WO2023026582A1 - Hot-rolled steel plate - Google Patents

Hot-rolled steel plate Download PDF

Info

Publication number
WO2023026582A1
WO2023026582A1 PCT/JP2022/017417 JP2022017417W WO2023026582A1 WO 2023026582 A1 WO2023026582 A1 WO 2023026582A1 JP 2022017417 W JP2022017417 W JP 2022017417W WO 2023026582 A1 WO2023026582 A1 WO 2023026582A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
pearlite
steel sheet
hot
Prior art date
Application number
PCT/JP2022/017417
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 中田
武 豊田
駿介 小林
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023543681A priority Critical patent/JPWO2023026582A1/ja
Publication of WO2023026582A1 publication Critical patent/WO2023026582A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a hot-rolled steel sheet, and more particularly, to a hot-rolled steel sheet used for structural members of automobiles and the like, which has high strength, uniform elongation, and excellent punched end face fatigue properties. .
  • Patent Document 1 it has a predetermined chemical composition, and the metal structure has an area ratio of pearlite: 90 to 100%, pseudo pearlite: 0 to 10%, and proeutectoid ferrite: 0 to 1%, and the pearlite is 0.20 ⁇ m or less, and the average pearlite block diameter of the pearlite is 20.0 ⁇ m or less.
  • Patent Document 1 describes that with the above configuration, it is possible to obtain a hot-rolled steel sheet having a high tensile strength of 980 MPa or more and excellent ductility, hole expansibility, and punchability. .
  • Patent Document 2 in relation to the pearlite-based structure as described in Patent Document 1, in Patent Document 2, in the case of a hot-rolled steel sheet, if the growth time during pearlite transformation is sufficient, it is possible to have an elongated form of lamellar cementite. stated to be common. Further, Patent Document 3 describes a hot-rolled steel sheet having a pearlite structure as a main phase, a ferrite structure in the residual structure of 20% or less, and a lamellar spacing of the pearlite structure of 500 nm or less.
  • Patent Document 1 teaches that a total elongation of 13% or more can be achieved in relation to ductility, it does not specifically show improvement in uniform elongation.
  • Patent Document 1 in relation to punchability, although it is specifically disclosed that the occurrence of cracks on the end face during punching is suppressed, improvement in fatigue characteristics on the punched end face is not necessarily sufficient. No consideration has been made. Therefore, the hot-rolled steel sheet described in Patent Document 1 still has room for improvement in terms of uniform elongation and fatigue properties of punched edge faces.
  • an object of the present invention is to provide a hot-rolled steel sheet with high strength and excellent uniform elongation and punched end face fatigue properties by a novel configuration.
  • the present inventors improved the strength of the steel sheet by utilizing the precipitation strengthening by Cu, and appropriately controlled the C and Cr contents in the steel sheet. It was found that uniform elongation can be improved by increasing the percentage of high pearlite, and on the other hand, fatigue characteristics of the punched end face can be improved by making the cementite in the pearlite layered (lamellar). perfected the invention.
  • the present invention that has achieved the above object is as follows.
  • the microstructure is the area ratio, Perlite: 70% or more, ferrite: 0-30%, and bainite: 0-30%, Less than 10 pieces of cementite per 10 ⁇ m 2 having a major
  • the hot-rolled steel sheet according to (1) above comprising one or more selected from the group consisting of: (3) The hot-rolled steel sheet according to (1) or (2) above, which has a thickness of 1.0 to 6.0 mm.
  • a hot-rolled steel sheet is The chemical composition, in mass %, C: 0.20 to 0.30%, Si: 0.01 to 2.00%, Mn: 0.50-3.00%, P: 0.100% or less, S: 0.0100% or less, Al: 0.005 to 3.000%, N: 0.0100% or less, O: 0.0100% or less, Cr: more than 1.00 to 3.00%, Cu: more than 1.00 to 3.00%, Ti: 0 to 0.10%, Nb: 0 to 0.10%, V: 0 to 0.10%, Ni: 0 to 2.00%, Mo: 0 to 1.00%, B: 0 to 0.0100%, Ca: 0 to 0.0050%, REM: 0-0.005%, and balance: Fe and impurities,
  • the microstructure is the area ratio, Perlite: 70% or more, ferrite: 0-30%, and bainite: 0-30%, Less than 10 pieces of cementite per 10 ⁇
  • the present inventors first focused on pearlite, which has the highest work hardening ability among microstructures other than retained austenite, and appropriately controlled the contents of C and Cr in the steel sheet to make the pearlite an area ratio 70% or more, and if there is a residual structure, it is mainly composed of ferrite and / or bainite, thereby significantly improving the uniform elongation and improving the fatigue characteristics of the punched end face.
  • the inventors have found that increasing the Cr content to over 1.00% can extend the region of pearlite formation to the low carbon side, resulting in a relatively low carbon content of 0.20-0.30%. It was found that a high pearlite fraction of 70% or more in terms of area ratio can be achieved in spite of the low C content.
  • the present inventors have found that in such a hot-rolled steel sheet having a relatively low C content of 0.20 to 0.30% and a pearlite-based microstructure with a Cr content of more than 1.00%, It was found that the fatigue characteristics of the punched end face can be improved by substantially not including martensite with high hardness and low toughness and retained austenite that generates the martensite by deformation-induced transformation.
  • the present inventors have found such a relatively low C content of 0.20 to 0.30% and a Cr content of more than 1.00%, and an area ratio of 70% or more
  • studies were conducted focusing on the form of cementite in the pearlite.
  • minute voids may occur starting from cementite or the interface between cementite and ferrite on the punched end face. These voids can be the cause of deterioration in the fatigue properties of the punched end face after punching.
  • the present inventors have found that the amount of coarse spheroidal cementite in pearlite should be reduced, more specifically pearlite having a long axis length of more than 0.3 ⁇ m and an aspect ratio of less than 3.0
  • the number density of cementite By limiting the number density of cementite to less than 10 per 10 ⁇ m 2 , the occurrence of voids during punching can be suppressed, and as a result, the fatigue properties at the punched end face can be significantly improved.
  • Ti, Nb and V are elements that generally contribute to the improvement of steel sheet strength through carbide precipitation.
  • the hot-rolled steel sheet according to the embodiment of the present invention contains only a relatively low content of 0.20 to 0.30% of C, which is an element effective in improving the strength of the steel sheet, as described above. is. Therefore, it is generally difficult to achieve a high strength, specifically a tensile strength of 900 MPa or more, while suppressing the contents of these elements to relatively low contents. Therefore, the present inventors have found that, despite such a relatively low C content, Cu is contained in the steel sheet in an amount exceeding 1.00%, so that the steel sheet is strengthened by precipitation strengthening by Cu. It has been found that the strength can be maintained at a high level.
  • the present inventors mainly combined the following four findings to develop a hot-rolled steel sheet having a high tensile strength of 900 MPa or more, uniform elongation, and excellent punching edge fatigue characteristics.
  • the combination of these findings and the fact that a hot-rolled steel sheet having high strength, uniform elongation and excellent punched end face fatigue characteristics can be obtained by this combination has not been known in the past, and this time, the present invention
  • the residual structure is composed of ferrite and/or bainite to improve the fatigue properties of the punched edge by being substantially free of martensite in the microstructure and retained austenite that produces said martensite by strain-induced transformation.
  • the hot-rolled steel sheet according to the embodiment of the present invention will be described in more detail.
  • the unit of content of each element means “% by mass” unless otherwise specified.
  • the term “to” indicating a numerical range is used to include the numerical values before and after it as lower and upper limits, unless otherwise specified.
  • C is an essential element for ensuring the strength of the hot-rolled steel sheet.
  • the C content is made 0.20% or more.
  • the C content may be 0.21% or more, 0.22% or more, or 0.23% or more.
  • an excessive C content may deteriorate the weldability of the steel sheet. Therefore, the C content should be 0.30% or less.
  • C content may be less than 0.30%, 0.29% or less, 0.28% or less, 0.27% or less, 0.26% or less, 0.25% or less or 0.24% or less .
  • the C content since the C content is relatively low as described above, it is advantageous from the viewpoint of weldability. Is possible.
  • Si is an element used for deoxidizing steel.
  • the Si content is set to 0.01% or more.
  • the Si content may be 0.10% or more, 0.20% or more, 0.30% or more, or 0.50% or more.
  • the Si content is set to 2.00% or less.
  • the Si content may be 1.85% or less, 1.70% or less, 1.50% or less, or 1.40% or less.
  • Mn is an element effective for delaying phase transformation of steel and preventing phase transformation from occurring during cooling.
  • the Mn content is made 0.50% or more.
  • the Mn content may be 0.60% or more, 0.80% or more, 1.00% or more, 1.30% or more, or 1.50% or more.
  • the Mn content should be 3.00% or less.
  • the Mn content may be 2.80% or less, 2.70% or less, 2.50% or less, or 2.20% or less.
  • P is an element mixed in during the manufacturing process.
  • the P content may be 0%, but excessive reduction leads to increased costs. Therefore, the P content may be 0.0001% or more, 0.0005% or more, 0.001% or more, or 0.005% or more.
  • the S content is preferably 0.0090% or less, more preferably 0.0085% or less or 0.0070% or less.
  • the S content may be 0%, but excessive reduction leads to an increase in cost. Therefore, the S content may be 0.0001% or more, 0.0005% or more, 0.0010% or more, or 0.0020% or more.
  • Al is an element used for deoxidizing steel.
  • the Al content is made 0.005% or more.
  • the Al content may be 0.010% or more, 0.030% or more, 0.050% or more, 0.100% or more, or 0.300% or more.
  • an excessive Al content may increase inclusions and deteriorate the workability of the steel sheet. Therefore, the Al content is set to 3.000% or less.
  • the Al content may be 2.800% or less, 2.500% or less, 2.000% or less, 1.800% or less, 1.500% or less, or 1.200% or less.
  • N 0.0100% or less
  • N combines with Al in the steel to form AlN, which prevents the pearlite block diameter from increasing due to the pinning effect, thereby improving the toughness of the steel.
  • an excessive N content saturates the effect and may rather cause a decrease in toughness. Therefore, the N content is set to 0.0100% or less.
  • the N content is preferably 0.0090% or less, 0.0080% or less or 0.0070% or less. From such a point of view, the N content may be 0%, but excessive reduction leads to an increase in cost. Therefore, the N content may be 0.0001% or more, 0.0005% or more, 0.0010% or more, or 0.0020% or more.
  • O is an element mixed in during the manufacturing process. If O is contained excessively, coarse inclusions may be formed to lower the toughness of the steel sheet. Therefore, the O content is 0.0100% or less.
  • the O content may be 0.0090% or less, 0.0080% or less, 0.0070% or less, or 0.0060% or less.
  • the O content may be 0%, but excessive reduction leads to increased costs. Therefore, the O content may be 0.0001% or more, 0.0005% or more, 0.0010% or more, or 0.0020% or more.
  • Cr more than 1.00 to 3.00%
  • Cr is an element that contributes to improving the strength of the steel sheet, and also has the effect of suppressing spheroidization of cementite. Therefore, in order to reduce the number density of coarse spheroidal cementite in the pearlite and suppress the generation of voids during punching, it is necessary to contain a certain amount or more of Cr. Furthermore, since Cr stabilizes cementite, the inclusion of Cr can expand the pearlite formation region toward the low carbon content side. Therefore, by including Cr in an appropriate amount, ie, an amount exceeding 1.00%, it is possible to achieve a pearlite fraction of 70% or more even with a relatively low C content.
  • Cr content is 1.01% or more, 1.02% or more, 1.03% or more, 1.05% or more, 1.10% or more, 1.30% or more, 1.50% or more, or 1.70% or more.
  • Cr content is set to 3.00% or less.
  • the Cr content may be 2.80% or less, 2.70% or less, 2.50% or less, 2.20% or less, 2.00% or less, or 1.80% or less.
  • Cu is an element effective in improving strength by precipitation strengthening. Also, unlike Ti, Nb and V, Cu can improve the strength of the steel sheet without forming carbides. Therefore, Cu does not consume the carbon required to form the desired pearlite structure in which coarse spherical cementite is reduced. Therefore, Cu is an extremely important element for achieving both strength improvement and punch end face fatigue properties. In order to sufficiently obtain these effects, the Cu content should be more than 1.00%. Cu content is 1.01% or more, 1.02% or more, 1.03% or more, 1.05% or more, 1.10% or more, 1.20% or more, 1.30% or more, 1.50% or more or 1.70% or more.
  • the Cu content is set to 3.00% or less.
  • the Cu content may be 2.80% or less, 2.70% or less, 2.50% or less, 2.20% or less, 2.00% or less, or 1.80% or less.
  • the hot-rolled steel sheet may contain at least one of the following optional elements in place of part of the remaining Fe, if necessary.
  • hot-rolled steel sheets contain Ti: 0-0.10%, Nb: 0-0.10%, V: 0-0.10%, Ni: 0-2.00% and Mo: 0-1. It may contain at least one selected from the group consisting of 00%.
  • the hot rolled steel sheet may contain B: 0 to 0.0100%.
  • the hot-rolled steel sheet may contain at least one selected from the group consisting of Ca: 0 to 0.0050% and REM: 0 to 0.005%.
  • Ti, Nb and V are elements that contribute to the improvement of steel sheet strength by precipitation of carbides.
  • the Ti, Nb and V contents may be 0%, but in order to obtain the above effect, one selected from these may be contained alone or two or more may be combined as needed. good.
  • the Ti, Nb and V contents are each preferably 0.001% or more, and may be 0.01% or more, 0.02% or more, or 0.03% or more. .
  • the Ti, Ni and V contents are each preferably 0.10% or less.
  • the Ti, Ni and V contents may each be 0.08% or less, 0.06% or less or 0.05% or less.
  • Ni is an element that dissolves in steel to increase strength without impairing toughness.
  • the Ni content may be 0%, the Ni content is preferably 0.001% or more in order to obtain the above effects.
  • the Ni content may be 0.01% or more, 0.10% or more, 0.20% or more, or 0.50% or more.
  • Ni is an expensive element, and excessive addition causes an increase in cost. Therefore, the Ni content is preferably 2.00% or less.
  • the Ni content may be 1.70% or less, 1.50% or less, or 1.20% or less.
  • Mo is an element that increases the strength of steel.
  • the Mo content may be 0%, the Mo content is preferably 0.001% or more in order to obtain the above effects.
  • the Mo content may be 0.01% or more, 0.02% or more, or 0.03% or more.
  • the Mo content is preferably 1.00% or less.
  • Mo content may be 0.80% or less, 0.50% or less, 0.30% or less, 0.10% or less, 0.08% or less, 0.06% or less, or 0.05% or less .
  • B segregates at grain boundaries and has the effect of increasing grain boundary strength.
  • the B content may be 0%, the B content is preferably 0.0001% or more in order to obtain the above effect.
  • the B content may be 0.0003% or more, 0.0005% or more, or 0.0010% or more.
  • the B content is preferably 0.0100% or less.
  • the B content may be 0.0080% or less, 0.0060% or less, or 0.0050% or less.
  • Ca is an element that improves workability by controlling the form of non-metallic inclusions that act as starting points for fracture and cause deterioration in workability.
  • the Ca content may be 0%, the Ca content is preferably 0.0001% or more in order to obtain the above effect.
  • the Ca content may be 0.0003% or more, 0.0005% or more, or 0.0010% or more.
  • the Ca content is preferably 0.0050% or less.
  • the Ca content may be 0.0045% or less or 0.0040% or less.
  • REM is an element that improves the toughness of weld zones by adding a small amount of REM.
  • the REM content may be 0%, the REM content is preferably 0.0001% or more in order to obtain the above effects.
  • the REM content may be 0.0003% or greater, 0.0005% or greater, or 0.001% or greater.
  • an excessive REM content may reduce weldability. Therefore, the REM content is preferably 0.005% or less.
  • the REM content may be 0.004% or less or 0.003% or less.
  • REM herein refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and the lanthanoids lanthanum with atomic number 57 (La) to lutetium with atomic number 71 (Lu ), and the REM content is the total content of these elements.
  • the balance other than the above elements consists of Fe and impurities.
  • impurities refers to components and the like that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when hot-rolled steel sheets are industrially manufactured. Examples of impurities include Sn: 0.02% or less, Sb: 0.02% or less, W: 0.015% or less, and Co: 0.015% or less.
  • the microstructure of the hot-rolled steel sheet contains 70% or more pearlite in terms of area ratio.
  • Pearlite has the highest work hardening ability among microstructures other than retained austenite. It becomes possible to For example, if ferrite is excessively generated and as a result the area ratio of pearlite is less than 70%, sufficient strength may not be ensured.
  • the area ratio of pearlite is 70% or more, and may be 72% or more, 75% or more, 77% or more, 80% or more, 85% or more, or 90% or more.
  • the upper limit of the area ratio of pearlite is not particularly limited, and may be 100%.
  • the perlite area ratio may be 99% or less, 98% or less, 96% or less, 94% or less, 92% or less, 90% or less, 87% or less, 83% or less, or 79% or less.
  • the remaining structure other than pearlite may have an area ratio of 0%, but if there is a remaining structure, it is composed of at least one of ferrite and bainite. Therefore, the area ratio of ferrite and bainite is set to 0 to 30%. Ferrite and bainite may each have an area ratio of 1% or more, 2% or more, 4% or more, or 6% or more. Similarly, ferrite and bainite may each have an area ratio of 25% or less, 20% or less, 15% or less, or 10% or less.
  • the residual structure is composed of ferrite and/or bainite, that is, the residual structure does not contain or substantially does not contain high-hardness, low-toughness martensite or retained austenite that forms the martensite by deformation-induced transformation. Therefore, it is possible to secure good punching end face fatigue characteristics.
  • the expression "substantially absent” or “substantially free of” means that the total area fraction of martensite and retained austenite in the residual structure is less than 0.5%. is. It is difficult to accurately measure the total amount of such microstructures, and the effect thereof can be ignored.
  • the total area ratio of ferrite and bainite is 30% or less, 25% or less, 21% or less, 17% or less, 13% or less, 10% or less, 8% or less, 6% or less, 4% or less, 2 % or less, 1% or less, or 0%.
  • the total area ratio of ferrite and bainite is 1% or more, 2% or more, 4% or more, 6% or more, 8% or more, 10% or more, 13% or more, 17 % or more or 21% or more.
  • the number density of coarse spherical cementite among the cementites constituting pearlite is limited within a predetermined range.
  • cementite having an aspect ratio of less than 3.0 is less than 10 per 10 ⁇ m 2 .
  • the aspect ratio of cementite refers to a value obtained by dividing the length of the major axis of cementite appearing on the viewing surface by the length of the minor axis.
  • Cementite having a major axis length of more than 0.3 ⁇ m and an aspect ratio of less than 3.0 is defined herein as coarse spheroidal cementite.
  • coarse spheroidal cementite may become a starting point of void generation during punching of a steel plate, and these voids can be a cause of deterioration of fatigue properties at the punched end face after punching. Therefore, it is extremely important to reduce the amount of such coarse spheroidal cementite in order to improve the fatigue properties of the punched end face.
  • the number density of the coarse spherical cementite is limited to less than 10 per 10 ⁇ m 2 , the generation of voids during punching can be reliably suppressed. As a result, it is possible to remarkably improve the fatigue properties of the punched end faces.
  • the number density of coarse spherical cementites may be 8 or less, 6 or less, or 4 or less per 10 ⁇ m 2 in pearlite.
  • the number density of the coarse spherical cementite may be 0 per 10 ⁇ m 2 in the pearlite, but may be, for example, 1 or more or 2 or more.
  • the aspect ratio refers to the ratio of the length of the major axis to the length of the minor axis of an ellipsoid when ellipsoid approximation processing is performed on individual cementites by image processing.
  • the area ratio of the microstructure is determined as follows. First, a sample is taken from a position of 1/4 or 3/4 of the plate thickness from the surface of the steel plate so that the cross section parallel to the rolling direction and thickness direction of the steel plate becomes the observation surface. Subsequently, the observation surface is mirror-polished, corroded with a picral corrosive solution, and then subjected to structural observation using a scanning electron microscope (SEM). The measurement area is an area of 12,000 ⁇ m 2 (for example, an area of 80 ⁇ m ⁇ 150 ⁇ m), and the area ratios of pearlite and ferrite are calculated from a structure photograph at a magnification of, for example, about 5000 times using the point counting method.
  • SEM scanning electron microscope
  • pearlite is a region surrounded by grain boundaries where the ferrite crystal orientation difference is 15° or more, where the ferrite phase and the cementite phase are mixed, and the cementite has a lamellar and/or spherical form. and certify. Therefore, for example, pearlite has a layered (lamellar) dispersed structure of ferrite phase and cementite, as well as a structure mainly composed of cementite dispersed in clusters. It also includes a structure containing more than 50% in terms of area ratio with respect to the total amount of cementite.
  • it is an aggregate of lath-shaped crystal grains, and has a plurality of iron-based carbides having a major axis of 20 nm or more inside the laths, and these carbides are a single variant, that is, an iron-based carbide elongated in the same direction. Those belonging to the group are identified as bainite. Inclusions observed in the pearlite structure are basically cementite, and using a scanning electron microscope with an energy dispersive X-ray spectroscope (SEM-EDS), etc., individual inclusions are identified as cementite or iron-based carbides. need not be identified.
  • SEM-EDS energy dispersive X-ray spectroscope
  • the inclusion is cementite or iron-based carbide
  • the inclusion may be analyzed using SEM-EDS or the like separately from SEM observation, if necessary.
  • Retained austenite has a cementite area fraction of less than 1% inside, and if such a structure exists, it is analyzed using electron back scatter diffraction (EBSD) after observing the structure with SEM. , fcc structure is determined as retained austenite.
  • EBSD electron back scatter diffraction
  • the number density of coarse spherical cementite is determined as follows. First, a sample is taken from a position of 1/4 or 3/4 of the plate thickness from the surface of the steel plate so that the cross section parallel to the rolling direction and thickness direction of the steel plate becomes the observation surface. Subsequently, the observation surface is mirror-polished, corroded with a picral corrosive solution, and then subjected to structural observation using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the measurement area is a 12,000 ⁇ m 2 (for example, an area of 80 ⁇ m ⁇ 150 ⁇ m) SEM photograph of about 5000 times, and the image of the area recognized as pearlite is binarized, and the dark part is ferrite and the bright part is cementite. .
  • ellipsoid approximation is performed by image processing, and the length of the major axis and the length of the minor axis of the ellipsoid are calculated as the length of the major axis and the length of the minor axis of each cementite. and the aspect ratio of each cementite is defined by the following equation.
  • a hot-rolled steel sheet having the above chemical composition and structure can achieve a high tensile strength, specifically a tensile strength of 900 MPa or more.
  • the tensile strength is preferably 910 MPa or higher or 920 MPa or higher, more preferably 940 MPa or higher or 980 MPa or higher, and most preferably 1000 MPa or higher or 1080 MPa or higher.
  • the tensile strength may be 1500 MPa or less or 1400 MPa or less.
  • the hot-rolled steel sheet having the above chemical composition and structure can achieve high uniform elongation, more specifically 7.0% or more, preferably 7.5% or more, and more Preferably, a uniform elongation of 8.0% or more can be achieved.
  • the uniform elongation may be 20.0% or less or 15.0% or less.
  • the tensile strength and uniform elongation are measured by taking a No. 5 tensile test piece of JIS Z2241:2011 from the direction perpendicular to the rolling direction of the hot-rolled steel sheet and performing a tensile test in accordance with JIS Z2241:2011. be.
  • Uniform elongation means plastic elongation (%) at maximum test force defined in JIS Z2241:2011.
  • a hot-rolled steel sheet having the chemical composition and structure described above can achieve high punch end face fatigue properties. More specifically, in the punching fatigue limit ratio corresponding to the value ( ⁇ F /TS) obtained by dividing the fatigue limit ⁇ F (MPa) determined based on the fatigue test of the punched end face by the tensile strength TS (MPa) A punched edge fatigue property of 0.28 or higher can be achieved.
  • the punching fatigue limit ratio is preferably 0.30 or more, more preferably 0.32 or more. Although there is no need to specify the upper limit, for example, the punching fatigue limit ratio may be 0.42 or less or 0.40 or less.
  • the punching fatigue limit ratio is determined by the following method using a plate-shaped test piece having the dimensions shown in FIG.
  • a plate-shaped test piece (30 mm ⁇ 90 mm) sampled from a hot-rolled steel plate so that the rolling direction is the long side is punched in the center with a punch diameter of 10 mm and a punching clearance of 12%, and then a constant stress amplitude.
  • a double-sided plane bending fatigue test is performed at ⁇ (MPa).
  • the plate-shaped test piece may be chamfered at the corners of the plate end surface as shown in FIG.
  • a double-sided plane bending fatigue test was performed until the number of repetitions N reached 10 7 times, and the maximum stress amplitude among the tests that did not lead to fracture was defined as the fatigue limit ⁇ F (MPa), and the fatigue limit ⁇ F (MPa ) divided by the tensile strength TS (MPa) ( ⁇ F /TS) is determined as the punching fatigue limit ratio.
  • a hot rolled steel sheet according to an embodiment of the present invention generally has a thickness of 1.0 to 6.0 mm.
  • the plate thickness may be 1.2 mm or more, 1.6 mm or more, or 2.0 mm or more, and/or may be 5.0 mm or less, 4.0 mm or less, or 3.0 mm or less. .
  • a preferred method for manufacturing a hot-rolled steel sheet according to an embodiment of the present invention includes: heating a slab having the chemical composition described above in relation to hot rolled steel to 1150° C. or above; A hot rolling step including finish rolling of a heated slab, wherein the delivery side temperature of the finish rolling is 820 to 920 ° C.; The obtained steel sheet is primary cooled from the finish rolling delivery side temperature to the primary cooling end temperature of 720 ° C. or less at an average cooling rate of 50 ° C./sec or more, and then to the coiling temperature at an average cooling rate of 10 ° C./sec or less.
  • a cooling step comprising secondary cooling with coiling the steel sheet at a coiling temperature of 580-650°C; and an additional cooling step comprising cooling the coiled steel sheet to a steel sheet temperature of 550°C or less, wherein the steel sheet temperature is 550°C after coiling. It is characterized by including an additional cooling step with a time to °C of 30-180 minutes. Each step will be described in detail below.
  • a slab having the chemical composition described above in relation to hot rolled steel is heated prior to hot rolling.
  • the heating temperature of the slab is set to 1150° C. or higher so that Ti carbonitrides and the like are fully dissolved again.
  • the upper limit is not particularly specified, it may be 1250° C., for example.
  • the heating time is not particularly limited, but may be, for example, 30 minutes or more and/or 120 minutes or less.
  • the slab to be used is preferably cast by continuous casting from the viewpoint of productivity, but may be produced by ingot casting or thin slab casting.
  • the heated slab may be subjected to rough rolling before finish rolling in order to adjust the plate thickness or the like.
  • Conditions for the rough rolling are not particularly limited as long as the desired sheet bar dimensions can be secured.
  • finish rolling The heated slab or the slab that has been rough rolled as necessary is then subjected to finish rolling, and the delivery side temperature in the finish rolling is controlled at 820 to 920°C. If the delivery-side temperature of finish rolling exceeds 920°C, the accumulation of work strain in austenite during cooling is insufficient, pearlite transformation is delayed, and a pearlite fraction of 70% or more cannot be achieved. For this reason, the upper limit of the outlet temperature of the finishing temperature is 920°C, preferably 915°C, more preferably 910°C.
  • the lower limit of the delivery side temperature of finish rolling is set to 820°C.
  • the steel sheet is primarily cooled from the finish rolling delivery side temperature to the primary cooling end temperature of 720° C. or less at an average cooling rate of 50° C./second or more. If the average cooling rate to the primary cooling end temperature is less than 50°C/sec or the primary cooling end temperature is more than 720°C, a large amount of ferrite is generated and a pearlite fraction of 70% or more is achieved. I can't do it.
  • the average cooling rate of primary cooling may be 52° C./second or more.
  • the upper limit of the average cooling rate is not particularly limited, for example, the average cooling rate of the primary cooling is preferably 200 ° C./sec or less in order to obtain the desired structure, and even if it is 100 ° C./sec or less. good.
  • Secondary cooling cooling to winding temperature at 10°C/sec or less
  • the steel sheet is cooled from the primary cooling end temperature to the coiling temperature (that is, the temperature range of 580 to 650° C.) at an average cooling rate of 10° C./sec or less. If the average cooling rate of the secondary cooling is higher than 10°C, temperature unevenness is likely to occur in the thickness direction and the width direction of the steel sheet, resulting in variations in the metal structure.
  • the average cooling rate of secondary cooling is preferably 9° C./sec or less.
  • the lower limit of the average cooling rate is not particularly limited, but from the viewpoint of productivity, the average cooling rate of secondary cooling is set to 1° C./second or more, and may be 2° C./second or more. In order to obtain the effect of dividing the cooling process into two stages, the secondary cooling is preferably performed immediately after the primary cooling is completed.
  • the coiling temperature may be 584°C or higher and/or may be 640°C or lower.
  • an additional cooling step that is, a cooling step after winding, is performed after the winding step, and in the cooling step after winding, the steel sheet is cooled from the winding temperature to a steel sheet temperature of 550 ° C. or less. .
  • a cooling step after winding it is important to control the time required for the temperature of the steel sheet to reach 550° C. within the range of 30 to 180 minutes after winding. If the steel sheet temperature reaches 550°C in less than 30 minutes, a large amount of bainite is generated and pearlite is not sufficiently generated, so that a pearlite fraction of 70% or more cannot be achieved.
  • the cementite in the produced pearlite will coarsen and become spherical.
  • the number density of cementite in which the length of the long axis in pearlite is more than 0.3 ⁇ m and the aspect ratio is less than 3.0 cannot be limited to less than 10 per 10 ⁇ m 2 , and voids are formed when punching a steel plate. It becomes impossible to sufficiently suppress the occurrence.
  • the cooling time until the steel plate temperature reaches 550 ° C. is controlled within the range of 30 to 180 minutes, so that the pearlite fraction is 70% or more.
  • the time required for the steel sheet temperature to reach 550° C. may be 35 minutes or more and/or may be 150 minutes or less.
  • the time required for the steel plate temperature to reach 550°C can be adjusted by any appropriate method. For example, if the coiling temperature is around 580°C, cover the coil with a heat insulating cover, etc., as necessary, in order to ensure that the steel sheet temperature reaches 550°C for at least 30 minutes. may
  • hot-rolled steel sheets according to embodiments of the present invention were produced under various conditions, and the mechanical properties of the obtained hot-rolled steel sheets were investigated.
  • a slab having the chemical composition shown in Table 1 was manufactured by continuous casting. Then, from these slabs, hot-rolled steel sheets with a thickness of 2.5 mm were produced under the heating, hot rolling, cooling, coiling and additional cooling conditions shown in Table 2. The balance other than the components shown in Table 1 is Fe and impurities.
  • the chemical composition obtained by analyzing the sample taken from the manufactured hot-rolled steel sheet is the same as the chemical composition of the slab shown in Table 1, especially the Sn and Sb contents in the impurities are 0.02% or less, The W and Co contents were 0.015% or less.
  • a No. 5 tensile test piece of JIS Z2241: 2011 was taken from the hot-rolled steel sheet thus obtained in a direction perpendicular to the rolling direction, and a tensile test was performed in accordance with JIS Z2241: 2011 to determine the tensile strength ( TS) and uniform elongation (uEl) were measured.
  • the fatigue properties of punched end faces were evaluated by the following method using plate-shaped test pieces having the dimensions shown in FIG. First, a plate-shaped test piece (30 mm ⁇ 90 mm) sampled from a hot-rolled steel plate so that the rolling direction is the long side is punched in the center with a punch diameter of 10 mm and a punching clearance of 12%, and then a constant stress amplitude.
  • a double-sided plane bending fatigue test was performed at ⁇ (MPa).
  • the plate-shaped test piece may be chamfered at the corners of the plate end surface as shown in FIG.
  • a double-sided plane bending fatigue test was performed until the number of repetitions N reached 10 7 times, and the maximum stress amplitude among the tests that did not lead to fracture was defined as the fatigue limit ⁇ F (MPa), and the fatigue limit ⁇ F (MPa ) divided by the tensile strength TS (MPa) ( ⁇ F /TS) was determined as the punching fatigue limit ratio.
  • a hot-rolled steel sheet having a TS of 900 MPa or more, a uEl of 7.0% or more, and a punching fatigue limit ratio of 0.28 or more was evaluated as a hot-rolled steel sheet having high strength, uniform elongation, and excellent punching edge fatigue characteristics. .
  • the results are shown in Table 3 below.
  • Comparative Example 9 a large amount of ferrite was generated due to the low average cooling rate of the primary cooling in the cooling process, and a pearlite fraction of 70% or more could not be achieved. As a result, TS decreased. In Comparative Example 10, since the cooling end temperature of the primary cooling was high, a large amount of ferrite was similarly generated, and a pearlite fraction of 70% or more could not be achieved. As a result, TS decreased. In Comparative Example 11, since the coiling temperature was low, a large amount of bainite was generated, and a pearlite fraction of 70% or more could not be achieved. As a result, the TS improved, but the uEl decreased.
  • Comparative Example 12 a large amount of ferrite was generated due to the high coiling temperature, and a pearlite fraction of 70% or more could not be achieved. Moreover, in Comparative Example 12, the coiling temperature was high, so that the precipitated Cu particles became coarse, and it is considered that the precipitation strengthening ability of Cu was not sufficiently exhibited. As a result, TS decreased. In Comparative Example 13, a large amount of bainite was generated because the time until the temperature reached 550° C. after winding was short, and although the TS was improved, the uEl was lowered. In Comparative Example 14, since it took a long time to reach 550° C.
  • Examples 1-8, 15-18, 23, 25, 27, and 29-36 have a given chemical composition and microstructure, and in addition, coarse spheroids in pearlite at that microstructure.
  • a uEl of 7.0% or more and a punching fatigue limit ratio of 0.28 or more even though the TS has a high strength of 900 MPa or more, and therefore a high A hot-rolled steel sheet with high strength, uniform elongation, and excellent punched edge fatigue properties was obtained.
  • a similar fatigue test was performed on a test piece from a welded member obtained by arc welding the steel plate of each example. As a result, in all examples, it was possible to achieve high fatigue properties equivalent to those without such welds. It is believed that this is mainly due to the relatively low C content of 0.30% or less.

