of addition, Ce is preferably 0.001% or more. More preferably, it is 0.004% or more. On the other hand, if it exceeds 0.050%, the number ratio of grain boundary carbides decreases and cold workability decreases, so Ce is made 0.050% or less. Preferably it is 0.046% or less.
 本発明鋼板の成分組成の残部は、Fe及び不可避的不純物である。 The balance of the component composition of the steel sheet of the present invention is Fe and inevitable impurities.
 なお、上記のFeの一部に代えて、Ti及びBの1種又は2種を含有してもよい。 In addition, it may replace with a part of said Fe, and may contain 1 type or 2 types of Ti and B.
 [Ti:0.10%以下]
 Tiは、炭化物の形態制御に有効な元素であり、また、組織を微細化して靭性の向上に寄与する元素でもある。添加効果を得るためには、Tiは0.001%以上とするのが好ましい。より好ましくは0.005%以上である。一方、0.10%を超えると、粗大なTi酸化物が生成し、冷間加工時に割れの起点となるので、Tiは0.10%以下とする。好ましくは0.08%以下である。
[Ti: 0.10% or less]
Ti is an element effective for controlling the form of carbide, and is also an element contributing to improvement of toughness by refining the structure. In order to obtain the effect of addition, Ti is preferably 0.001% or more. More preferably, it is 0.005% or more. On the other hand, if it exceeds 0.10%, coarse Ti oxide is generated and becomes a starting point of cracking during cold working, so Ti is made 0.10% or less. Preferably it is 0.08% or less.
 [B:0.0001~0.010%]
 Bは、部品熱処理時の焼入れ性を高めて組織を均一化し、靭性の向上に寄与する元素である。添加効果を得るためには、Bは0.0001%以上とするのが好ましい。より好ましくは0.0006%以上である。一方、0.010%を超えると、粗大なB酸化物が生成し、冷間加工時に割れの起点となるので、Bは0.010%以下とする。好ましくは0.009%以下である。
[B: 0.0001 to 0.010%]
B is an element that contributes to improving the toughness by increasing the hardenability during the heat treatment of the parts, making the structure uniform. In order to obtain the effect of addition, B is preferably 0.0001% or more. More preferably, it is 0.0006% or more. On the other hand, if it exceeds 0.010%, coarse B oxide is generated and becomes a starting point of cracking during cold working, so B is made 0.010% or less. Preferably it is 0.009% or less.
 次に、本発明の鋼板の組織について説明する。 Next, the structure of the steel sheet of the present invention will be described.
 本発明鋼板の組織は、実質的に、フェライトと炭化物で構成される組織である。炭化物は、鉄と炭素の化合物であるセメンタイト(Fe3C)に加え、セメンタイト中のFe原子を、Mn、Cr等の合金元素で置換した化合物や、合金炭化物(M236、M6C、MC等[M:Fe、及び、その他合金として添加した金属元素])である。 The structure of the steel sheet of the present invention is substantially a structure composed of ferrite and carbide. In addition to cementite (Fe 3 C), which is a compound of iron and carbon, carbides include compounds in which Fe atoms in cementite are substituted with alloy elements such as Mn and Cr, and alloy carbides (M 23 C 6 , M 6 C MC, etc. [M: Fe and other metal elements added as alloys]).
 鋼板を所定の形状に成形する際、鋼板のマクロ組織には剪断帯が形成され、剪断帯の近傍で、すべり変形が集中して起きる。すべり変形は転位の増殖を伴い、剪断帯の近傍には、転位密度の高い領域が形成される。鋼板に付与する歪量の増加に伴い、すべり変形は促進され、転位密度は増加する。 When a steel sheet is formed into a predetermined shape, a shear band is formed in the macro structure of the steel sheet, and slip deformation is concentrated near the shear band. Slip deformation is accompanied by dislocation growth, and a region having a high dislocation density is formed in the vicinity of the shear band. As the amount of strain applied to the steel sheet increases, slip deformation is promoted and the dislocation density increases.
 冷間鍛造では、相当歪で1を超える強加工が施される。このため、従来の鋼板では、転位密度の増加に伴うボイド及び/又はクラックの発生を防ぐことはできず、従来の鋼板において、冷間鍛造性の向上は困難であった。この課題の解決には、成形時における剪断帯の形成を抑制することが効果的である。 In cold forging, strong processing exceeding 1 is applied with considerable strain. For this reason, in the conventional steel plate, generation | occurrence | production of the void and / or a crack accompanying the increase in a dislocation density cannot be prevented, and the improvement of cold forgeability was difficult in the conventional steel plate. In order to solve this problem, it is effective to suppress the formation of shear bands during molding.
 ミクロ組織の観点では、剪断帯の形成を、ある一つの結晶粒で発生したすべりが、結晶粒界を乗り越えて、隣接の結晶粒に連続的に伝播する現象として理解される。よって、剪断帯の形成を抑制するには、結晶粒界を越えるすべりの伝播を防ぐ必要がある。 From the viewpoint of the microstructure, the formation of a shear band is understood as a phenomenon in which a slip generated in one crystal grain overcomes the grain boundary and continuously propagates to adjacent crystal grains. Therefore, in order to suppress the formation of shear bands, it is necessary to prevent the propagation of slip across the grain boundary.
 鋼板中の炭化物は、すべりを妨げる強固な粒子であり、炭化物をフェライト粒界に存在させることで、結晶粒界を越えるすべりの伝播を防止して、剪断帯の形成を抑制することができ、冷間鍛造性を向上させることが可能となる。同時に、鋼板の成形性も向上する。 Carbides in the steel sheet are strong particles that prevent slipping, and by allowing the carbides to exist at the ferrite grain boundaries, it is possible to prevent the propagation of slips across the crystal grain boundaries and suppress the formation of shear bands. It becomes possible to improve cold forgeability. At the same time, the formability of the steel sheet is improved.
 鋼板の成形性は、結晶粒内への歪の蓄積(転位の蓄積)によるところが大きく、結晶粒界にて、歪の隣接結晶粒への伝搬が阻止されれば、結晶粒内の歪量が増大する。その結果、加工硬化率が増大し、成形性が改善する。 The formability of a steel sheet is largely due to the accumulation of strain (accumulation of dislocations) in the crystal grains. If the propagation of strain to adjacent crystal grains is prevented at the grain boundaries, the amount of strain in the crystal grains is reduced. Increase. As a result, the work hardening rate is increased and the moldability is improved.
 理論及び原則に基づけば、冷間加工性は、フェライト粒界の炭化物の被覆率の影響を強く受けると考えられるので、該被覆率を高精度で測定することが必要となる。 Based on the theory and principle, it is considered that the cold workability is strongly influenced by the carbide coverage of the ferrite grain boundaries, so it is necessary to measure the coverage with high accuracy.
 3次元空間において、フェライト粒界における炭化物の被覆率を測定するためには、走査型電子顕微鏡内にて、FIBによるサンプル切削と観察を繰り返し行うシリアルセクショニングSEM観察、又は、3次元EBSP観察が必須となり、膨大な測定時間を要するとともに、技術ノウハウの蓄積が不可欠となる。このことを、本発明者らは明らかにし、一般的な分析手法は適さないと結論付けた。 In order to measure the carbide coverage at the ferrite grain boundary in a three-dimensional space, serial sectioning SEM observation or three-dimensional EBSP observation in which sample cutting and observation by FIB is repeated in a scanning electron microscope is essential. As a result, enormous measurement time is required and accumulation of technical know-how is essential. The present inventors clarified this and concluded that a general analysis method is not suitable.
 このため、簡易的で精度の高い評価指標を探索した結果、フェライト粒内の炭化物の個数に対するフェライト粒界の炭化物の個数の比率を指標とすれば、冷間加工性を評価することが可能となり、フェライト粒内の炭化物の個数に対するフェライト粒界の炭化物の個数の比率が1を超えると、冷間加工性が著しく向上することを本発明者らは見出した。 For this reason, as a result of searching for a simple and highly accurate evaluation index, it is possible to evaluate cold workability by using the ratio of the number of carbides at the ferrite grain boundary to the number of carbides in the ferrite grains as an index. The present inventors have found that when the ratio of the number of carbides in the ferrite grain boundary to the number of carbides in the ferrite grains exceeds 1, the cold workability is remarkably improved.
 なお、冷間加工時に起こる鋼板の座屈、折込み、たたみ込みのいずれも、剪断帯の形成に伴う歪の局所化により引き起こされるものであるから、炭化物をフェライト粒界に存在させることにより、剪断帯の形成及び歪の局所化を緩和し、座屈、折込み、たたみ込みの発生を効果的に抑制することができる。 In addition, since any buckling, folding, and folding of the steel sheet that occurs during cold working are caused by the localization of strain accompanying the formation of shear bands, the presence of carbides at the ferrite grain boundaries can cause shearing. Band formation and strain localization can be alleviated, and buckling, folding, and folding can be effectively suppressed.
 結晶粒界上の炭化物の球状化率が80%未満であると、棒状又は板状の炭化物に局所的に歪が集中し、ボイド及び/又はクラックが発生しやすくなるので、結晶粒界上の炭化物の球状化率は80%以上が好ましく、より好ましくは90%以上である。 When the spheroidization rate of the carbide on the grain boundary is less than 80%, strain is concentrated locally on the rod-like or plate-like carbide, and voids and / or cracks are likely to occur. The spheroidization rate of the carbide is preferably 80% or more, and more preferably 90% or more.
