JPH09316540A - Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part - Google Patents

Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part

Info

Publication number
JPH09316540A
JPH09316540A JP15619796A JP15619796A JPH09316540A JP H09316540 A JPH09316540 A JP H09316540A JP 15619796 A JP15619796 A JP 15619796A JP 15619796 A JP15619796 A JP 15619796A JP H09316540 A JPH09316540 A JP H09316540A
Authority
JP
Japan
Prior art keywords
less
steel
cold
manufacture
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15619796A
Other languages
Japanese (ja)
Inventor
Naoki Iwama
直樹 岩間
Hiroaki Sakai
宏明 酒井
Kazue Nomura
一衛 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP15619796A priority Critical patent/JPH09316540A/en
Publication of JPH09316540A publication Critical patent/JPH09316540A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of a steel for machine structural use, having excellent cold forgeability enabling the omission of process annealing required in the course of manufacture of parts, such as thin-walled flat gear parts, accompanied by great deformation at the time of parts manufacture and capable of providing desired surface hardness and hardening depth after contour induction hardening. SOLUTION: A steel, which has a composition consisting of, by weight ratio, 0.28-0.47% C, 0.06-0.25% Si, 0.10-0.50% Mn, <=0.020% P, <=0.010% S, <=0.15% Cu, 0.10-0.30% Cr, <=0.03% Mo, 0.005-0.03% Ti, <=0.0100% N, and the balance Fe with impurity elements and satisfying 1.20<=Si+2.5Mn+4Cr+6Mo, is subjected to spheroidizing annealing treatment consisting of temp. holding in a temp. region between (AC1 point +20 deg.C) and (AC1 point +50 deg.C) for 100-300min and cooling down to <=650 deg.C at (0.1 to 1.0) deg.C/min cooling rate, by which the rate of spheroidizing of carbides and the circle-equivalent average diameter of spheroidal carbides are regulated to >=95% and <=0.5μm, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄肉偏平の歯車部
品等を製造するために、大変形を伴う冷間鍛造を行った
後に輪郭高周波焼入される部品への使用に適した機械構
造用鋼の製造方法及び冷間鍛造部品の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a machine structure suitable for use in a component which is subjected to contour induction hardening after cold forging with large deformation in order to manufacture a thin-walled flat gear component or the like. The present invention relates to a method for manufacturing steel and a method for manufacturing cold forged parts.

【0002】[0002]

【従来の技術】自動車のトランスミッション等に使用さ
れる歯車や、クラッチ等の機械部品の多くは、優れた強
靱性、耐摩耗性が要求されるために、SCr420、SCM420等
の低合金鋼を熱間鍛造し、切削加工後に浸炭焼入焼もど
し処理したものが従来から多く使用されている。
2. Description of the Related Art Since many mechanical parts such as gears and clutches used for automobile transmissions are required to have excellent toughness and wear resistance, low alloy steels such as SCr420 and SCM420 are heat-treated. The one that has been forged for a while, carburized, quenched and tempered after cutting has been widely used.

【0003】ところが最近ではコストの低減を図るため
に、前記歯車類部品において、熱間鍛造と切削加工を冷
間鍛造に置き換えて生産性と材料歩留りを向上させる製
造方法や、浸炭焼入焼もどしをオンライン処理可能な高
周波焼入に置き換えて生産性を向上させる製造方法につ
いて検討が進められている。この新しい製造工程への転
換を可能にするためには、用いる鋼材に優れた冷鍛性と
高周波焼入性が要求されるが、これらを両立させること
は技術的に困難を伴う。例えば、冷鍛性を向上させるた
めに低炭素の鋼材を用いると、十分な高周波焼入硬さが
得られなくなり、また必要な高周波焼入深さを得るため
の合金添加は、冷鍛性を劣化させてしまう。
However, in recent years, in order to reduce the cost, in the above gear parts, the hot forging and cutting processes are replaced with the cold forging to improve the productivity and the material yield, and the carburizing, quenching and tempering. A manufacturing method for improving productivity by replacing the above with induction hardening that can be processed online is being studied. In order to enable conversion to this new manufacturing process, the steel material used must have excellent cold forgeability and induction hardenability, but it is technically difficult to satisfy both requirements. For example, if a low carbon steel material is used to improve cold forgeability, sufficient induction hardening hardness cannot be obtained, and addition of an alloy to obtain the required induction hardenability requires cold forgeability. It deteriorates.

【0004】最近では前記課題を解決するために、新鋼
種の開発が盛んに行われ、新しい材料の提案がされてお
り、例えば、特開昭61-113744 号、特公平1-38847 号、
特開平2-129341号、特開平2-145744号、特開平5-59486
号公報記載の発明が開示されている。これらの公報に記
載の鋼は、変形抵抗増加の原因となるSi、Mn及び不純物
として含有するS 、P 、N 、O を極力低減して焼鈍処理
後の変形抵抗の低下と変形能の向上を図って冷鍛性を向
上させ、さらにCr、B 、Mo等を添加して必要な焼入性を
確保したものである。
Recently, in order to solve the above problems, new steel grades have been actively developed, and new materials have been proposed. For example, JP-A-61-113744, JP-B-1-38847,
JP-A-2-129341, JP-A-2-145744, JP-A-5-59486
The invention described in Japanese Patent Application Laid-Open Publication No. H10-209,837 is disclosed. The steels described in these publications reduce Si, Mn and S, P, N and O, which are contained as impurities, which cause the increase in deformation resistance as much as possible to reduce the deformation resistance after annealing and improve the deformability. By improving the cold forgeability, Cr, B, Mo, etc. were added to secure the necessary hardenability.

【0005】しかしながら、薄肉偏平の歯車部品等を冷
間鍛造によって成形しようとした場合には、大変形を伴
う冷間鍛造が必要となり、変形抵抗の低減は勿論、優れ
た変形能が鋼材に要求される。この場合、前記公報に記
載の発明鋼では、特に変形能が要求に満たないことが多
く、冷間鍛造工程間において中間焼鈍が必要となり、従
来鋼を使用した場合と比べ十分なコスト低減効果が得ら
れないという問題があった。
However, when a thin flat gear part or the like is to be formed by cold forging, cold forging accompanied by large deformation is required, which requires not only reduction of deformation resistance but also excellent deformability of the steel material. To be done. In this case, in the invention steels described in the above publication, especially the deformability is often less than the requirement, intermediate annealing is required between cold forging steps, and a sufficient cost reduction effect compared with the case of using conventional steel is obtained. There was a problem that I could not get it.

【0006】[0006]

【発明が解決しようとする課題】本発明は、薄肉偏平の
歯車部品等、使用する鋼材に高い変形能が要求される部
品に対して、冷間鍛造の途中工程において行っていた中
間焼鈍を省略し最終形状まで熱処理を施すことなく成形
可能な優れた冷鍛性を有し、かつ輪郭高周波焼入れ後に
目的とする表面硬さ、硬化深さを確保することのできる
機械構造用鋼の製造方法及び冷間鍛造部品の製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention eliminates the intermediate annealing that was performed in the intermediate step of cold forging for parts such as thin flat gear parts that require high deformability in the steel material used. And a method for producing a mechanical structural steel that has excellent cold forgeability that can be formed without heat treatment to the final shape, and that can secure the target surface hardness and hardening depth after contour induction hardening and An object is to provide a method for manufacturing a cold forged part.