Abstract

Provided is a hot-rolled steel plate that has a prescribed chemical composition, the microstructure thereof being, in terms of surface area ratio, at least 70% pearlite, 0 to 30% ferrite, and 0 to 30% bainite. The perlite has, per 10 μm2, less than 10 grains of cementite having a major-axis length over 0.3 μm and an aspect ratio of less than 3.0, and has a tensile strength of at least 900 MPa.

Description

熱間圧延鋼板hot rolled steel plate
 本発明は、熱間圧延鋼板に関し、より詳しくは自動車等の構造部材に使用される熱間圧延鋼板であって、高強度でかつ均一伸び性および打抜き端面疲労特性に優れた熱間圧延鋼板に関する。 TECHNICAL FIELD The present invention relates to a hot-rolled steel sheet, and more particularly, to a hot-rolled steel sheet used for structural members of automobiles and the like, which has high strength, uniform elongation, and excellent punched end face fatigue properties. .
 近年、自動車業界では、燃費向上の観点からシャシ部材等の部材の軽量化が求められている。部材の軽量化と衝突安全性を両立するためには、使用する鋼板の高強度化が有効な方法の一つであり、このような背景から高強度鋼板の開発が進められている。 In recent years, in the automotive industry, there has been a demand for weight reduction of parts such as chassis parts from the viewpoint of improving fuel efficiency. Increasing the strength of the steel plate used is one of the effective ways to achieve both weight reduction and collision safety of members.
 一方、高強度化とともに、部材成形に必要な均一伸び性や打抜き端面の疲労特性が一般に低下する。均一伸び性の向上のために、残留オーステナイトを活用したTRIP鋼などが考案されているが、このような鋼材は打抜きの際に端面近傍に加工誘起変態によって高硬度で低靭性のマルテンサイトが生成し、このようなマルテンサイトの生成は打抜き端面の疲労特性を低下させる原因となり得る。 On the other hand, as the strength increases, the uniform elongation and the fatigue properties of the punched end face, which are necessary for forming parts, generally decrease. In order to improve uniform elongation, TRIP steel using retained austenite has been devised, but in such steel materials, high-hardness and low-toughness martensite is generated near the end face by work-induced transformation during punching. However, the formation of such martensite can be a cause of deterioration in the fatigue properties of the punched end face.
 特許文献1では、所定の化学組成を有し、金属組織が、面積率で、パーライト:90~100%、疑似パーライト:0~10%、および初析フェライト:0~1%であり、前記パーライトの平均ラメラ間隔が0.20μm以下であり、前記パーライトの平均パーライトブロック径が20.0μm以下であることを特徴とする熱間圧延鋼板が記載されている。また、特許文献1では、上記の構成によれば、引張強さが980MPa以上の高強度でかつ延性、穴広げ性および打抜き性に優れた熱間圧延鋼板を得ることができると記載されている。 In Patent Document 1, it has a predetermined chemical composition, and the metal structure has an area ratio of pearlite: 90 to 100%, pseudo pearlite: 0 to 10%, and proeutectoid ferrite: 0 to 1%, and the pearlite is 0.20 μm or less, and the average pearlite block diameter of the pearlite is 20.0 μm or less. In addition, Patent Document 1 describes that with the above configuration, it is possible to obtain a hot-rolled steel sheet having a high tensile strength of 980 MPa or more and excellent ductility, hole expansibility, and punchability. .
 特許文献1に記載されるようなパーライト主体組織に関連して、特許文献2では、熱間圧延鋼板の場合、パーライト変態時の成長時間が十分であれば、細長い形態のラメラセメンタイトを有するのが一般的であることが記載されている。また、特許文献3では、パーライト組織を主相とし、残部組織におけるフェライト組織が20%以下であり、パーライト組織のラメラ間隔が500nm以下である熱間圧延鋼板が記載されている。 In relation to the pearlite-based structure as described in Patent Document 1, in Patent Document 2, in the case of a hot-rolled steel sheet, if the growth time during pearlite transformation is sufficient, it is possible to have an elongated form of lamellar cementite. stated to be common. Further, Patent Document 3 describes a hot-rolled steel sheet having a pearlite structure as a main phase, a ferrite structure in the residual structure of 20% or less, and a lamellar spacing of the pearlite structure of 500 nm or less.
国際公開第2020/179737号WO2020/179737 特表2020-509190号公報Japanese Patent Publication No. 2020-509190 特開2011-099129号公報JP 2011-099129 A
 特許文献1では、延性に関連して13%以上の全伸びを達成することができると教示されているものの、均一伸び性の改善については具体的に示されていない。同様に、特許文献1では、打抜き性に関連して、打抜き時の端面における亀裂の発生が抑制されることが具体的に開示されているものの、打抜き端面における疲労特性の改善については必ずしも十分な検討はなされていない。したがって、特許文献1に記載の熱間圧延鋼板では、均一伸び性および打抜き端面疲労特性の向上に関して依然として改善の余地があった。 Although Patent Document 1 teaches that a total elongation of 13% or more can be achieved in relation to ductility, it does not specifically show improvement in uniform elongation. Similarly, in Patent Document 1, in relation to punchability, although it is specifically disclosed that the occurrence of cracks on the end face during punching is suppressed, improvement in fatigue characteristics on the punched end face is not necessarily sufficient. No consideration has been made. Therefore, the hot-rolled steel sheet described in Patent Document 1 still has room for improvement in terms of uniform elongation and fatigue properties of punched edge faces.
 そこで、本発明は、新規な構成により、高強度でかつ均一伸び性および打抜き端面疲労特性に優れた熱間圧延鋼板を提供することを目的とする。 Therefore, an object of the present invention is to provide a hot-rolled steel sheet with high strength and excellent uniform elongation and punched end face fatigue properties by a novel configuration.
 本発明者らは、上記目的を達成するために、熱間圧延鋼板の化学組成およびミクロ組織について検討を行った。その結果、本発明者らは、Cuによる析出強化を利用して鋼板の強度を向上させるとともに、鋼板中のCおよびCr含有量を適切に制御することでミクロ組織の中でも加工硬化能が比較的高いパーライトの分率を高めて均一伸び性を向上させることができること、一方で当該パーライト中のセメンタイトを層状(ラメラ状)とすることで打抜き端面の疲労特性を向上させることができることを見出し、本発明を完成させた。 The inventors investigated the chemical composition and microstructure of hot-rolled steel sheets in order to achieve the above objectives. As a result, the present inventors improved the strength of the steel sheet by utilizing the precipitation strengthening by Cu, and appropriately controlled the C and Cr contents in the steel sheet. It was found that uniform elongation can be improved by increasing the percentage of high pearlite, and on the other hand, fatigue characteristics of the punched end face can be improved by making the cementite in the pearlite layered (lamellar). perfected the invention.
 上記目的を達成し得た本発明は下記のとおりである。
 (1)化学組成が、質量%で、
 C:0.20~0.30%、
 Si:0.01~2.00%、
 Mn:0.50~3.00%、
 P:0.100%以下、
 S:0.0100%以下、
 Al:0.005~3.000%、
 N:0.0100%以下、
 O:0.0100%以下、
 Cr:1.00超~3.00%、
 Cu:1.00超~3.00%、
 Ti:0~0.10%、
 Nb:0~0.10%、
 V:0~0.10%、
 Ni:0~2.00%、
 Mo:0~1.00%、
 B:0~0.0100%、
 Ca:0~0.0050%、
 REM:0~0.005%、ならびに
 残部:Feおよび不純物であり、
 ミクロ組織が、面積率で、
 パーライト:70%以上、
 フェライト:0~30%、および
 ベイナイト:0~30%であり、
 前記パーライトにおいて長軸の長さが0.3μm超でかつアスペクト比が3.0未満のセメンタイトが10μm2当たり10個未満であり、
 引張強さが900MPa以上であることを特徴とする、熱間圧延鋼板。
 (2)前記化学組成が、質量%で、
 Ti:0.001~0.10%、
 Nb:0.001~0.10%、
 V:0.001~0.10%、
 Ni:0.001~2.00%、
 Mo:0.001~1.00%、
 B:0.0001~0.0100%、
 Ca:0.0001~0.0050%、および
 REM:0.0001~0.005%
からなる群から選ばれる1種または2種以上を含むことを特徴とする、上記(1)に記載の熱間圧延鋼板。
 (3)1.0~6.0mmの板厚を有することを特徴とする、上記(1)または(2)に記載の熱間圧延鋼板。
The present invention that has achieved the above object is as follows.
(1) chemical composition, in mass %,
C: 0.20 to 0.30%,
Si: 0.01 to 2.00%,
Mn: 0.50-3.00%,
P: 0.100% or less,
S: 0.0100% or less,
Al: 0.005 to 3.000%,
N: 0.0100% or less,
O: 0.0100% or less,
Cr: more than 1.00 to 3.00%,
Cu: more than 1.00 to 3.00%,
Ti: 0 to 0.10%,
Nb: 0 to 0.10%,
V: 0 to 0.10%,
Ni: 0 to 2.00%,
Mo: 0 to 1.00%,
B: 0 to 0.0100%,
Ca: 0 to 0.0050%,
REM: 0-0.005%, and balance: Fe and impurities,
The microstructure is the area ratio,
Perlite: 70% or more,
ferrite: 0-30%, and bainite: 0-30%,
Less than 10 pieces of cementite per 10 μm 2 having a major axis length of more than 0.3 μm and an aspect ratio of less than 3.0 in the pearlite,
A hot-rolled steel sheet characterized by having a tensile strength of 900 MPa or more.
(2) the chemical composition, in mass %,
Ti: 0.001 to 0.10%,
Nb: 0.001 to 0.10%,
V: 0.001 to 0.10%,
Ni: 0.001 to 2.00%,
Mo: 0.001 to 1.00%,
B: 0.0001 to 0.0100%,
Ca: 0.0001-0.0050%, and REM: 0.0001-0.005%
The hot-rolled steel sheet according to (1) above, comprising one or more selected from the group consisting of:
(3) The hot-rolled steel sheet according to (1) or (2) above, which has a thickness of 1.0 to 6.0 mm.
 本発明によれば、引張強さが900MPa以上の高強度でかつ均一伸び性および打抜き端面疲労特性に優れた熱間圧延鋼板を得ることができる。 According to the present invention, it is possible to obtain a hot-rolled steel sheet having a high tensile strength of 900 MPa or more and excellent uniform elongation and punched edge fatigue properties.
打抜き端面疲労特性を評価するのに用いられる試験片(図中の寸法単位:mm)の模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the test piece (the dimension unit in a figure: mm) used for evaluating a punching edge fatigue characteristic.
<熱間圧延鋼板>
 本発明の実施形態に係る熱間圧延鋼板は、
 化学組成が、質量%で、
 C:0.20~0.30%、
 Si:0.01~2.00%、
 Mn:0.50~3.00%、
 P:0.100%以下、
 S:0.0100%以下、
 Al:0.005~3.000%、
 N:0.0100%以下、
 O:0.0100%以下、
 Cr:1.00超~3.00%、
 Cu:1.00超~3.00%、
 Ti:0~0.10%、
 Nb:0~0.10%、
 V:0~0.10%、
 Ni:0~2.00%、
 Mo:0~1.00%、
 B:0~0.0100%、
 Ca:0~0.0050%、
 REM:0~0.005%、ならびに
 残部:Feおよび不純物であり、
 ミクロ組織が、面積率で、
 パーライト:70%以上、
 フェライト:0~30%、および
 ベイナイト:0~30%であり、
 前記パーライトにおいて長軸の長さが0.3μm超でかつアスペクト比が3.0未満のセメンタイトが10μm2当たり10個未満であり、
 引張強さが900MPa以上であることを特徴としている。
<Hot rolled steel plate>
A hot-rolled steel sheet according to an embodiment of the present invention is
The chemical composition, in mass %,
C: 0.20 to 0.30%,
Si: 0.01 to 2.00%,
Mn: 0.50-3.00%,
P: 0.100% or less,
S: 0.0100% or less,
Al: 0.005 to 3.000%,
N: 0.0100% or less,
O: 0.0100% or less,
Cr: more than 1.00 to 3.00%,
Cu: more than 1.00 to 3.00%,
Ti: 0 to 0.10%,
Nb: 0 to 0.10%,
V: 0 to 0.10%,
Ni: 0 to 2.00%,
Mo: 0 to 1.00%,
B: 0 to 0.0100%,
Ca: 0 to 0.0050%,
REM: 0-0.005%, and balance: Fe and impurities,
The microstructure is the area ratio,
Perlite: 70% or more,
ferrite: 0-30%, and bainite: 0-30%,
Less than 10 pieces of cementite per 10 μm 2 having a major axis length of more than 0.3 μm and an aspect ratio of less than 3.0 in the pearlite,
It is characterized by having a tensile strength of 900 MPa or more.
 先に述べたとおり、高強度化とともに、部材成形に必要な均一伸び性や打抜き端面疲労特性が一般に低下するという問題がある。そこで、本発明者らは、まず、残留オーステナイト以外のミクロ組織の中で最も加工硬化能が高いパーライトに着目し、鋼板中のCおよびCrの含有量を適切に制御して当該パーライトを面積率で70%以上とし、さらに残部組織が存在する場合には、これを主としてフェライトおよび/またはベイナイトで構成することにより、均一伸び性を顕著に向上させるとともに、打抜き端面の疲労特性を改善することができることを見出した。より具体的には、パーライトを多く生成するためには、比較的高いC含有量が一般に必要とされる。しかしながら、本発明者らは、Cr含有量を1.00%超に高めることでパーライトの生成領域を低炭素側に拡張させることができ、その結果、0.20~0.30%の比較的低いC含有量にもかかわらず、面積率で70%以上の高いパーライト分率を達成することができることを見出した。また、本発明者らは、このような0.20~0.30%の比較的低いC含有量および1.00%超のCr含有量のパーライト主体のミクロ組織を有する熱間圧延鋼板において、高硬度で低靭性のマルテンサイトや加工誘起変態によって当該マルテンサイトを生成する残留オーステナイトを実質的に含めないことで、打抜き端面の疲労特性を改善することができることを見出した。 As mentioned earlier, there is a problem that the uniform elongation and fatigue properties of the punched end faces, which are necessary for forming parts, generally deteriorate along with the increase in strength. Therefore, the present inventors first focused on pearlite, which has the highest work hardening ability among microstructures other than retained austenite, and appropriately controlled the contents of C and Cr in the steel sheet to make the pearlite an area ratio 70% or more, and if there is a residual structure, it is mainly composed of ferrite and / or bainite, thereby significantly improving the uniform elongation and improving the fatigue characteristics of the punched end face. I found what I can do. More specifically, a relatively high C content is generally required to produce high levels of pearlite. However, the inventors have found that increasing the Cr content to over 1.00% can extend the region of pearlite formation to the low carbon side, resulting in a relatively low carbon content of 0.20-0.30%. It was found that a high pearlite fraction of 70% or more in terms of area ratio can be achieved in spite of the low C content. In addition, the present inventors have found that in such a hot-rolled steel sheet having a relatively low C content of 0.20 to 0.30% and a pearlite-based microstructure with a Cr content of more than 1.00%, It was found that the fatigue characteristics of the punched end face can be improved by substantially not including martensite with high hardness and low toughness and retained austenite that generates the martensite by deformation-induced transformation.
 次に、本発明者らは、このような0.20~0.30%の比較的低いC含有量および1.00%超のCr含有量を有し、かつ、面積率で70%以上のパーライトを有する熱間圧延鋼板において、打抜き端面の疲労特性をさらに改善すべく、このパーライト中のセメンタイトの形態に着目して検討を行った。パーライトを比較的多く含む鋼板の場合、鋼板を打抜き加工する際に打抜き端面においてセメンタイトまたはセメンタイトとフェライトの界面を起点として微小なボイドが発生する場合がある。このボイドは、打抜き加工後の打抜き端面における疲労特性を低下させる原因となり得る。これに対し、本発明者らは、パーライト中の粗大な球状セメンタイトの量を低減すること、より具体的にはパーライトにおいて長軸の長さが0.3μm超でかつアスペクト比が3.0未満のセメンタイトを10μm2当たり10個未満の数密度に制限することで打抜き時のボイド発生を抑制することができ、その結果として打抜き端面における疲労特性を顕著に改善することができることを見出した。 Next, the present inventors have found such a relatively low C content of 0.20 to 0.30% and a Cr content of more than 1.00%, and an area ratio of 70% or more In order to further improve the fatigue properties of punched edges of hot-rolled steel sheets containing pearlite, studies were conducted focusing on the form of cementite in the pearlite. In the case of a steel sheet containing a relatively large amount of pearlite, when the steel sheet is punched, minute voids may occur starting from cementite or the interface between cementite and ferrite on the punched end face. These voids can be the cause of deterioration in the fatigue properties of the punched end face after punching. In contrast, the present inventors have found that the amount of coarse spheroidal cementite in pearlite should be reduced, more specifically pearlite having a long axis length of more than 0.3 μm and an aspect ratio of less than 3.0 By limiting the number density of cementite to less than 10 per 10 μm 2 , the occurrence of voids during punching can be suppressed, and as a result, the fatigue properties at the punched end face can be significantly improved.
 何ら特定の理論に束縛されることを意図するものではないが、パーライト中のセメンタイトをより層状(よりラメラ状)の形態にすることで、鋼板を打抜き加工した際に打抜き端面近傍の領域において、打抜き加工で加えられる強い応力によってセメンタイトのラメラ組織が打抜きの方向に沿って一方向に整列したような組織構造を形成するものと考えられる。打抜き端面における上記の整列した組織構造に起因して、このようなパーライト組織を含まない従来のミクロ組織の場合と比較して疲労特性が顕著に向上するものと考えられる。一方で、パーライト中に粗大でかつ球状のセメンタイトが多く含まれると、すなわち長軸の長さが0.3μm超でかつアスペクト比が3.0未満のセメンタイトが10μm2当たり10個以上の数密度において存在すると、打抜き加工の際に打抜き端面においてこのような整列した組織構造を形成することができなくなり、その結果として打抜き端面疲労特性が低下するものと考えられる。また、本発明者らは、パーライト中のこのような粗大な球状セメンタイトの形成を抑制して層状セメンタイトの形成を促進させるためには、パーライトを形成するための炭素量を十分に確保することが重要であり、そのためには炭化物を形成する合金元素、より具体的にはTi、NbおよびVをそれぞれ0.10%以下に制限して鋼中の炭素がこれらの合金元素によって消費されることを抑制することが有効であることを見出した。 Although it is not intended to be bound by any particular theory, by making the cementite in the pearlite a more layered (more lamellar) form, when the steel plate is punched, in the region near the punched end face, It is believed that the strong stress applied during the punching process forms a structure in which the cementite lamellar structure is aligned in one direction along the punching direction. It is believed that due to the aligned structure of the punched end faces, the fatigue properties are significantly improved compared to conventional microstructures that do not contain such a pearlite structure. On the other hand, when a large amount of coarse and spherical cementite is contained in pearlite, that is, cementite having a long axis length of more than 0.3 μm and an aspect ratio of less than 3.0 has a number density of 10 or more per 10 μm 2 It is considered that if there is such a structure, it becomes impossible to form such an aligned structural structure on the punched end face during punching, and as a result, the punched end face fatigue characteristics are degraded. In addition, the present inventors have found that in order to suppress the formation of such coarse spherical cementite in pearlite and promote the formation of layered cementite, it is necessary to secure a sufficient amount of carbon for forming pearlite. To this end, the carbide-forming alloying elements, more specifically Ti, Nb and V, are each limited to 0.10% or less so that the carbon in the steel is consumed by these alloying elements. It has been found that suppression is effective.