 炭化物の平均粒子径が0.1μm未満であると、鋼板の硬さが顕著に増加して、加工性が低下するので、炭化物の平均粒子径は0.1μm以上が好ましい。より好ましくは0.17μm以上である。一方、炭化物の平均粒子径が2.0μmを超えると、冷間加工時に粗大な炭化物が起点となり亀裂が発生し、冷間加工性が低下するので、炭化物の平均粒径は2.0μm以下が好ましい。より好ましくは1.95μm以下である。 If the average particle diameter of the carbide is less than 0.1 μm, the hardness of the steel sheet is remarkably increased and the workability is lowered, so the average particle diameter of the carbide is preferably 0.1 μm or more. More preferably, it is 0.17 μm or more. On the other hand, if the average particle diameter of the carbide exceeds 2.0 μm, coarse carbides are generated as a starting point during cold processing, cracking occurs, and cold workability is deteriorated. Therefore, the average particle diameter of the carbide is 2.0 μm or less. preferable. More preferably, it is 1.95 μm or less.
 炭化物の観察は、走査型電子顕微鏡で行う。観察に先立ち、組織観察用のサンプルを、エメリー紙による湿式研磨及び1μmの平均粒子サイズをもつダイヤモンド砥粒により研磨し、観察面を鏡面に仕上げた後、3%硝酸-アルコール溶液にて組織をエッチングしておく。観察の倍率は3000倍の中でフェライトと炭化物を判別できる倍率を選択する。選択した倍率で、板厚1/4層における30μm×40μmの視野をランダムに8枚撮影する。 Carbide is observed with a scanning electron microscope. Prior to observation, a sample for tissue observation was wet-polished with emery paper and polished with diamond abrasive grains having an average particle size of 1 μm, and the observation surface was finished to a mirror surface, and the tissue was then washed with a 3% nitric acid-alcohol solution. Etch. The magnification for observation is selected to be a magnification capable of discriminating ferrite and carbides from 3000 times. At the selected magnification, 8 images of a 30 μm × 40 μm field of view in a 1/4 layer thickness are taken at random.
 得られた組織画像に対して、三谷商事株式会社製(Win ROOF)に代表される画像解析ソフトにより、その領域中に含まれる各炭化物の面積を詳細に測定する。各炭化物の面積から円相当直径(=2×√(面積/3.14))を求め、その平均値を炭化物粒子径とする。また、炭化物の球状化率は炭化物を、等面積でかつ慣性モーメントが等しい楕円に近似し、最大長さと、その直角方向の最大長さの比が3未満となるものの割合を計算して求めた。 For the obtained tissue image, the area of each carbide contained in the region is measured in detail by image analysis software typified by Mitani Corporation (Win ROOF). The equivalent circle diameter (= 2 × √ (area / 3.14)) is determined from the area of each carbide, and the average value is defined as the carbide particle diameter. Further, the spheroidization rate of the carbide was obtained by calculating the ratio of the carbide that approximates an ellipse having the same area and the same moment of inertia, and the ratio of the maximum length to the maximum length in the perpendicular direction is less than 3. .
 なお、ノイズによる測定誤差の影響を抑えるため、面積が0.01μm以下の炭化物は、評価の対象から除外した。フェライト粒界上に存在する炭化物の個数をカウントし、全炭化物数から粒界上の炭化物数を引算してフェライト粒内の炭化物数を求めた。測定した個数をもとに、フェライト粒内の炭化物に対するフェライト粒界上の炭化物の個数比率を求めた。 In order to suppress the influence of measurement error due to noise, carbides having an area of 0.01 μm 2 or less were excluded from the evaluation targets. The number of carbides present on the ferrite grain boundaries was counted, and the number of carbides in the ferrite grains was determined by subtracting the number of carbides on the grain boundaries from the total number of carbides. Based on the measured number, the number ratio of the carbide on the ferrite grain boundary to the carbide in the ferrite grain was determined.
 冷延鋼板を焼鈍した後の組織において、フェライト粒径を5.0μm以上とすることで、冷間加工性を改善することができる。フェライト粒径が5μm未満であると、硬さが増加して、冷間加工時に、亀裂やクラックが発生しやすくなるので、フェライト粒径は5μm以上とする。好ましくは7μm以上である。 The cold workability can be improved by setting the ferrite grain size to 5.0 μm or more in the structure after annealing the cold-rolled steel sheet. If the ferrite particle size is less than 5 μm, the hardness increases and cracks and cracks are likely to occur during cold working, so the ferrite particle size is set to 5 μm or more. Preferably it is 7 micrometers or more.
 一方、50μmを超えると、すべりの伝播を抑制する結晶粒界上の炭化物の個数が減少し、冷間加工性が低下するので、フェライト粒径は50μm以下とする。好ましくは37μm以下である。 On the other hand, if the thickness exceeds 50 μm, the number of carbides on the grain boundaries that suppress the propagation of slip is reduced and the cold workability is lowered, so the ferrite grain size is set to 50 μm or less. Preferably it is 37 micrometers or less.
 フェライト粒径は、前述した研磨方法で、サンプルの観察面を鏡面に研磨した後、3%硝酸-アルコール溶液でエッチングし、観察面の組織を光学顕微鏡又は走査型電子顕微鏡で観察し、撮影した画像に対して線分法を適用して測定する。 The ferrite grain size was measured by polishing the sample observation surface to a mirror surface using the polishing method described above, etching with a 3% nitric acid-alcohol solution, and observing the structure of the observation surface with an optical microscope or a scanning electron microscope. The line segment method is applied to the image and measured.
 また、鉄の炭化物であるセメンタイトは硬くて脆い組織であり、フェライトとの層状組織であるパーライトの状態で存在すると、鋼が硬く、脆くなる。したがって、パーライトは極力少なくする必要があり、本発明の鋼板においては、面積率で6%以下とする。 Also, cementite, which is a carbide of iron, has a hard and brittle structure, and if it exists in the state of pearlite, which is a layered structure with ferrite, the steel becomes hard and brittle. Therefore, it is necessary to reduce pearlite as much as possible. In the steel sheet of the present invention, the area ratio is set to 6% or less.
 パーライトは特有のラメラ組織を有するため、SEM、光学顕微鏡観察により峻別可能である。任意の断面の中でラメラ組織の領域を算出することで、パーライトの面積率を求めることができる。 Since perlite has a unique lamellar structure, it can be distinguished by SEM and optical microscope observation. The area ratio of pearlite can be obtained by calculating the region of the lamellar structure in an arbitrary cross section.
 さらに、鋼板のビッカース硬さを100HV以上170HV以下とすることで、冷間加工性を改善することができる。ビッカース硬さが100HV未満であると、冷間加工中に座屈が発生しやすくなるので、ビッカース硬さは100HV以上とする。好ましくは110HV以上である。 Furthermore, the cold workability can be improved by setting the Vickers hardness of the steel sheet to 100 HV or more and 170 HV or less. If the Vickers hardness is less than 100 HV, buckling is likely to occur during cold working, so the Vickers hardness is 100 HV or more. Preferably it is 110HV or more.
 一方、ビッカース硬さが170HVを超えると、延性が低下し、冷間加工時に内部割れが起き易くなるので、ビッカース硬さは170HV以下とする。好ましくは168HV以下である。 On the other hand, if the Vickers hardness exceeds 170 HV, the ductility is lowered and internal cracks are likely to occur during cold working, so the Vickers hardness is set to 170 HV or less. Preferably it is 168HV or less.
 次に、本発明製造方法について説明する。 Next, the manufacturing method of the present invention will be described.
 本発明製造方法は、前述した成分組成の鋼片を用いて、熱延条件と焼鈍条件を一貫して管理し、鋼板の組織制御を行うことを基本思想とする。 The manufacturing method of the present invention is based on the basic idea that the steel strip having the above-described composition is used to consistently manage the hot rolling conditions and the annealing conditions and to control the structure of the steel sheet.
 はじめに、所要の成分組成の溶鋼を連続鋳造した鋼片を熱間圧延に供する。連続鋳造後の鋳片は、直接熱間圧延に供してもよいし、一旦冷却後加熱してから熱間圧延に供してもよい。 First, a steel slab in which molten steel having a required composition is continuously cast is subjected to hot rolling. The slab after continuous casting may be directly subjected to hot rolling, or may be subjected to hot rolling after being once cooled and heated.
 鋼片を一旦冷却後加熱して熱間圧延に供する場合、加熱温度は1000℃以上1250℃以下が好ましく、加熱時間は0.5時間以上3時間以下が好ましい。連続鋳造した鋼片を、直接、熱間圧延に供する場合、熱間圧延に供する鋼片の温度は、1000℃以上1250℃とするのが好ましい。 When the steel slab is once cooled and then heated and subjected to hot rolling, the heating temperature is preferably 1000 ° C. or more and 1250 ° C. or less, and the heating time is preferably 0.5 hours or more and 3 hours or less. When the continuously cast steel slab is directly subjected to hot rolling, the temperature of the steel slab subjected to hot rolling is preferably 1000 ° C. or more and 1250 ° C.
 鋼片温度又は鋼片加熱温度が1250℃を超え、又は、鋼片加熱時間が3時間を超えると、鋼片表層からの脱炭が著しくなり、浸炭焼入れ前の加熱時に、鋼板表層のオーステナイト粒が異常に成長し、耐衝撃性が低下する。このため、鋼片温度又は鋼片加熱温度は1250℃以下が好ましく、加熱時間は3時間以下が好ましい。より好ましくは1200℃以下、2.5時間以下である。 If the slab temperature or slab heating temperature exceeds 1250 ° C, or if the slab heating time exceeds 3 hours, decarburization from the slab surface layer becomes significant, and during heating before carburizing and quenching, austenite grains on the steel sheet surface layer Grows abnormally and impact resistance decreases. For this reason, the slab temperature or the slab heating temperature is preferably 1250 ° C. or less, and the heating time is preferably 3 hours or less. More preferably, it is 1200 degrees C or less and 2.5 hours or less.
