JP2010007120A - Method for manufacturing high-strength carburized component - Google Patents

Method for manufacturing high-strength carburized component Download PDF

Info

Publication number
JP2010007120A
JP2010007120A JP2008165997A JP2008165997A JP2010007120A JP 2010007120 A JP2010007120 A JP 2010007120A JP 2008165997 A JP2008165997 A JP 2008165997A JP 2008165997 A JP2008165997 A JP 2008165997A JP 2010007120 A JP2010007120 A JP 2010007120A
Authority
JP
Japan
Prior art keywords
steel
carburized
strength
quenching
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008165997A
Other languages
Japanese (ja)
Inventor
Motohiro Nishikawa
元裕 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2008165997A priority Critical patent/JP2010007120A/en
Publication of JP2010007120A publication Critical patent/JP2010007120A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a carburized component wherein crystal grains are made fine to have excellent impact strength and bending strength that can not be expected until now. <P>SOLUTION: A steel for machine structure containing, by mass, 0.10-0.45% C, 0.05-2.00% Si, 0.10-2.00% Mn, ≤0.030% P, ≤0.20% S, 0.30-3.0% Cr, ≤0.30% Cu, 0.001-0.10% Al, 0.001-0.10% Al, 0.01-0.03% N and the balance Fe with inevitable impurities, is formed into the component-shape with a machining or a forging, and then a vacuum-carburization-quenching is performed and thereafter high-frequency induction hardening is applied one or more times, and then the component is tempered to manufacture the carbonized component, thus the carburized component excellent in the impact strength and the bending strength is manufactured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、はだ焼鋼から浸炭焼入・焼戻し処理してなる浸炭部品の製造、例えば、自動車、建設機械、工作機械などのギア、CVJやシャフトなどのはだ焼鋼から浸炭処理して形成の浸炭部品の製造方法に関する。   This invention manufactures carburized parts by carburizing and tempering from hardened steel, for example, carburizing from carburized steel of gears, automobiles, construction machines, machine tools, etc., CVJ and shafts. The present invention relates to a method for manufacturing formed carburized parts.

近年、自動車の高出力・小型軽量化に伴い、ギアや等速ジョイント部品やシャフトなどの浸炭焼入れ・焼戻し処理してなる自動車用部品では、一層の高強度化や長寿命化が要求されている。そこで、JIS規格のSNCMなどのニッケルクロムモリブデン鋼のようにNi、Cr、Moなどの合金元素を添加して高強度化を図っている。しかし、このように合金元素を添加して高強度化を図った場合、素材コストが高くなり、冷間加工性が劣るため冷間鍛造ができず、さらに熱間鍛造後にそのままでは、切削の際に切削バイト寿命が短くなる。このため、これらの鋼材は焼鈍などの熱処理が必要となる問題がある。   In recent years, with higher output and smaller size and weight of automobiles, car parts that are carburized and tempered, such as gears, constant velocity joint parts, and shafts, are required to have higher strength and longer life. . Therefore, alloying elements such as Ni, Cr, and Mo are added to increase the strength as in nickel chromium molybdenum steel such as JIS standard SNCM. However, when alloying elements are added in this way to increase the strength, the material cost is high and cold workability is inferior, so cold forging cannot be performed. The cutting tool life is shortened. For this reason, these steel materials have a problem that requires heat treatment such as annealing.

一方、結晶粒の微細化により鋼の強度が向上することが知られている。この結晶粒の微細化による方法は、コストの高い合金元素の添加をすることなく、鋼材を高強度化できる。すなわち、素材の鍛造性や切削性といった加工性も低下させず、かつ、延性や靭性を損なわずに高強度化できることから極めて有効な方法であると言える。   On the other hand, it is known that the strength of steel is improved by the refinement of crystal grains. This method by refining crystal grains can increase the strength of a steel material without adding an expensive alloy element. That is, it can be said that this is an extremely effective method because the workability such as forgeability and machinability of the material is not lowered and the strength can be increased without impairing the ductility and toughness.

結晶粒を微細化させる方法として加工熱処理による方法がある。しかし、この場合、成形加工と熱処理を組み合わせるため、成形加工の難しい形状のものには適用できない。このために、部品形状が限定され、自動車のギアやCVJやシャフトなどには適用が難しいという問題がある。   As a method for refining crystal grains, there is a method based on thermomechanical processing. However, in this case, since the forming process and the heat treatment are combined, it cannot be applied to a shape that is difficult to form. For this reason, there is a problem that the shape of the parts is limited and it is difficult to apply to automobile gears, CVJs, shafts, and the like.

これらの問題点を解消するために、浸炭後に繰返し焼入れを行なうことにより、積極的に旧オーステナイト粒を微細化して強度を向上させることができる高強度はだ焼鋼が提案されている(例えば、特許文献1、2参照)。   In order to solve these problems, a high strength hardened steel that can actively refine the prior austenite grains and improve the strength by repeatedly quenching after carburizing has been proposed (for example, (See Patent Documents 1 and 2).

しかし、特許文献1の方法では、浸炭前のはだ焼鋼をJIS G0551で規定されているNo.11以上まで微細化したマルテンサイト組織とする必要があり、コストが高いという問題がある。   However, in the method of Patent Document 1, the case-hardened steel before carburizing is No. defined in JIS G0551. There is a problem that the martensite structure must be refined to 11 or more and the cost is high.

また、特許文献1や2の方法では、浸炭焼入れ後、繰返し焼入れを行なうことによって旧オーステナイト粒径を微細化しているが、これらの方法では強度向上が十分とはいえないという問題がある。   In the methods of Patent Documents 1 and 2, the prior austenite grain size is refined by repeatedly quenching after carburizing and quenching. However, these methods have a problem that the strength cannot be improved sufficiently.

特開2003−34843号公報JP 2003-34843 A 特開平8−92690号公報JP-A-8-92690

従来の特許文献1や2の技術に対し、鋼材をより一層高強度化する方法を検討したところ、従来のガス浸炭した鋼において結晶粒径を小さくしても、ある粒径で強度は飽和してしまうことを発明者は見いだした。この原因はガス浸炭時に部品表面に浸炭異常層や粒界酸化層が生成し、その深さ以上に旧オーステナイト粒径を微細化しても、浸炭異常層や粒界酸化層が初期欠陥として作用し、旧オーステナイト粒の微細化効果がなくなったものと推定された。そこで、真空浸炭することにより浸炭異常層を無くしたところ、強度の飽和現象は見られず、結晶粒径が小さくなればなるほど強度は向上することを見いだした。   As a result of investigating a method for further strengthening the steel material with respect to the technologies of the conventional patent documents 1 and 2, even if the crystal grain size is reduced in the conventional gas carburized steel, the strength is saturated at a certain grain size. The inventor has found out. This is because an abnormal carburization layer or grain boundary oxide layer is formed on the part surface during gas carburizing, and even if the prior austenite grain size is refined beyond that depth, the carburization abnormal layer and grain boundary oxide layer act as initial defects. It was estimated that the refinement effect of the prior austenite grains disappeared. Therefore, when the carburizing abnormal layer was eliminated by vacuum carburizing, no strength saturation phenomenon was observed, and it was found that the strength improved as the crystal grain size decreased.