 Ti、NbおよびVは、一般に炭化物析出により鋼板強度の向上に寄与する元素である。一方で、本発明の実施形態に係る熱間圧延鋼板は、鋼板の強度向上に有効な元素であるCを上記のとおり0.20~0.30%の比較的低い含有量においてしか含まないものである。したがって、これらの元素の含有量を比較的低い含有量に抑えつつ、高強度、具体的には900MPa以上の引張強さを達成することは一般に困難である。そこで、本発明者らは、このような比較的低いC含有量にもかかわらず、Cuを1.00%超の量で鋼板中に含有させることにより、Cuによる析出強化を利用して鋼板の強度を高い状態に維持することができることを見出した。Cuによる析出強化を利用することで、Ti、NbおよびVの炭化物析出による強度向上を利用しないかまたはその利用を制限することができる。その結果として、Ti、NbおよびVによる炭化物の形成を抑制して、本発明の実施形態に係る所望のパーライト組織を形成するのに必要な炭素量を十分に確保することが可能となる。 Ti, Nb and V are elements that generally contribute to the improvement of steel sheet strength through carbide precipitation. On the other hand, the hot-rolled steel sheet according to the embodiment of the present invention contains only a relatively low content of 0.20 to 0.30% of C, which is an element effective in improving the strength of the steel sheet, as described above. is. Therefore, it is generally difficult to achieve a high strength, specifically a tensile strength of 900 MPa or more, while suppressing the contents of these elements to relatively low contents. Therefore, the present inventors have found that, despite such a relatively low C content, Cu is contained in the steel sheet in an amount exceeding 1.00%, so that the steel sheet is strengthened by precipitation strengthening by Cu. It has been found that the strength can be maintained at a high level. By utilizing the precipitation strengthening by Cu, it is possible not to utilize or to limit the utilization of strength improvement by carbide precipitation of Ti, Nb and V. As a result, it becomes possible to suppress the formation of carbides due to Ti, Nb and V, and to ensure a sufficient amount of carbon necessary to form the desired pearlite structure according to the embodiment of the present invention.
 以上を纏めると、本発明者らは、主に以下の4つの知見を組み合わせることにより、引張強さが900MPa以上の高強度でかつ均一伸び性および打抜き端面疲労特性に優れた熱間圧延鋼板を達成したものであり、これらの知見の組み合わせおよびそれによって高強度でかつ均一伸び性および打抜き端面疲労特性に優れた熱間圧延鋼板が得られるという事実は従来知られておらず、今回、本発明者らによって初めて明らかにされたことである。
 (i)0.20~0.30%の比較的低いC含有量にもかかわらず、Crを1.00%超の量において鋼板中に含有させることにより面積率で70%以上のパーライト分率を達成することができ、その結果として均一伸び性を向上させることができること、
 (ii)残部組織をフェライトおよび/またはベイナイトから構成して、ミクロ組織においてマルテンサイトおよび加工誘起変態によって当該マルテンサイトを生成する残留オーステナイトを実質的に含めないことで打抜き端面の疲労特性を改善することができること、
 (iii)Ti、NbおよびVの含有量を制限してこれらの元素による炭化物の形成を抑制することにより層状セメンタイトを含むパーライト組織を形成するのに十分な炭素量を確保し、その結果としてパーライトにおいて粗大な球状セメンタイト、すなわち長軸の長さが0.3μm超でかつアスペクト比が3.0未満のセメンタイトの形成を10μm2当たり10個未満に制限して打抜き端面疲労特性を向上させることができること、ならびに
 (iv)Cuによる析出強化を利用することで、Ti、NbおよびVによる炭化物の形成を抑制して、上記(iii)におけるパーライト組織の形成を促進させつつ、0.20~0.30%の比較的低いC含有量にもかかわらず、引張強さが900MPa以上の高強度を達成できること。
To summarize the above, the present inventors mainly combined the following four findings to develop a hot-rolled steel sheet having a high tensile strength of 900 MPa or more, uniform elongation, and excellent punching edge fatigue characteristics. The combination of these findings and the fact that a hot-rolled steel sheet having high strength, uniform elongation and excellent punched end face fatigue characteristics can be obtained by this combination has not been known in the past, and this time, the present invention This is the first time it has been revealed by
(i) Despite the relatively low C content of 0.20 to 0.30%, the pearlite fraction of 70% or more in area ratio by including Cr in the steel sheet in an amount exceeding 1.00% can be achieved, and as a result uniform elongation can be improved,
(ii) The residual structure is composed of ferrite and/or bainite to improve the fatigue properties of the punched edge by being substantially free of martensite in the microstructure and retained austenite that produces said martensite by strain-induced transformation. that you can
(iii) limiting the content of Ti, Nb and V to suppress the formation of carbides by these elements to ensure a sufficient amount of carbon to form a pearlite structure containing lamellar cementite, resulting in pearlite The formation of coarse spheroidal cementite, i.e., cementite having a major axis length of more than 0.3 μm and an aspect ratio of less than 3.0, is limited to less than 10 per 10 μm 2 to improve punching edge fatigue properties. and (iv) by utilizing precipitation strengthening by Cu, the formation of carbides by Ti, Nb, and V is suppressed, and the formation of the pearlite structure in (iii) above is promoted. Despite the relatively low C content of 30%, a high tensile strength of 900 MPa or more can be achieved.
 以下、本発明の実施形態に係る熱間圧延鋼板についてより詳しく説明する。以下の説明において、各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味するものである。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値および上限値として含む意味で使用される。  Hereinafter, the hot-rolled steel sheet according to the embodiment of the present invention will be described in more detail. In the following description, the unit of content of each element, "%", means "% by mass" unless otherwise specified. In addition, in this specification, the term "to" indicating a numerical range is used to include the numerical values before and after it as lower and upper limits, unless otherwise specified.
[C:0.20~0.30%]
 Cは、熱間圧延鋼板の強度確保のために必須の元素である。このような効果を十分に得るために、C含有量は0.20%以上とする。C含有量は0.21%以上、0.22%以上または0.23%以上であってもよい。一方で、Cを過度に含有すると、鋼板の溶接性を劣化させる場合がある。このため、C含有量は0.30%以下とする。C含有量は0.30%未満、0.29%以下、0.28%以下、0.27%以下、0.26%以下、0.25%以下または0.24%以下であってもよい。本発明の実施形態においては、上記のとおりC含有量が比較的低いため、溶接性の観点で有利であり、例えば鋼板自体の打抜き端面だけでなく、溶接部においても優れた疲労特性を達成することが可能である。
[C: 0.20 to 0.30%]
C is an essential element for ensuring the strength of the hot-rolled steel sheet. In order to sufficiently obtain such effects, the C content is made 0.20% or more. The C content may be 0.21% or more, 0.22% or more, or 0.23% or more. On the other hand, an excessive C content may deteriorate the weldability of the steel sheet. Therefore, the C content should be 0.30% or less. C content may be less than 0.30%, 0.29% or less, 0.28% or less, 0.27% or less, 0.26% or less, 0.25% or less or 0.24% or less . In the embodiment of the present invention, since the C content is relatively low as described above, it is advantageous from the viewpoint of weldability. Is possible.
[Si:0.01~2.00%]
 Siは、鋼の脱酸のために用いられる元素である。このような効果を十分に得るために、Si含有量は0.01%以上とする。Si含有量は0.10%以上、0.20%以上、0.30%以上または0.50%以上であってもよい。一方で、Siを過度に含有すると、化成処理性が低下するとともに、鋼板のミクロ組織にオーステナイトが残留することによって鋼板の打抜き端面疲労特性が低下する場合がある。このため、Si含有量は2.00%以下とする。Si含有量は1.85%以下、1.70%以下、1.50%以下または1.40%以下であってもよい。
[Si: 0.01 to 2.00%]
Si is an element used for deoxidizing steel. In order to sufficiently obtain such effects, the Si content is set to 0.01% or more. The Si content may be 0.10% or more, 0.20% or more, 0.30% or more, or 0.50% or more. On the other hand, if Si is contained excessively, the chemical convertibility deteriorates, and austenite remains in the microstructure of the steel sheet. Therefore, the Si content is set to 2.00% or less. The Si content may be 1.85% or less, 1.70% or less, 1.50% or less, or 1.40% or less.
[Mn:0.50~3.00%]
 Mnは、鋼の相変態を遅らせ、冷却途中で相変態が生じるのを防ぐために有効な元素である。このような効果を十分に得るために、Mn含有量は0.50%以上とする。Mn含有量は0.60%以上、0.80%以上、1.00%以上、1.30%以上または1.50%以上であってもよい。一方で、Mnを過度に含有すると、ミクロ偏析またはマクロ偏析が起こりやすくなり、穴広げ性を低下させる場合がある。このため、Mn含有量は3.00%以下とする。Mn含有量は2.80%以下、2.70%以下、2.50%以下または2.20%以下であってもよい。
[Mn: 0.50 to 3.00%]
Mn is an element effective for delaying phase transformation of steel and preventing phase transformation from occurring during cooling. In order to sufficiently obtain such effects, the Mn content is made 0.50% or more. The Mn content may be 0.60% or more, 0.80% or more, 1.00% or more, 1.30% or more, or 1.50% or more. On the other hand, when Mn is contained excessively, micro-segregation or macro-segregation tends to occur, which may reduce the hole expansibility. Therefore, the Mn content should be 3.00% or less. The Mn content may be 2.80% or less, 2.70% or less, 2.50% or less, or 2.20% or less.
[P:0.100%以下]
 Pは、製造工程で混入する元素である。P含有量は低いほど好ましく、過剰であると、成形性や溶接性に悪影響を及ぼすとともに、疲労特性も低下させる場合がある。このため、P含有量は0.100%以下とする。好ましくは0.090%以下または0.070%以下、より好ましくは0.050%または0.040%以下である。P含有量は0%であってもよいが、過剰な低減はコスト上昇を招く。このため、P含有量は0.0001%以上、0.0005%以上、0.001%以上または0.005%以上であってもよい。
[P: 0.100% or less]
P is an element mixed in during the manufacturing process. The lower the P content is, the better. If it is excessive, the formability and weldability may be adversely affected, and the fatigue properties may be deteriorated. Therefore, the P content should be 0.100% or less. It is preferably 0.090% or less or 0.070% or less, more preferably 0.050% or 0.040% or less. The P content may be 0%, but excessive reduction leads to increased costs. Therefore, the P content may be 0.0001% or more, 0.0005% or more, 0.001% or more, or 0.005% or more.
[S:0.0100%以下]
 Sは、MnSを形成して破壊の起点として作用し、鋼板の穴広げ性を著しく低下させる場合がある。このため、S含有量は0.0100%以下とする。S含有量は0.0090%以下であるのが好ましく、0.0085%以下または0.0070%以下であるのがより好ましい。S含有量は0%であってもよいが、過剰な低減はコスト上昇を招く。このため、S含有量は0.0001%以上、0.0005%以上、0.0010%以上または0.0020%以上であってもよい。
[S: 0.0100% or less]
S forms MnS and acts as a starting point of fracture, which may significantly reduce the hole expansibility of the steel sheet. Therefore, the S content is set to 0.0100% or less. The S content is preferably 0.0090% or less, more preferably 0.0085% or less or 0.0070% or less. The S content may be 0%, but excessive reduction leads to an increase in cost. Therefore, the S content may be 0.0001% or more, 0.0005% or more, 0.0010% or more, or 0.0020% or more.
[Al:0.005~3.000%]
 Alは、鋼の脱酸のために用いられる元素である。このような効果を十分に得るために、Al含有量は0.005%以上とする。Al含有量は0.010%以上、0.030%以上、0.050%以上、0.100%以上または0.300%以上であってもよい。一方で、Alを過度に含有すると、介在物が増加し、鋼板の加工性を劣化させる場合がある。このため、Al含有量は3.000%以下とする。Al含有量は2.800%以下、2.500%以下、2.000%以下、1.800%以下、1.500%以下または1.200%以下であってもよい。
[Al: 0.005 to 3.000%]
Al is an element used for deoxidizing steel. In order to sufficiently obtain such effects, the Al content is made 0.005% or more. The Al content may be 0.010% or more, 0.030% or more, 0.050% or more, 0.100% or more, or 0.300% or more. On the other hand, an excessive Al content may increase inclusions and deteriorate the workability of the steel sheet. Therefore, the Al content is set to 3.000% or less. The Al content may be 2.800% or less, 2.500% or less, 2.000% or less, 1.800% or less, 1.500% or less, or 1.200% or less.
[N:0.0100%以下]
 Nは、鋼中のAlと結びついてAlNを形成し、ピン止め効果によりパーライトブロック径の大径化を阻害することによって鋼の靱性を向上させる。しかし、Nを過度に含有すると、その効果は飽和し、むしろ靱性低下を引き起こす場合がある。このため、N含有量は0.0100%以下とする。N含有量は0.0090%以下、0.0080%以下または0.0070%以下であるのが好ましい。このような観点からはN含有量は0%であってもよいが、過剰な低減はコスト上昇を招く。このため、N含有量は0.0001%以上、0.0005%以上、0.0010%以上または0.0020%以上であってもよい。
[N: 0.0100% or less]
N combines with Al in the steel to form AlN, which prevents the pearlite block diameter from increasing due to the pinning effect, thereby improving the toughness of the steel. However, an excessive N content saturates the effect and may rather cause a decrease in toughness. Therefore, the N content is set to 0.0100% or less. The N content is preferably 0.0090% or less, 0.0080% or less or 0.0070% or less. From such a point of view, the N content may be 0%, but excessive reduction leads to an increase in cost. Therefore, the N content may be 0.0001% or more, 0.0005% or more, 0.0010% or more, or 0.0020% or more.
[O:0.0100%以下]
 Oは、製造工程で混入する元素である。Oを過度に含有すると、粗大な介在物が形成して鋼板の靭性を低下させる場合がある。したがって、O含有量は0.0100%以下である。O含有量は0.0090%以下、0.0080%以下、0.0070%以下または0.0060%以下であってもよい。O含有量は0%であってもよいが、過剰な低減はコスト上昇を招く。したがって、O含有量は0.0001%以上、0.0005%以上、0.0010%以上または0.0020%以上であってもよい。
[O: 0.0100% or less]
O is an element mixed in during the manufacturing process. If O is contained excessively, coarse inclusions may be formed to lower the toughness of the steel sheet. Therefore, the O content is 0.0100% or less. The O content may be 0.0090% or less, 0.0080% or less, 0.0070% or less, or 0.0060% or less. The O content may be 0%, but excessive reduction leads to increased costs. Therefore, the O content may be 0.0001% or more, 0.0005% or more, 0.0010% or more, or 0.0020% or more.
[Cr:1.00超~3.00%]
 Crは、鋼板の強度向上に寄与する元素であり、セメンタイトの球状化を抑制する効果も有する。したがって、パーライト中の粗大な球状セメンタイトの数密度を低減して打抜き時のボイド発生を抑制するために、Crを一定以上含有させる必要がある。さらに、Crはセメンタイトを安定化させることから、Crを含有することでパーライトの生成領域を低炭素含有量側に拡張させることができる。このため、Crを適切な量すなわち1.00%超の量において含有することで、比較的低いC含有量の場合であっても70%以上のパーライト分率を達成することが可能となる。Cr含有量は1.01%以上、1.02%以上、1.03%以上、1.05%以上、1.10%以上、1.30%以上、1.50%以上または1.70%以上であってもよい。一方で、Crを過度に含有すると、パーライト変態が遅延し、ベイナイトやマルテンサイトといった硬質組織が比較的多く生成してしまい、パーライト分率70%以上とすることが困難となる場合がある。あるいはまた、Crを過度に含有すると、引張強さの向上に伴い均一伸び性が低下する場合がある。このため、Cr含有量は3.00%以下とする。Cr含有量は2.80%以下、2.70%以下、2.50%以下、2.20%以下、2.00%以下または1.80%以下であってもよい。
[Cr: more than 1.00 to 3.00%]
Cr is an element that contributes to improving the strength of the steel sheet, and also has the effect of suppressing spheroidization of cementite. Therefore, in order to reduce the number density of coarse spheroidal cementite in the pearlite and suppress the generation of voids during punching, it is necessary to contain a certain amount or more of Cr. Furthermore, since Cr stabilizes cementite, the inclusion of Cr can expand the pearlite formation region toward the low carbon content side. Therefore, by including Cr in an appropriate amount, ie, an amount exceeding 1.00%, it is possible to achieve a pearlite fraction of 70% or more even with a relatively low C content. Cr content is 1.01% or more, 1.02% or more, 1.03% or more, 1.05% or more, 1.10% or more, 1.30% or more, 1.50% or more, or 1.70% or more. On the other hand, when Cr is contained excessively, the pearlite transformation is delayed, and a relatively large amount of hard structures such as bainite and martensite are generated, which may make it difficult to achieve a pearlite fraction of 70% or more. Alternatively, when Cr is contained excessively, the uniform elongation may be lowered as the tensile strength is improved. Therefore, the Cr content is set to 3.00% or less. The Cr content may be 2.80% or less, 2.70% or less, 2.50% or less, 2.20% or less, 2.00% or less, or 1.80% or less.
[Cu:1.00超~3.00%]
 Cuは、析出強化により強度向上に有効な元素である。また、Cuは、Ti、NbおよびVとは異なり、炭化物を形成することなく鋼板の強度を向上させることができる。このため、Cuは、粗大な球状セメンタイトが低減された所望のパーライト組織を形成するのに必要な炭素を消費することがない。したがって、Cuは強度向上と打抜き端面疲労特性の両立を図る上で極めて重要な元素である。これらの効果を十分に得るために、Cu含有量は1.00%超とする。Cu含有量は1.01%以上、1.02%以上、1.03%以上、1.05%以上、1.10%以上、1.20%以上、1.30%以上、1.50%以上または1.70%以上であってもよい。一方で、Cuを過度に含有すると、析出物の増加により熱間での加工の際、表面に微小な割れを発生させることがある。したがって、Cu含有量は3.00%以下とする。Cu含有量は2.80%以下、2.70%以下、2.50%以下、2.20%以下、2.00%以下または1.80%以下であってもよい。
[Cu: more than 1.00 to 3.00%]
Cu is an element effective in improving strength by precipitation strengthening. Also, unlike Ti, Nb and V, Cu can improve the strength of the steel sheet without forming carbides. Therefore, Cu does not consume the carbon required to form the desired pearlite structure in which coarse spherical cementite is reduced. Therefore, Cu is an extremely important element for achieving both strength improvement and punch end face fatigue properties. In order to sufficiently obtain these effects, the Cu content should be more than 1.00%. Cu content is 1.01% or more, 1.02% or more, 1.03% or more, 1.05% or more, 1.10% or more, 1.20% or more, 1.30% or more, 1.50% or more or 1.70% or more. On the other hand, an excessive Cu content may cause minute cracks on the surface during hot working due to an increase in precipitates. Therefore, the Cu content is set to 3.00% or less. The Cu content may be 2.80% or less, 2.70% or less, 2.50% or less, 2.20% or less, 2.00% or less, or 1.80% or less.