 鋼片温度又は鋼片加熱温度が1000℃未満であり、又は、加熱時間が0.5時間未満であると、鋳造で生成したミクロ偏析やマクロ偏析が解消せず、鋼片内部に、SiやMn等の合金元素が局所的に濃化した領域が残存し、耐衝撃性が低下する。このため、鋼片温度又は鋼片加熱温度は1000℃以上が好ましく、加熱時間は0.5時間以上が好ましい。より好ましくは1050℃以上、1時間以上である。 If the billet temperature or billet heating temperature is less than 1000 ° C, or if the heating time is less than 0.5 hours, microsegregation and macrosegregation generated by casting will not be eliminated, and Si or A region where an alloy element such as Mn is locally concentrated remains and impact resistance is lowered. For this reason, the steel slab temperature or the steel slab heating temperature is preferably 1000 ° C. or more, and the heating time is preferably 0.5 hours or more. More preferably, it is 1050 ° C. or more and 1 hour or more.
 熱間圧延における仕上げ圧延は、750℃以上850℃以下の温度域で完了する。仕上げ圧延温度が750℃未満であると、鋼板の変形抵抗が増加して、圧延負荷が著しく上昇し、また、ロール磨耗量が増大して、生産性が低下するとともに、塑性異方性を改善するために必要な再結晶化が十分に進行しないので、仕上げ圧延温度は750℃以上とする。再結晶を促進する点で、好ましくは770℃以上である。 Finish rolling in hot rolling is completed in a temperature range of 750 ° C. or higher and 850 ° C. or lower. When the finish rolling temperature is less than 750 ° C., the deformation resistance of the steel sheet increases, the rolling load increases significantly, the roll wear amount increases, the productivity decreases, and the plastic anisotropy is improved. Since the recrystallization necessary for this does not proceed sufficiently, the finish rolling temperature is set to 750 ° C. or higher. In terms of promoting recrystallization, the temperature is preferably 770 ° C. or higher.
 仕上げ圧延温度が850℃を超えると、Run Out Table(ROT)を通板中に分厚いスケールが生成し、このスケールに起因して、鋼板表面に疵が発生し、冷間鍛造及び浸炭焼入れ焼戻し後に衝撃荷重が加わった際、疵を起点として亀裂が発生しやすいので、鋼板の耐衝撃性が低下する。このため、仕上げ圧延温度は850℃以下とする。好ましくは830℃以下である。 When the finish rolling temperature exceeds 850 ° C., a thick scale is generated in the run-out table (ROT) through the plate, resulting in wrinkles on the surface of the steel plate, after cold forging and carburizing and tempering. When an impact load is applied, cracks are likely to occur starting from wrinkles, so that the impact resistance of the steel sheet is reduced. For this reason, finish rolling temperature shall be 850 degrees C or less. Preferably it is 830 degrees C or less.
 仕上げ圧延後の熱延鋼板をROTで冷却する際、冷却速度は10℃/秒以上100℃/秒以下が好ましい。冷却速度が10℃/秒未満であると、冷却途中に分厚いスケールが生成し、それに起因する疵の発生を抑制できず、耐衝撃性が低下するので、冷却速度は10℃/秒以上が好ましい。より好ましくは20℃/秒以上である。 When the hot-rolled steel sheet after finish rolling is cooled by ROT, the cooling rate is preferably 10 ° C./second or more and 100 ° C./second or less. When the cooling rate is less than 10 ° C./second, a thick scale is formed during the cooling, and the generation of wrinkles due to the scale cannot be suppressed, and the impact resistance is reduced. Therefore, the cooling rate is preferably 10 ° C./second or more. . More preferably, it is 20 ° C./second or more.
 鋼板の表層から内部にわたり、100℃/秒を超える冷却速度で冷却すると、最表層部が過剰に冷却されて、ベイナイトやマルテンサイトなどの低温変態組織を生じる。巻取り後、100℃~室温に冷却された熱延鋼板コイルを払い出す際、低温変態組織に微小クラックが発生する。この微小クラックを、酸洗及び冷延で取り除くことは難しい。 When the steel sheet is cooled from the surface layer to the inside at a cooling rate exceeding 100 ° C./second, the outermost layer part is excessively cooled, and low temperature transformation structures such as bainite and martensite are generated. When the hot-rolled steel sheet coil cooled to 100 ° C. to room temperature is taken out after winding, microcracks are generated in the low-temperature transformation structure. It is difficult to remove these micro cracks by pickling and cold rolling.
 そして、鋼板に、冷間鍛造及び浸炭焼入れ焼戻し後に衝撃荷重が加わると、微小クラックを起点に亀裂が進展するので、耐衝撃性が低下する。このため、鋼板の最表層部に、ベイナイトやマルテンサイトなどの低温変態組織が生じるのを抑制するため、冷却速度は100℃/秒以下が好ましい。より好ましくは90℃/秒以下である。 And, when an impact load is applied to a steel sheet after cold forging and carburizing quenching and tempering, the crack develops starting from a microcrack, so the impact resistance is lowered. For this reason, in order to suppress generation | occurrence | production of low temperature transformation structures, such as a bainite and a martensite, in the outermost layer part of a steel plate, 100 degrees C / sec or less is preferable. More preferably, it is 90 ° C./second or less.
 なお、上記冷却速度は、仕上げ圧延後の熱延鋼板が無注水区間を通過後、注水区間で水冷却を受ける時点から、巻取りの目標温度までROT上で冷却される時点において、各注水区間の冷却設備から受ける冷却能を指しており、注水開始点から巻取機により巻き取られる温度までの平均冷却速度を示すものではない。 In addition, the cooling rate is determined at each water injection section from the time when the hot-rolled steel sheet after finish rolling passes through the non-water injection section to receive water cooling in the water injection section to the time when it is cooled on the ROT to the winding target temperature. It refers to the cooling capacity received from the cooling equipment, and does not indicate the average cooling rate from the water injection start point to the temperature taken up by the winder.
 巻取温度は400℃以上550℃以下とする。これは、一般的な巻取温度よりも低い温度であり、特にCの含有量が高い場合には通常行われない条件である。上述した条件で製造した熱延鋼板を、この温度範囲で巻取ることにより、鋼板の組織を、細かなフェライト中に炭化物が分散したベイナイト組織とすることができる。 The winding temperature is 400 ° C or higher and 550 ° C or lower. This is a temperature lower than a general winding temperature, and is a condition that is not normally performed particularly when the C content is high. By winding the hot-rolled steel sheet manufactured under the above-described conditions in this temperature range, the structure of the steel sheet can be a bainite structure in which carbides are dispersed in fine ferrite.
 巻取温度が400℃未満であると、巻取り前に未変態であったオーステナイトが硬いマルテンサイトに変態し、熱延鋼板コイルの払い出し時に、熱延鋼板の表層にクラックが発生し、耐衝撃性が低下する。 When the coiling temperature is less than 400 ° C., the austenite that has not been transformed before winding is transformed into hard martensite, and when the hot-rolled steel sheet coil is discharged, cracks occur in the surface layer of the hot-rolled steel sheet, resulting in impact resistance. Sexuality decreases.
 さらに、オーステナイトからフェライトへの再結晶時、再結晶駆動力が小さいために、再結晶フェライト粒の方位は、オーステナイト粒の方位の影響を強く受けることとなり、集合組織のランダム化が困難になる。それゆえ、巻取温度は400℃以上とする。好ましくは430℃以上である。 Furthermore, since the recrystallization driving force is small during recrystallization from austenite to ferrite, the orientation of the recrystallized ferrite grains is strongly influenced by the orientation of the austenite grains, making it difficult to randomize the texture. Therefore, the winding temperature is 400 ° C. or higher. Preferably it is 430 degreeC or more.
 巻取温度が550℃を超えると、ラメラ間隔の大きなパーライトが生成し、熱的安定性の高い、分厚い針状炭化物が生成する。この針状炭化物は2段焼鈍後も残留する。鋼板の冷間鍛造等の成形時、この針状炭化物を起点として亀裂が生成する。 When the coiling temperature exceeds 550 ° C., pearlite with large lamella spacing is generated, and thick needle-like carbides with high thermal stability are generated. This acicular carbide remains even after two-stage annealing. At the time of forming such as cold forging of a steel plate, a crack is generated starting from this acicular carbide.
 また、オーステナイトからフェライトの再結晶時、逆に、再結晶駆動力が大きくなりすぎ、この場合においても、オーステナイト粒の方位に強く依存した再結晶フェライト粒となり、集合組織のランダム化がなされない。それゆえ、巻取温度は550℃以下とする。好ましくは520℃以下である。 Also, when recrystallizing ferrite from austenite, on the contrary, the recrystallization driving force becomes too large, and even in this case, the recrystallized ferrite grains strongly depend on the orientation of the austenite grains, and the texture is not randomized. Therefore, the coiling temperature is 550 ° C. or less. Preferably it is 520 degrees C or less.
 熱延鋼板コイルを払い出し、酸洗を施した後に、2つの温度域に保持する2段ステップ型の焼鈍(2段焼鈍)を施す。熱延鋼板に2段焼鈍を施すことにより、炭化物の安定性を制御して、フェライト粒界における炭化物の生成を促進する。 ¡Take out the hot-rolled steel sheet coil, pickle it, and then perform two-step annealing (two-step annealing) that keeps it in two temperature ranges. By subjecting the hot-rolled steel sheet to two-stage annealing, the stability of the carbide is controlled and the formation of carbide at the ferrite grain boundary is promoted.
 焼鈍処理の前に、酸洗後の鋼板に冷間圧延を施すと、フェライト粒が微細化するので、鋼板が軟質化しにくくなる。そのため、本発明においては、焼鈍の前に冷間圧延を施すのは好ましくなく、酸洗後、冷間圧延を行わずに焼鈍処理を施すのが好ましい。 If the steel plate after pickling is cold-rolled before the annealing treatment, the ferrite grains become finer, so that the steel plate becomes difficult to soften. Therefore, in the present invention, it is not preferable to perform cold rolling before annealing, and it is preferable to perform annealing treatment without pickling after pickling.
 1段目の焼鈍は、650~720℃、好ましくはAc1点以下の温度域で行う。この焼鈍により、炭化物を粗大化させ、部分的に球状化させるとともに、合金元素を炭化物に濃化させ、炭化物の熱的安定性を高める。 The first stage annealing is performed in a temperature range of 650 to 720 ° C., preferably the A c1 point or less. By this annealing, the carbide is coarsened and partially spheroidized, and the alloy elements are concentrated in the carbide, thereby improving the thermal stability of the carbide.