そこで、本発明が解決しようとする課題は、浸炭した鋼において従来に比して結晶粒を超微細化するとともに、真空浸炭を行うことにより、表面欠陥として作用する浸炭異常層を防止したことの相乗作用により、従来にもまして優れた衝撃強度および曲げ強度を有する浸炭部品を製造する方法を提供することである。   Therefore, the problem to be solved by the present invention is that the carburized steel has been made ultrafine grain compared to the conventional case and the carburizing abnormal layer acting as a surface defect is prevented by performing vacuum carburizing. It is to provide a method for producing a carburized part having a superior impact strength and bending strength than before by synergistic action.

上記の課題を解決するための本発明の手段は、請求項1の発明では、機械構造用鋼を機械加工もしくは鍛造によって部品形状に成形した後、真空浸炭焼入れを行い、その後に1回以上の高周波焼入れを行った後、これを焼戻しすることにより浸炭部品を製造することからなる衝撃強度、曲げ強度に優れた浸炭部品の製造方法である。   The means of the present invention for solving the above-mentioned problems is that, in the invention of claim 1, after mechanical structural steel is formed into a part shape by machining or forging, vacuum carburizing and quenching is performed, and then one or more times. This is a method for manufacturing a carburized part excellent in impact strength and bending strength, which comprises manufacturing a carburized part by performing induction hardening and then tempering it.

請求項2の発明では、焼戻しした浸炭部品を形成する機械構造用鋼は、質量%で、C:0.10〜0.45%、Si:0.05〜2.00%、Mn:0.10〜2.00%、P:0.030%以下、S:0.20%以下、Cr:0.30〜3.0%、Cu:0.30%以下、Al:0.001〜0.10%、N:0.01〜0.03%を含有し、残部Feおよび不可避不純物からなる鋼であることを特徴とする請求項1に記載の衝撃強度および曲げ強度に優れた浸炭部品の製造方法である。   In the invention of claim 2, the mechanical structural steel forming the tempered carburized parts is in mass%, C: 0.10 to 0.45%, Si: 0.05 to 2.00%, Mn: 0.00. 10-2.00%, P: 0.030% or less, S: 0.20% or less, Cr: 0.30-3.0%, Cu: 0.30% or less, Al: 0.001-0. The production of a carburized part having excellent impact strength and bending strength according to claim 1, characterized in that the steel contains 10%, N: 0.01 to 0.03%, and the balance is Fe and inevitable impurities. Is the method.

請求項3の発明では、焼戻しした浸炭部品を形成する機械構造用鋼は、請求項2の鋼成分に加え、さらに質量%で、Ni:0.20〜5.0%、Mo:0.05〜3.0%のいずれか1種または2種を含有し、残部Feおよび不可避不純物からなる鋼であることを特徴とする請求項1に記載した衝撃強度、曲げ強度に優れた浸炭部品の製造方法である。   In the invention of claim 3, the steel for machine structural forming the tempered carburized part is in addition to the steel component of claim 2 and further in mass%, Ni: 0.20-5.0%, Mo: 0.05 The production of a carburized part excellent in impact strength and bending strength according to claim 1, characterized in that it is a steel containing any one or two of ˜3.0% and the balance being Fe and inevitable impurities. Is the method.

請求項4の発明では、焼戻しした浸炭部品を形成する機械構造用鋼は、請求項2の鋼成分に加え、さらに質量%で、Ti:0.01〜0.50%、V:0.02〜0.50%、Nb:0.02〜0.50%、B:0.0010〜0.0050%のいずれか1種または2種以上を含有し、残部Feおよび不可避不純物からなる鋼であることを特徴とする請求項1〜3のいずれか1項に記載した衝撃強度、曲げ強度に優れた浸炭部品の製造方法である。ただし、TiもしくはBを添加した場合は、3.4N[%]<Ti[%]を満足するものとする。   In the invention of claim 4, the steel for machine structure forming the tempered carburized part is Ti: 0.01 to 0.50%, V: 0.02 in addition to the steel components of claim 2 and in mass%. -0.50%, Nb: 0.02-0.50%, B: 0.0010-0.0050% of any one or two or more types of steel, the balance Fe and unavoidable impurities It is a manufacturing method of the carburized components excellent in impact strength and bending strength as described in any one of Claims 1-3 characterized by the above-mentioned. However, when Ti or B is added, 3.4 N [%] <Ti [%] is satisfied.

請求項5の発明では、焼戻しした浸炭部品を形成する機械構造用鋼は、請求項3の鋼成分に加え、さらに質量%で、Ti:0.01〜0.50%、V:0.02〜0.50%、Nb:0.02〜0.50%、B:0.0010〜0.0050%のいずれか1種または2種以上を含有し、残部Feおよび不可避不純物からなる鋼であることを特徴とする請求項1〜3のいずれか1項に記載した衝撃強度、曲げ強度に優れた浸炭部品の製造方法である。ただし、TiもしくはBを添加した場合は、3.4N[%]<Ti[%]を満足するものとする。   In the invention of claim 5, the steel for machine structural forming the tempered carburized part is Ti: 0.01 to 0.50%, V: 0.02 in addition to the steel components of claim 3 and in mass%. -0.50%, Nb: 0.02-0.50%, B: 0.0010-0.0050% of any one or two or more types of steel, the balance Fe and unavoidable impurities It is a manufacturing method of the carburized components excellent in impact strength and bending strength as described in any one of Claims 1-3 characterized by the above-mentioned. However, when Ti or B is added, 3.4 N [%] <Ti [%] is satisfied.

上記の方法における請求項2〜5の方法で、機械構造用鋼の成分を限定した理由を説明する。なお、%は質量%を示す。   The reason why the mechanical structural steel components are limited by the methods of claims 2 to 5 in the above method will be described. In addition,% shows the mass%.