【0007】[0007]

【課題を解決するための手段】本発明者は前記目的の下
に、優れた冷鍛性、特に変形能の点で優れており、かつ
輪郭高周波焼入れ後に目的とする表面硬さ、硬化深さの
得られる機械構造用鋼を得るために鋭意研究を重ねた結
果、以下の知見を得ることにより本発明を完成したもの
である。
Means for Solving the Problems In view of the above-mentioned objects, the present inventor is excellent in cold forgeability, particularly in deformability, and has desired surface hardness and hardening depth after contour induction hardening. As a result of intensive studies to obtain the obtained steel for machine structural use, the present invention has been completed by obtaining the following knowledge.

【0008】まず第1に、Tiを添加すると、鋼中に微細
析出したTi炭窒化物を核として球状炭化物が生成するた
めに、球状炭化物が微細になり、優れた変形能を示すこ
とをつきとめた。従来より、変形能の向上に対しては、
球状炭化物を微細にすることが有用であることが知られ
ており、そのためにはMoやCr等の合金元素を添加した
り、球状化前の組織の微細化、AC1点以下あるいはAC1
点直上での球状化焼鈍処理等が行われていた。しかしな
がら上記方法により、球状炭化物を微細化させても、そ
の効果により変形能を高めることはできるが、反面球状
化率の低下、フェライト母相の固溶強化等の原因により
硬さの上昇が避けられず、変形抵抗が高くなり優れた冷
鍛性を得ることができなかった。ところが、Tiを添加し
た場合には比較的AC1点より高い温度(AC1点+20℃〜
50℃)で球状化焼鈍処理しても、95%以上の球状化率
(本発明で、球状化とは炭化物のアスペクト比(長径/
短径)が2以下の状態になった場合とする。)でかつ球
状炭化物の円相当平均粒径が 0.5μm以下である微細な
組織が得られ、前記方法のような硬さの上昇を伴わずに
球状炭化物を微細化して変形能の向上が可能であり、優
れた冷鍛性が得られることを見出したものである。
First of all, it was found that when Ti is added, spherical carbides are formed with Ti carbonitrides finely precipitated in the steel as nuclei, so that the spherical carbides become fine and exhibit excellent deformability. It was Conventionally, for improving deformability,
It is known that it is useful to make spheroidal carbide fine, and for that purpose, alloying elements such as Mo and Cr are added, the structure before spheroidization is refined, A C1 point or less or A C1
The spheroidizing annealing treatment etc. was performed right above the point. However, even if the spherical carbide is refined by the above method, the deformability can be enhanced by the effect, but on the other hand, the increase in hardness is avoided due to the decrease in the spheroidization rate, the solid solution strengthening of the ferrite matrix phase, and the like. As a result, the deformation resistance becomes high, and excellent cold forgeability cannot be obtained. However, higher than the A C1 point temperature (A C1 point in case of adding Ti + 20 ° C. ~
Even after spheroidizing annealing at 50 ° C, a spheroidizing rate of 95% or more (in the present invention, spheroidizing means an aspect ratio of carbide (major axis /
It is assumed that the minor axis) is 2 or less. ) And the spherical equivalent average grain size of the spherical carbides is 0.5 μm or less, a fine structure can be obtained and the deformability can be improved by refining the spherical carbides without increasing the hardness as in the above method. Therefore, it has been found that excellent cold forgeability can be obtained.

【0009】第2に、歯車部品等に必要な輪郭高周波焼
入性の確保には、鋼中の合金元素のうち、焼入性に影響
の大きいSi、Mn、Cr、Mo量を1.20≦Si+2.5Mn+4Cr+6Moと
いう式を満足するように含有させれば良いことをつきと
めた。すなわち、有効硬化層深さが1mm 以上の通常の高
周波焼入れには、ある程度のCr、B 、Mo等の添加が焼入
性確保のために必要であるが、歯車部品等で、1mm 未満
のごく表層のみを硬化させる、いわゆる輪郭高周波焼入
れの場合には、鋼中の合金元素量を1.20≦Si+2.5Mn+4Cr
+6Moとすれば十分であることを見出したものである。こ
の式を満足する範囲で合金添加量をできるだけ低く抑え
ることにより、球状化焼鈍後の硬さを低く抑えることが
でき、優れた冷鍛性を得ることができる。
Second, in order to secure the contour induction hardenability required for gear parts and the like, among the alloy elements in steel, the amount of Si, Mn, Cr, and Mo, which has a great influence on the hardenability, should be 1.20≤Si. It was found that it should be contained so as to satisfy the formula of + 2.5Mn + 4Cr + 6Mo. In other words, for normal induction hardening with an effective hardened layer depth of 1 mm or more, it is necessary to add some Cr, B, Mo, etc. to ensure hardenability, but for gear parts, etc. In the case of so-called contour induction hardening, which hardens only the surface layer, the amount of alloying elements in the steel is 1.20 ≦ Si + 2.5Mn + 4Cr
It was found that + 6Mo is sufficient. By suppressing the addition amount of the alloy as low as possible within the range satisfying this formula, the hardness after spheroidizing annealing can be suppressed low, and excellent cold forgeability can be obtained.

【0010】以上説明した対策を行うことにより得られ
た本発明の第1発明は、重量比にしてC:0.28〜0.47% 、
Si:0.06 〜0.25% 、Mn:0.10 〜0.50% 、P:0.020%以下、
S:0.010%以下、Cu:0.15%以下、Cr:0.10 〜0.30% 、Mo:
0.03%以下、Ti:0.005〜0.030%、N:0.0100% 以下を含有
し、かつ1.20≦Si+2.5Mn+4Cr+6Moであり、残部Feならび
に不純物元素からなる鋼を、AC1点+20℃〜AC1点+50
℃の温度に加熱し、100min〜300min温度保持後、 0.1〜
1.0 ℃/minの冷却速度にて 650℃以下まで冷却すること
からなる球状化焼鈍処理を施すことにより、炭化物の球
状化率が95%以上であり、球状炭化物の円相当平均直径
を 0.5μm以下とすることを特徴とする冷鍛性に優れた
輪郭高周波焼入用機械構造用鋼の製造方法であり、第2
発明は、第1発明と同一の鋼を、熱間圧延後 100℃/min
以上の冷却速度で 300℃以下まで急冷するか、あるいは
熱間圧延後室温まで放冷した後に、AC3点以上の温度に
再加熱後 100℃/min以上の冷却速度で 300℃以下まで急
冷し、その後第1発明と同様の球状化焼鈍処理を施すこ
とにより、炭化物の球状化率が95%以上であり、球状炭
化物の円相当平均直径を 0.4μm以下とすることを特徴
とする冷鍛性に優れた輪郭高周波焼入用機械構造用鋼の
製造方法である。
The first invention of the present invention obtained by taking the measures described above is C: 0.28 to 0.47% in weight ratio,
Si: 0.06 to 0.25%, Mn: 0.10 to 0.50%, P: 0.020% or less,
S: 0.010% or less, Cu: 0.15% or less, Cr: 0.10 to 0.30%, Mo:
Steel containing 0.03% or less, Ti: 0.005 to 0.030%, N: 0.0100% or less, 1.20 ≦ Si + 2.5Mn + 4Cr + 6Mo, and the balance Fe and impurity elements, the A C1 point + 20 ° C. A C 1 point +50
After heating to a temperature of ℃ for 100 min to 300 min and then 0.1 to
The spheroidizing rate of the carbide is 95% or more by performing the spheroidizing annealing process, which consists of cooling to 650 ° C or less at a cooling rate of 1.0 ℃ / min, and the average equivalent circle diameter of the spherical carbide is 0.5 μm or less. The method for producing a machine structural steel for contour induction hardening, which is excellent in cold forgeability, characterized by
The invention is the same steel as that of the first invention, but after hot rolling at 100 ° C / min
Rapidly cool to 300 ° C or less at the above cooling rate, or after hot rolling to room temperature, reheat to a temperature of AC 3 points or more and then rapidly cool to 300 ° C or less at a cooling rate of 100 ° C / min or more. Then, the same spheroidizing annealing treatment as in the first invention is performed, whereby the spheroidizing rate of the carbide is 95% or more, and the circular equivalent average diameter of the spherical carbide is 0.4 μm or less. It is a method for producing a machine structural steel for contour induction hardening, which has excellent properties.