 1段目の焼鈍において、焼鈍温度までの加熱速度(以下「1段目加熱速度」という)は30℃/時間以上150℃/時間以下とする。1段目加熱速度が30℃/時間未満であると、昇温に時間を要し生産性が低下するので、1段目加熱速度は3℃/時間以上とする。好ましくは10℃/時間以上である。 In the first stage annealing, the heating rate up to the annealing temperature (hereinafter referred to as “first stage heating rate”) is 30 ° C./hour or more and 150 ° C./hour or less. If the first stage heating rate is less than 30 ° C./hour, it takes time to raise the temperature and the productivity is lowered. Therefore, the first stage heating rate is set to 3 ° C./hour or more. Preferably, it is 10 ° C./hour or more.
 一方、1段目加熱速度が150℃/時間を超えると、熱延鋼板コイルにおいて外周部と内部の温度差が増大して、熱膨張差に起因するすり疵や焼付きが発生し、鋼板表面に凹凸が形成される。冷間鍛造等の成形時に、この凹凸が起点となり亀裂が発生し、冷間鍛造性が低下したり、成形性及び浸炭焼入れ焼戻し後の耐衝撃性が低下するので、1段目加熱速度は150℃/時間以下とする。好ましくは130℃/時間以下である。 On the other hand, if the first stage heating rate exceeds 150 ° C./hour, the temperature difference between the outer peripheral portion and the inside of the hot-rolled steel sheet coil increases, and slag and seizure due to the difference in thermal expansion occurs. Unevenness is formed on the surface. When forming such as cold forging, cracks are generated as a starting point, and cold forgeability is deteriorated, and impact resistance after carburizing and quenching and tempering is reduced. It shall be below ℃ / hour. Preferably it is 130 degrees C / hour or less.
 1段目の焼鈍における焼鈍温度(以下「1段目焼鈍温度」という)は650℃以上720℃以下とする。1段目焼鈍温度が650℃未満であると、炭化物の安定化が十分でなく、2段目の焼鈍時に、オーステナイト中に炭化物を残存させることが困難となる。このため、1段目焼鈍温度は650℃以上とする。好ましくは670℃以上である。 The annealing temperature in the first stage annealing (hereinafter referred to as “first stage annealing temperature”) is 650 ° C. or more and 720 ° C. or less. If the first stage annealing temperature is less than 650 ° C., the carbide is not sufficiently stabilized, and it becomes difficult to leave the carbide in the austenite during the second stage annealing. For this reason, the first stage annealing temperature is set to 650 ° C. or higher. Preferably it is 670 degreeC or more.
 一方、1段目焼鈍温度が720℃を超えると、炭化物の安定性が上昇する前にオーステナイトが生成し、前述の組織変化の制御が難しくなるので、1段目焼鈍温度は720℃以下とする。好ましくは700℃以下である。 On the other hand, if the first-stage annealing temperature exceeds 720 ° C., austenite is generated before the stability of the carbide is increased, and it becomes difficult to control the above-described structure change. Therefore, the first-stage annealing temperature is set to 720 ° C. or less. . Preferably it is 700 degrees C or less.
 1段目の焼鈍における焼鈍時間(以下「1段目焼鈍時間」という)は3時間以上60時間以下とする。1段目焼鈍時間が3時間未満であると、炭化物の安定化が十分でなく、2段目の焼鈍時に、オーステナイト中に炭化物を残存させることが困難となる。このため、1段目焼鈍時間は3時間以上とする。好ましくは5時間以上である。 The annealing time in the first stage annealing (hereinafter referred to as “first stage annealing time”) is 3 hours or more and 60 hours or less. If the first stage annealing time is less than 3 hours, the carbide is not sufficiently stabilized, and it becomes difficult to leave the carbide in the austenite during the second stage annealing. For this reason, the first stage annealing time is set to 3 hours or more. Preferably it is 5 hours or more.
 一方、1段目焼鈍時間が60時間を超えると、炭化物のより一層の安定化は見込めず、さらに、生産性が低下するので、1段目焼鈍時間は60時間以下とする。好ましくは55時間以下である。 On the other hand, if the first stage annealing time exceeds 60 hours, further stabilization of the carbide cannot be expected, and further, the productivity is lowered. Therefore, the first stage annealing time is set to 60 hours or less. Preferably it is 55 hours or less.
 その後、725~790℃、好ましくはAc1点以上A3点以下の温度域に昇温し、オーステナイトを組織中に生成させる。この際、微細なフェライト粒内の炭化物はオーステナイト中に溶解するが、1段目の焼鈍により粗大化した炭化物はオーステナイト中に残存する。 Thereafter, the temperature is raised to 725 to 790 ° C., preferably in the temperature range from A c1 to A 3 , and austenite is generated in the structure. At this time, the carbides in the fine ferrite grains are dissolved in the austenite, but the carbides coarsened by the first stage annealing remain in the austenite.
 この2段目の焼鈍を行わずに冷却した場合は、フェライト粒径が大きくならず、理想的な組織を得ることはできない。 When cooled without performing the second stage annealing, the ferrite grain size does not increase and an ideal structure cannot be obtained.
 2段目の焼鈍の焼鈍温度までの加熱速度(以下「2段目加熱速度」という)は1℃/時間以上80℃/時間以下とする。2段目の焼鈍の際、フェライト粒界からオーステナイトが生成し成長する。その際、焼鈍温度までの加熱速度を遅くすることで、オーステナイトの核生成を抑制し、焼鈍後の徐冷で形成される組織において、炭化物の粒界被覆率を高めることが可能となる。 The heating rate of the second stage annealing to the annealing temperature (hereinafter referred to as “second stage heating rate”) is 1 ° C./hour or more and 80 ° C./hour or less. During the second stage annealing, austenite is generated and grows from the ferrite grain boundary. At that time, by slowing the heating rate up to the annealing temperature, it becomes possible to suppress austenite nucleation and increase the grain boundary coverage of the carbide in the structure formed by annealing after annealing.
 それゆえ、2段目加熱速度は遅い方が好ましいが、1℃/時間未満であると、昇温に時間を要し、生産性が低下するので、2段目加熱速度は1℃/時間以上とする。好ましくは10℃/時間以上である。 Therefore, it is preferable that the second stage heating rate is slow. However, if it is less than 1 ° C./hour, it takes time to raise the temperature and the productivity decreases, so the second stage heating rate is 1 ° C./hour or more. And Preferably, it is 10 ° C./hour or more.
 2段目加熱速度が80℃/時間を超えると、熱延鋼板コイルにおいて、外周部と内部の温度差が増大して、変態による大きな熱膨張差に起因するすり疵や焼付きが発生し、鋼板表面に凹凸が形成される。冷間鍛造時、この凹凸を起点として亀裂が発生し、冷間鍛造性と成形性が低下し、また、浸炭焼入れ焼戻し後の耐衝撃性も低下するので、2段目加熱速度は80℃/時間以下とする。好ましくは70℃/時間以下である。 When the second stage heating rate exceeds 80 ° C./hour, in the hot-rolled steel sheet coil, the temperature difference between the outer peripheral portion and the inside increases, and scouring and seizure due to a large difference in thermal expansion due to transformation occurs. Unevenness is formed on the surface of the steel plate. At the time of cold forging, cracks are generated starting from this unevenness, cold forgeability and formability are reduced, and impact resistance after carburizing and quenching and tempering is also reduced, so the second stage heating rate is 80 ° C / Less than hours. Preferably it is 70 degrees C / hour or less.
 2段目の焼鈍における焼鈍温度(以下「2段目焼鈍温度」という)は725℃以上790℃以下とする。2段目焼鈍温度が725℃未満であると、オーステナイトの生成量が少なくなり、2段目の焼鈍後の冷却後に、フェライト粒界における炭化物の個数が減少し、また、フェライト粒径が小さくなる。このため、2段目焼鈍温度は725℃以上とする。好ましくは735℃以上である。 The annealing temperature in the second stage annealing (hereinafter referred to as “second stage annealing temperature”) is 725 ° C. or higher and 790 ° C. or lower. When the second stage annealing temperature is less than 725 ° C., the amount of austenite produced is reduced, and after cooling after the second stage annealing, the number of carbides at the ferrite grain boundaries is reduced, and the ferrite grain size is reduced. . For this reason, the second stage annealing temperature is set to 725 ° C. or higher. Preferably it is 735 ° C or more.
 一方、2段目焼鈍温度が790℃を超えると、炭化物をオーステナイトに残存させることが困難となり、組織変化の制御が難しくなるので、2段目焼鈍温度は790℃以下とする。好ましくは770℃以下である。 On the other hand, if the second stage annealing temperature exceeds 790 ° C., it becomes difficult to leave the carbides in the austenite and it becomes difficult to control the structure change, so the second stage annealing temperature is set to 790 ° C. or less. Preferably it is 770 degrees C or less.
 2段目の焼鈍における焼鈍時間(2段目焼鈍時間)は3時間以上50時間未満とする。2段目焼鈍時間が3時間未満であると、オーステナイトの生成量が少なく、かつ、フェライト粒内の炭化物の溶解が十分に進まず、フェライト粒界の炭化物の個数を増加させることが困難となり、また、フェライト粒径が小さくなる。このため、2段目焼鈍時間は3時間以上とする。好ましくは5時間以上である。 The annealing time in the second stage annealing (second stage annealing time) is 3 hours or more and less than 50 hours. If the second stage annealing time is less than 3 hours, the amount of austenite produced is small, and the dissolution of carbides in the ferrite grains does not proceed sufficiently, making it difficult to increase the number of carbides at the ferrite grain boundaries, In addition, the ferrite grain size is reduced. For this reason, the second stage annealing time is set to 3 hours or more. Preferably it is 5 hours or more.