 本発明の実施形態に係る熱間圧延鋼板の基本化学組成は上記のとおりである。さらに、当該熱間圧延鋼板は、必要に応じて、残部のFeの一部に替えて以下の任意選択元素のうち少なくとも1種を含有してもよい。例えば、熱間圧延鋼板は、Ti:0~0.10%、Nb:0~0.10%、V:0~0.10%、Ni:0~2.00%およびMo:0~1.00%からなる群より選択される少なくとも1種を含有してもよい。また、熱間圧延鋼板は、B:0~0.0100%を含有してもよい。また、熱間圧延鋼板は、Ca:0~0.0050%およびREM:0~0.005%からなる群より選択される少なくとも1種を含有してもよい。以下、これらの任意選択元素について詳しく説明する。 The basic chemical composition of the hot-rolled steel sheet according to the embodiment of the present invention is as described above. Furthermore, the hot-rolled steel sheet may contain at least one of the following optional elements in place of part of the remaining Fe, if necessary. For example, hot-rolled steel sheets contain Ti: 0-0.10%, Nb: 0-0.10%, V: 0-0.10%, Ni: 0-2.00% and Mo: 0-1. It may contain at least one selected from the group consisting of 00%. Also, the hot rolled steel sheet may contain B: 0 to 0.0100%. Also, the hot-rolled steel sheet may contain at least one selected from the group consisting of Ca: 0 to 0.0050% and REM: 0 to 0.005%. These optional elements are described in detail below.
[Ti:0~0.10%]
[Nb:0~0.10%]
[V:0~0.10%]
 Ti、NbおよびVは、炭化物析出により鋼板強度の向上に寄与する元素である。Ti、NbおよびV含有量は0%であってもよいが、上記効果を得るため、必要に応じてこれらから選択される1種を単独で、または2種以上を複合して含有してもよい。上記効果を得るためには、Ti、NbおよびV含有量はそれぞれ0.001%以上であることが好ましく、0.01%以上、0.02%以上または0.03%以上であってもよい。一方で、これらの元素を過度に含有すると、多量の炭化物が生成して、粗大な球状セメンタイトが低減された所望のパーライト組織を形成するのに必要な炭素を消費することとなる。その結果として、打抜き端面疲労特性を低下させる場合がある。このため、Ti、NiおよびV含有量はそれぞれ0.10%以下であることが好ましい。Ti、NiおよびV含有量はそれぞれ0.08%以下、0.06%以下または0.05%以下であってもよい。
[Ti: 0 to 0.10%]
[Nb: 0 to 0.10%]
[V: 0 to 0.10%]
Ti, Nb and V are elements that contribute to the improvement of steel sheet strength by precipitation of carbides. The Ti, Nb and V contents may be 0%, but in order to obtain the above effect, one selected from these may be contained alone or two or more may be combined as needed. good. In order to obtain the above effects, the Ti, Nb and V contents are each preferably 0.001% or more, and may be 0.01% or more, 0.02% or more, or 0.03% or more. . On the other hand, if these elements are excessively contained, a large amount of carbide is generated, consuming the carbon necessary to form the desired pearlite structure with reduced coarse spherical cementite. As a result, the fatigue properties of the punched end face may be degraded. Therefore, the Ti, Ni and V contents are each preferably 0.10% or less. The Ti, Ni and V contents may each be 0.08% or less, 0.06% or less or 0.05% or less.
[Ni:0~2.00%]
 Niは鋼に固溶して靱性を損なわずに強度を高めることができる元素である。Ni含有量は0%であってもよいが、上記効果を得るためには、Ni含有量は0.001%以上であることが好ましい。Ni含有量は0.01%以上、0.10%以上、0.20%以上または0.50%以上であってもよい。一方で、Niは高価な元素であり、過剰な添加はコストの上昇を招く。したがって、Ni含有量は2.00%以下であることが好ましい。Ni含有量は1.70%以下、1.50%以下または1.20%以下であってもよい。
[Ni: 0 to 2.00%]
Ni is an element that dissolves in steel to increase strength without impairing toughness. Although the Ni content may be 0%, the Ni content is preferably 0.001% or more in order to obtain the above effects. The Ni content may be 0.01% or more, 0.10% or more, 0.20% or more, or 0.50% or more. On the other hand, Ni is an expensive element, and excessive addition causes an increase in cost. Therefore, the Ni content is preferably 2.00% or less. The Ni content may be 1.70% or less, 1.50% or less, or 1.20% or less.
[Mo:0~1.00%]
 Moは鋼の強度を高める元素である。Mo含有量は0%であってもよいが、上記効果を得るためには、Mo含有量は0.001%以上であることが好ましい。Mo含有量は0.01%以上、0.02%以上または0.03%以上であってもよい。一方で、Moを過度に含有すると、強度の増加に伴い、靱性が低下する場合がある。したがって、Mo含有量は1.00%以下であることが好ましい。Mo含有量は0.80%以下、0.50%以下、0.30%以下、0.10%以下、0.08%以下、0.06%以下または0.05%以下であってもよい。
[Mo: 0 to 1.00%]
Mo is an element that increases the strength of steel. Although the Mo content may be 0%, the Mo content is preferably 0.001% or more in order to obtain the above effects. The Mo content may be 0.01% or more, 0.02% or more, or 0.03% or more. On the other hand, if Mo is contained excessively, toughness may decrease as the strength increases. Therefore, the Mo content is preferably 1.00% or less. Mo content may be 0.80% or less, 0.50% or less, 0.30% or less, 0.10% or less, 0.08% or less, 0.06% or less, or 0.05% or less .
[B:0~0.0100%]
 Bは、粒界に偏析し、粒界強度を高める効果を有する。B含有量は0%であってもよいが、上記効果を得るためには、B含有量は0.0001%以上であることが好ましい。B含有量は0.0003%以上、0.0005%以上または0.0010%以上であってもよい。一方で、Bを過度に含有しても効果が飽和し、それゆえ原料コストの上昇を招く。このため、B含有量は0.0100%以下であることが好ましい。B含有量は0.0080%以下、0.0060%以下または0.0050%以下であってもよい。
[B: 0 to 0.0100%]
B segregates at grain boundaries and has the effect of increasing grain boundary strength. Although the B content may be 0%, the B content is preferably 0.0001% or more in order to obtain the above effect. The B content may be 0.0003% or more, 0.0005% or more, or 0.0010% or more. On the other hand, even if B is contained excessively, the effect is saturated, which leads to an increase in raw material cost. Therefore, the B content is preferably 0.0100% or less. The B content may be 0.0080% or less, 0.0060% or less, or 0.0050% or less.
[Ca:0~0.0050%]
 Caは、破壊の起点となり加工性を劣化させる原因となる非金属介在物の形態を制御し、加工性を向上させる元素である。Ca含有量は0%であってもよいが、上記効果を得るためには、Ca含有量は0.0001%以上であることが好ましい。Ca含有量は0.0003%以上、0.0005%以上または0.0010%以上であってもよい。一方で、Caを過度に含有しても効果が飽和し、それゆえ原料コストの上昇を招く。このため、Ca含有量は0.0050%以下であることが好ましい。Ca含有量は0.0045%以下または0.0040%以下であってもよい。
[Ca: 0 to 0.0050%]
Ca is an element that improves workability by controlling the form of non-metallic inclusions that act as starting points for fracture and cause deterioration in workability. Although the Ca content may be 0%, the Ca content is preferably 0.0001% or more in order to obtain the above effect. The Ca content may be 0.0003% or more, 0.0005% or more, or 0.0010% or more. On the other hand, even if Ca is contained excessively, the effect is saturated, which leads to an increase in raw material cost. Therefore, the Ca content is preferably 0.0050% or less. The Ca content may be 0.0045% or less or 0.0040% or less.
[REM:0~0.005%]
 REMは、微量添加によって溶接部の靱性を向上させる元素である。REM含有量は0%であってもよいが、上記効果を得るためには、REM含有量は0.0001%以上であることが好ましい。REM含有量は0.0003%以上、0.0005%以上または0.001%以上であってもよい。一方で、REMを過度に含有すると、溶接性が低下する場合がある。このため、REM含有量は0.005%以下であることが好ましい。REM含有量は0.004%以下または0.003%以下であってもよい。本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、およびランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)の17元素の総称であり、REM含有量はこれら元素の合計含有量である。
[REM: 0 to 0.005%]
REM is an element that improves the toughness of weld zones by adding a small amount of REM. Although the REM content may be 0%, the REM content is preferably 0.0001% or more in order to obtain the above effects. The REM content may be 0.0003% or greater, 0.0005% or greater, or 0.001% or greater. On the other hand, an excessive REM content may reduce weldability. Therefore, the REM content is preferably 0.005% or less. The REM content may be 0.004% or less or 0.003% or less. REM herein refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and the lanthanoids lanthanum with atomic number 57 (La) to lutetium with atomic number 71 (Lu ), and the REM content is the total content of these elements.
 本発明の実施形態に係る熱間圧延鋼板において、上記の元素以外の残部はFeおよび不純物からなる。不純物とは、熱間圧延鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。不純物としては、例えば、Sn:0.02%以下、Sb:0.02%以下、W:0.015%以下、およびCo:0.015%以下などが挙げられる。 In the hot-rolled steel sheet according to the embodiment of the present invention, the balance other than the above elements consists of Fe and impurities. The term "impurities" refers to components and the like that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when hot-rolled steel sheets are industrially manufactured. Examples of impurities include Sn: 0.02% or less, Sb: 0.02% or less, W: 0.015% or less, and Co: 0.015% or less.
[パーライト:70%以上]
 熱間圧延鋼板のミクロ組織は、面積率で、70%以上のパーライトを含む。パーライトは、残留オーステナイト以外のミクロ組織の中で最も加工硬化能が高いため、熱間圧延鋼板のミクロ組織をパーライト主体の組織とすることによって、高い強度を保ちつつ均一伸び性に優れた鋼板とすることが可能になる。例えば、フェライトが過剰に生成し、その結果としてパーライトが面積率で70%未満となると、強度を十分に確保することができない場合がある。一方で、ベイナイトが過剰に生成し、その結果としてパーライトが面積率で70%未満となると、強度は向上するものの、均一伸び性が低下する場合がある。このため、パーライトの面積率は70%以上とし、72%以上、75%以上、77%以上、80%以上、85%以上または90%以上であってもよい。パーライトの面積率の上限は、特に限定されず100%であってもよい。例えば、パーライトの面積率は99%以下、98%以下、96%以下、94%以下、92%以下、90%以下、87%以下、83%以下または79%以下であってもよい。
[Perlite: 70% or more]
The microstructure of the hot-rolled steel sheet contains 70% or more pearlite in terms of area ratio. Pearlite has the highest work hardening ability among microstructures other than retained austenite. it becomes possible to For example, if ferrite is excessively generated and as a result the area ratio of pearlite is less than 70%, sufficient strength may not be ensured. On the other hand, when bainite is excessively produced and as a result, the area ratio of pearlite is less than 70%, although the strength is improved, the uniform elongation may be deteriorated. Therefore, the area ratio of pearlite is 70% or more, and may be 72% or more, 75% or more, 77% or more, 80% or more, 85% or more, or 90% or more. The upper limit of the area ratio of pearlite is not particularly limited, and may be 100%. For example, the perlite area ratio may be 99% or less, 98% or less, 96% or less, 94% or less, 92% or less, 90% or less, 87% or less, 83% or less, or 79% or less.
[フェライト:0~30%]
[ベイナイト:0~30%]
 パーライト以外の残部組織は、面積率で0%であってもよいが、残部組織が存在する場合には、それはフェライトおよびベイナイトのうち少なくとも1種から構成される。したがって、フェライトおよびベイナイトはそれぞれ面積率で0~30%とする。フェライトおよびベイナイトはそれぞれ面積率で1%以上、2%以上、4%以上または6%以上であってもよい。同様に、フェライトおよびベイナイトはそれぞれ面積率で25%以下、20%以下、15%以下または10%以下であってもよい。残部組織をフェライトおよび/またはベイナイトから構成すること、すなわち残部組織において高硬度で低靭性のマルテンサイトや、加工誘起変態によって当該マルテンサイトを生成する残留オーステナイトが存在しないかまたは実質的に存在しないことで、良好な打抜き端面疲労特性を担保することが可能となる。本明細書において「実質的に存在しない」または「実質的に含めない」との表現は、残部組織においてマルテンサイトおよび残留オーステナイトの面積率が合計でも0.5%未満であることを意味するものである。このような微小な組織の合計量を正確に測定することは困難であり、またその影響も無視できることから、これらの組織の合計量が0.5%未満となる場合には、存在しないものと判断することが可能である。フェライトの面積率およびベイナイトの面積率の合計を、30%以下、25%以下、21%以下、17%以下、13%以下、10%以下、8%以下、6%以下、4%以下、2%以下または1%以下としてもよく、0%であってもよい。その一方、必要に応じて、フェライトの面積率およびベイナイトの面積率の合計を、1%以上、2%以上、4%以上、6%以上、8%以上、10%以上、13%以上、17%以上または21%以上としてもよい。
[Ferrite: 0 to 30%]
[Bainite: 0 to 30%]
The remaining structure other than pearlite may have an area ratio of 0%, but if there is a remaining structure, it is composed of at least one of ferrite and bainite. Therefore, the area ratio of ferrite and bainite is set to 0 to 30%. Ferrite and bainite may each have an area ratio of 1% or more, 2% or more, 4% or more, or 6% or more. Similarly, ferrite and bainite may each have an area ratio of 25% or less, 20% or less, 15% or less, or 10% or less. The residual structure is composed of ferrite and/or bainite, that is, the residual structure does not contain or substantially does not contain high-hardness, low-toughness martensite or retained austenite that forms the martensite by deformation-induced transformation. Therefore, it is possible to secure good punching end face fatigue characteristics. As used herein, the expression "substantially absent" or "substantially free of" means that the total area fraction of martensite and retained austenite in the residual structure is less than 0.5%. is. It is difficult to accurately measure the total amount of such microstructures, and the effect thereof can be ignored. It is possible to judge The total area ratio of ferrite and bainite is 30% or less, 25% or less, 21% or less, 17% or less, 13% or less, 10% or less, 8% or less, 6% or less, 4% or less, 2 % or less, 1% or less, or 0%. On the other hand, if necessary, the total area ratio of ferrite and bainite is 1% or more, 2% or more, 4% or more, 6% or more, 8% or more, 10% or more, 13% or more, 17 % or more or 21% or more.
[パーライトにおける長軸の長さが0.3μm超でかつアスペクト比が3.0未満のセメンタイトの数密度:10μm2当たり10個未満]
 本発明の実施形態では、パーライトを構成するセメンタイトのうち粗大な球状セメンタイトの数密度が所定の範囲内に制限されており、より具体的にはパーライトにおいて長軸の長さが0.3μm超でかつアスペクト比が3.0未満のセメンタイトは10μm2当たり10個未満である。セメンタイトのアスペクト比とは、観察面に現出したセメンタイトの長軸の長さを短軸の長さで除した値を言うものある。本明細書において、長軸の長さが0.3μm超でかつアスペクト比が3.0未満のセメンタイトは粗大な球状セメンタイトと定義される。このような粗大な球状セメンタイトは鋼板の打抜き時にボイド発生の起点となる場合があり、このボイドは打抜き加工後の打抜き端面における疲労特性を低下させる原因となり得る。したがって、打抜き端面における疲労特性を改善するためには、このような粗大な球状セメンタイトの量を低減することが極めて重要である。これに関連して、本発明の実施形態では、上記の粗大な球状セメンタイトの数密度を10μm2当たり10個未満に制限しているため、打抜き時のボイドの発生を確実に抑制することができ、その結果として打抜き端面における疲労特性を顕著に改善することが可能となる。粗大な球状セメンタイトの数密度は、パーライト中で10μm2当たり8個以下、6個以下または4個以下であってもよい。粗大な球状セメンタイトの数密度はパーライト中で10μm2当たり0個であってもよいが、例えば1個以上または2個以上であってもよい。詳細は後述するが、アスペクト比とは、画像処理により個々のセメンタイトに対し楕円体近似処理を行った場合の当該楕円体の長軸の長さと短軸の長さとの比を言うものである。
[Number density of cementite having a major axis length of more than 0.3 μm and an aspect ratio of less than 3.0 in pearlite: less than 10 per 10 μm 2 ]
In the embodiment of the present invention, the number density of coarse spherical cementite among the cementites constituting pearlite is limited within a predetermined range. And cementite having an aspect ratio of less than 3.0 is less than 10 per 10 μm 2 . The aspect ratio of cementite refers to a value obtained by dividing the length of the major axis of cementite appearing on the viewing surface by the length of the minor axis. Cementite having a major axis length of more than 0.3 μm and an aspect ratio of less than 3.0 is defined herein as coarse spheroidal cementite. Such coarse spheroidal cementite may become a starting point of void generation during punching of a steel plate, and these voids can be a cause of deterioration of fatigue properties at the punched end face after punching. Therefore, it is extremely important to reduce the amount of such coarse spheroidal cementite in order to improve the fatigue properties of the punched end face. In relation to this, in the embodiment of the present invention, since the number density of the coarse spherical cementite is limited to less than 10 per 10 μm 2 , the generation of voids during punching can be reliably suppressed. As a result, it is possible to remarkably improve the fatigue properties of the punched end faces. The number density of coarse spherical cementites may be 8 or less, 6 or less, or 4 or less per 10 μm 2 in pearlite. The number density of the coarse spherical cementite may be 0 per 10 μm 2 in the pearlite, but may be, for example, 1 or more or 2 or more. Although details will be described later, the aspect ratio refers to the ratio of the length of the major axis to the length of the minor axis of an ellipsoid when ellipsoid approximation processing is performed on individual cementites by image processing.
[ミクロ組織の面積率の測定方法]
 ミクロ組織の面積率は以下のようにして求める。まず、鋼板の表面から板厚の1/4または3/4の位置から、鋼板の圧延方向および厚さ方向に平行な断面が観察面となるように試料を採取する。続いて、当該観察面を鏡面研磨し、ピクラール腐食液で腐食した後、走査電子顕微鏡(SEM)を用いて組織観察を行う。測定領域は12,000μm2の面積(例えば、80μm×150μmの面積)とし、例えば倍率が5000倍程度の組織写真から点算法を用いてパーライトおよびフェライトの面積率を算出する。ここで、フェライトの結晶方位差が15°以上となる粒界によって囲まれた領域であって、フェライト相とセメンタイト相が混在し、セメンタイトの形態が層状および/または球状であるような領域をパーライトと認定する。したがって、例えば、パーライトは、フェライト相とセメンタイトが層状(ラメラ状)に分散したものに加え、塊状に分散したセメンタイトを主体とする組織、より具体的にはこのような塊状のセメンタイトを当該組織中のセメンタイト全量に対して面積率で50%超含有する組織をも包含するものである。また、ラス状の結晶粒の集合体であって、ラスの内部に長径20nm以上の鉄系炭化物を複数有し、さらにそれらの炭化物が単一のバリアント、すなわち同一の方向に伸長した鉄系炭化物群に属するものをベイナイトと認定する。パーライト組織において観察される介在物は基本的にセメンタイトであり、エネルギー分散型X線分光器付き走査電子顕微鏡(SEM-EDS)などを用いて、個々の介在物をセメンタイトまたは鉄系炭化物であることを同定する必要はない。セメンタイトまたは鉄系炭化物であることに疑義が生じた場合のみ、必要に応じて、SEM観察とは別に、SEM-EDSなどを用いて介在物を分析することでよい。残留オーステナイトは内部にセメンタイトの面積分率が1%未満であり、このような組織があればSEMによる組織観察の後、電子線後方散乱回折法(Electron Back Scatter Diffraction、EBSD)を用いて分析し、fcc構造の組織を残留オーステナイトと判定する。