【0011】また、第3発明は、第1発明または第2発
明の方法で製造した鋼材を用い、冷間鍛造部品を製造す
る方法であって、最終部品形状まで中間焼鈍を施すこと
なく製造することを特徴とする冷間鍛造部品の製造方法
である。次に本発明である冷鍛性に優れた輪郭高周波焼
入用機械構造用鋼の製造方法にて用いられる鋼の各元素
の添加量の範囲の限定理由について以下に説明する。
A third aspect of the present invention is a method for producing a cold forged part by using the steel material produced by the method of the first aspect or the second aspect of the present invention, in which the final shape of the part is not subjected to intermediate annealing. It is a method for manufacturing a cold forged part, which is characterized by the above. Next, the reason for limiting the range of the addition amount of each element of the steel used in the method for manufacturing the machine structural steel for contour induction hardening excellent in cold forging property according to the present invention will be described below.

【0012】C:0.28〜0.47% Cは必要な強度、高周波焼入性を確保するために必要な
元素であり、0.28% 以上の含有が必要である。しかし、
0.47% を越えて含有させると硬さが高くなりすぎるとと
もに炭化物の量が増えて、前記した加工性改善のための
対策を行っても冷間鍛造により優れた変形能を得ること
が困難となるため、上限を0.47% とした。強度、焼入性
の点をより厳しく考慮すると、下限は0.33% とすること
が好ましく、また、冷鍛性の点を考えると、上限は0.42
% とすることが好ましい。
C: 0.28 to 0.47% C is an element necessary to secure necessary strength and induction hardenability, and it is necessary to contain 0.28% or more. But,
If the content exceeds 0.47%, the hardness becomes too high and the amount of carbide increases, making it difficult to obtain excellent deformability by cold forging even if the above-mentioned measures for improving workability are taken. Therefore, the upper limit was set to 0.47%. Considering the points of strength and hardenability more strictly, the lower limit is preferably 0.33%, and considering the point of cold forgeability, the upper limit is 0.42%.
It is preferably set to%.

【0013】Si:0.06 〜0.25% Siは低減すればするほど冷鍛性が向上するが、Siは脱酸
のために必要な元素であるため極端に低減すると脱酸処
理が困難となり、製鋼コストが増加する。従って、最低
でも0.06% 以上、より好ましくは0.10% 以上含有させる
ことが必要である。そして、脱酸処理は0.10〜0.20% 程
度のSiの含有で十分可能であり、さらに量を増加すると
球状化焼鈍後の硬さが上昇し、かつ球状化率が低下して
冷鍛性が劣化するので、上限を0.25% とした。より優れ
た冷鍛性を確保するには、上限を0.20% とするのが良
い。
Si: 0.06 to 0.25% As the content of Si decreases, the cold forgeability improves. However, since Si is an element necessary for deoxidation, if it is extremely decreased, deoxidation treatment becomes difficult and the steelmaking cost Will increase. Therefore, it is necessary to contain at least 0.06% or more, more preferably 0.10% or more. Deoxidation treatment is sufficiently possible with the inclusion of 0.10 to 0.20% of Si.If the amount is further increased, the hardness after spheroidizing annealing increases, and the spheroidizing rate decreases and cold forgeability deteriorates. Therefore, the upper limit was set to 0.25%. The upper limit is preferably 0.20% in order to secure better cold forgeability.

【0014】Mn:0.10 〜0.50% MnはSiと同様に低減すると冷鍛性が向上するが、低減し
すぎると必要な焼入性の確保が困難となり、Mn以外の他
の高価な元素を添加して、必要な焼入性を確保しなけれ
ばならなくなる。従って、本発明では最低でも0.10% 、
好ましくは0.20% 以上含有させることとした。しかし、
多量に添加しても必要以上に焼入性が向上するだけであ
り、球状化焼鈍後の硬さが上昇して優れた冷鍛性を得る
ことが困難になるので、上限を0.50% とした。より好ま
しくは、上限を0.40% とするのが良い。
Mn: 0.10 to 0.50% Mn improves the cold forging property when it is reduced like Si, but if it is too low, it becomes difficult to secure the necessary hardenability, and an expensive element other than Mn is added. Then, it becomes necessary to secure the necessary hardenability. Therefore, in the present invention, at least 0.10%,
It is preferable to contain 0.20% or more. But,
Even if added in a large amount, only the hardenability is improved more than necessary, and the hardness after spheroidizing annealing increases and it becomes difficult to obtain excellent cold forgeability, so the upper limit was made 0.50%. . More preferably, the upper limit is 0.40%.

【0015】P:0.020%以下 Pは製造上含有が避けられない不純物であるが、微量の
含有であってもフェライト硬さを増加させ、球状化焼鈍
硬さを高め、冷鍛性に悪影響を及ぼす元素である。従っ
て、冷鍛性のみ考慮すれば極力低減することが好ましい
が、極端な低減は製鋼コストの増加を招くため、工程能
力を考慮して、上限を0.020%とした。好ましくは、0.01
5%以下とするのが良い。
P: 0.020% or less P is an unavoidable impurity in manufacturing, but even a small amount of P increases the ferrite hardness, increases the spheroidizing annealing hardness, and adversely affects the cold forgeability. It is an element that exerts. Therefore, it is preferable to reduce as much as possible if only the cold forgeability is taken into consideration. However, since an extreme reduction causes an increase in steelmaking cost, the upper limit was set to 0.020% in consideration of process capability. Preferably 0.01
It should be 5% or less.

【0016】S:0.010%以下 S は冷鍛性に悪影響を及ぼす元素であるため、極力低減
することが好ましい。しかし、S の低減は被削性を低下
させるため、本発明においては0.010%以下の範囲で添加
できることとした。もし、未切削で製造する部品か、比
較的切削量の少ない部品を製造する場合には、できるだ
け低減した方がより好ましい。
S: 0.010% or less Since S is an element that adversely affects cold forgeability, it is preferable to reduce it as much as possible. However, reduction of S lowers machinability, so in the present invention, it was determined that it can be added in the range of 0.010% or less. If a part to be manufactured without cutting or a part with a relatively small amount of cutting is manufactured, it is more preferable to reduce it as much as possible.