 一方、2段目焼鈍時間が50時間を超えると、炭化物をオーステナイト中に残存させることが困難となり、また、製造コストも増大するので、2段目焼鈍時間は50時間未満とする。好ましくは40時間以下である。 On the other hand, if the second stage annealing time exceeds 50 hours, it becomes difficult to leave the carbide in the austenite and the manufacturing cost increases, so the second stage annealing time is set to less than 50 hours. Preferably it is 40 hours or less.
 2段焼鈍の後、鋼板を、1℃/時間以上30℃/時間以下の冷却速度で650℃まで冷却する。 After the second stage annealing, the steel sheet is cooled to 650 ° C. at a cooling rate of 1 ° C./hour or more and 30 ° C./hour or less.
 徐冷により、2段目の焼鈍において生成したオーステナイトを徐冷することにより、フェライトに変態するとともに、オーステナイトに残存する炭化物に炭素原子が吸着し、炭化物とオーステナイトがフェライト粒界を覆い、最終的に、フェライト粒界に炭化物が多数存在する組織にすることができる。 By slow cooling, the austenite generated in the second stage annealing is transformed into ferrite, carbon atoms are adsorbed on the carbide remaining in the austenite, and the carbide and austenite cover the ferrite grain boundary, and finally In addition, a structure in which a large number of carbides exist in the ferrite grain boundary can be obtained.
 そのためには、冷却速度は遅い方が好ましいが、1℃/時間未満であると、冷却に要する時間が増大し、生産性が低下するので、冷却速度は1℃/時間以上とする。好ましくは10℃/時間以上である。 For this purpose, it is preferable that the cooling rate is slow, but if it is less than 1 ° C./hour, the time required for cooling increases and the productivity decreases, so the cooling rate is 1 ° C./hour or more. Preferably, it is 10 ° C./hour or more.
 一方、冷却速度が30℃/時間を超えると、オーステナイトがパーライトに変態し、鋼板の硬さが増加して、冷間鍛造性が低下し、また、浸炭焼入れ焼戻し後の耐衝撃性が低下するので、冷却速度は30℃/時間以下とする。好ましくは20℃/時間以下である。 On the other hand, when the cooling rate exceeds 30 ° C./hour, austenite transforms into pearlite, the hardness of the steel sheet increases, cold forgeability decreases, and impact resistance after carburizing and quenching and tempering decreases. Therefore, the cooling rate is set to 30 ° C./hour or less. Preferably it is 20 degrees C / hour or less.
 さらに、650℃まで冷却した鋼板を室温まで冷却する。この時の冷却速度は限定されるものではない。 Furthermore, the steel sheet cooled to 650 ° C. is cooled to room temperature. The cooling rate at this time is not limited.
 2段焼鈍における雰囲気は、特に、特定の雰囲気に限定されない。例えば、95%以上窒素の雰囲気、95%以上水素の雰囲気、大気雰囲気のいずれの雰囲気でもよい。 The atmosphere in the two-stage annealing is not particularly limited to a specific atmosphere. For example, any atmosphere of 95% or more nitrogen atmosphere, 95% or more hydrogen atmosphere, or air atmosphere may be used.
 以上説明したように、本発明の熱延条件と焼鈍条件を一貫して管理し、鋼板の組織制御を行う製造方法によれば、絞り、増肉成形を組み合わせた冷間鍛造時の成形性に優れ、さらに、浸炭焼入れ焼戻し後の耐衝撃性の向上に必要な焼入れ性に優れる鋼板を製造することができる。 As explained above, according to the manufacturing method that consistently manages the hot rolling conditions and annealing conditions of the present invention and performs the structure control of the steel sheet, the formability during cold forging combined with drawing and thickening is achieved. Further, it is possible to produce a steel sheet that is excellent and further has excellent hardenability necessary for improving impact resistance after carburizing, quenching, and tempering.
 次に、実施例について説明するが、実施例の水準は、本発明の実施可能性及び効果を確認するために採用した条件の一例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達する限りにおいて、種々の条件を採用することが可能なものである。 Next, although an Example is described, the level of an Example is an example of the conditions employ | adopted in order to confirm the feasibility and effect of this invention, and this invention is limited to this one condition example. is not. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
 冷間加工性の評価は、板厚3mmの焼鈍まま材から、JIS5号引張試験片を採取して引張試験を行い、圧延方向から0°方向と圧延方向から90°方向の全伸びを評価し、両方向とも35%以上で、かつ、それぞれの方向の全伸びの差|ΔEL|が4%以下の場合に、冷間加工性が優位であるとした。 Cold workability is evaluated by taking a JIS No. 5 tensile specimen from an as-annealed material with a thickness of 3 mm and conducting a tensile test to evaluate the total elongation in the 0 ° direction from the rolling direction and the 90 ° direction from the rolling direction. The cold workability is said to be superior when both directions are 35% or more and the total elongation difference | ΔEL | in each direction is 4% or less.
 焼入れ性の評価は、板厚3mmの焼鈍まま材を、板厚1.5mmに研削し、真空雰囲気の中で880℃×10分の保持を行い、30℃/秒の冷却速度で焼入れし、マルテンサイトの分率が60%以上であれば、焼入れ性が優位であるとした。 The evaluation of the hardenability was performed by grinding the material as it was annealed with a plate thickness of 3 mm to a plate thickness of 1.5 mm, holding at 880 ° C. for 10 minutes in a vacuum atmosphere, and quenching at a cooling rate of 30 ° C./second, If the martensite fraction is 60% or more, it is said that the hardenability is superior.
 (実施例1)
 表1に示す成分組成の連続鋳造鋳片(鋼塊)を、1240℃で1.8時間加熱した後、熱間圧延に供し、890℃で仕上げ熱延を終了した後、510℃で巻き取り、板厚3.0mmの熱延コイルを製造した。熱延コイルを酸洗し、箱型焼鈍炉内に熱延コイルを装入し、雰囲気を95%水素-5%窒素に制御して、室温から705℃に加熱し、705℃で36時間保持して熱延コイル内の温度分布を均一化してから、に760℃まで加熱し、760℃で10時間保持した。
Example 1
A continuous cast slab (steel ingot) having the composition shown in Table 1 was heated at 1240 ° C. for 1.8 hours, then subjected to hot rolling, and after finishing hot rolling at 890 ° C., it was wound at 510 ° C. A hot rolled coil having a thickness of 3.0 mm was manufactured. The hot rolled coil is pickled, the hot rolled coil is placed in a box-type annealing furnace, the atmosphere is controlled to 95% hydrogen-5% nitrogen, heated from room temperature to 705 ° C., and maintained at 705 ° C. for 36 hours. The temperature distribution in the hot-rolled coil was made uniform, and then heated to 760 ° C. and held at 760 ° C. for 10 hours.
 その後、650℃までを10℃/時間の冷却速度で冷却し、次いで、室温まで炉冷して、特性評価用のサンプルを作製した。なお、サンプルの組織は、前述した方法で測定した。 Thereafter, the sample was cooled to 650 ° C. at a cooling rate of 10 ° C./hour, and then cooled to room temperature to prepare a sample for characteristic evaluation. In addition, the structure | tissue of the sample was measured by the method mentioned above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表2に、製造したサンプルのビッカース硬さ、フェライト粒内の炭化物の個数に対するフェライト粒界上の炭化物の個数の比率、パーライト面積率、冷間加工性、焼入れ性を測定又は評価した結果を示す。 Table 2 shows the results of measuring or evaluating the Vickers hardness of the manufactured sample, the ratio of the number of carbides on the ferrite grain boundary to the number of carbides in the ferrite grains, the pearlite area ratio, cold workability, and hardenability. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、発明鋼のB-1、E-1、F-1、H-1、J-1、K-1、L-1、M-1、N-1、P-1、R-1、T-1、W-1、X-1、Y-1、Z-1、AB-1、及び、AC-1は、いずれも、フェライト粒内の炭化物の個数に対するフェライト粒界の炭化物の個数の比率が1を超え、ビッカース硬さが170HV以下であり、冷間加工性と焼入れ性に優れている。 As shown in Table 2, the inventive steels B-1, E-1, F-1, H-1, J-1, K-1, L-1, M-1, N-1, P-1, R-1, T-1, W-1, X-1, Y-1, Z-1, AB-1, and AC-1 all have a ferrite grain boundary relative to the number of carbides in the ferrite grain. The ratio of the number of carbides exceeds 1, and the Vickers hardness is 170 HV or less, which is excellent in cold workability and hardenability.
 これに対し、比較鋼G-1は、C量が高く、冷間加工性が低下した。比較鋼O-1は、Mo量とCr量が高く、炭化物の安定度が高いため、焼入れ時に炭化物が溶解せず、オーステナイト生成量が少なく、焼入れ性が劣位である。 In contrast, Comparative Steel G-1 had a high C content and cold workability decreased. The comparative steel O-1 has a high Mo content and Cr content and high carbide stability. Therefore, the carbide does not dissolve during quenching, the austenite generation amount is small, and the hardenability is inferior.
 比較鋼Q-1とAD-1は、Si、Alの量が高く、A3点が高いため、焼入れ時にオーステナイト生成量が少なく、焼入れ性が劣位である。比較例U-1は、S量が高く、鋼中に粗大なMnSが生成し、冷間加工性が低い。比較例AA-1は、Mn量が低く、焼入れ性が劣位である。 Comparative steels Q-1 and AD-1 have a high amount of Si and Al and a high A3 point. Therefore, the amount of austenite produced during quenching is small, and the hardenability is inferior. In Comparative Example U-1, the amount of S is high, coarse MnS is generated in the steel, and the cold workability is low. Comparative Example AA-1 has a low Mn content and inferior hardenability.
 比較例I-1は、熱延の仕上げ温度が低く、生産性が低下した。比較例D-1は、熱延の仕上げ温度が高く、鋼板表面にスケール疵が生成した。比較例C-1とS-1は、熱延の巻取温度が低く、ベイナイトやマルテンサイト等の低温変態組織が多くなり脆化して、熱延コイルの払い出し時に割れが頻発し、生産性が低下した。 Comparative Example I-1 had a low hot-rolling finishing temperature, resulting in decreased productivity. In Comparative Example D-1, the hot rolling finishing temperature was high, and scale wrinkles were formed on the steel sheet surface. In Comparative Examples C-1 and S-1, the hot rolling coiling temperature is low, the low temperature transformation structure such as bainite and martensite is increased and embrittled, and cracks occur frequently when the hot rolled coil is discharged, resulting in increased productivity. Declined.