[Method for measuring area ratio of microstructure]
The area ratio of the microstructure is determined as follows. First, a sample is taken from a position of 1/4 or 3/4 of the plate thickness from the surface of the steel plate so that the cross section parallel to the rolling direction and thickness direction of the steel plate becomes the observation surface. Subsequently, the observation surface is mirror-polished, corroded with a picral corrosive solution, and then subjected to structural observation using a scanning electron microscope (SEM). The measurement area is an area of 12,000 μm 2 (for example, an area of 80 μm×150 μm), and the area ratios of pearlite and ferrite are calculated from a structure photograph at a magnification of, for example, about 5000 times using the point counting method. Here, pearlite is a region surrounded by grain boundaries where the ferrite crystal orientation difference is 15° or more, where the ferrite phase and the cementite phase are mixed, and the cementite has a lamellar and/or spherical form. and certify. Therefore, for example, pearlite has a layered (lamellar) dispersed structure of ferrite phase and cementite, as well as a structure mainly composed of cementite dispersed in clusters. It also includes a structure containing more than 50% in terms of area ratio with respect to the total amount of cementite. Further, it is an aggregate of lath-shaped crystal grains, and has a plurality of iron-based carbides having a major axis of 20 nm or more inside the laths, and these carbides are a single variant, that is, an iron-based carbide elongated in the same direction. Those belonging to the group are identified as bainite. Inclusions observed in the pearlite structure are basically cementite, and using a scanning electron microscope with an energy dispersive X-ray spectroscope (SEM-EDS), etc., individual inclusions are identified as cementite or iron-based carbides. need not be identified. Only when there is doubt that the inclusion is cementite or iron-based carbide, the inclusion may be analyzed using SEM-EDS or the like separately from SEM observation, if necessary. Retained austenite has a cementite area fraction of less than 1% inside, and if such a structure exists, it is analyzed using electron back scatter diffraction (EBSD) after observing the structure with SEM. , fcc structure is determined as retained austenite.
[パーライトにおける長軸の長さが0.3μm超でかつアスペクト比が3.0未満のセメンタイトの数密度の測定方法]
 粗大な球状セメンタイトの数密度は以下のようにして求める。まず、鋼板の表面から板厚の1/4または3/4の位置から、鋼板の圧延方向および厚さ方向に平行な断面が観察面となるように試料を採取する。続いて、当該観察面を鏡面研磨し、ピクラール腐食液で腐食した後、走査電子顕微鏡(SEM)を用いて組織観察を行う。測定領域は12,000μm2(例えば、80μm×150μmの面積)の5000倍程度のSEM写真において、パーライトとして認定される領域の画像を2値化処理し、暗部をフェライト、明部をセメンタイトとする。このうち、個々のセメンタイトに対して、画像処理により楕円体近似を行い、当該楕円体の長軸の長さ、短軸の長さをそれぞれ個々のセメンタイトの長軸の長さ、短軸の長さと定義し、個々のセメンタイトのアスペクト比を以下の式で定義する。
   [アスペクト比]=[長軸の長さ]/[短軸の長さ]
 80μm×150μmの1視野において、上記の方法にて定義したセメンタイトの長軸の長さが0.3μm超でかつアスペクト比が3.0未満であるセメンタイトの個数を画像処理により算出し、これを10μm2当たりに換算した値を本発明で規定する粗大な球状セメンタイトの数密度として決定する。
[Method for measuring the number density of cementite having a major axis length of more than 0.3 μm and an aspect ratio of less than 3.0 in pearlite]
The number density of coarse spherical cementite is determined as follows. First, a sample is taken from a position of 1/4 or 3/4 of the plate thickness from the surface of the steel plate so that the cross section parallel to the rolling direction and thickness direction of the steel plate becomes the observation surface. Subsequently, the observation surface is mirror-polished, corroded with a picral corrosive solution, and then subjected to structural observation using a scanning electron microscope (SEM). The measurement area is a 12,000 μm 2 (for example, an area of 80 μm×150 μm) SEM photograph of about 5000 times, and the image of the area recognized as pearlite is binarized, and the dark part is ferrite and the bright part is cementite. . Of these, for each cementite, ellipsoid approximation is performed by image processing, and the length of the major axis and the length of the minor axis of the ellipsoid are calculated as the length of the major axis and the length of the minor axis of each cementite. and the aspect ratio of each cementite is defined by the following equation.
[aspect ratio] = [long axis length] / [short axis length]
In one field of view of 80 μm × 150 μm, the number of cementites having a long axis length of more than 0.3 μm and an aspect ratio of less than 3.0 as defined by the above method was calculated by image processing. The value converted per 10 μm 2 is determined as the number density of coarse spherical cementite defined in the present invention.
[機械的特性]
 上記の化学組成および組織を有する熱間圧延鋼板によれば、高い引張強さ、具体的には900MPa以上の引張強さを達成することができる。引張強さは、好ましくは910MPa以上または920MPa以上であり、より好ましくは940MPa以上または980MPa以上であり、最も好ましくは1000MPa以上または1080MPa以上である。上限値については特に規定する必要はないが、例えば、引張強さは1500MPa以下または1400MPa以下であってもよい。同様に、上記の化学組成および組織を有する熱間圧延鋼板によれば、高い均一伸び性を達成することができ、より具体的には7.0%以上、好ましくは7.5%以上、より好ましくは8.0%以上の均一伸びを達成することができる。上限値については特に規定する必要はないが、例えば、均一伸びは20.0%以下または15.0%以下であってもよい。引張強さおよび均一伸びは、熱間圧延鋼板の圧延方向に直角な方向からJIS Z2241:2011の5号引張試験片を採取し、JIS Z2241:2011に準拠して引張試験を行うことで測定される。均一伸びとは、JIS Z2241:2011において規定される最大試験力時塑性伸び(%)をいうものである。
[Mechanical properties]
A hot-rolled steel sheet having the above chemical composition and structure can achieve a high tensile strength, specifically a tensile strength of 900 MPa or more. The tensile strength is preferably 910 MPa or higher or 920 MPa or higher, more preferably 940 MPa or higher or 980 MPa or higher, and most preferably 1000 MPa or higher or 1080 MPa or higher. Although it is not necessary to specify the upper limit, for example, the tensile strength may be 1500 MPa or less or 1400 MPa or less. Similarly, the hot-rolled steel sheet having the above chemical composition and structure can achieve high uniform elongation, more specifically 7.0% or more, preferably 7.5% or more, and more Preferably, a uniform elongation of 8.0% or more can be achieved. Although it is not necessary to specify the upper limit, for example, the uniform elongation may be 20.0% or less or 15.0% or less. The tensile strength and uniform elongation are measured by taking a No. 5 tensile test piece of JIS Z2241:2011 from the direction perpendicular to the rolling direction of the hot-rolled steel sheet and performing a tensile test in accordance with JIS Z2241:2011. be. Uniform elongation means plastic elongation (%) at maximum test force defined in JIS Z2241:2011.
 同様に、上記の化学組成および組織を有する熱間圧延鋼板によれば、高い打抜き端面疲労特性を達成することができる。より具体的には、打抜き端面の疲労試験に基づいて決定された疲労限度σF(MPa)を引張強さTS(MPa)で除した値(σF/TS)に対応する打抜き疲労限度比において0.28以上の打抜き端面疲労特性を達成することができる。打抜き疲労限度比は、好ましくは0.30以上、より好ましくは0.32以上である。上限値については特に規定する必要はないが、例えば、打抜き疲労限度比は0.42以下または0.40以下であってもよい。打抜き疲労限度比は、図1に示す寸法の板状試験片を用いて下記の方法によって決定される。まず、圧延方向が長辺になるようにして熱間圧延鋼板から採取した板状試験片(30mm×90mm)の中央にポンチ径10mm、打抜きクリアランス12%で打抜き穴を空け、次いで一定の応力振幅σ(MPa)にて両振り平面曲げ疲労試験を実施する。板状試験片は、板端面角部からのき裂発生を避けるため、図1に示すように板端面角部をR面取りしてもよい。繰り返し回数Nが107回となるまで両振り平面曲げ疲労試験を実施し、破断に至らなかった試験の中で最大の応力振幅を疲労限度σF(MPa)とし、当該疲労限度σF(MPa)を引張強さTS(MPa)で除した値(σF/TS)が打抜き疲労限度比として決定される。 Similarly, a hot-rolled steel sheet having the chemical composition and structure described above can achieve high punch end face fatigue properties. More specifically, in the punching fatigue limit ratio corresponding to the value (σ F /TS) obtained by dividing the fatigue limit σ F (MPa) determined based on the fatigue test of the punched end face by the tensile strength TS (MPa) A punched edge fatigue property of 0.28 or higher can be achieved. The punching fatigue limit ratio is preferably 0.30 or more, more preferably 0.32 or more. Although there is no need to specify the upper limit, for example, the punching fatigue limit ratio may be 0.42 or less or 0.40 or less. The punching fatigue limit ratio is determined by the following method using a plate-shaped test piece having the dimensions shown in FIG. First, a plate-shaped test piece (30 mm × 90 mm) sampled from a hot-rolled steel plate so that the rolling direction is the long side is punched in the center with a punch diameter of 10 mm and a punching clearance of 12%, and then a constant stress amplitude. A double-sided plane bending fatigue test is performed at σ (MPa). The plate-shaped test piece may be chamfered at the corners of the plate end surface as shown in FIG. A double-sided plane bending fatigue test was performed until the number of repetitions N reached 10 7 times, and the maximum stress amplitude among the tests that did not lead to fracture was defined as the fatigue limit σ F (MPa), and the fatigue limit σ F (MPa ) divided by the tensile strength TS (MPa) (σ F /TS) is determined as the punching fatigue limit ratio.
[板厚]
 本発明の実施形態に係る熱間圧延鋼板は、一般的に1.0~6.0mmの板厚を有する。特に限定されないが、板厚は1.2mm以上、1.6mm以上もしくは2.0mm以上であってもよく、および/または5.0mm以下、4.0mm以下もしくは3.0mm以下であってもよい。
[Thickness]
A hot rolled steel sheet according to an embodiment of the present invention generally has a thickness of 1.0 to 6.0 mm. Although not particularly limited, the plate thickness may be 1.2 mm or more, 1.6 mm or more, or 2.0 mm or more, and/or may be 5.0 mm or less, 4.0 mm or less, or 3.0 mm or less. .
<熱間圧延鋼板の製造方法>
 次に、本発明の実施形態に係る熱間圧延鋼板の好ましい製造方法について説明する。以下の説明は、本発明の実施形態に係る熱間圧延鋼板を製造するための特徴的な方法の例示を意図するものであって、当該熱間圧延鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
<Method for manufacturing hot-rolled steel sheet>
Next, a preferred method for manufacturing the hot-rolled steel sheet according to the embodiment of the present invention will be described. The following description is intended to exemplify a characteristic method for manufacturing a hot-rolled steel sheet according to embodiments of the present invention, wherein the hot-rolled steel sheet is manufactured by a manufacturing method as described below. It is not intended to be limited to what is manufactured.
 本発明の実施形態に係る熱間圧延鋼板の好ましい製造方法は、
 熱間圧延鋼板に関連して上で説明した化学組成を有するスラブを1150℃以上に加熱する工程、
 加熱されたスラブを仕上げ圧延することを含む熱間圧延工程であって、前記仕上げ圧延の出側温度が820~920℃である熱間圧延工程、
 得られた鋼板を仕上げ圧延出側温度から720℃以下の1次冷却終了温度まで50℃/秒以上の平均冷却速度で1次冷却し、次いで巻取温度まで10℃/秒以下の平均冷却速度で2次冷却することを含む冷却工程、
 前記鋼板を580~650℃の巻取温度で巻き取る工程、および
 巻き取った鋼板を550℃以下の鋼板温度まで冷却することを含む追加の冷却工程であって、巻き取り後、鋼板温度が550℃となるまでの時間が30~180分である追加の冷却工程
を含むことを特徴としている。以下、各工程について詳しく説明する。
A preferred method for manufacturing a hot-rolled steel sheet according to an embodiment of the present invention includes:
heating a slab having the chemical composition described above in relation to hot rolled steel to 1150° C. or above;
A hot rolling step including finish rolling of a heated slab, wherein the delivery side temperature of the finish rolling is 820 to 920 ° C.;
The obtained steel sheet is primary cooled from the finish rolling delivery side temperature to the primary cooling end temperature of 720 ° C. or less at an average cooling rate of 50 ° C./sec or more, and then to the coiling temperature at an average cooling rate of 10 ° C./sec or less. a cooling step comprising secondary cooling with
coiling the steel sheet at a coiling temperature of 580-650°C; and an additional cooling step comprising cooling the coiled steel sheet to a steel sheet temperature of 550°C or less, wherein the steel sheet temperature is 550°C after coiling. It is characterized by including an additional cooling step with a time to ℃ of 30-180 minutes. Each step will be described in detail below.
[スラブの加熱工程]
 まず、熱間圧延鋼板に関連して上で説明した化学組成を有するスラブが熱間圧延前に加熱される。スラブの加熱温度は、Ti炭窒化物等を十分に再固溶させるため、1150℃以上とする。上限値は特に規定しないが、例えば1250℃であってもよい。また、加熱時間は、特に限定されないが、例えば30分以上であってもよく、および/または120分以下であってもよい。使用するスラブは、生産性の観点から連続鋳造法において鋳造することが好ましいが、造塊法または薄スラブ鋳造法によって製造してもよい。
[Slab heating process]
First, a slab having the chemical composition described above in relation to hot rolled steel is heated prior to hot rolling. The heating temperature of the slab is set to 1150° C. or higher so that Ti carbonitrides and the like are fully dissolved again. Although the upper limit is not particularly specified, it may be 1250° C., for example. Also, the heating time is not particularly limited, but may be, for example, 30 minutes or more and/or 120 minutes or less. The slab to be used is preferably cast by continuous casting from the viewpoint of productivity, but may be produced by ingot casting or thin slab casting.
[熱間圧延工程]
(粗圧延)
 本方法では、例えば、加熱されたスラブに対し、板厚調整等のために、仕上げ圧延の前に粗圧延を施してもよい。粗圧延は、所望のシートバー寸法が確保できればよく、その条件は特に限定されない。
[Hot rolling process]
(rough rolling)
In this method, for example, the heated slab may be subjected to rough rolling before finish rolling in order to adjust the plate thickness or the like. Conditions for the rough rolling are not particularly limited as long as the desired sheet bar dimensions can be secured.
(仕上げ圧延)
 加熱されたスラブまたはそれに加えて必要に応じて粗圧延されたスラブは、次に仕上げ圧延を施され、当該仕上げ圧延における出側温度は820~920℃に制御される。仕上げ圧延の出側温度が920℃超であると、冷却中におけるオーステナイト中の加工ひずみの蓄積が不足してしまい、パーライト変態が遅延し、パーライト分率70%以上を達成することができない。このため、仕上げ温度の出側温度の上限は920℃とし、好ましくは915℃、さらに好ましくは910℃とする。このような観点からはAr3点以上であれば特に仕上げ圧延の出側温度に下限を設ける必要はないが、低温になるほど鋼板の変形抵抗が増大し、圧延機に多大なる負担をかけ、設備トラブルの原因となり得る。このため、仕上げ圧延の出側温度の下限を820℃とする。
(finish rolling)
The heated slab or the slab that has been rough rolled as necessary is then subjected to finish rolling, and the delivery side temperature in the finish rolling is controlled at 820 to 920°C. If the delivery-side temperature of finish rolling exceeds 920°C, the accumulation of work strain in austenite during cooling is insufficient, pearlite transformation is delayed, and a pearlite fraction of 70% or more cannot be achieved. For this reason, the upper limit of the outlet temperature of the finishing temperature is 920°C, preferably 915°C, more preferably 910°C. From this point of view, there is no particular need to set a lower limit to the delivery side temperature of finish rolling if the Ar is 3 points or more, but the lower the temperature, the greater the deformation resistance of the steel sheet, which places a great burden on the rolling mill and causes equipment trouble. can cause Therefore, the lower limit of the delivery side temperature of finish rolling is set to 820°C.
[冷却工程]
 仕上げ圧延終了後、鋼板の冷却を行う。冷却工程は、さらに、1次冷却および2次冷却に細分化される。
[Cooling process]
After finish rolling, the steel sheet is cooled. The cooling process is further subdivided into primary cooling and secondary cooling.
(1次冷却:720℃以下まで50℃/秒以上で冷却)
 冷却工程においては、まず、鋼板が上記の仕上げ圧延出側温度から720℃以下の1次冷却終了温度まで50℃/秒以上の平均冷却速度で1次冷却される。1次冷却終了温度までの平均冷却速度が50℃/秒未満であるかまたは1次冷却終了温度が720℃超であると、フェライトが多量に生成し、パーライト分率70%以上を達成することができなくなる。1次冷却の平均冷却速度は52℃/秒以上であってもよい。当該平均冷却速度の上限は特に限定されないが、例えば、1次冷却の平均冷却速度は、所望の組織を得るために200℃/秒以下とすることが好ましく、100℃/秒以下であってもよい。
(Primary cooling: cooling at 50°C/sec or more to 720°C or less)