【0017】Cu:0.15%以下 CuはP と同様に微量の含有によってフェライト硬さを増
加させ、冷鍛性に悪影響を及ぼす元素であり、上限を0.
15% 以下、好ましくは0.10% 以下とする必要がある。特
に電気炉溶解の場合には、スクラップ中に含まれている
と、その後の精錬処理によって除去することが困難であ
るので、使用するスクラップを適切に選択して、所定の
量の範囲内とすることが必要である。
Cu: 0.15% or less Cu, like P, is an element that increases the ferrite hardness due to the inclusion of a trace amount and adversely affects the cold forgeability.
It should be 15% or less, preferably 0.10% or less. Especially in the case of melting in an electric furnace, if it is contained in scrap, it is difficult to remove it by the subsequent refining process, so the scrap to be used is appropriately selected and kept within the prescribed amount range. It is necessary.

【0018】Cr:0.10 〜0.30% Crは球状炭化物の微細化を促進して、変形能を向上させ
るとともに、焼入性向上に効果のある元素であるため、
0.10% 以上、好ましくは0.15% 以上の含有が必要であ
る。しかしながら、多量に添加すると変形抵抗の増加を
招くとともに、輪郭高周波焼入れの加熱時に球状炭化物
の固溶が不十分となり、かえって焼入硬さが低下する可
能性があるので、上限を0.30% とした。好ましくは、上
限を0.25%とするのが良い。
Cr: 0.10 to 0.30% Cr is an element that promotes the refinement of spherical carbides, improves the deformability, and is effective in improving the hardenability.
The content must be 0.10% or more, preferably 0.15% or more. However, addition of a large amount causes an increase in deformation resistance, and the solid solution of spherical carbides may become insufficient during heating during contour induction hardening, which may rather lower the quenching hardness, so the upper limit was made 0.30%. . Preferably, the upper limit is 0.25%.

【0019】Mo:0.03%以下 Moは、Mn、Crと同様に焼入性向上に効果のある元素では
あるが、添加すると球状化焼鈍後の硬さが高くなり、変
形抵抗の増加を招くので、本発明では積極添加せず、か
つ不純物として含有する量も上限を0.03% に規制した。
従って、電気炉溶解ではMo含有が少ないスクラップを用
いて、含有率が0.03% を超えないように製造する必要が
ある。
Mo: 0.03% or less Mo is an element having an effect of improving hardenability like Mn and Cr. However, when added, the hardness after spheroidizing annealing becomes high, which causes an increase in deformation resistance. In the present invention, no positive addition is made, and the upper limit of the amount of impurities is 0.03%.
Therefore, in electric furnace melting, it is necessary to use scrap containing a small amount of Mo so that the content does not exceed 0.03%.

【0020】Ti:0.005〜0.030% Tiは、Ti炭窒化物として微細析出した状態で鋼中に存在
し、球状化焼鈍時に球状炭化物の核となるため、球状炭
化物を微細化して、変形能を向上させる効果がある。ま
た、Tiには、鋼中の固溶N を低減して球状化焼鈍後の硬
さを低下させ、加工硬化を小さく抑えられる効果もあ
る。上記の効果を得るためには、最低でも0.005%以上、
好ましくは0.007%以上の添加が必要である。しかし、過
剰の添加はコストの上昇を招くとともに、Ti炭窒化物が
増加および粗大化し、逆に変形能を低下させるので、上
限を0.030%とした。好ましくは上限を0.020%とするのが
良い。
Ti: 0.005 to 0.030% Ti is present in the steel in the form of finely precipitated Ti carbonitride and serves as a nucleus of the spherical carbide during spheroidizing annealing. Therefore, the spherical carbide is refined to improve the deformability. Has the effect of improving. Further, Ti also has the effect of reducing the solid solution N 2 in the steel to reduce the hardness after spheroidizing annealing and suppressing work hardening to a small extent. To obtain the above effects, at least 0.005% or more,
It is necessary to add 0.007% or more. However, excessive addition causes an increase in cost, increases the amount of Ti carbonitride and coarsens it, and conversely decreases the deformability, so the upper limit was made 0.030%. Preferably, the upper limit is 0.020%.

【0021】N:0.0100% 以下 Nは固溶N として存在すると球状化焼鈍後の硬さが上昇
し、加工硬化も大きくなるため、より少ない方が好まし
いが、N 低減のために製鋼時に特別な処理を行うと、製
鋼コストが増加するため、好ましくない。従って、本発
明ではTiの添加によりTi窒化物を形成させて固溶N を極
力低減しているが、N が多量に含有していると、固溶N
の低減のために必要なTi量が増加し、コストの上昇を招
く。また前記したようにTi量を増加すると、Ti炭窒化物
が増加するだけでなく、粗大化し、その結果変形能が低
下する。従って、この問題が生じないようにN 量の上限
を0.0100% とした。好ましくは、上限を0.0080% とする
のが良い。なお、上限を極端に厳しくすると特別な処理
が必要になって製鋼コストが増加するが、上記した上限
値程度の規制であれば、大きなコスト増を招くことなく
製造が可能である。
N: 0.0100% or less If N is present as solid solution N, the hardness after spheroidizing annealing increases and the work hardening also increases, so it is preferable that the N content is less, but in order to reduce N content, it is special. The treatment increases the steelmaking cost and is not preferable. Therefore, in the present invention, Ti nitride is formed by adding Ti to reduce the solid solution N as much as possible. However, if a large amount of N is contained, the solid solution N is
The amount of Ti required for the reduction of the amount increases, which causes an increase in cost. Further, as described above, when the amount of Ti is increased, not only the Ti carbonitride increases, but also it coarsens, and as a result, the deformability decreases. Therefore, the upper limit of N content was set to 0.0100% so that this problem would not occur. Preferably, the upper limit is 0.0080%. It should be noted that if the upper limit is made extremely strict, a special treatment is required and the steelmaking cost increases, but if the regulation is about the upper limit value described above, it is possible to manufacture without causing a large increase in cost.

【0022】1.20≦Si+2.5Mn+4Cr+6Mo 有効硬化層深さが 1mm以下の輪郭高周波焼入れでは、有
効硬化層深さが 1mm以上の通常の高周波焼入れに比べ
て、焼入性の劣る鋼でも表面硬化が可能である。本発明
では、必要な焼入性を確保できるSi、Mn、Cr、Mo量の関
係式を求め、この式を満足する範囲内で各元素の添加量
を抑え、優れた冷鍛性を確保している。従って、必要な
焼入性を確保するために、1.20≦Si+2.5Mn+4Cr+6Moとす
る必要がある。
1.20 ≦ Si + 2.5Mn + 4Cr + 6Mo Contour induction hardening with an effective hardened layer depth of 1 mm or less Inferior hardenability compared with normal induction hardening with an effective hardened layer depth of 1 mm or more However, surface hardening is possible. In the present invention, Si, Mn, Cr, which can secure the required hardenability, a relational expression of the amount of Mo is obtained, the addition amount of each element is suppressed within the range that satisfies this equation, and excellent cold forgeability is secured. ing. Therefore, it is necessary to satisfy 1.20 ≦ Si + 2.5Mn + 4Cr + 6Mo in order to secure the necessary hardenability.

【0023】次に本発明において、熱処理条件を限定し
た理由について述べる。一般に球状炭化物を微細にする
ための球状化焼鈍温度は、Ac1点直上、すなわちAc1
〜Ac1点+10℃程度、あるいはAc1点直下が良いとされ
ているが、本願発明の鋼においては、Ti添加の効果によ
って、比較的高い温度においても微細な球状炭化物が得
られる。また、球状化焼鈍温度を高くすると、硬さを下
げ変形抵抗を低くすることができるので、球状化焼鈍温
度の下限をAc1点+20℃とした。しかしながら、球状化
焼鈍温度を高くしすぎると、微細な球状炭化物を得るこ
とが困難となり、変形能が低下するので、球状化焼鈍温
度の上限をAc1点+50℃とした。
Next, the reason for limiting the heat treatment conditions in the present invention will be described. Generally globular carbides spheroidizing annealing temperature for the finely is directly above Ac 1 point, i.e. Ac 1 point to Ac 1 point + 10 ° C. of about itself or Ac 1 point directly below is good, in the steel of the present invention As a result of the addition of Ti, fine spherical carbides can be obtained even at relatively high temperatures. Further, if the spheroidizing annealing temperature is increased, the hardness can be lowered and the deformation resistance can be lowered. Therefore, the lower limit of the spheroidizing annealing temperature is set to Ac 1 point + 20 ° C. However, if the spheroidizing annealing temperature is too high, it becomes difficult to obtain fine spherical carbides, and the deformability decreases, so the upper limit of the spheroidizing annealing temperature was set to Ac 1 point + 50 ° C.

【0024】また、本願発明の鋼において、球状化焼鈍
の加熱時間、および加熱後の冷却速度は、目標としてい
る95%以上の球状化率でかつ、球状炭化物の円相当平均
直径が0.5 μm以下を得るために、加熱時間を 100〜30
0min、 650℃までの冷却速度を 0.1〜1.0 ℃/minとする
必要がある。
In the steel of the present invention, the heating time for spheroidizing annealing and the cooling rate after heating are the target spheroidizing rate of 95% or more, and the spherical equivalent average diameter of the spherical carbides is 0.5 μm or less. Heating time to get 100 ~ 30
The cooling rate up to 0 min and 650 ° C should be 0.1 to 1.0 ° C / min.

【0025】なお、加熱時間を 100〜300minとしたの
は、100min未満ではオーステナイト化及び炭化物の固溶
が不完全となり、炭化物球状化が不十分となるためであ
り、300minを超えると、脱炭により表面肌が悪化すると
ともに、生産性の低下を招くためである。
The heating time is set to 100 to 300 min because if it is less than 100 min, austenitization and solid solution of carbide become incomplete and carbide spheroidization becomes insufficient. If it exceeds 300 min, decarburization is performed. This is because the surface skin is deteriorated and the productivity is lowered.

【0026】また、冷却速度を 0.1〜1.0 ℃/minとした
のは、 0.1℃/min未満では、脱炭により表面肌が低下す
るとともに、生産性の低下を招くという問題があり、1.
0 ℃/minを超えると、再生パーライトが出現して炭化物
の球状化が不十分となるためである。
Further, the cooling rate is set to 0.1 to 1.0 ° C./min. If the cooling rate is less than 0.1 ° C./min, decarburization causes a problem that the surface skin is deteriorated and productivity is lowered.
This is because if it exceeds 0 ° C./min, regenerated pearlite appears and the spheroidization of carbide becomes insufficient.

【0027】また、第2発明における、熱間圧延後 100
℃/min以上の冷却速度で 300℃以下まで急冷するか、あ
るいは熱間圧延後室温まで放冷した後にAC3点以上の温
度に再加熱後 100℃/min以上の冷却速度で 300℃以下ま
で急冷する処理は、球状炭化物の円相当平均直径を 0.4
μm以下と、さらに微細にするための処理であり、第1
発明に比べてさらに優れた変形能が得られるものであ
る。
In addition, in the second invention, after hot rolling, 100
Rapidly cool down to 300 ° C or less at a cooling rate of ℃ / min or more, or let it cool to room temperature after hot rolling and then reheat it to a temperature of AC 3 points or more and then cool to 100 ° C / min or more to 300 ° C or less The process of quenching is to make the spherical equivalent average diameter of spherical carbide 0.4
It is a process for making finer than 1 μm.
It is possible to obtain a more excellent deformability as compared with the invention.

【0028】なお、冷却速度を 100℃/min以上としたの
は、 100℃/min未満の冷却速度では、ベイナイト、マル
テンサイトあるいは微細パーライト等の組織とならず、
球状化処理後の炭化物が微細化しないという問題がある
ためである。 300℃以下まで急冷することとしたのは、
300℃まで急冷すれば、その後の冷却速度によって組織
に影響が生じることがないからである。
The cooling rate of 100 ° C./min or more is that the cooling rate of less than 100 ° C./min does not result in a structure such as bainite, martensite or fine pearlite.
This is because there is a problem that the carbide after spheroidization does not become fine. The reason why we decided to quench below 300 ° C is
This is because if the material is rapidly cooled to 300 ° C, the subsequent cooling rate does not affect the tissue.

【0029】[0029]

【発明の実施の形態】以下に本発明の製造方法の特徴を
比較例および従来例と比較し、実施例でもって明らかに
する。表1は実施例に用いた供試材の化学成分を示すも
のである。
BEST MODE FOR CARRYING OUT THE INVENTION The features of the manufacturing method of the present invention will be described below in comparison with comparative examples and conventional examples, and will be clarified by examples. Table 1 shows the chemical components of the test materials used in the examples.

【0030】[0030]

【表1】 [Table 1]

【0031】表1に示した成分を有する鋼を電気炉にて
溶製し、熱間圧延によって直径50mmの丸棒を製造して、
供試材とした。表1に示す鋼のうち、1〜5鋼は本発明
の製造方法の成分範囲内の鋼(以下、本発明鋼と記
す。)である。また、6〜10鋼は一部の元素が本発明の
条件を満足しない比較鋼であり、11、12鋼は従来鋼であ
るS35C、S40Cである。
Steels having the components shown in Table 1 were melted in an electric furnace and hot-rolled to produce a round bar having a diameter of 50 mm.
The test material was used. Among the steels shown in Table 1, steels 1 to 5 are steels within the composition range of the production method of the present invention (hereinafter referred to as the present invention steel). Steels 6 to 10 are comparative steels in which some elements do not satisfy the conditions of the present invention, and steels 11 and 12 are conventional steels S35C and S40C.

【0032】表1に示す成分を有する直径50mmの丸棒
を、いずれの供試材においてもAc1+20℃〜Ac1+40℃
の温度域となる 755℃にて240min加熱した後、 650℃ま
で 0.3℃/minの冷却速度で徐冷する球状化焼鈍を施した
ものを供試材とし、冷鍛性、高周波焼入性の試験を行っ
た。
A round bar having a diameter of 50 mm and having the components shown in Table 1 was used for any of the test materials, from A c1 + 20 ° C. to A c1 + 40 ° C.
After heating for 240 min at 755 ° C, which is the temperature range of 650 ° C, and then spheroidizing annealing that gradually cools down to 650 ° C at a cooling rate of 0.3 ° C / min is used as the test material. The test was conducted.

【0033】冷鍛性は、球状化焼鈍後の硬さ、球状化
率、および球状炭化物の円相当平均直径と、圧縮試験に
より得られる変形抵抗、割れ発生限界据込率によって評
価した。球状化焼鈍後の硬さは、直径50mmの丸棒の断面
をビッカース硬度計にて10点測定し、その平均値をもっ
て測定値とした。球状化率、および球状炭化物の円相当
平均直径の測定は、それぞれ倍率が×1000、×10000 の
走査電子顕微鏡写真を用いて行った。圧縮試験は、上記
供試材より直径8mm 、高さ12mmの試験片を作製し、日本
塑性加工学会冷間鍛造分科会基準の端面拘束圧縮試験法
に基づき、据込率60% での変形抵抗と割れ発生限界据込
率を測定したものである。
The cold forgeability was evaluated by the hardness after spheroidizing annealing, the spheroidizing rate, the circle-equivalent average diameter of the spheroidal carbide, the deformation resistance obtained by the compression test, and the cracking limit upsetting rate. For the hardness after spheroidizing annealing, the cross section of a round bar having a diameter of 50 mm was measured at 10 points with a Vickers hardness meter, and the average value was used as the measured value. The spheroidization rate and the circle-equivalent average diameter of the spherical carbides were measured using scanning electron micrographs with magnifications of × 1000 and × 10000, respectively. In the compression test, a test piece with a diameter of 8 mm and a height of 12 mm was prepared from the above-mentioned test material, and the deformation resistance at an upsetting rate of 60% was based on the end face restraint compression test method of the Japan Plastic Working Society Cold Forging Subcommittee standard. And the cracking limit upsetting rate.

【0034】高周波焼入性の評価は、上記供試材より削
り出した直径40mmの丸棒を、直径29mmに引抜き加工した
後、最大出力250kW の高周波焼入装置にて、表面から0.
50〜0.60mmまでの深さが十分に加熱されるように、周波
数を400kHzとし、表面加熱温度が1000℃になるように制
御して加熱後定置焼入れし、断面硬さ分布をビッカース
硬度計にて測定し、それぞれの供試材の有効硬化層深さ
(硬さHv 450以上である深さ)を求めた。各供試材の性
能評価結果を表2に示す。
To evaluate the induction hardenability, a round bar with a diameter of 40 mm cut out from the test material was drawn to a diameter of 29 mm, and then an induction hardening machine with a maximum output of 250 kW was used.
The frequency was set to 400 kHz so that the depth of 50 to 0.60 mm was sufficiently heated, and the surface heating temperature was controlled to 1000 ° C. After heating, stationary quenching was performed, and the cross-sectional hardness distribution was measured using a Vickers hardness tester. The effective hardened layer depth (depth at which the hardness is Hv 450 or more) of each test material was obtained. Table 2 shows the performance evaluation results of each test material.

【0035】[0035]

【表2】 [Table 2]

【0036】表2から明らかなように比較鋼、従来鋼で
ある6〜12鋼の評価結果を本発明鋼の評価結果と比較す
ると、6鋼はSi含有率が高いため球状化焼鈍後の硬さが
高くなるとともに球状化率も低下して、変形抵抗が増加
し、割れ発生限界据込率が低下したものであり、7鋼は
Cr含有率が高いため変形抵抗が増加するとともに、高周
波焼入れの加熱時の炭化物の固溶が不十分となって有効
硬化層深さが低下したものであり、8鋼はMo含有率が高
いため球状化焼鈍後の硬さが高くなって変形抵抗が増加
し、割れ発生限界据込率が低下したものであり、9鋼は
Ti含有率が低いため球状炭化物が粗大となり、割れ発生
限界据込率が低下したものであり、10鋼は個々の元素は
本発明の範囲に含まれるが、Si+2.5Mn+4Cr+6Moの値が0.
84であり、1.20以上を満足していないため、有効硬化層
深さが低下したものである。また、従来鋼である11、12
鋼は、Ti含有率が低く、またMn、S 含有率が高い(11鋼
はN 含有率も高い。) ために、球状化焼鈍硬さ、変形抵
抗が高く、割れ発生限界据込率も低く、本発明鋼に比べ
冷鍛性が劣るものである。
As is clear from Table 2, when the evaluation results of the comparative steels and the conventional steels 6 to 12 are compared with the evaluation results of the steels of the present invention, since 6 steel has a high Si content, the hardness after spheroidizing annealing is high. The spheroidization rate also decreased with the increase in crack resistance, the deformation resistance increased, and the crack upset limit upsetting rate decreased.
Due to the high Cr content, the deformation resistance increased, and the solid solution of carbide during heating during induction hardening became insufficient, resulting in a decrease in the effective hardened layer depth. Since 8 steel has a high Mo content, The hardness after spheroidizing was increased, the deformation resistance was increased, and the cracking limit upsetting ratio was decreased.
Since Ti content is low, spherical carbides become coarse, and the crack generation limit upsetting ratio is reduced.10 steels have individual elements within the scope of the present invention, but Si + 2.5Mn + 4Cr + 6Mo The value is 0.
It is 84, which is not satisfied with 1.20 or more, so that the effective hardened layer depth is lowered. In addition, conventional steel 11, 12
Steel has a low Ti content and a high Mn and S content (11 steel also has a high N content). Therefore, the spheroidizing annealing hardness and deformation resistance are high, and the cracking critical upsetting rate is low. The cold forgeability is inferior to that of the steel of the present invention.

【0037】これに対して本発明鋼である1〜5鋼はTi
を添加し、Ti炭窒化物を核として球状炭化物を生成さ
せ、球状炭化物を微細にすることにより、優れた変形
能、すなわち78%以上の割れ発生限界据込率が得られ、
変形抵抗も800N/mm2以下と低く、また1.20≦Si+2.5Mn+4
Cr+6Moとすることによって、必要な有効硬化層深さが得
られることが確認された。
On the other hand, the steels 1 to 5 of the present invention are Ti
By adding, to generate spherical carbides with Ti carbonitrides as nuclei, and to make the spherical carbides fine, excellent deformability, that is, a cracking limit upsetting ratio of 78% or more is obtained,
Deformation resistance is as low as 800 N / mm 2 or less, and 1.20 ≦ Si + 2.5Mn + 4
It was confirmed that the required effective hardened layer depth can be obtained by using Cr + 6Mo.

【0038】次に、本発明である機械構造用鋼の製造方
法により得られる効果を、別の実施例により明らかにす
る。前記表1の3鋼について、φ50に圧延後、放冷し、
球状化焼鈍温度を3水準に変化させた供試材(A:球状
化焼鈍を725 ℃(Ac1+2℃) で実施、B:球状化焼鈍を75
5 ℃(Ac1 +32℃) で実施、C:球状化焼鈍を780 ℃(Ac1
+57℃) で実施)、およびφ50に圧延後200 ℃/minで 2
00℃以下まで冷却し、755 ℃で球状化焼鈍したもの
(D)、φ50に圧延後放冷し、950 ℃に再加熱後1000℃
/minで 200℃以下まで冷却し、755 ℃で球状化焼鈍した
もの(E)を供試材として準備した。これら供試材を、
前記方法と同様にして試験評価した。結果を表3に示
す。
Next, the effects obtained by the method for manufacturing a steel for machine structure according to the present invention will be clarified by another embodiment. For the three steels in Table 1 above, rolled to φ50 and allowed to cool,
Specimens in which the spheroidizing temperature was changed to 3 levels (A: Spheroidizing annealing was performed at 725 ° C (A c1 + 2 ° C), B: Spheroidizing annealing was performed at 75)
Conducted at 5 ℃ (A c1 +32 ℃), C: Spheroidizing annealing at 780 ℃ (A c1 + 32 ℃)
+ 57 ° C)), and after rolling to φ50 at 200 ° C / min 2
Cooled to below 00 ℃, spheroidized and annealed at 755 ℃ (D), rolled to φ50, allowed to cool, reheated to 950 ℃ and 1000 ℃
A sample (E) which had been cooled to 200 ° C. or less at / min and spheroidized and annealed at 755 ° C. was prepared as a test material. These test materials are
Test evaluation was performed in the same manner as the above method. The results are shown in Table 3.