 比較例A-1とV -1は、熱延の捲取温度が高く、熱延組織においてラメラー間隔の分厚いパーライトと熱的安定性の高い針状の粗大な炭化物が生成し、この炭化物が2段ステップ焼鈍後においても鋼板中に残存して、冷間加工性が低下した。 In Comparative Examples A-1 and V-1, the hot rolling milling temperature is high, and in the hot rolled structure, thick pearlite having a lamellar interval and acicular coarse carbide with high thermal stability are generated. Even after the step-step annealing, it remained in the steel sheet and the cold workability decreased.
 (実施例2)
 焼鈍条件の影響を調べるため、表1に示す成分組成の鋼片を1240℃で1.8時間加熱した後、熱間圧延に供し、820℃で仕上げ熱延を終了した後、ROT上で45℃/秒の冷却速度で520℃まで冷却し、510℃で巻き取り、板厚3.0mmの熱延コイルを製造し、表3に示す焼鈍条件で2段ステップ型の箱焼鈍を施し、板厚3.0mmのサンプルを作製した。
(Example 2)
In order to investigate the influence of the annealing conditions, a steel slab having the composition shown in Table 1 was heated at 1240 ° C. for 1.8 hours, then subjected to hot rolling, and after finishing hot rolling at 820 ° C., 45 The steel sheet was cooled to 520 ° C. at a cooling rate of ° C./second, wound at 510 ° C. to produce a hot-rolled coil with a plate thickness of 3.0 mm, and subjected to a two-step type box annealing under the annealing conditions shown in Table 3, A sample having a thickness of 3.0 mm was produced.
 表3に、製造したサンプルの、炭化物径、フェライト粒径、ビッカース硬さ、フェライト粒内の炭化物の個数に対するフェライト粒界上の炭化物の個数の比率、パーライト面積率、冷間加工性、焼入れ性を測定又は評価した結果を示す。 Table 3 shows the carbide diameter, ferrite particle diameter, Vickers hardness, ratio of the number of carbides on the ferrite grain boundary to the number of carbides in the ferrite grains, pearlite area ratio, cold workability, and hardenability. The result of having been measured or evaluated is shown.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、発明鋼のB-2、C-2、E-2、F-2、H-2、I-2、J-2、K-2、M-2、N-2、R-2、S-2、V-2、Z-2、及び、AC-2は、いずれも、フェライト粒内の炭化物の個数に対するフェライト粒界の炭化物の個数の比率が1を超え、ビッカース硬さが170HV以下であり、冷間加工性と焼入れ性に優れている。 As shown in Table 3, the inventive steels B-2, C-2, E-2, F-2, H-2, I-2, J-2, K-2, M-2, N-2, For R-2, S-2, V-2, Z-2, and AC-2, the ratio of the number of carbides in the ferrite grain boundary to the number of carbides in the ferrite grains exceeds 1, and the Vickers hardness Is 170 HV or less, and is excellent in cold workability and hardenability.
 これに対し、比較鋼G-1は、C量が高く、冷間加工性が低下した。比較鋼O-1は、Mo量とCr量が高く、冷間加工性が低下した。また、炭化物の安定度が高いため焼入れ時に炭化物が溶解せず、オーステナイト生成量が少なく、焼入れ性は劣位である。 In contrast, Comparative Steel G-1 had a high C content and cold workability decreased. The comparative steel O-1 had a high Mo content and Cr content, and cold workability decreased. Moreover, since the carbide has high stability, the carbide does not dissolve during quenching, the austenite generation amount is small, and the hardenability is inferior.
 比較鋼Q-1は、Si量が高く、フェライトの硬さが高いため、加工性が低下した。また、A3点が高いため、焼入れ時にオーステナイト生成量が少なく、焼入れ性が劣位である。比較鋼AD-1は、Al量が高く、A3点が高いため、焼入れ時にオーステナイト生成量が少なく、焼入れ性が劣位である。比較鋼U-1は、S量が高く、鋼中に粗大なMnSが生成し、冷間加工性が低下した。比較鋼AA-1は、Mn量が低く、焼入れ性が劣位である。 Comparative Steel Q-1 had a high Si content and a high hardness of ferrite, so that the workability was lowered. Further, since the A3 point is high, the amount of austenite produced during quenching is small, and the hardenability is inferior. Since the comparative steel AD-1 has a high Al content and a high A3 point, the amount of austenite produced during quenching is small and the hardenability is inferior. Comparative steel U-1 had a high amount of S, and coarse MnS was produced in the steel, resulting in a decrease in cold workability. Comparative steel AA-1 has a low Mn content and inferior hardenability.
 比較鋼T-2は、2段ステップ型の箱焼鈍の1段目の焼鈍時の保持温度が低く、Ac1温度以下での炭化物の粗大化処理が不十分であり、炭化物の熱的安定度が不十分であることにより、2段目の焼鈍時に残存する炭化物が減少し、徐冷後の組織において、パーライト変態を抑制できず、冷間加工性が低下した。 The comparative steel T-2 has a low holding temperature during the first stage annealing of the two-step type box annealing, the carbide coarsening treatment below the Ac1 temperature is insufficient, and the thermal stability of the carbide is low. By being insufficient, the carbides remaining at the second stage of annealing decreased, the pearlite transformation could not be suppressed in the structure after the slow cooling, and the cold workability was lowered.
 比較鋼A-2は、2段ステップ型の箱焼鈍の1段目の焼鈍時の保持温度が高く、焼鈍中にオーステナイトが生成し、炭化物の安定度を高めることができず、2段目の焼鈍時に残存する炭化物が減少し、徐冷後の組織においてパーライト変態を抑制できず冷間加工性が低下した。 The comparative steel A-2 has a high holding temperature during the first stage annealing of the two-step type box annealing, austenite is generated during the annealing, and the stability of the carbide cannot be increased. The carbide remaining at the time of annealing decreased, and the pearlite transformation could not be suppressed in the structure after the slow cooling, resulting in a decrease in cold workability.
 比較鋼L-2は、2段ステップ型の箱焼鈍の1段目の焼鈍時の保持時間が短く、Ac1温度以下での炭化物の粗大化処理が不十分であり、炭化物の熱的安定度が不十分であることにより、2段目の焼鈍時に残存する炭化物が減少し、徐冷後の組織において、パーライト変態を抑制できず、冷間加工性が低下した。 The comparative steel L-2 has a short holding time during the first stage annealing of the two-step type box annealing, the carbide coarsening treatment below the Ac1 temperature is insufficient, and the thermal stability of the carbide is low. By being insufficient, the carbides remaining at the second stage of annealing decreased, the pearlite transformation could not be suppressed in the structure after the slow cooling, and the cold workability was lowered.
 比較鋼W-2は、2段ステップ焼鈍時の1段目焼鈍時の保持時間が長く、生産性が低下した。比較鋼X-2は、2段ステップ焼鈍時の2段目焼鈍時の保持温度が低く、オーステナイトの生成量が少なく粒界における炭化物の個数割合を増やすことができないため、冷間加工性が低下した。 The comparative steel W-2 had a long holding time during the first stage annealing during the two-step annealing, and the productivity decreased. The comparative steel X-2 has a low holding temperature during the second stage annealing during the two-step annealing, and the amount of carbides at the grain boundaries cannot be increased because the austenite generation amount is small, resulting in a decrease in cold workability. did.
 比較鋼AB-2は、2段ステップ型の箱焼鈍の2段目の焼鈍時の保持温度が高く、炭化物の溶解が促進したため、残存する炭化物が減少し、徐冷後の組織において、パーライト変態を抑制できず、冷間鍛加工性が低下した。 The comparative steel AB-2 has a high holding temperature during the second stage annealing of the two-step type box annealing, and the dissolution of carbides is accelerated, so that the remaining carbides are reduced, and the pearlite transformation occurs in the structure after the slow cooling. Could not be suppressed, and cold forgeability was reduced.
 比較鋼P-2は、2段ステップ型の箱焼鈍の2段目の焼鈍時の保持温度が低く、オーステナイトの生成量が少なく、フェライト粒界における炭化物の個数割合を増やすことができず、冷間加工性が低下した。比較鋼Y-2は、2段ステップ型の箱焼鈍の2段目の焼鈍時の保持時間が長く、炭化物の溶解が促進したため、残存する炭化物が減少し、徐冷後の組織において、パーライト変態を抑制できず、冷間鍛加工性が低下した。 The comparative steel P-2 has a low holding temperature during the second stage annealing of the two-step type box annealing, a small amount of austenite is generated, and the number ratio of carbides at the ferrite grain boundaries cannot be increased. Inter-workability decreased. The comparative steel Y-2 has a long holding time during the second stage annealing of the two-step type box annealing, and the dissolution of carbides is accelerated, so that the remaining carbides are reduced, and the pearlite transformation occurs in the structure after the slow cooling. Could not be suppressed, and cold forgeability was reduced.
 比較鋼D-2は、2段ステップ型の箱焼鈍の2段目の焼鈍の終了から650℃までの冷却速度が大きく、冷却時にパーライト変態が起きて、冷間加工性が低下した。 Comparative steel D-2 had a high cooling rate from the end of the second stage annealing of the two-step type box annealing to 650 ° C., and pearlite transformation occurred during cooling, resulting in a decrease in cold workability.
 前述したように、本発明によれば、成形性と耐摩耗性に優れた鋼板を製造し提供することができる。本発明の鋼板は、打抜き、曲げ、プレス加工等の加工工程を経て製造する自動車用部品、刃物、その他機械部品の素材として好適な鋼板であるので、本発明は、産業上の利用可能性が高いものである。 As described above, according to the present invention, it is possible to manufacture and provide a steel sheet having excellent formability and wear resistance. Since the steel sheet of the present invention is a steel sheet suitable as a material for automobile parts, blades, and other machine parts manufactured through processing steps such as punching, bending, and pressing, the present invention has industrial applicability. It is expensive.