In the cooling step, first, the steel sheet is primarily cooled from the finish rolling delivery side temperature to the primary cooling end temperature of 720° C. or less at an average cooling rate of 50° C./second or more. If the average cooling rate to the primary cooling end temperature is less than 50°C/sec or the primary cooling end temperature is more than 720°C, a large amount of ferrite is generated and a pearlite fraction of 70% or more is achieved. I can't do it. The average cooling rate of primary cooling may be 52° C./second or more. Although the upper limit of the average cooling rate is not particularly limited, for example, the average cooling rate of the primary cooling is preferably 200 ° C./sec or less in order to obtain the desired structure, and even if it is 100 ° C./sec or less. good.
(2次冷却:巻取温度まで10℃/秒以下で冷却)
 続いて、2次冷却では、鋼板が1次冷却終了温度から巻取温度(すなわち580~650℃の温度域)まで10℃/秒以下の平均冷却速度で冷却される。2次冷却の平均冷却速度が10℃よりも高いと、鋼板の板厚方向および板幅方向において温度ムラが生じやすくなり、金属組織にばらつきが生じる。2次冷却の平均冷却速度を10℃/秒以下とすることで、鋼板の板厚方向および板幅方向におけるこのような金属組織のばらつきを確実に低減することができる。2次冷却の平均冷却速度は好ましくは9℃/秒以下である。当該平均冷却速度の下限は特に限定されないが、生産性の観点から、2次冷却の平均冷却速度は1℃/秒以上とし、2℃/秒以上であってもよい。2次冷却は、冷却工程を2段階に分けた効果を確実に得るために、1次冷却終了後直ちに行うことが好ましい。
(Secondary cooling: cooling to winding temperature at 10°C/sec or less)
Subsequently, in secondary cooling, the steel sheet is cooled from the primary cooling end temperature to the coiling temperature (that is, the temperature range of 580 to 650° C.) at an average cooling rate of 10° C./sec or less. If the average cooling rate of the secondary cooling is higher than 10°C, temperature unevenness is likely to occur in the thickness direction and the width direction of the steel sheet, resulting in variations in the metal structure. By setting the average cooling rate of the secondary cooling to 10° C./sec or less, it is possible to reliably reduce such variations in the metal structure in the plate thickness direction and plate width direction of the steel plate. The average cooling rate of secondary cooling is preferably 9° C./sec or less. The lower limit of the average cooling rate is not particularly limited, but from the viewpoint of productivity, the average cooling rate of secondary cooling is set to 1° C./second or more, and may be 2° C./second or more. In order to obtain the effect of dividing the cooling process into two stages, the secondary cooling is preferably performed immediately after the primary cooling is completed.
[巻取工程]
 冷却工程の後、鋼板を巻取る。巻取時の鋼板の温度は580~650℃とする。巻取温度が580℃未満であると、ベイナイトが多量に生成し、パーライト分率70%以上を達成することができなくなる。一方で、巻取温度が650℃超であると、析出するCu粒子が粗大となり、Cuによる十分な析出強化能が得られず、結果として900MPa以上の引張強さを達成することができなくなる。あるいはまた、フェライトが過剰に生成して十分な引張強さを達成することができなくなる。巻取温度を580~650℃に制御することで、パーライト分率70%以上を達成しつつ、このようなパーライト変態とともに析出するCu粒子を微細化することが可能となる。このため、Cuによる析出強化効果を十分に発揮させることができ、その結果として鋼板強度を顕著に向上させること、より具体的には900MPa以上の引張強さを達成することが可能となる。巻取温度は584℃以上であってもよく、および/または640℃以下であってもよい。
[Winding process]
After the cooling process, the steel sheet is coiled. The temperature of the steel sheet during winding is 580 to 650°C. If the coiling temperature is lower than 580° C., a large amount of bainite is produced, making it impossible to achieve a pearlite fraction of 70% or more. On the other hand, if the coiling temperature is higher than 650° C., the precipitated Cu particles become coarse, and the precipitation strengthening ability of Cu cannot be obtained sufficiently. As a result, it becomes impossible to achieve a tensile strength of 900 MPa or more. Alternatively, too much ferrite is produced and sufficient tensile strength cannot be achieved. By controlling the coiling temperature to 580 to 650° C., it is possible to achieve a pearlite fraction of 70% or more while miniaturizing the Cu particles precipitated with such pearlite transformation. Therefore, the precipitation strengthening effect of Cu can be fully exhibited, and as a result, the steel sheet strength can be significantly improved, and more specifically, a tensile strength of 900 MPa or more can be achieved. The coiling temperature may be 584°C or higher and/or may be 640°C or lower.
[追加の冷却工程:巻き取り後550℃となるまでの時間が30~180分]
 本製造方法では、巻取工程後に追加の冷却工程、すなわち巻き取り後の冷却工程が実施され、当該巻き取り後の冷却工程では、鋼板が巻取温度から550℃以下の鋼板温度まで冷却される。また、この冷却の際、巻き取り後、鋼板温度が550℃となるまでの時間を30~180分の範囲内に制御することが重要である。鋼板温度が550℃となるまでの時間が30分未満であると、ベイナイトが多量に生成してパーライトが十分に生成しないため、パーライト分率70%以上を達成することができなくなる。一方で、この時間が180分超であると、生成したパーライト中のセメンタイトが粗大化するとともに球状化してしまう。この場合、パーライトにおける長軸の長さが0.3μm超でかつアスペクト比が3.0未満のセメンタイトの数密度を10μm2当たり10個未満に制限することができなくなり、鋼板の打抜き時にボイドの発生を十分に抑制することができなくなる。これに対し、巻取工程を上記のように適切に実施した後、鋼板温度が550℃となるまでの冷却時間を30~180分の範囲内に制御することで、パーライト分率70%以上を確実に達成しつつ、粗大な球状セメンタイトが低減された所望のパーライト組織を得ることが可能となる。その結果として、打抜き時のボイドの発生を確実に抑制することができ、打抜き端面における疲労特性を顕著に改善することが可能となる。例えば、鋼板温度が550℃となるまでの時間は35分以上であってもよく、および/または150分以下であってもよい。鋼板温度が550℃となるまでの時間は、任意の適切な方法によって調整することができる。例えば、巻取温度が580℃付近である場合には、鋼板温度が550℃となるまでの30分以上の時間を確保するため、巻き取ったコイルを必要に応じて保温カバー等で覆うようにしてもよい。
[Additional cooling step: 30 to 180 minutes until the temperature reaches 550°C after winding]
In this manufacturing method, an additional cooling step, that is, a cooling step after winding, is performed after the winding step, and in the cooling step after winding, the steel sheet is cooled from the winding temperature to a steel sheet temperature of 550 ° C. or less. . During this cooling, it is important to control the time required for the temperature of the steel sheet to reach 550° C. within the range of 30 to 180 minutes after winding. If the steel sheet temperature reaches 550°C in less than 30 minutes, a large amount of bainite is generated and pearlite is not sufficiently generated, so that a pearlite fraction of 70% or more cannot be achieved. On the other hand, if this time exceeds 180 minutes, the cementite in the produced pearlite will coarsen and become spherical. In this case, the number density of cementite in which the length of the long axis in pearlite is more than 0.3 μm and the aspect ratio is less than 3.0 cannot be limited to less than 10 per 10 μm 2 , and voids are formed when punching a steel plate. It becomes impossible to sufficiently suppress the occurrence. On the other hand, after the coiling process is properly performed as described above, the cooling time until the steel plate temperature reaches 550 ° C. is controlled within the range of 30 to 180 minutes, so that the pearlite fraction is 70% or more. It is possible to obtain a desired pearlite structure in which coarse spherical cementite is reduced while surely achieving the above. As a result, the occurrence of voids during punching can be reliably suppressed, and the fatigue properties of the punched end faces can be significantly improved. For example, the time required for the steel sheet temperature to reach 550° C. may be 35 minutes or more and/or may be 150 minutes or less. The time required for the steel plate temperature to reach 550°C can be adjusted by any appropriate method. For example, if the coiling temperature is around 580°C, cover the coil with a heat insulating cover, etc., as necessary, in order to ensure that the steel sheet temperature reaches 550°C for at least 30 minutes. may
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 以下の実施例では、本発明の実施形態に係る熱間圧延鋼板を種々の条件下で製造し、得られた熱間圧延鋼板の機械的特性について調べた。 In the following examples, hot-rolled steel sheets according to embodiments of the present invention were produced under various conditions, and the mechanical properties of the obtained hot-rolled steel sheets were investigated.
 まず、連続鋳造法により表1に示す化学組成を有するスラブを製造した。次いで、これらのスラブから表2に示す加熱、熱間圧延、冷却、巻取および追加の冷却条件により板厚2.5mmの熱間圧延鋼板を製造した。表1に示す成分以外の残部はFeおよび不純物である。また、製造した熱間圧延鋼板から採取した試料を分析した化学組成は、表1に示すスラブの化学組成と同等であり、とりわけ不純物中のSnおよびSb含有量は0.02%以下であり、WおよびCo含有量は0.015%以下であった。 First, a slab having the chemical composition shown in Table 1 was manufactured by continuous casting. Then, from these slabs, hot-rolled steel sheets with a thickness of 2.5 mm were produced under the heating, hot rolling, cooling, coiling and additional cooling conditions shown in Table 2. The balance other than the components shown in Table 1 is Fe and impurities. In addition, the chemical composition obtained by analyzing the sample taken from the manufactured hot-rolled steel sheet is the same as the chemical composition of the slab shown in Table 1, especially the Sn and Sb contents in the impurities are 0.02% or less, The W and Co contents were 0.015% or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 このようにして得られた熱間圧延鋼板から圧延方向に直角な方向からJIS Z2241:2011の5号引張試験片を採取し、JIS Z2241:2011に準拠して引張試験を行い、引張強さ(TS)および均一伸び(uEl)を測定した。また、打抜き端面疲労特性は図1に示す寸法の板状試験片を用いて下記の方法で評価した。まず、圧延方向が長辺になるようにして熱間圧延鋼板から採取した板状試験片(30mm×90mm)の中央にポンチ径10mm、打抜きクリアランス12%で打抜き穴を空け、次いで一定の応力振幅σ(MPa)にて両振り平面曲げ疲労試験を実施した。板状試験片は、板端面角部からのき裂発生を避けるため、図1に示すように板端面角部をR面取りしてもよい。繰り返し回数Nが107回となるまで両振り平面曲げ疲労試験を実施し、破断に至らなかった試験の中で最大の応力振幅を疲労限度σF(MPa)とし、当該疲労限度σF(MPa)を引張強さTS(MPa)で除した値(σF/TS)を打抜き疲労限度比として決定した。TSが900MPa以上、uElが7.0%以上、および打抜き疲労限度比が0.28以上である場合を、高強度でかつ均一伸び性および打抜き端面疲労特性に優れた熱間圧延鋼板として評価した。結果を下表3に示す。 A No. 5 tensile test piece of JIS Z2241: 2011 was taken from the hot-rolled steel sheet thus obtained in a direction perpendicular to the rolling direction, and a tensile test was performed in accordance with JIS Z2241: 2011 to determine the tensile strength ( TS) and uniform elongation (uEl) were measured. The fatigue properties of punched end faces were evaluated by the following method using plate-shaped test pieces having the dimensions shown in FIG. First, a plate-shaped test piece (30 mm × 90 mm) sampled from a hot-rolled steel plate so that the rolling direction is the long side is punched in the center with a punch diameter of 10 mm and a punching clearance of 12%, and then a constant stress amplitude. A double-sided plane bending fatigue test was performed at σ (MPa). The plate-shaped test piece may be chamfered at the corners of the plate end surface as shown in FIG. A double-sided plane bending fatigue test was performed until the number of repetitions N reached 10 7 times, and the maximum stress amplitude among the tests that did not lead to fracture was defined as the fatigue limit σ F (MPa), and the fatigue limit σ F (MPa ) divided by the tensile strength TS (MPa) (σ F /TS) was determined as the punching fatigue limit ratio. A hot-rolled steel sheet having a TS of 900 MPa or more, a uEl of 7.0% or more, and a punching fatigue limit ratio of 0.28 or more was evaluated as a hot-rolled steel sheet having high strength, uniform elongation, and excellent punching edge fatigue characteristics. . The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3を参照すると、比較例9では、冷却工程における1次冷却の平均冷却速度が低かったためにフェライトが多量に生成し、パーライト分率70%以上を達成することができなかった。その結果としてTSが低下した。比較例10では、1次冷却の冷却終了温度が高かったために、同様にフェライトが多量に生成し、パーライト分率70%以上を達成することができなかった。その結果としてTSが低下した。比較例11では、巻取温度が低かったためにベイナイトが多量に生成し、パーライト分率70%以上を達成することができなかった。その結果としてTSは向上したものの、uElが低下した。比較例12では、巻取温度が高かったためにフェライトが多量に生成し、パーライト分率70%以上を達成することができなかった。また、比較例12では、巻取温度が高かったために、析出するCu粒子が粗大となり、Cuによる析出強化能が十分に発揮されなかったと考えられる。その結果としてTSが低下した。比較例13では、巻き取り後550℃となるまでの時間が短かったためにベイナイトが多量に生成し、TSは向上したものの、uElが低下した。比較例14では、巻き取り後550℃となるまでの時間が長かったためにパーライト中のセメンタイトが粗大化するとともに球状化してしまい、このような粗大な球状セメンタイトの数密度を低減することができなかった。その結果として打抜き疲労限度比が低下した。比較例19および20では、それぞれCおよびCr含有量が低かったためにパーライトが十分に生成せず、一方でフェライトが多く生成し、結果としてTSが低下した。比較例21では、Cr含有量が高かったために強度は向上したものの、それに伴いuElが低下した。比較例22では、Cu含有量が低かったためにCuによる析出強化能が十分に発揮されず、TSが低下した。比較例24、26および28では、それぞれTi、NbおよびV含有量が高かったために、粗大な球状セメンタイトの生成を十分に低減することができず、打抜き疲労限度比が低下した。この結果は、過剰なTi、NbおよびVによって多量の炭化物が生成し、粗大な球状セメンタイトが低減された所望のパーライト組織を形成するのに必要な炭素が消費されたことに起因するものと考えられる。 Referring to Table 3, in Comparative Example 9, a large amount of ferrite was generated due to the low average cooling rate of the primary cooling in the cooling process, and a pearlite fraction of 70% or more could not be achieved. As a result, TS decreased. In Comparative Example 10, since the cooling end temperature of the primary cooling was high, a large amount of ferrite was similarly generated, and a pearlite fraction of 70% or more could not be achieved. As a result, TS decreased. In Comparative Example 11, since the coiling temperature was low, a large amount of bainite was generated, and a pearlite fraction of 70% or more could not be achieved. As a result, the TS improved, but the uEl decreased. In Comparative Example 12, a large amount of ferrite was generated due to the high coiling temperature, and a pearlite fraction of 70% or more could not be achieved. Moreover, in Comparative Example 12, the coiling temperature was high, so that the precipitated Cu particles became coarse, and it is considered that the precipitation strengthening ability of Cu was not sufficiently exhibited. As a result, TS decreased. In Comparative Example 13, a large amount of bainite was generated because the time until the temperature reached 550° C. after winding was short, and although the TS was improved, the uEl was lowered. In Comparative Example 14, since it took a long time to reach 550° C. after winding, the cementite in the pearlite was coarsened and spheroidized, and the number density of such coarse spherical cementite could not be reduced. rice field. As a result, the punching fatigue limit ratio was lowered. In Comparative Examples 19 and 20, since the C and Cr contents were low, pearlite was not formed sufficiently, while ferrite was formed in a large amount, resulting in a decrease in TS. In Comparative Example 21, although the strength was improved due to the high Cr content, the uEl decreased accordingly. In Comparative Example 22, since the Cu content was low, the precipitation strengthening ability of Cu was not sufficiently exhibited, resulting in a decrease in TS. In Comparative Examples 24, 26 and 28, since the Ti, Nb and V contents were high, the formation of coarse spheroidal cementite could not be sufficiently reduced, and the punching fatigue limit ratio was lowered. This result is believed to be due to the consumption of carbon necessary to form the desired pearlite structure with reduced coarse spheroidal cementite due to the formation of a large amount of carbide due to excessive Ti, Nb and V. be done.
 これとは対照的に、実施例1~8、15~18、23、25、27および29~36では、所定の化学組成およびミクロ組織を有し、さらに当該ミクロ組織におけるパーライト中の粗大な球状セメンタイトの量を低減することで、TSが900MPa以上の高強度を有するにもかかわらず、7.0%以上のuElおよび0.28以上の打抜き疲労限度比を達成することができ、それゆえ高強度でかつ均一伸び性および打抜き端面疲労特性に優れた熱間圧延鋼板を得ることができた。加えて、各実施例の鋼板にアーク溶接を施して得られた溶接部材からの試験片について同様の疲労試験を実施した。その結果、全ての実施例において、このような溶接部を含まない場合と同等の高い疲労特性を達成することができた。これは0.30%以下の比較的低いC含有量に主に起因しているものと考えられる。 In contrast, Examples 1-8, 15-18, 23, 25, 27, and 29-36 have a given chemical composition and microstructure, and in addition, coarse spheroids in pearlite at that microstructure. By reducing the amount of cementite, it is possible to achieve a uEl of 7.0% or more and a punching fatigue limit ratio of 0.28 or more even though the TS has a high strength of 900 MPa or more, and therefore a high A hot-rolled steel sheet with high strength, uniform elongation, and excellent punched edge fatigue properties was obtained. In addition, a similar fatigue test was performed on a test piece from a welded member obtained by arc welding the steel plate of each example. As a result, in all examples, it was possible to achieve high fatigue properties equivalent to those without such welds. It is believed that this is mainly due to the relatively low C content of 0.30% or less.