【0039】[0039]

【表3】 [Table 3]

【0040】表3から明らかなように、球状化焼鈍温度
が本発明の範囲であるAC1点+20℃〜AC1点+50℃に対
して低いAについては、球状化焼鈍後の硬さが高く、変
形抵抗が高くなっており、球状化焼鈍温度が本発明の範
囲よりも高いCについては、球状炭化物が粗大化して割
れ発生限界が低下している。これに対して、球状化焼鈍
温度が本発明の範囲であるBは、変形抵抗が低くかつ割
れ発生限界据込率も高いことが確認された。また、球状
化焼鈍の前の圧延直後、あるいは圧延後AC3点以上に再
加熱後、 100℃/min以上で急冷処理をしたD、Eについ
ては、急冷処理をしないBに比べて、球状炭化物がより
微細化し、変形能の向上を図ることができることが確認
された。
As is clear from Table 3, the hardness after spheroidizing is high for A whose spheroidizing annealing temperature is lower than the range of the present invention, A C1 point + 20 ° C to A C1 point + 50 ° C. With respect to C whose deformation resistance is high and whose spheroidizing annealing temperature is higher than the range of the present invention, the spheroidal carbide is coarsened and the crack generation limit is lowered. On the other hand, it was confirmed that B having a spheroidizing annealing temperature within the range of the present invention has a low deformation resistance and a high crack generation limit upsetting rate. In addition, immediately after rolling before spheroidizing annealing, or after reheating after rolling to an A C3 point or higher, D and E were subjected to a quenching treatment at 100 ° C / min or more, compared to B without no quenching treatment It has been confirmed that the particles can be made finer and the deformability can be improved.

【0041】次に、本発明の鋼を用いて、実際に冷間鍛
造品を試作した実施例を示す。供試材としては、前記表
1の3鋼、および比較として9鋼、12鋼を用い、図1に
示すような冷間鍛造工程にて、途中で中間焼鈍を入れる
ことなく、800tの油圧プレスを用いて、各20個試作鍛
造した。結果を表4に示す。
Next, an example in which a cold forged product was actually manufactured using the steel of the present invention will be shown. As the test materials, 3 steels in Table 1 above and 9 steels and 12 steels for comparison were used. In the cold forging process as shown in Fig. 1, 800t hydraulic press without intermediate annealing was performed. Using, each of 20 trial forgings was performed. The results are shown in Table 4.

【0042】表4から明らかなように、9鋼を用いた場
合には、工程3および4にて鍛造割れが認められた。ま
た、12鋼については、工程3で割れが認められるととも
に、工程3にて欠肉が発生したため、工程4まで実施す
ることができなかった。これに対して本発明鋼である3
鋼は、20個全てが割れ、欠肉を発生させることなく成
形できた。
As is clear from Table 4, forging cracks were found in steps 3 and 4 when 9 steel was used. With respect to 12 steels, cracks were observed in step 3 and lack of wall was generated in step 3, so that it was not possible to carry out up to step 4. On the other hand, the steel of the present invention is 3
All of the 20 steels were able to be formed without cracking and generating a wall thickness.

【0043】この結果は、9、12鋼を用いて図1に示す
部品を製造しようとすると、工程2が終了した後、中間
焼鈍を行う必要があることを意味している。それに対
し、本発明鋼では焼鈍処理を行うことなく最終形状まで
加工することが可能であり、大幅な生産性向上を図るこ
とができる。
This result means that if the parts shown in FIG. 1 are to be manufactured using 9 and 12 steels, it is necessary to perform intermediate annealing after the completion of step 2. On the other hand, the steel of the present invention can be processed to the final shape without performing the annealing treatment, and the productivity can be greatly improved.

【0044】[0044]

【発明の効果】本発明である機械構造用鋼の製造方法
は、Tiを添加し、Ti炭窒化物を核として球状炭化物を生
成させ、球状炭化物を微細にすることにより、優れた冷
鍛性が得られ、また1.20≦Si+2.5Mn+4Cr+6Moを満足する
範囲でSi、Mn、Cr、Moの添加量を抑えることにより、輪
郭高周波焼入れにおいて必要な有効硬化深さを確保しつ
つ優れた冷鍛性が得られるものである。従って、薄肉偏
平の歯車部品等、従来鋼では冷鍛が困難であった部品の
製造を可能としたり、部品製造は可能であっても途中で
中間焼鈍を必要としていた部品について中間焼鈍回数を
減らしたり、省略することができ、大幅な生産の効率化
を図ることができる。
EFFECTS OF THE INVENTION The method for producing a steel for mechanical structure according to the present invention is excellent in cold forgeability by adding Ti, forming spherical carbide with Ti carbonitride as a nucleus, and making the spherical carbide fine. In addition, by suppressing the addition amounts of Si, Mn, Cr, and Mo in the range that satisfies 1.20 ≦ Si + 2.5Mn + 4Cr + 6Mo, it is excellent while ensuring the effective hardening depth necessary for contour induction hardening. The cold forgeability is obtained. Therefore, it is possible to manufacture parts that were difficult to cold forge with conventional steel, such as thin-walled flat gear parts, or reduce the number of intermediate anneals for parts that require intermediate anneal on the way even though part production is possible. Or it can be omitted, and the efficiency of production can be greatly improved.