C:0.10〜0.45%、望ましくは、C:0.10〜0.25%
Cは機械構造用部品として浸炭処理後の芯部強度を確保するために必要な元素である。Cが0.10%未満では、その効果は十分に得られず、0.45%を超えると加工性を低下し、かつ靱性を低下させる。そこでCは0.10〜0.45%、望ましくは0.10〜0.25%とする。
C: 0.10 to 0.45%, desirably C: 0.10 to 0.25%
C is an element necessary for securing the core strength after carburizing as a machine structural component. If C is less than 0.10%, the effect is not sufficiently obtained, and if it exceeds 0.45%, workability is lowered and toughness is lowered. Therefore, C is 0.10 to 0.45%, preferably 0.10 to 0.25%.

Si:0.05〜2.00%
Siは脱酸に必要な元素で、0.05%未満では脱酸が十分に得られず、2.00%を超えると加工性を低下させる。そこでSiは0.05〜2.00%とする。
Si: 0.05-2.00%
Si is an element necessary for deoxidation. If it is less than 0.05%, sufficient deoxidation cannot be obtained, and if it exceeds 2.00%, workability is lowered. Therefore, Si is set to 0.05 to 2.00%.

Mn:0.10〜2.00%
Mnは焼入性を確保するために必要な元素であるが、0.10%未満ではその効果は十分に得られず、2.00%を超えると加工性を低下させる。そこでMnは0.10〜2.00%とする。
Mn: 0.10 to 2.00%
Mn is an element necessary for ensuring hardenability, but if it is less than 0.10%, the effect cannot be sufficiently obtained, and if it exceeds 2.00%, workability is lowered. Therefore, Mn is set to 0.10 to 2.00%.

P:0.030%以下
Pはスクラップから含有される不可避な元素であるが、オーステナイト粒界に偏析して衝撃強度や曲げ強度などの靱性を低下するので、含有量の上限を0.030%とする。
P: 0.030% or less P is an unavoidable element contained in scrap, but segregates at the austenite grain boundaries to reduce toughness such as impact strength and bending strength, so the upper limit of content is 0.030%. And

S:0.20%以下
Sは被削性を向上させる元素であるが、非金属介在物であるMnSを生成して、横方向の靱性および疲労強度を低下する。そこで、Sは0.20%以下とする。なお、Sはなくても良いが、被削性を要する場合にはSは0.001〜0.20%の範囲で添加する。
S: 0.20% or less S is an element that improves machinability, but produces MnS, which is a non-metallic inclusion, and lowers the toughness and fatigue strength in the transverse direction. Therefore, S is set to 0.20% or less. S may be omitted, but when machinability is required, S is added in a range of 0.001 to 0.20%.

Ni:0.20〜5.0%
Niは焼入性および靱性を向上させる元素であるが、0.20%未満ではその効果が十分ではなく、5.0%を超えて含有すると加工性を著しく低下させ、かつ、コストアップとなる。そこでNiは0.20〜5.0%とする。
Ni: 0.20 to 5.0%
Ni is an element that improves hardenability and toughness, but if it is less than 0.20%, the effect is not sufficient, and if it exceeds 5.0%, the workability is remarkably lowered and the cost is increased. . Therefore, Ni is set to 0.20 to 5.0%.

Cr:0.30〜3.0%
Crは焼入性および浸炭性を向上させる元素であるが、0.30%未満ではその効果が十分ではなく、3.0%を超えて含有すると加工性を低下する。そこでCrは0.30〜3.0%とする。
Cr: 0.30 to 3.0%
Cr is an element that improves hardenability and carburization, but if it is less than 0.30%, its effect is not sufficient, and if it exceeds 3.0%, the workability decreases. Therefore, Cr is set to 0.30 to 3.0%.

Mo:0.05〜3.0%
Moは焼入性および靱性を向上させる元素であるが、0.05%未満ではその効果が十分ではなく、3.0%を超えて含有すると加工性を低下させる。そこでMoは0.05〜3.0%とする。
Mo: 0.05-3.0%
Mo is an element that improves hardenability and toughness, but if it is less than 0.05%, its effect is not sufficient, and if it exceeds 3.0%, workability is lowered. Therefore, Mo is set to 0.05 to 3.0%.

Cu:0.30%以下
Cuはスクラップから含有される不可避な元素で、時効性を有し強度を上昇させるが、0.30%を超えると熱間加工性を低下する。そこで、Cuは0.30%以下とする。
Cu: 0.30% or less Cu is an unavoidable element contained in scrap, and has aging properties and increases strength. However, when it exceeds 0.30%, hot workability decreases. Therefore, Cu is made 0.30% or less.

Al:0.001〜0.10%、望ましくは0.02〜0.05%
Alは脱酸材として使用される元素であり、0.02%未満では脱酸効果は不十分であり、0.05%を超えるとアルミナ系酸化物が増加し疲労特性、加工性を低下する。そこでAlは0.001〜0.10%、望ましくは0.02〜0.05%とする。
Al: 0.001 to 0.10%, desirably 0.02 to 0.05%
Al is an element used as a deoxidizing material, and if it is less than 0.02%, the deoxidation effect is insufficient, and if it exceeds 0.05%, alumina-based oxides increase and fatigue characteristics and workability deteriorate. . Therefore, Al is 0.001 to 0.10%, preferably 0.02 to 0.05%.

Ti:0.05〜0.50%、望ましくはTi:0.10〜0.20%
Tiは鋼中のfree−Nを固定し、Bの焼入性の効果を向上させると共に、Ti炭化物、Tiを含有する複合炭化物、Ti窒化物を微細に析出させることによって、浸炭時のオーステナイト結晶粒度の粗大化を抑制するために必要な元素である。特に、鋼中に微細分散したナノオーダーのTiCが結晶粒の成長を抑制する。Tiが0.05%未満では、結晶粒粗大化防止効果は十分でなく、0.1%以上が望ましい。しかし、0.5%を超えると析出物の量が過剰となり加工性を低下する。そこで、Tiは0.05〜0.50%、望ましくは0.10〜0.20%とする。
Ti: 0.05 to 0.50%, desirably Ti: 0.10 to 0.20%
Ti fixes free-N in steel, improves the hardenability effect of B, and finely precipitates Ti carbide, composite carbide containing Ti, and Ti nitride, thereby austenite crystals during carburizing It is an element necessary for suppressing the coarsening of the particle size. In particular, nano-order TiC finely dispersed in steel suppresses the growth of crystal grains. If Ti is less than 0.05%, the effect of preventing coarsening of crystal grains is not sufficient, and 0.1% or more is desirable. However, if it exceeds 0.5%, the amount of precipitate becomes excessive and the workability is lowered. Therefore, Ti is made 0.05 to 0.50%, preferably 0.10 to 0.20%.