Claims (3)

  1.   質量%で、
      C :0.10~0.40%、
      Si:0.01~0.30%、
      Mn:1.00~2.00%、
      P :0.020%以下、
      S :0.010%以下、
      Al:0.001~0.10%、
      N :0.010%以下、
      O :0.020%以下、
      Cr:0.50%以下、
      Mo:0.10%以下、
      Nb:0.10%以下、
      V :0.10%以下、
      Cu:0.10%以下、
      W :0.10%以下、
      Ta:0.10%以下、
      Ni:0.10%以下、
      Sn:0.050%以下、
      Sb:0.050%以下、
      As:0.050%以下、
      Mg:0.050%以下、
      Ca:0.050%以下、
      Y :0.050%以下、
      Zr:0.050%以下、
      La:0.050%以下、
      Ce:0.050%以下
    を含有し、残部がFe及び不可避的不純物である鋼板であって、
     上記鋼板の金属組織が
     フェライト粒内の炭化物の個数に対するフェライト粒界の炭化物の個数の比率が1超、
     フェライト粒径が5μm以上、50μm以下、及び
     パーライトの面積率が6%以下
    を満たし、
     上記鋼板のビッカース硬さが100HV以上170HV以下である
    ことを特徴とする鋼板。
    % By mass
    C: 0.10 to 0.40%,
    Si: 0.01 to 0.30%,
    Mn: 1.00 to 2.00%,
    P: 0.020% or less,
    S: 0.010% or less,
    Al: 0.001 to 0.10%,
    N: 0.010% or less,
    O: 0.020% or less,
    Cr: 0.50% or less,
    Mo: 0.10% or less,
    Nb: 0.10% or less,
    V: 0.10% or less,
    Cu: 0.10% or less,
    W: 0.10% or less,
    Ta: 0.10% or less,
    Ni: 0.10% or less,
    Sn: 0.050% or less,
    Sb: 0.050% or less,
    As: 0.050% or less,
    Mg: 0.050% or less,
    Ca: 0.050% or less,
    Y: 0.050% or less,
    Zr: 0.050% or less,
    La: 0.050% or less,
    Ce: a steel plate containing 0.050% or less, the balance being Fe and inevitable impurities,
    The ratio of the number of carbides in the ferrite grain boundary to the number of carbides in the ferrite grains of the steel sheet is more than 1,
    The ferrite grain size is 5 μm or more and 50 μm or less, and the area ratio of pearlite is 6% or less,
    A steel sheet, wherein the steel sheet has a Vickers hardness of 100 HV or more and 170 HV or less.
  2.  前記Feの一部に代えて、
      Ti:0.10%以下、及び
      B :0.010%以下、
    の1種又は2種を含有することを特徴とする請求項1に記載の鋼板。
    Instead of a part of the Fe,
    Ti: 0.10% or less, and B: 0.010% or less,
    The steel plate according to claim 1, comprising one or two of the following.
  3.  請求項1又は2に記載の鋼板を製造する製造方法であって、
     請求項1又は2に記載の成分組成の鋼片を、750℃以上850℃以下の温度域で仕上げ圧延を完了する熱間圧延を施し熱延鋼板とし、
     上記熱延鋼板を400℃以上550℃以下で巻き取り、
     巻き取った熱延鋼板に酸洗を施し、
     酸洗した熱延鋼板を650℃以上720℃以下の温度域で、3時間以上60時間以下保持する1段目の焼鈍を施し、次いで、
     熱延鋼板を725℃以上790℃以下の温度域で、3時間以上50時間以下保持する2段目の焼鈍を施し、
     焼鈍後の熱延鋼板を、1℃/時間以上30℃/時間以下の冷却速度で650℃まで冷却する
    ことを特徴とする鋼板の製造方法。
    It is a manufacturing method which manufactures the steel plate according to claim 1 or 2,
    The steel slab having the component composition according to claim 1 or 2 is subjected to hot rolling to complete finish rolling in a temperature range of 750 ° C. or higher and 850 ° C. or lower to obtain a hot-rolled steel plate,
    Winding the hot-rolled steel sheet at 400 ° C. or higher and 550 ° C. or lower,
    Pickled hot rolled steel sheet,
    The pickled hot-rolled steel sheet is annealed in the first stage for holding in the temperature range of 650 ° C. to 720 ° C. for 3 hours to 60 hours,
    Second-stage annealing is performed to hold the hot-rolled steel sheet in a temperature range of 725 ° C. to 790 ° C. for 3 hours to 50 hours,
    A method for producing a steel sheet, comprising: cooling a hot-rolled steel sheet after annealing to 650 ° C. at a cooling rate of 1 ° C./hour to 30 ° C./hour.
PCT/JP2016/068169 2015-06-17 2016-06-17 Steel sheet and manufacturing method WO2016204288A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016559467A JP6206601B2 (en) 2015-06-17 2016-06-17 Steel plate and manufacturing method
BR112017025756-4A BR112017025756A2 (en) 2015-06-17 2016-06-17 A steel plate and a manufacturing method
MX2017015266A MX2017015266A (en) 2015-06-17 2016-06-17 Steel sheet and manufacturing method.
US15/736,945 US20180171445A1 (en) 2015-06-17 2016-06-17 Steel plate and method of production of same
CN201680035011.0A CN107735505B (en) 2015-06-17 2016-06-17 Steel plate and manufacturing method
EP16811762.0A EP3312299A4 (en) 2015-06-17 2016-06-17 Steel sheet and manufacturing method
KR1020177035488A KR101997382B1 (en) 2015-06-17 2016-06-17 Steel sheet and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015122260 2015-06-17
JP2015-122260 2015-06-17

Publications (1)

Publication Number Publication Date
WO2016204288A1 true WO2016204288A1 (en) 2016-12-22

Family

ID=57545378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068169 WO2016204288A1 (en) 2015-06-17 2016-06-17 Steel sheet and manufacturing method

Country Status (9)

Country Link
US (1) US20180171445A1 (en)
EP (1) EP3312299A4 (en)
JP (1) JP6206601B2 (en)
KR (1) KR101997382B1 (en)
CN (1) CN107735505B (en)
BR (1) BR112017025756A2 (en)
MX (1) MX2017015266A (en)
TW (1) TWI588270B (en)
WO (1) WO2016204288A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190062474A (en) * 2017-08-31 2019-06-05 닛폰세이테츠 가부시키가이샤 Carbon steel sheet for carburizing and method of manufacturing steel sheet for carburizing
JP6587038B1 (en) * 2018-10-02 2019-10-09 日本製鉄株式会社 Carburizing steel sheet and method for manufacturing carburizing steel sheet
EP3521477A4 (en) * 2017-08-31 2020-03-04 Nippon Steel Corporation Steel sheet for carburization, and production method for steel sheet for carburization
CN111334720A (en) * 2020-03-30 2020-06-26 邯郸钢铁集团有限责任公司 High Al wear-resistant steel strip with good cold formability and production method thereof
CN112322976A (en) * 2020-10-30 2021-02-05 包头钢铁(集团)有限责任公司 Rare earth wear-resistant steel NM400 coiled plate with excellent low-temperature-resistant toughness and production method thereof
CN115216683A (en) * 2022-05-19 2022-10-21 北京科技大学 Method for regulating and controlling ferrite form in casting blank tissue and prepared microalloyed steel
CN115572887A (en) * 2022-10-31 2023-01-06 常州大学 Manganese steel in superfine twin crystal gradient structure and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3282032A4 (en) * 2015-04-10 2018-09-12 Nippon Steel & Sumitomo Metal Corporation Steel sheet with excellent cold workability during forming, and process for producing same
KR101988153B1 (en) 2015-05-26 2019-06-12 닛폰세이테츠 가부시키가이샤 Steel sheet and manufacturing method thereof
MX2017015016A (en) * 2015-05-26 2018-04-13 Nippon Steel & Sumitomo Metal Corp Steel sheet and method for producing same.
CN113366137B (en) * 2019-01-30 2022-10-28 杰富意钢铁株式会社 High carbon hot-rolled steel sheet and method for producing same
CN111394654B (en) * 2020-04-23 2021-08-03 辽宁科技学院 La microalloy-added hot-press forming steel plate and preparation method thereof
RU2758716C1 (en) * 2020-08-20 2021-11-01 Публичное акционерное общество «Северсталь» (ПАО "Северсталь") Method for production of hot-rolled steel products from tool steel
CN112080697B (en) * 2020-09-08 2021-09-17 北京首钢股份有限公司 Steel for clutch driven disc, preparation method of steel and clutch driven disc
RU2765047C1 (en) * 2020-12-28 2022-01-25 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») METHOD FOR PRODUCING SHEETS WITH THICKNESS OF 2-20 mm OF HIGH-STRENGTH WEAR-RESISTANT STEEL (OPTIONS)
CN114763590B (en) * 2021-01-11 2023-03-14 宝山钢铁股份有限公司 Wear-resistant steel with high uniform elongation and manufacturing method thereof
CN113774266A (en) * 2021-02-08 2021-12-10 中航上大高温合金材料股份有限公司 Optimized production process for purity of corrosion-resistant alloy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161272A (en) * 1997-08-26 1999-03-05 Sumitomo Metal Ind Ltd Manufacture of high carbon cold-rolled steel plate excellent in formability
JPH1180884A (en) * 1997-09-08 1999-03-26 Nisshin Steel Co Ltd Medium-or high-carbon steel sheet excellent in local ductility and hardenabiltiy
JPH11269552A (en) * 1998-03-25 1999-10-05 Nisshin Steel Co Ltd Manufacture of medium/high carbon steel sheet excellent in stretch-flange formability
WO2007088985A1 (en) * 2006-01-31 2007-08-09 Jfe Steel Corporation Steel sheet with excellent suitability for fine blanking and process for producing the same
JP2007270330A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Steel plate superior in fine blanking workability, and manufacturing method therefor
WO2007116599A1 (en) * 2006-03-31 2007-10-18 Jfe Steel Corporation Steel plate having excellent fine blanking processability and method for manufacture thereof
JP2012062496A (en) * 2010-09-14 2012-03-29 Nippon Steel Corp Soft medium carbon steel plate excellent in high frequency quenchability
JP2015117406A (en) * 2013-12-18 2015-06-25 新日鐵住金株式会社 Middle and high carbon steel sheet excellent in punchability and manufacturing method therefor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316540A (en) * 1996-05-27 1997-12-09 Aichi Steel Works Ltd Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JPH10265840A (en) * 1997-03-25 1998-10-06 Aichi Steel Works Ltd Production of cold forging parts
JP3909939B2 (en) * 1997-09-08 2007-04-25 日新製鋼株式会社 Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JP2001073033A (en) * 1999-09-03 2001-03-21 Nisshin Steel Co Ltd Production of medium-high carbon steel sheet excellent in local ductility
JP3879459B2 (en) 2001-08-31 2007-02-14 Jfeスチール株式会社 Manufacturing method of high hardenability high carbon hot rolled steel sheet
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
JP4319940B2 (en) 2004-04-27 2009-08-26 新日本製鐵株式会社 High carbon steel plate with excellent workability, hardenability and toughness after heat treatment
JP5194454B2 (en) * 2006-01-31 2013-05-08 Jfeスチール株式会社 Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5040662B2 (en) * 2006-02-03 2012-10-03 株式会社ニコン Image processing apparatus, image processing method, and image processing program
JP5292698B2 (en) * 2006-03-28 2013-09-18 Jfeスチール株式会社 Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP4992274B2 (en) 2006-03-31 2012-08-08 Jfeスチール株式会社 Steel plate excellent in fine blanking workability and manufacturing method thereof
JP2007270331A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Steel sheet superior in fine blanking workability, and manufacturing method therefor
JP5262012B2 (en) * 2006-08-16 2013-08-14 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
JP5652844B2 (en) * 2009-03-30 2015-01-14 日新製鋼株式会社 High formability carburized steel sheet
JP6108924B2 (en) * 2013-04-08 2017-04-05 株式会社神戸製鋼所 Manufacturing method of steel for cold forging
ES2744909T3 (en) * 2013-06-07 2020-02-26 Nippon Steel Corp Heat treated steel material and method of manufacture thereof
CN103469089B (en) * 2013-09-11 2016-01-27 马鞍山市安工大工业技术研究院有限公司 A kind of cheese crystal grain deep-draw dual phase sheet steel and preparation method thereof
EP3282032A4 (en) * 2015-04-10 2018-09-12 Nippon Steel & Sumitomo Metal Corporation Steel sheet with excellent cold workability during forming, and process for producing same
KR101988153B1 (en) * 2015-05-26 2019-06-12 닛폰세이테츠 가부시키가이샤 Steel sheet and manufacturing method thereof
MX2017015016A (en) * 2015-05-26 2018-04-13 Nippon Steel & Sumitomo Metal Corp Steel sheet and method for producing same.
MX2017014938A (en) * 2015-05-26 2018-04-13 Nippon Steel & Sumitomo Metal Corp Steel sheet and method for producing same.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161272A (en) * 1997-08-26 1999-03-05 Sumitomo Metal Ind Ltd Manufacture of high carbon cold-rolled steel plate excellent in formability
JPH1180884A (en) * 1997-09-08 1999-03-26 Nisshin Steel Co Ltd Medium-or high-carbon steel sheet excellent in local ductility and hardenabiltiy
JPH11269552A (en) * 1998-03-25 1999-10-05 Nisshin Steel Co Ltd Manufacture of medium/high carbon steel sheet excellent in stretch-flange formability
WO2007088985A1 (en) * 2006-01-31 2007-08-09 Jfe Steel Corporation Steel sheet with excellent suitability for fine blanking and process for producing the same
JP2007270330A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Steel plate superior in fine blanking workability, and manufacturing method therefor
WO2007116599A1 (en) * 2006-03-31 2007-10-18 Jfe Steel Corporation Steel plate having excellent fine blanking processability and method for manufacture thereof
JP2012062496A (en) * 2010-09-14 2012-03-29 Nippon Steel Corp Soft medium carbon steel plate excellent in high frequency quenchability
JP2015117406A (en) * 2013-12-18 2015-06-25 新日鐵住金株式会社 Middle and high carbon steel sheet excellent in punchability and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312299A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190062474A (en) * 2017-08-31 2019-06-05 닛폰세이테츠 가부시키가이샤 Carbon steel sheet for carburizing and method of manufacturing steel sheet for carburizing
EP3521477A4 (en) * 2017-08-31 2020-03-04 Nippon Steel Corporation Steel sheet for carburization, and production method for steel sheet for carburization
US10934609B2 (en) 2017-08-31 2021-03-02 Nippon Steel Corporation Steel sheet for carburizing, and method for manufacturing steel sheet for carburizing
KR102235355B1 (en) * 2017-08-31 2021-04-02 닛폰세이테츠 가부시키가이샤 Carburizing steel sheet, and method for manufacturing carburizing steel sheet
JP6587038B1 (en) * 2018-10-02 2019-10-09 日本製鉄株式会社 Carburizing steel sheet and method for manufacturing carburizing steel sheet
WO2020070810A1 (en) * 2018-10-02 2020-04-09 日本製鉄株式会社 Steel sheet for carburizing, and production method for steel sheet for carburizing
CN111334720A (en) * 2020-03-30 2020-06-26 邯郸钢铁集团有限责任公司 High Al wear-resistant steel strip with good cold formability and production method thereof
CN112322976A (en) * 2020-10-30 2021-02-05 包头钢铁(集团)有限责任公司 Rare earth wear-resistant steel NM400 coiled plate with excellent low-temperature-resistant toughness and production method thereof
CN115216683A (en) * 2022-05-19 2022-10-21 北京科技大学 Method for regulating and controlling ferrite form in casting blank tissue and prepared microalloyed steel
CN115572887A (en) * 2022-10-31 2023-01-06 常州大学 Manganese steel in superfine twin crystal gradient structure and preparation method thereof
CN115572887B (en) * 2022-10-31 2023-06-09 常州大学 Manganese steel in superfine twin crystal gradient structure and preparation method thereof

Also Published As

Publication number Publication date
EP3312299A4 (en) 2018-12-05
KR101997382B1 (en) 2019-07-08
CN107735505B (en) 2019-10-18
US20180171445A1 (en) 2018-06-21
TW201708564A (en) 2017-03-01
JPWO2016204288A1 (en) 2017-06-29
CN107735505A (en) 2018-02-23
BR112017025756A2 (en) 2018-08-14
JP6206601B2 (en) 2017-10-04
EP3312299A1 (en) 2018-04-25
MX2017015266A (en) 2018-02-19
TWI588270B (en) 2017-06-21
KR20180004262A (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6206601B2 (en) Steel plate and manufacturing method
JP6119924B1 (en) Steel sheet and manufacturing method thereof
CN107614727B (en) Steel sheet and method for producing same
US10837077B2 (en) Steel sheet and method for production thereof
JP6070912B1 (en) Steel sheet excellent in cold workability during forming and method for producing the same
JP6515332B2 (en) Low carbon steel sheet excellent in machinability and wear resistance after quenching and tempering, and method for producing the same
JP6519012B2 (en) Low carbon steel sheet excellent in cold formability and toughness after heat treatment and manufacturing method
JP6728929B2 (en) High carbon steel sheet excellent in workability and wear resistance after quenching and tempering and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016559467

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/015266

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20177035488

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15736945

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811762

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017025756

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017025756

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171130