【表4】 [Table 4]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年8月9日[Submission date] August 9, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例として試作した冷間鍛造品の工
程を説明する図である。
FIG. 1 is a diagram illustrating a process of a cold forged product prototyped as an example of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比にしてC:0.28〜0.47% 、Si:0.06
〜0.25% 、Mn:0.10〜0.50% 、P:0.020%以下、S:0.010%
以下、Cu:0.15%以下、Cr:0.10 〜0.30% 、Mo:0.03%以
下、Ti:0.005〜0.030%、N:0.0100% 以下を含有し、かつ
1.20≦Si+2.5Mn+4Cr+6Moであり、残部Feならびに不純物
元素からなる鋼を、AC1点+20℃〜AC1点+50℃の温度
に加熱し、100min〜300min温度保持後、 0.1〜1.0 ℃/m
inの冷却速度にて 650℃以下まで冷却することからなる
球状化焼鈍処理を施すことにより、炭化物の球状化率が
95%以上であり、球状炭化物の円相当平均直径を 0.5μ
m以下とすることを特徴とする冷鍛性に優れた輪郭高周
波焼入用機械構造用鋼の製造方法。
1. A weight ratio of C: 0.28 to 0.47%, Si: 0.06.
~ 0.25%, Mn: 0.10 ~ 0.50%, P: 0.020% or less, S: 0.010%
Below, Cu: 0.15% or less, Cr: 0.10 to 0.30%, Mo: 0.03% or less, Ti: 0.005 to 0.030%, N: 0.0100% or less, and
A 1.20 ≦ Si + 2.5Mn + 4Cr + 6Mo, the steel comprising the balance Fe and impurity elements, heated to a temperature of A C1 point + 20 ° C. to A C1 point + 50 ° C., after 100min~300min temperature hold, 0.1 to 1.0 ℃ / m
The spheroidization rate of the carbide is increased by performing the spheroidization annealing treatment that consists of cooling to 650 ° C or less at the cooling rate of in.
95% or more, the equivalent circle diameter of spherical carbide is 0.5μ
A method for producing a machine structural steel for contour induction hardening, which is excellent in cold forgeability and is characterized in that the thickness is m or less.
【請求項2】 重量比にしてC:0.28〜0.47% 、Si:0.06
〜0.25% 、Mn:0.10〜0.50% 、P:0.020%以下、S:0.010%
以下、Cu:0.15%以下、Cr:0.10 〜0.30% 、Mo:0.03%以
下、Ti:0.005〜0.030%、N:0.0100% 以下を含有し、かつ
1.20≦Si+2.5Mn+4Cr+6Moであり、残部Feならびに不純物
元素からなる鋼を、熱間圧延後 100℃/min以上の冷却速
度で 300℃以下まで急冷するか、あるいは熱間圧延後室
温まで放冷した後に、AC3点以上の温度に再加熱後 100
℃/min以上の冷却速度で 300℃以下まで急冷し、その後
C1点+20℃〜AC1点+50℃の温度に加熱し、100min〜
300min温度保持後、0.1 〜1.0 ℃/minの冷却速度にて 6
50℃以下まで冷却することからなる球状化焼鈍処理を施
すことにより、炭化物の球状化率が95%以上であり、球
状炭化物の円相当平均直径を 0.4μm以下とすることを
特徴とする冷鍛性に優れた輪郭高周波焼入用機械構造用
鋼の製造方法。
2. A weight ratio of C: 0.28 to 0.47%, Si: 0.06.
~ 0.25%, Mn: 0.10 ~ 0.50%, P: 0.020% or less, S: 0.010%
Below, Cu: 0.15% or less, Cr: 0.10 to 0.30%, Mo: 0.03% or less, Ti: 0.005 to 0.030%, N: 0.0100% or less, and
1.20 ≦ Si + 2.5Mn + 4Cr + 6Mo, the steel consisting of balance Fe and impurity elements is hot-rolled and then rapidly cooled to 300 ° C or less at a cooling rate of 100 ° C / min or more, or after hot-rolling at room temperature. After cooling down to 100 ° C, reheat to a temperature of AC 3 points or higher and 100
Rapidly cool down to 300 ℃ or less at a cooling rate of ℃ / min or more, and then heat to a temperature of AC 1 point + 20 ℃ ~ AC 1 point + 50 ℃ for 100 min
After holding the temperature for 300 min, 6 at the cooling rate of 0.1 to 1.0 ° C / min.
Cold forging characterized in that the spheroidizing rate of carbides is 95% or more and the circle-equivalent average diameter of the spherical carbides is 0.4 μm or less by performing spheroidizing annealing treatment including cooling to 50 ° C or less. A method for manufacturing machine structural steel for high-frequency induction hardening, which has excellent properties.
【請求項3】 請求項1、2のいずれかの1項に記載の
方法で製造した鋼材を用い、冷間鍛造部品を製造する方
法であって、最終部品形状まで中間焼鈍を施すことなく
製造することを特徴とする冷間鍛造部品の製造方法。
3. A method for manufacturing a cold forged part by using the steel material manufactured by the method according to claim 1, wherein the final part shape is not subjected to intermediate annealing. A method for manufacturing a cold forged part, comprising:
JP15619796A 1996-05-27 1996-05-27 Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part Pending JPH09316540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15619796A JPH09316540A (en) 1996-05-27 1996-05-27 Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15619796A JPH09316540A (en) 1996-05-27 1996-05-27 Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part

Publications (1)

Publication Number Publication Date
JPH09316540A true JPH09316540A (en) 1997-12-09

Family

ID=15622497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15619796A Pending JPH09316540A (en) 1996-05-27 1996-05-27 Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part

Country Status (1)

Country Link
JP (1) JPH09316540A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078297A1 (en) * 2004-02-12 2005-08-25 Ntn Corporation Shell type needle roller bearing, support structure of compressor spindle, and support structure of piston pump drive part
EP1156127A3 (en) * 2000-05-17 2009-05-20 Nissan Motor Company, Limited Steel for high bearing pressure-resistant member, having high machinability, and high bearing pressure-resistant member using same steel
CN105080984A (en) * 2015-09-18 2015-11-25 无锡贺邦金属制品有限公司 Ratchet wheel extrusion forming process
JPWO2016204288A1 (en) * 2015-06-17 2017-06-29 新日鐵住金株式会社 Steel plate and manufacturing method
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156127A3 (en) * 2000-05-17 2009-05-20 Nissan Motor Company, Limited Steel for high bearing pressure-resistant member, having high machinability, and high bearing pressure-resistant member using same steel
WO2005078297A1 (en) * 2004-02-12 2005-08-25 Ntn Corporation Shell type needle roller bearing, support structure of compressor spindle, and support structure of piston pump drive part
CN100436852C (en) * 2004-02-12 2008-11-26 Ntn株式会社 Shell type needle roller bearing, support structure of compressor spindle, and support structure of piston pump drive part
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof
JPWO2016204288A1 (en) * 2015-06-17 2017-06-29 新日鐵住金株式会社 Steel plate and manufacturing method
CN105080984A (en) * 2015-09-18 2015-11-25 无锡贺邦金属制品有限公司 Ratchet wheel extrusion forming process

Similar Documents

Publication Publication Date Title
JP5126857B2 (en) Manufacturing method of case-hardened steel pipe with excellent workability
KR100939462B1 (en) Hot forged products excellent in fatigue strength, process for production thereof, and machine structural parts
JP2010168628A (en) Production method for steel for carburizing excellent in cold forgeability
JPH08311607A (en) Low strain carburized gear excellent in deddendum bending strength and its production
JP2010007120A (en) Method for manufacturing high-strength carburized component
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JPH06172867A (en) Production of gear excellent in impact fatigue life
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
KR100470671B1 (en) A method for manufacturing non-hteat-treated steel with excellent cold formability
JP2005281857A (en) Raw material for nitrided component having excellent broaching workability and method for manufacturing nitrided component using the raw material
JP5206911B1 (en) Non-tempered steel for hot forging, non-tempered hot forged product, and method for producing the same
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JPS58107416A (en) Method of directly softening steel wire or rod steel useful for mechanical construction
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JPH11124623A (en) Manufacture of boron-containing steel for cold forging
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP2007107046A (en) Steel material to be induction-hardened
JP2006009150A (en) Steel for carburizing and its production method
JPH10226818A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel
JPH09202921A (en) Production of wire for cold forging
JP2006249504A (en) Material for nitriding part excellent in suitability to broaching and method for manufacturing the same
JP4265819B2 (en) Cold forging steel with excellent nitriding properties and method for producing the same
CN114651080B (en) Crankshaft and method for manufacturing blank for crankshaft