N:0.01〜0.05%、望ましくは0.01〜0.03%
NはAl、Nb、Vと窒化物、炭窒化物を形成し、結晶粒粗大化の防止効果を有する元素であるが、Nが0.01%未満では結晶粒微細化の効果は小さく、0.05%を超えると、窒化物が増加し、疲労強度および加工性を低下する。そこで、Nは0.01〜0.05%、望ましくは0.01〜0.03%とする。ただし、Bを有する鋼材では、鋼中にfree−Nが存在すると、BNが生成され、固溶Bが減少し、焼入性の向上、浸炭部品の強度向上効果を阻害する。そこで、Bを添加する前にNをTiNとし、固定する必要がある。そのために、3.4N[%]<Ti[%]を満たさなければならない。
N: 0.01 to 0.05%, desirably 0.01 to 0.03%
N is an element which forms Al, Nb, V and nitrides and carbonitrides, and has an effect of preventing grain coarsening. However, when N is less than 0.01%, the effect of crystal grain refinement is small. If it exceeds 0.05%, nitrides increase and fatigue strength and workability deteriorate. Therefore, N is set to 0.01 to 0.05%, preferably 0.01 to 0.03%. However, in the steel material having B, when free-N is present in the steel, BN is generated, solute B is reduced, and the effect of improving the hardenability and the strength of carburized parts is hindered. Therefore, before adding B, N must be TiN and fixed. Therefore, it is necessary to satisfy 3.4N [%] <Ti [%].

B:0.0010〜0.0050%
Bは極小量の含有によって鋼の焼入性を著しく向上させ、浸炭部品の強度を向上させる元素で選択的に含有される。しかし、0.0010%未満では焼入性、強度の向上効果が小さく、0.0050%を超えると強度を低下する。そこで、Bは0.0010〜0.0050%とする。
B: 0.0010 to 0.0050%
B is selectively contained as an element that remarkably improves the hardenability of the steel by containing a minimum amount and improves the strength of the carburized part. However, if it is less than 0.0010%, the effect of improving hardenability and strength is small, and if it exceeds 0.0050%, the strength is lowered. Therefore, B is 0.0010 to 0.0050%.

V:0.02〜0.50%
Vは炭化物あるいは炭窒化物を形成し、Ti同様にオーステナイト結晶粒度の粗大化を抑制する効果を有する。Vが0.02%未満ではその効果が十分得られず、0.50%を超えると析出物の量が過剰となり加工性を低下する。そこで、Vは0.02〜0.50%とする。
V: 0.02-0.50%
V forms carbides or carbonitrides, and has the effect of suppressing coarsening of the austenite crystal grain size, similar to Ti. If V is less than 0.02%, the effect cannot be obtained sufficiently, and if it exceeds 0.50%, the amount of precipitates becomes excessive and the workability deteriorates. Therefore, V is 0.02 to 0.50%.

Nb:0.02〜0.50%
Nbは炭化物あるいは炭窒化物を形成し、Ti同様にオーステナイト結晶粒度の粗大化を抑制する効果を有する。Nbが0.02%未満ではその効果が十分得られず、0.50%を超えると析出物の量が過剰となり加工性を低下する。そこで、Nbは0.02〜0.50%とする。
Nb: 0.02 to 0.50%
Nb forms carbides or carbonitrides, and has the effect of suppressing coarsening of the austenite grain size, similar to Ti. If Nb is less than 0.02%, the effect cannot be sufficiently obtained, and if it exceeds 0.50%, the amount of precipitates becomes excessive and workability is lowered. Therefore, Nb is made 0.02 to 0.50%.

繰返し高周波焼入れによる結晶粒微細化と真空浸炭の組合せの工程の限定理由について説明する。   The reason for limiting the process of the combination of crystal grain refinement and vacuum carburization by repeated induction hardening will be described.

繰返し高周波焼入れについて
本発明の方法における工程で、繰返し高周波焼入れする点について説明する。本発明は結晶粒の微細化手法として高周波繰返し焼入れ法を用いるが、1回の焼入れよりも2回の焼入れの方がその効果は大きい。ただし、鋼種によっては、3回以上の焼入れを繰り返すと逆に混粒が発生し、強度も低下するという問題がある。
About Repeated Induction Hardening The point of repeated induction hardening in the process of the method of the present invention will be described. In the present invention, a high-frequency repetitive quenching method is used as a method for refining crystal grains. However, the effect of the two-time quenching is greater than the one-time quenching. However, depending on the type of steel, there is a problem that, when the quenching is repeated three times or more, mixed grains are generated and the strength is lowered.

結晶粒微細化と真空浸炭の組合せの必要性について
ガス浸炭処理を行なう場合、雰囲気中に含まれている酸素が鋼材表面から進入し、結晶粒界近傍のSi、Mn、Crと結びつき酸化物を形成する。これらの固溶合金が少なくなった近傍は焼入れ性が低下し、焼入れ時にマルテンサイトが生成せず、トルースタイトやベイナイトが生成する。特に酸素は結晶粒界に沿って進入し易く、結晶粒界にそって浸炭異常層が生成する。この浸炭異常層は特に粒界酸化層と呼ばれている。鋼材表面に粒界酸化層が生成すると、粒界酸化層は欠陥として作用する。そのため、粒界酸化層の深さが深いほど強度が低下する。
Necessity of the combination of grain refinement and vacuum carburizing When performing gas carburizing treatment, oxygen contained in the atmosphere enters from the surface of the steel material and combines with Si, Mn, Cr near the grain boundary to form oxides. Form. In the vicinity where these solid solution alloys are reduced, the hardenability is lowered, martensite is not generated during quenching, and troostite and bainite are generated. In particular, oxygen easily enters along the grain boundaries, and an abnormal carburization layer is generated along the grain boundaries. This carburized abnormal layer is particularly called a grain boundary oxide layer. When a grain boundary oxide layer is generated on the steel material surface, the grain boundary oxide layer acts as a defect. Therefore, the strength decreases as the depth of the grain boundary oxide layer increases.

ところで、ガス浸炭した材料は結晶粒径を小さくしていった場合、ある程度までは、結晶粒径が小さくなるほど強度は向上するが、ある粒径以下に小さくしても、強度は飽和して向上しない。この理由としては、粒界酸化層が影響していると推定される。すなわち、結晶粒径が粒界酸化層より大きい場合は、結晶粒径が小さくなればなるほど強度は向上するが、結晶粒径が粒界酸化層より小さくなると、粒界酸化層の方が欠陥として大きくなり、結晶粒微細化の効果が得られないと考えられる。したがって、結晶粒微細化の効果を最大限に発揮させようとすれば、粒界酸化層を低減、もしくは防止することが必須である。一方、粒界酸化層を低減して強度を向上させる方法も知られているが、この方法でも結晶粒が大きければ粒界酸化層の低減の効果が十分に得られず、強度は大きく向上しない。この様に結晶粒の微細化、粒界酸化層の低減のいずれか一方では強度向上効果は小さく、強度向上効果を大きくするためには「結晶粒の微細化」と「粒界酸化層の低減、防止」の両方の組合わせが必要であると考えられる。
また、真空浸炭は減圧下で高温に加熱された炉内に炭化水素系のガスを供給し炉内に挿入された被処理物を浸炭する方法で粒界酸化などの浸炭異常層が生成しないという特長がある。つまり、真空浸炭により粒界酸化層を生成させず、その後に繰返し焼入れにより結晶粒微細化を行うことにより衝撃強度、曲げ強度を大きく向上させることができる。
By the way, when the crystal grain size of the gas carburized material is reduced, the strength is improved as the crystal grain size is reduced to a certain extent. do not do. It is estimated that this is because the grain boundary oxide layer has an influence. That is, when the crystal grain size is larger than the grain boundary oxide layer, the strength improves as the crystal grain size becomes smaller. However, when the crystal grain size becomes smaller than the grain boundary oxide layer, the grain boundary oxide layer becomes a defect. It becomes large and it is thought that the effect of crystal grain refinement cannot be obtained. Therefore, it is essential to reduce or prevent the grain boundary oxide layer in order to maximize the effect of crystal grain refinement. On the other hand, a method for improving the strength by reducing the grain boundary oxide layer is also known, but even if this method is used, if the crystal grains are large, the effect of reducing the grain boundary oxide layer cannot be sufficiently obtained, and the strength is not greatly improved. . In this way, either the grain refinement or the reduction of the grain boundary oxide layer has a small strength improvement effect. To increase the strength improvement effect, "crystal grain refinement" and "grain boundary oxide layer reduction The combination of both “prevention” and “prevention” is considered necessary.
In addition, vacuum carburization is a method in which a hydrocarbon-based gas is supplied into a furnace heated to a high temperature under reduced pressure and the workpiece inserted into the furnace is carburized, so that an abnormal carburizing layer such as grain boundary oxidation is not generated. There are features. That is, the impact strength and the bending strength can be greatly improved by not generating the grain boundary oxide layer by vacuum carburization and then refining the crystal grains by repeated quenching.

本発明は、真空浸炭焼入れにより粒界酸化などの浸炭異常層を防止することと、真空浸炭焼入れ後に1回以上の高周波焼入れを行なった後、これを焼戻すことにより結晶粒を微細化することの両手段でもって、自動車、建設機械、工作機械などのギアやシャフトなどの機械部品の浸炭鋼材による高強度浸炭部品を、従来の鋼材に比して加工性を低下することなく、低コストで、製造可能とするなど、本発明は、従来にない優れた効果を奏するものである。   The present invention prevents a carburizing abnormal layer such as grain boundary oxidation by vacuum carburizing and quenching, and after performing induction hardening at least once after vacuum carburizing and quenching, the crystal grains are refined by tempering this. With both of these measures, high-strength carburized parts made of carburized steel for machine parts such as gears and shafts of automobiles, construction machines, machine tools, etc. can be manufactured at low cost without reducing workability compared to conventional steel materials. The present invention, such as making it possible to produce, has an excellent effect that has not been achieved in the past.

本発明を実施するための最良の形態について、表および図面を参照して説明する。先ず、表1に示す本発明の実施例のNo.1〜17の化学成分を含有するそれぞれの鋼を100kg真空誘導溶解炉で溶製してインゴットに鋳造した。これらの鋼において、Al、Nb、V、Tiの析出物をいったん固溶させ、その後に熱処理で微細に析出させるため、このインゴットを1250℃に加熱し、5時間保持して溶体化処理を行い、析出物を微細に析出させた鋼材を得た。   The best mode for carrying out the present invention will be described with reference to tables and drawings. First, the No. of the embodiment of the present invention shown in Table 1 is shown. Each steel containing 1 to 17 chemical components was melted in a 100 kg vacuum induction melting furnace and cast into an ingot. In these steels, in order to once precipitate Al, Nb, V, Ti precipitates and then finely precipitate them by heat treatment, this ingot is heated to 1250 ° C. and held for 5 hours for solution treatment. Thus, a steel material on which precipitates were finely precipitated was obtained.


Figure 2010007120
Figure 2010007120

上記の溶体化処理した鋼材を角40mmの素材に鍛伸した。この素材を900℃に加熱し1時間保持した後空冷することにより焼きならしを行なった。さらに、この素材から図1に示す2mm10RCノッチ2のシャルピー衝撃試験片1と、図2に示す2mmVノッチ4の静曲げ試験片3を作製した。これらの試験片を、それぞれ図3に示すように950℃に加熱して0.5時間予熱し真空浸炭を1時間行い、2.5時間保持して拡散し、850℃に下げて0.5時間保持し、次いで20℃の油に焼入れし、180℃に焼戻した。また、真空浸炭の効果を比較確認するために、図4に示すように930℃に加熱して0.5時間予熱しガス浸炭を3時間行い、2.5時間保持して拡散し、830℃に下げて0.5時間保持し、次いで60℃の油に焼入れ条件でガス浸炭焼入れを行い180℃に戻した試験片も作製した。さらに、繰返し焼入れを行うものは、真空浸炭またはガス浸炭によるそれぞれの浸炭焼入れ後、上記の焼戻しを行うことなく、1回以上の高周波焼入れを行った後、180℃に焼戻した。これらは、表2に、「ガス浸炭焼入れまま」、「真空浸炭焼入れまま」、「高周波焼入れ1回」または「高周波焼入れ2回」と示す。このようにそれぞれの浸炭方法に対し3種の焼入れ・焼戻しを実施した。なお、高周波焼入れは、最高到達点温度:850〜950℃、加熱時間:2秒で、水冷により焼入れした。   The solution-treated steel material was forged into a 40 mm square material. This material was heated to 900 ° C., held for 1 hour, and then air cooled to normalize. Further, a Charpy impact test piece 1 having a 2 mm 10 RC notch 2 shown in FIG. 1 and a static bending test piece 3 having a 2 mm V notch 4 shown in FIG. 2 were produced from this material. As shown in FIG. 3, each of these test pieces was heated to 950 ° C., preheated for 0.5 hours, vacuum carburized for 1 hour, held for 2.5 hours and diffused, and lowered to 850 ° C. to 0.5 Hold for a period of time, then quench into oil at 20 ° C. and temper to 180 ° C. Further, in order to compare and confirm the effect of vacuum carburizing, as shown in FIG. 4, it is heated to 930 ° C., preheated for 0.5 hours, gas carburized for 3 hours, held for 2.5 hours and diffused, 830 ° C. A test piece was also produced which was held for 0.5 hour and then gas-carburized and quenched to 60 ° C. oil at 180 ° C. under quenching conditions. Further, in the case of repeated quenching, after each carburizing and quenching by vacuum carburizing or gas carburizing, one or more induction quenching was performed without performing the above tempering, and then tempering to 180 ° C. These are shown in Table 2 as “gas carburized as-quenched”, “vacuum carburized as-quenched”, “induction-quenched once” or “induction-quenched twice”. In this way, three types of quenching and tempering were carried out for each carburizing method. The induction hardening was performed by water cooling at a maximum reaching point temperature of 850 to 950 ° C. and a heating time of 2 seconds.

以上のように、それぞれの浸炭方法に対し焼入れ・焼戻し条件を3種に変化させることによって、結晶粒の異なる試験片を作製し、その衝撃強度および静曲げ強度と、それらに及ぼす結晶粒径の影響を調査した。   As described above, by changing the quenching and tempering conditions into three types for each carburizing method, specimens with different crystal grains were prepared, and the impact strength and static bending strength, and the crystal grain size effected on them were determined. The impact was investigated.

上記のように作製したシャルピー衝撃試験片を、シャルピー衝撃試験機を用いて衝撃試験し、そのき裂発生エネルギーにより衝撃値を評価し、この評価をシャルピー衝撃試験片の浸炭層表面の平均結晶粒径とあわせて、表2に示して衝撃試験結果とした。表2で、シャルピー衝撃試験片の浸炭層表面の平均結晶粒径はμmを単位として示し、衝撃値は比較例のNo.1のガス浸炭焼入れ・焼戻しの試験片のき裂発生エネルギーを1.0とし、この値を基準として対比したそれぞれのき裂発生エネルギーの値により示した。なお、衝撃試験は室温で行った。   The Charpy impact test piece produced as described above was subjected to an impact test using a Charpy impact tester, and the impact value was evaluated by the crack generation energy. This evaluation was made based on the average grain size of the carburized layer surface of the Charpy impact test piece. Together with the diameters, the impact test results are shown in Table 2. In Table 2, the average grain size of the carburized layer surface of the Charpy impact test piece is shown in μm, and the impact value is No. of the comparative example. The crack initiation energy of the gas carburized quenching / tempering test piece No. 1 was set to 1.0, and the crack initiation energy was compared with this value as a reference. The impact test was performed at room temperature.

Figure 2010007120
Figure 2010007120

表2に示すように、実施例の鋼は浸炭焼入れ後に高周波焼入れを行なうと、いずれの鋼も旧オーステナイト粒径が小さくなり、高周波焼入れ回数が1回よりも2回の方が小さくなった。   As shown in Table 2, when the steels of the examples were subjected to induction hardening after carburizing and quenching, all of the steels had a smaller prior austenite grain size, and the number of induction hardenings was smaller than twice than once.

実施例の鋼は、ガス浸炭したものも、真空浸炭したものも、浸炭焼入れ後に高周波焼入れを繰り返すことで、旧オーステナイト粒径は小さくなっている。しかし、ガス浸炭したものが旧オーステナイト粒径が小さくなっても、衝撃強度は大きく向上していないのに対し、真空浸炭したものは、旧オーステナイト粒径の微細化により衝撃強度が大きく向上した。以上の様に、実施例の鋼を用いて、真空浸炭焼入れ後に1回以上の高周波焼入れを行なうことにより大幅に衝撃値が向上した。   In the steels of the examples, both the gas carburized steel and the vacuum carburized steel are repeatedly subjected to induction hardening after carburizing and quenching, whereby the prior austenite grain size is reduced. However, the impact strength is not greatly improved even when the gas austenite particle size is reduced in the case of gas carburization, whereas the impact strength is greatly improved due to the refinement of the particle size of the prior austenite in the case of vacuum carburization. As described above, the impact value was significantly improved by performing induction hardening at least once after vacuum carburizing and quenching using the steel of the example.

さらに、上記で熱処理を行った静曲げ試験片3を、図5に示すように、支点間距離50mmの3点曲げにより、中心のクロスヘッドを2mm/minの移動速度で、すなわち静曲げ試験片3の両端部を下方から支持して中心5を下方の矢印方向に荷重を掛けて押し、静曲げ試験を実施した。この試験により、静曲げ試験片3の表面層にき裂が生じた時点における荷重をき裂発生荷重として静曲げ強度を評価し、浸炭層表面の平均結晶粒径とあわせて、表3に静曲げ試験の結果を示す。表3において、比較例のNo.1のガス浸炭焼入れままのき裂発生荷重を1.0とし、この値を基準に対比した値で、それぞれのき裂発生荷重を示した。なお、この静曲げ試験は室温で行った。   Further, as shown in FIG. 5, the static bending test piece 3 subjected to the heat treatment as described above is subjected to three-point bending with a fulcrum distance of 50 mm, and the central crosshead is moved at a moving speed of 2 mm / min, that is, the static bending test piece. The both ends of 3 were supported from below, and the center 5 was pushed by applying a load in the downward arrow direction, and a static bending test was performed. By this test, the static bending strength was evaluated using the load at the time when a crack was generated on the surface layer of the static bending test piece 3 as a crack generation load. The result of a bending test is shown. In Table 3, No. of the comparative example. The crack initiation load of 1 as the gas carburizing and quenching was set to 1.0, and each crack initiation load was shown as a value compared with this value. This static bending test was performed at room temperature.

Figure 2010007120
Figure 2010007120

表3に示すように、実施例の鋼は衝撃試験片と同様に浸炭焼入れ後の高周波焼入れにより旧オーステナイト粒が小さくなり、高周波焼入れ回数が1回よりも2回の方が小さくなった。実施例の鋼は、ガス浸炭したものも、真空浸炭したものも、浸炭焼入れ後に高周波焼入れを繰り返すことで、旧オーステナイト粒径は小さくなっている。しかし、ガス浸炭したものが、旧オーステナイト粒径が小さくなっても静曲げ強度は大きく向上していないのに対し、真空浸炭したものは、旧オーステナイト粒径の微細化により静曲げ強度が大きく向上した。以上の様に、実施例の鋼を用いて、真空浸炭焼入れ後に1回以上の高周波焼入れを行なうことにより大幅に静曲げ強度が向上した。   As shown in Table 3, in the steel of the example, the prior austenite grains were reduced by induction hardening after carburizing and quenching, as in the case of the impact test piece, and the number of induction hardening was smaller twice than once. In the steels of the examples, both the gas carburized steel and the vacuum carburized steel are repeatedly subjected to induction hardening after carburizing and quenching, whereby the prior austenite grain size is reduced. However, the gas-carburized one does not significantly improve the static bending strength even when the prior austenite grain size decreases, whereas the one that is vacuum carburized greatly improves the static bending strength due to the refinement of the former austenite grain size. did. As described above, the static bending strength was greatly improved by performing induction hardening at least once after vacuum carburizing and quenching using the steel of the example.

以上に説明したように、本発明の方法により真空浸炭焼入れ後に1回以上の高周波焼入れを行うことで、結晶粒の微細な衝撃強度および静曲げ強度に優れた浸炭部品を製造することができた。   As described above, carburized parts excellent in fine impact strength and static bending strength of crystal grains could be manufactured by performing induction hardening at least once after vacuum carburizing and quenching by the method of the present invention. .

シャルピー衝撃試験片の形状・大きさを示す図である。It is a figure which shows the shape and magnitude | size of a Charpy impact test piece. 静曲げ試験片の形状・大きさを示す図である。It is a figure which shows the shape and magnitude | size of a static bending test piece. 真空浸炭焼入れ焼戻し条件を示す図である。 。It is a figure which shows vacuum carburizing quenching tempering conditions. . ガス浸炭焼入れ焼戻し条件を示す図である。It is a figure which shows gas carburizing quenching tempering conditions. 試験片に静曲げ試験方法を示す図である。It is a figure which shows the static bending test method to a test piece.

符号の説明Explanation of symbols

1 シャルピー衝撃試験片
2 10R2mmCノッチ
3 静曲げ試験片
4 2mmVノッチ
5 中心
1 Charpy impact test piece 2 10R2mmC notch 3 Static bending test piece 4 2mmV notch 5 Center

Claims (5)

機械構造用鋼を機械加工もしくは鍛造によって部品形状に成形した後、真空浸炭焼入れを行い、その後に1回以上の高周波焼入れを行なった後、これを焼戻しすることにより浸炭部品を製造することを特徴とする衝撃強度および曲げ強度に優れた浸炭部品の製造方法。   Machine structural steel is formed into parts by machining or forging, vacuum carburizing and quenching is performed, and then induction hardening is performed one or more times, followed by tempering to manufacture carburized parts. A method for producing a carburized part having excellent impact strength and bending strength. 焼戻しした浸炭部品を形成する機械構造用鋼は、質量%で、C:0.10〜0.45%、Si:0.05〜2.00%、Mn:0.10〜2.00%、P:0.030%以下、S:0.20%以下、Cr:0.30〜3.0%、Cu:0.30%以下、Al:0.001〜0.10%、N:0.01〜0.03%を含有し、残部Feおよび不可避不純物からなる鋼であることを特徴とする衝撃強度および曲げ強度に優れた浸炭部品の製造方法。   Machine structural steel forming tempered carburized parts is in mass%, C: 0.10 to 0.45%, Si: 0.05 to 2.00%, Mn: 0.10 to 2.00%, P: 0.030% or less, S: 0.20% or less, Cr: 0.30 to 3.0%, Cu: 0.30% or less, Al: 0.001 to 0.10%, N: 0.00. A method for producing a carburized part excellent in impact strength and bending strength, characterized by being a steel containing 01 to 0.03% and the balance being Fe and inevitable impurities. 焼戻しした浸炭部品を形成する機械構造用鋼は、請求項2の鋼成分に加え、さらに質量%で、Ni:0.20〜5.0%、Mo:0.05〜3.0%のいずれか1種または2種を含有し、残部Feおよび不可避不純物からなる鋼であることを特徴とする請求項1〜3のいずれか1項に記載した衝撃強度、曲げ強度に優れた浸炭部品の製造方法。   In addition to the steel components of claim 2, the steel for machine structural forming the tempered carburized part is further mass%, Ni: 0.20-5.0%, Mo: 0.05-3.0% The production of a carburized part excellent in impact strength and bending strength according to any one of claims 1 to 3, characterized in that it is a steel containing one or two kinds and the balance being Fe and inevitable impurities. Method. 焼戻しした浸炭部品を形成する機械構造用鋼は、請求項2の鋼成分に加え、さらに質量%で、Ti:0.05〜0.50%、V:0.02〜0.50%、Nb:0.02〜0.50%、B:0.0010〜0.0050%のいずれか1種または2種以上を含有し、残部Feおよび不可避不純物からなる鋼であることを特徴とする請求項1〜3のいずれか1項に記載した衝撃強度、曲げ強度に優れた浸炭部品の製造方法。ただし、TiもしくはBを添加した場合は、3.4N[%]<Ti[%]を満足するものとする。   In addition to the steel components of claim 2, the steel for mechanical structure forming the tempered carburized part is further in mass%, Ti: 0.05 to 0.50%, V: 0.02 to 0.50%, Nb : A steel comprising 0.02 to 0.50%, B: 0.0010 to 0.0050%, one or more, and the balance being Fe and inevitable impurities. The manufacturing method of the carburized component excellent in impact strength and bending strength as described in any one of 1-3. However, when Ti or B is added, 3.4 N [%] <Ti [%] is satisfied. 焼戻しした浸炭部品を形成する機械構造用鋼は、請求項3の鋼成分に加え、さらに質量%で、Ti:0.05〜0.50%、V:0.02〜0.50%、Nb:0.02〜0.50%、B:0.0010〜0.0050%のいずれか1種または2種以上を含有し、残部Feおよび不可避不純物からなる鋼であることを特徴とする請求項1〜3のいずれか1項に記載した衝撃強度、曲げ強度に優れた浸炭部品の製造方法。ただし、TiもしくはBを添加した場合は、3.4N[%]<Ti[%]を満足するものとする。   In addition to the steel components of claim 3, the steel for mechanical structure forming the tempered carburized part is further in mass%, Ti: 0.05 to 0.50%, V: 0.02 to 0.50%, Nb : A steel comprising 0.02 to 0.50%, B: 0.0010 to 0.0050%, one or more, and the balance being Fe and inevitable impurities. The manufacturing method of the carburized component excellent in impact strength and bending strength as described in any one of 1-3. However, when Ti or B is added, 3.4 N [%] <Ti [%] is satisfied.
JP2008165997A 2008-06-25 2008-06-25 Method for manufacturing high-strength carburized component Pending JP2010007120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165997A JP2010007120A (en) 2008-06-25 2008-06-25 Method for manufacturing high-strength carburized component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165997A JP2010007120A (en) 2008-06-25 2008-06-25 Method for manufacturing high-strength carburized component

Publications (1)

Publication Number Publication Date
JP2010007120A true JP2010007120A (en) 2010-01-14

Family

ID=41587930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165997A Pending JP2010007120A (en) 2008-06-25 2008-06-25 Method for manufacturing high-strength carburized component

Country Status (1)

Country Link
JP (1) JP2010007120A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102729321A (en) * 2011-04-15 2012-10-17 陈治贵 Environment-friendly and energy-saving baking-free brick molding template and surface strengthening treatment process thereof
JP2013028860A (en) * 2011-07-29 2013-02-07 Sanyo Special Steel Co Ltd Steel material made of carburizing steel having excellent torsion-fatigue characteristics
JP2015140482A (en) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 Case hardened steel and carburized part using the same
CN106521402A (en) * 2016-11-29 2017-03-22 金川集团股份有限公司 Whole heat treatment method for 23CrNi3MoA hollow steel rock drill rod
CN107119177A (en) * 2017-05-16 2017-09-01 沈阳透平机械股份有限公司 The carburizing and quenching surface intensified technique of turbocompressor 12Cr2Ni4 high gears
CN107299202A (en) * 2017-05-16 2017-10-27 沈阳透平机械股份有限公司 The conditioning treatment process choice method of carburizing and quenching gear anti-distortion
CN107312921A (en) * 2017-05-16 2017-11-03 沈阳透平机械股份有限公司 A kind of method for reducing thin-walled carburizing and quenching high gear amount of distortion and application
CN110343817A (en) * 2019-07-30 2019-10-18 河源市兴达源模具有限公司 A kind of automobile die steel processing technology

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102729321A (en) * 2011-04-15 2012-10-17 陈治贵 Environment-friendly and energy-saving baking-free brick molding template and surface strengthening treatment process thereof
JP2013028860A (en) * 2011-07-29 2013-02-07 Sanyo Special Steel Co Ltd Steel material made of carburizing steel having excellent torsion-fatigue characteristics
US10689721B2 (en) 2014-01-30 2020-06-23 Daido Steel Co., Ltd. Case hardening steel and carburized component obtained therefrom
JP2015140482A (en) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 Case hardened steel and carburized part using the same
WO2015115336A1 (en) * 2014-01-30 2015-08-06 大同特殊鋼株式会社 Case hardening steel and carburized component obtained therefrom
CN106062227A (en) * 2014-01-30 2016-10-26 大同特殊钢株式会社 Case hardening steel and carburized component obtained therefrom
CN106521402A (en) * 2016-11-29 2017-03-22 金川集团股份有限公司 Whole heat treatment method for 23CrNi3MoA hollow steel rock drill rod
CN107119177A (en) * 2017-05-16 2017-09-01 沈阳透平机械股份有限公司 The carburizing and quenching surface intensified technique of turbocompressor 12Cr2Ni4 high gears
CN107312921A (en) * 2017-05-16 2017-11-03 沈阳透平机械股份有限公司 A kind of method for reducing thin-walled carburizing and quenching high gear amount of distortion and application
CN107299202B (en) * 2017-05-16 2019-06-28 沈阳透平机械股份有限公司 The conditioning treatment process choice method of carburizing and quenching gear anti-distortion
CN107119177B (en) * 2017-05-16 2019-07-12 沈阳透平机械股份有限公司 The carburizing and quenching surface intensified technique of turbocompressor 12Cr2Ni4 high gear
CN107312921B (en) * 2017-05-16 2019-07-30 沈阳透平机械股份有限公司 A kind of method and application reducing thin-walled carburizing and quenching high gear amount of distortion
CN107299202A (en) * 2017-05-16 2017-10-27 沈阳透平机械股份有限公司 The conditioning treatment process choice method of carburizing and quenching gear anti-distortion
CN110343817A (en) * 2019-07-30 2019-10-18 河源市兴达源模具有限公司 A kind of automobile die steel processing technology

Similar Documents

Publication Publication Date Title
JP5669339B2 (en) Manufacturing method of high strength carburized parts
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP4965001B2 (en) Steel parts with excellent resistance to temper softening
WO2010082481A1 (en) Case hardening steel, carburized component, and method for producing case hardening steel
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP2009299148A (en) Method for manufacturing high-strength carburized component
JP6432932B2 (en) High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same
JP2010007120A (en) Method for manufacturing high-strength carburized component
JP2006213951A (en) Steel for carburized component excellent in cold workability, preventing coarsening of crystal grains in carburizing impact resistance and impact fatigue resistance
WO2019244503A1 (en) Mechanical component
JP6794012B2 (en) Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance
WO2014027463A1 (en) Steel material for high frequency induction hardening
JP2006348321A (en) Steel for nitriding treatment
WO2018180342A1 (en) Shaft member
JP2009299165A (en) Method for manufacturing high-strength carburized component by induction hardening
JPH06172867A (en) Production of gear excellent in impact fatigue life
JP2016138320A (en) NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL
JP2009299147A (en) Method for manufacturing high-strength carburized component
JP7223997B2 (en) Steel with high hardness and excellent toughness
JP4488228B2 (en) Induction hardening steel
JP2010007117A (en) Method for manufacturing high-strength carburized component
JP2010007119A (en) Method for manufacturing high-strength carburized component
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JP2013072104A (en) Steel excellent in toughness and wear resistance
JP2009299146A (en) Method for manufacturing high-strength carburized component

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110510

Free format text: JAPANESE INTERMEDIATE CODE: A621

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120911