Claims (3)

  1.  化学組成が、質量%で、
     C:0.20~0.30%、
     Si:0.01~2.00%、
     Mn:0.50~3.00%、
     P:0.100%以下、
     S:0.0100%以下、
     Al:0.005~3.000%、
     N:0.0100%以下、
     O:0.0100%以下、
     Cr:1.00超~3.00%、
     Cu:1.00超~3.00%、
     Ti:0~0.10%、
     Nb:0~0.10%、
     V:0~0.10%、
     Ni:0~2.00%、
     Mo:0~1.00%、
     B:0~0.0100%、
     Ca:0~0.0050%、
     REM:0~0.005%、ならびに
     残部:Feおよび不純物であり、
     ミクロ組織が、面積率で、
     パーライト:70%以上、
     フェライト:0~30%、および
     ベイナイト:0~30%であり、
     前記パーライトにおいて長軸の長さが0.3μm超でかつアスペクト比が3.0未満のセメンタイトが10μm2当たり10個未満であり、
     引張強さが900MPa以上であることを特徴とする、熱間圧延鋼板。
    The chemical composition, in mass %,
    C: 0.20 to 0.30%,
    Si: 0.01 to 2.00%,
    Mn: 0.50-3.00%,
    P: 0.100% or less,
    S: 0.0100% or less,
    Al: 0.005 to 3.000%,
    N: 0.0100% or less,
    O: 0.0100% or less,
    Cr: more than 1.00 to 3.00%,
    Cu: more than 1.00 to 3.00%,
    Ti: 0 to 0.10%,
    Nb: 0 to 0.10%,
    V: 0 to 0.10%,
    Ni: 0 to 2.00%,
    Mo: 0 to 1.00%,
    B: 0 to 0.0100%,
    Ca: 0 to 0.0050%,
    REM: 0-0.005%, and balance: Fe and impurities,
    The microstructure is the area ratio,
    Perlite: 70% or more,
    ferrite: 0-30%, and bainite: 0-30%,
    Less than 10 pieces of cementite per 10 μm 2 having a major axis length of more than 0.3 μm and an aspect ratio of less than 3.0 in the pearlite,
    A hot-rolled steel sheet characterized by having a tensile strength of 900 MPa or more.
  2.  前記化学組成が、質量%で、
     Ti:0.001~0.10%、
     Nb:0.001~0.10%、
     V:0.001~0.10%、
     Ni:0.001~2.00%、
     Mo:0.001~1.00%、
     B:0.0001~0.0100%、
     Ca:0.0001~0.0050%、および
     REM:0.0001~0.005%
    からなる群から選ばれる1種または2種以上を含むことを特徴とする、請求項1に記載の熱間圧延鋼板。
    The chemical composition, in mass %,
    Ti: 0.001 to 0.10%,
    Nb: 0.001 to 0.10%,
    V: 0.001 to 0.10%,
    Ni: 0.001 to 2.00%,
    Mo: 0.001 to 1.00%,
    B: 0.0001 to 0.0100%,
    Ca: 0.0001-0.0050%, and REM: 0.0001-0.005%
    The hot-rolled steel sheet according to claim 1, comprising one or more selected from the group consisting of
  3.  1.0~6.0mmの板厚を有することを特徴とする、請求項1または2に記載の熱間圧延鋼板。 The hot rolled steel sheet according to claim 1 or 2, characterized by having a thickness of 1.0 to 6.0 mm.
PCT/JP2022/017417 2021-08-24 2022-04-08 Hot-rolled steel plate WO2023026582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023543681A JPWO2023026582A1 (en) 2021-08-24 2022-04-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-136297 2021-08-24
JP2021136297 2021-08-24

Publications (1)

Publication Number Publication Date
WO2023026582A1 true WO2023026582A1 (en) 2023-03-02

Family

ID=85322669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017417 WO2023026582A1 (en) 2021-08-24 2022-04-08 Hot-rolled steel plate

Country Status (2)

Country Link
JP (1) JPWO2023026582A1 (en)
WO (1) WO2023026582A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130068403A (en) * 2011-12-15 2013-06-26 주식회사 포스코 High carbon hot/cold rolled steel coil and manufactureing method thereof
JP2015515548A (en) * 2012-04-10 2015-05-28 ポスコ High carbon hot-rolled steel sheet with excellent material uniformity and manufacturing method thereof
JP2020509190A (en) * 2016-12-20 2020-03-26 ポスコPosco High-strength steel sheet excellent in high-temperature elongation property, warm press-formed member, and method for producing them
WO2020179737A1 (en) * 2019-03-06 2020-09-10 日本製鉄株式会社 Hot-rolled steel sheet and production method therefor
WO2021176999A1 (en) * 2020-03-02 2021-09-10 日本製鉄株式会社 Hot rolled steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130068403A (en) * 2011-12-15 2013-06-26 주식회사 포스코 High carbon hot/cold rolled steel coil and manufactureing method thereof
JP2015515548A (en) * 2012-04-10 2015-05-28 ポスコ High carbon hot-rolled steel sheet with excellent material uniformity and manufacturing method thereof
JP2020509190A (en) * 2016-12-20 2020-03-26 ポスコPosco High-strength steel sheet excellent in high-temperature elongation property, warm press-formed member, and method for producing them
WO2020179737A1 (en) * 2019-03-06 2020-09-10 日本製鉄株式会社 Hot-rolled steel sheet and production method therefor
WO2021176999A1 (en) * 2020-03-02 2021-09-10 日本製鉄株式会社 Hot rolled steel sheet

Also Published As

Publication number Publication date
JPWO2023026582A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
RU2518830C1 (en) Hot-rolled steel sheet and method of its production
JP4712882B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
EP2133441B1 (en) High-strength hot-rolled steel plate excellent in low-temperature toughness for spiral pipe and process for producing the same
CN111727267B (en) Austenitic wear-resistant steel plate
KR102451705B1 (en) Wear-resistant steel and its manufacturing method
JP5087980B2 (en) High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
WO2014097559A1 (en) Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same
JP7131687B2 (en) Hot-rolled steel sheet and manufacturing method thereof
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
WO2015146173A1 (en) High-carbon hot-rolled steel sheet and method for producing same
JP7356066B2 (en) hot rolled steel plate
JP2005314796A (en) High strength hot rolled steel sheet having excellent elongation property, stretch flange property and tensile fatigue property, and its production method
JP4677883B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
JP6835294B2 (en) Hot-rolled steel sheet and its manufacturing method
JP2009127089A (en) High-strength cold rolled steel sheet with excellent isotropy, elongation and stretch-flangeability
JP2008261029A (en) High-strength hot-rolled steel sheet superior in punching workability, and manufacturing method thereof
JP2021066941A (en) Wear-resistant steel sheet and method for producing the same
WO2023026582A1 (en) Hot-rolled steel plate
JP2005307261A (en) Thick high strength steel plate having large heat input weld heat affected zone toughness
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
JP4712839B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
EP4074854A1 (en) Hot-rolled steel sheet
JPWO2019203251A1 (en) Hot rolled steel sheet
EP4074855B1 (en) Hot-rolled steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543681

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE