JP5087980B2 - High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof - Google Patents

High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof Download PDF

Info

Publication number
JP5087980B2
JP5087980B2 JP2007111563A JP2007111563A JP5087980B2 JP 5087980 B2 JP5087980 B2 JP 5087980B2 JP 2007111563 A JP2007111563 A JP 2007111563A JP 2007111563 A JP2007111563 A JP 2007111563A JP 5087980 B2 JP5087980 B2 JP 5087980B2
Authority
JP
Japan
Prior art keywords
steel sheet
segregation
amount
rolled steel
strength hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007111563A
Other languages
Japanese (ja)
Other versions
JP2008266726A (en
Inventor
由起子 山口
淳 高橋
和也 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007111563A priority Critical patent/JP5087980B2/en
Publication of JP2008266726A publication Critical patent/JP2008266726A/en
Application granted granted Critical
Publication of JP5087980B2 publication Critical patent/JP5087980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、バーリング加工、伸びフランジ加工が施される、例えば、自動車等の高強度構造用部品に用いるのに好適な、鋼板の打ち抜き時の端面の損傷が発生しにくい、打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法に関するものである。   The present invention is subjected to burring and stretch flange processing, for example, suitable for use in high-strength structural parts such as automobiles. The present invention relates to a high-strength hot-rolled steel sheet and a method for producing the same.

最近の自動車用部材は、省エネルギー化の視点から軽量化が重視され、これに加えて安全性や耐久性も重視される傾向があり、従来にも増して、高強度化が急速に進んでいる。このような傾向の一例として、自動車の外板パネルだけでなく、構造用部材にも高強度鋼板が適用されるようになっている。このような構造用部材に適用される鋼板には、プレス成形性に加えて、穴拡げ性などの加工性も要求される。そのため、バーリング加工、伸びフランジ加工などの加工性の優れた高強度熱延鋼板の開発が進められてきた(例えば、特許文献1を参照)。   In recent automobile parts, weight reduction is emphasized from the viewpoint of energy saving, and in addition to this, there is a tendency for safety and durability to be emphasized, and higher strength is progressing more rapidly than before. . As an example of such a tendency, a high-strength steel plate is applied not only to the outer panel of an automobile but also to a structural member. Steel sheets applied to such structural members are required to have workability such as hole expansibility in addition to press formability. For this reason, development of high-strength hot-rolled steel sheets having excellent workability such as burring and stretch flange processing has been promoted (see, for example, Patent Document 1).

更に、これらの高強度熱延鋼板の適用拡大に伴い、特に引張強度が690MPa以上である伸びフランジ性優れた熱延鋼板が提案されている(例えば、特許文献2、3を参照)。しかしながら、熱延鋼板の高強度に伴い、鋼板を打ち抜き加工して形成された穴の端面に剥がれ(ハガレ)や捲れ(メクレ)状の欠陥が発生することが問題となっている。これらの欠陥は、製品端面の意匠性を著しく損なうばかりか、応力集中部となって疲労強度などにも影響を及ぼす危険性がある。   Furthermore, along with the expansion of application of these high-strength hot-rolled steel sheets, hot-rolled steel sheets having particularly excellent stretch flangeability with a tensile strength of 690 MPa or more have been proposed (see, for example, Patent Documents 2 and 3). However, along with the high strength of the hot-rolled steel sheet, there is a problem that peeling (peeling) or curling (meklet) defects occur on the end face of the hole formed by punching the steel sheet. These defects not only significantly impair the design of the end face of the product, but also have a risk of becoming a stress concentration part and affecting the fatigue strength.

このような問題に対して、硬質第2相及びセメンタイトの面積率を制限し、打ち抜き端面の損傷を抑えた熱延鋼板が提案されている(例えば、特許文献4、5を参照)。しかしながら、硬質第2相及びセメンタイトの生成を抑制しても、打ち抜き加工のクリアランスを、端面の損傷性に対して最も厳しい条件とした場合には、穴の端面に欠陥が発生することがあった。
特開平10−36917号公報 特開2001−172745号公報 特開2006―152341号公報 特開2004−315857号公報 特開2005−298924号公報
In order to solve such a problem, a hot rolled steel sheet in which the area ratio of the hard second phase and cementite is limited and damage to the punched end face is suppressed has been proposed (see, for example, Patent Documents 4 and 5). However, even if the generation of hard second phase and cementite is suppressed, if the clearance of the punching process is the most severe condition for the damage of the end face, defects may occur on the end face of the hole. .
Japanese Patent Laid-Open No. 10-36917 JP 2001-172745 A JP 2006-152341 A JP 2004-315857 A JP 2005-298924 A

本発明は、上記の問題点を解決するためになされたものであり、優れた伸びフランジ性と延性を両立し、特に、引張強さが690MPa以上という高強度を有し、極めて厳しい条件で打ち抜き加工を行った場合でも、確実に端面の損傷を防止することができる、打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and has both excellent stretch flangeability and ductility, and particularly has a high strength of a tensile strength of 690 MPa or more and is punched under extremely severe conditions. An object of the present invention is to provide a high-strength hot-rolled steel sheet excellent in punching workability and a method for producing the same, which can reliably prevent damage to the end face even when the work is performed.

本発明者らは、打ち抜き加工のクリアランスを最も厳しい条件とし、打ち抜き端面の損傷の発生頻度と結晶粒界への偏析元素種及び偏析量との相関について検討した結果、鋼板の粒界角が15°以上となる大角結晶粒界に適正な量のC及びBを偏析させることにより、打ち抜き端面の損傷が減少することを見出した。
本発明は、このような知見に基づいてなされたものであり、その要旨とするところは、以下に示す通りである。
As a result of examining the correlation between the frequency of occurrence of damage at the punched end face and the segregation element type and segregation amount at the grain boundaries, the present inventors have determined that the clearance of the punching process is the strictest condition. It has been found that the damage of the punched end face is reduced by segregating an appropriate amount of C and B at the large-angle crystal grain boundaries of more than 0 °.
The present invention has been made based on such findings, and the gist thereof is as follows.

(1) 質量%で、C:0.010〜0.200%、Si:0.01〜1.50%、Mn:0.25〜3.00%、B:0.0002〜0.0030%をそれぞれ含有し、P:0.05%以下に制限し、更に、Ti:0.03〜0.20%、Nb:0.01〜0.20%、V:0.01〜0.20%、Mo:0.01〜0.20%のうちの何れか1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、フェライトの大角結晶粒界へのCの偏析量とBの偏析量との合計が4〜10atoms/nmの範囲であることを特徴とする打ち抜き加工性に優れた高強度熱延鋼板。
(2) 質量%で、P :0.02%以下に制限し、フェライトの大角結晶粒界へのPの偏析量が1atoms/nm以下であることを特徴とする上記(1)に記載の打ち抜き加工性に優れた高強度熱延鋼板。
(3) フェライトの大角結晶粒界へのCの偏析量が2atoms/nm以上であることを特徴とする上記(1)又は(2)に記載の打ち抜き加工性に優れた高強度熱延鋼板。
(1) By mass%, C: 0.010 to 0.200%, Si: 0.01 to 1.50%, Mn: 0.25 to 3.00%, B: 0.0002 to 0.0030% And P: 0.05% or less, and Ti: 0.03 to 0.20%, Nb: 0.01 to 0.20%, V: 0.01 to 0.20% , Mo: contains any one or more of 0.01 to 0.20%, the balance consists of Fe and inevitable impurities, and the segregation amount of C to the large-angle grain boundaries of ferrite and B A high-strength hot-rolled steel sheet excellent in punching workability, characterized in that the total of the segregation amount is in the range of 4 to 10 atoms / nm 2 .
(2) In mass%, P is limited to 0.02% or less, and the amount of segregation of P to the large-angle grain boundary of ferrite is 1 atoms / nm 2 or less. High-strength hot-rolled steel sheet with excellent punchability.
(3) The high-strength hot-rolled steel sheet having excellent punchability as described in (1) or (2) above, wherein the segregation amount of C to the large-angle grain boundaries of ferrite is 2 atoms / nm 2 or more. .

(4) 上記(1)又は(2)に記載の高強度熱延鋼板を製造する方法であって、上記(1)又は(2)に記載の成分を有する鋼材を1200℃以上に加熱し、Ar点以上の温度で圧延を完了し、次いで、50℃/s以上の冷却速度で600〜650℃の範囲内に冷却し、更に、10℃/s以下の冷却速度で350〜600℃の範囲内に冷却して巻き取ることを特徴とする打ち抜き加工性に優れた高強度熱延鋼板の製造方法。
(5) 上記(3)に記載の高強度熱延鋼板を製造する方法であって、請求項1又は2に記載の成分を有する鋼材を1200℃以上に加熱し、Ar点以上の温度で圧延を完了し、次いで、50℃/s以上の冷却速度で600〜650℃の範囲内に冷却し、更に、10℃/s以下の冷却速度で350〜550℃の範囲内に冷却して巻き取ることを特徴とする打ち抜き加工性に優れた高強度熱延鋼板の製造方法。
(4) A method for producing the high-strength hot-rolled steel sheet according to (1) or (2), wherein the steel material having the component according to (1) or (2) is heated to 1200 ° C. or higher. Rolling is completed at a temperature of Ar 3 or higher, then cooled to a range of 600 to 650 ° C. at a cooling rate of 50 ° C./s or higher, and further 350 to 600 ° C. at a cooling rate of 10 ° C./s or lower. A method for producing a high-strength hot-rolled steel sheet excellent in punching workability, characterized by cooling within a range and winding up.
(5) A method for producing the high-strength hot-rolled steel sheet according to (3) above, wherein the steel material having the component according to claim 1 or 2 is heated to 1200 ° C or higher, and Ar is at a temperature of 3 points or higher. Rolling is completed, and then cooled to a range of 600 to 650 ° C. at a cooling rate of 50 ° C./s or more, and further cooled to a range of 350 to 550 ° C. at a cooling rate of 10 ° C./s or less. A method for producing a high-strength hot-rolled steel sheet excellent in punching workability, characterized in that it is taken.

本発明の打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法によれば、伸びフランジ性と延性とのバランスが良好であり、特に引張強さが690MPa以上という高強度を有し、なお且つ打ち抜き加工のクリアランスの条件に依らず、打ち抜き時の端面の損傷発生を抑えた打ち抜き加工性に優れた熱延高強度鋼板及びその製造方法を提供することができるので、産業上の貢献が極めて顕著である。   According to the high-strength hot-rolled steel sheet excellent in punching workability and the manufacturing method thereof of the present invention, the balance between stretch flangeability and ductility is good, and in particular, the tensile strength has a high strength of 690 MPa or more, In addition, it is possible to provide a hot-rolled high-strength steel sheet excellent in punching workability that suppresses the occurrence of damage to the end face during punching and a manufacturing method thereof, regardless of the clearance conditions of the punching process. It is remarkable.

以下、本発明の打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法の一実施形態について説明するが、本実施形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。   Hereinafter, an embodiment of a high-strength hot-rolled steel sheet excellent in punching workability and a method for producing the same according to the present invention will be described. The present embodiment will be described in detail in order to better understand the gist of the invention. Therefore, the present invention is not limited unless otherwise specified.

本発明の打ち抜き加工性に優れた高強度熱延鋼板(以下、圧延鋼板と略称することがある)は、質量%で、C:0.010〜0.200%、Si:0.01〜1.50%、Mn:0.25〜3.00%、B:0.0002〜0.0030%をそれぞれ含有し、P:0.05%以下に制限し、更に、Ti:0.03〜0.20%、Nb:0.01〜0.20%、V:0.01〜0.20%、Mo:0.01〜0.20%のうちの何れか1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、フェライトの大角結晶粒界へのCの偏析量とBの偏析量との合計が4〜10atoms/nmの範囲として、概略構成されている。 The high-strength hot-rolled steel sheet (hereinafter sometimes abbreviated as a rolled steel sheet) having excellent punchability according to the present invention is mass%, C: 0.010 to 0.200%, and Si: 0.01 to 1. .50%, Mn: 0.25 to 3.00%, B: 0.0002 to 0.0030%, P: 0.05% or less, and Ti: 0.03 to 0 .20%, Nb: 0.01 to 0.20%, V: 0.01 to 0.20%, Mo: 0.01 to 0.20% The balance is composed of Fe and unavoidable impurities, and the sum of the segregation amount of C and the segregation amount of B to the large-angle crystal grain boundaries of ferrite is approximately 4 to 10 atoms / nm 2 .

本発明者らは、延性と穴拡げ性に優れた引張強さが690MPa以上の高強度熱延鋼板を用いて、種々のクリアランスにて打ち抜き加工を行い、その端面性状について定量的に調査した。具体的には、日本鉄鋼連盟規格JFS T 1001−1996記載の方法でクリアランスを変化させて10mm径の穴を打ち抜き、円形に打ち抜いた端面の全周のうち、目視により損傷が認められた範囲の角度を測定して合計し、その値を360°で除して、打ち抜き端面の全周における損傷発生比率(打ち抜き端面損傷発生比率という)を求めた。   The present inventors performed punching with various clearances using a high-strength hot-rolled steel sheet having a tensile strength of 690 MPa or more excellent in ductility and hole expansibility, and quantitatively investigated the end face properties. Specifically, a 10 mm diameter hole was punched by changing the clearance according to the method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996, and in the entire circumference of the end surface punched into a circle, damage was visually observed. The angles were measured and summed, and the value was divided by 360 ° to determine the damage occurrence ratio (referred to as the punched end face damage occurrence ratio) on the entire circumference of the punched end face.

図1のグラフに、打ち抜き時のクリアランスと打ち抜き端面損傷発生比率との相関を示す。図1に示すように、クリアランスを増加させると、通常の穴拡げ試験で推奨されている12.5%前後のクリアランスで打ち抜いた場合には確認できない剥がれや捲れ状の損傷が発生するようになり、16%のクリアランスが最も厳しい条件であることがわかった。
そこで、この16%のクリアランスを採用して以下の調査を行ない、鋼板の打ち抜き加工性に及ぼす組織の影響、更に、打ち抜き端面の損傷の発生頻度、即ち、打ち抜き端面損傷発生比率と大角結晶粒界に偏析した元素の種類及び偏析量との相関について検討を行った。
The graph of FIG. 1 shows the correlation between the clearance at the time of punching and the occurrence ratio of the punched end face damage. As shown in Fig. 1, if the clearance is increased, peeling or twisting damage that cannot be confirmed when punched with a clearance of around 12.5% recommended in a normal hole expansion test will occur. 16% clearance was found to be the most severe condition.
Therefore, the following investigation was conducted by adopting this 16% clearance, the influence of the structure on the punching workability of the steel sheet, and the frequency of occurrence of damage to the punched end face, that is, the punched end face damage occurrence ratio and the large angle grain boundary. The relationship between the type of segregated elements and the amount of segregation was investigated.

まず、質量%にて、C:0.01〜0.2%、Si:0.01〜1.5%、Mn:0.25〜3%、B:0.0002〜0.003%を含有し、P:0.05%以下に制限し、更に、Ti:0.03〜0.2%、Nb:0.01〜0.2%、V:0.01〜0.2%、Mo:0.01〜0.2%のうちの何れか1種又は2種以上を含有し、残部がFe及び不可避的不純物からなる鋼片を溶製し、熱延して、種々の熱処理条件で鋼板を製造した。これらの鋼板から、JIS Z 2201の5号試験片を採取し、JIS Z 2241に準拠して引張特性を評価した。また、日本鉄鋼連盟規格JFS T 1001−1996記載の試験方法に従って穴拡げ試験を行い、鋼板の伸びフランジ性を評価した。なお、打ち抜き加工後、穴拡げ試験前に、打ち抜き端面損傷発生比率を評価した。   First, in mass%, C: 0.01-0.2%, Si: 0.01-1.5%, Mn: 0.25-3%, B: 0.0002-0.003% P: 0.05% or less, Ti: 0.03-0.2%, Nb: 0.01-0.2%, V: 0.01-0.2%, Mo: A steel piece containing any one or more of 0.01 to 0.2%, with the balance being Fe and inevitable impurities, and hot-rolling the steel plate under various heat treatment conditions. Manufactured. From these steel plates, No. 5 test piece of JIS Z 2201 was collected, and tensile properties were evaluated according to JIS Z 2241. Moreover, the hole expansion test was done in accordance with the test method described in Japan Iron and Steel Federation Standard JFS T 1001-1996, and the stretch flangeability of the steel sheet was evaluated. In addition, the punching end face damage occurrence ratio was evaluated after the punching process and before the hole expansion test.

次に、各鋼材中の5箇所以上のフェライトの大角粒界のB、C、Pの偏析量を測定し、平均値を求めた。なお、本発明において説明する大角結晶粒界とは、粒界角が15°以上となる結晶粒界である。角度が15°未満の小角粒界では、偏析元素のトラップサイト数等の違いから大角粒界と比べ偏析量が減少する傾向を示し、また、本発明の高強度熱延鋼板のフェライトの組織中では、結晶粒界は大角粒界が大半を占めることから、大角粒界での偏析量を測定した。粒界角度は、試料の透過型電子顕微鏡観察から得られる菊池図形を解析することにより求めた。   Next, the segregation amounts of B, C, and P at the large-angle grain boundaries of ferrite in five or more locations in each steel material were measured, and the average value was obtained. The large-angle crystal grain boundary described in the present invention is a crystal grain boundary having a grain boundary angle of 15 ° or more. Small angle grain boundaries with an angle of less than 15 ° show a tendency for the amount of segregation to decrease compared to large angle grain boundaries due to the difference in the number of segregated element trap sites, etc., and in the ferrite structure of the high strength hot rolled steel sheet of the present invention. Then, since the crystal grain boundaries are mostly large-angle grain boundaries, the amount of segregation at the large-angle grain boundaries was measured. The grain boundary angle was determined by analyzing the Kikuchi figure obtained from transmission electron microscope observation of the sample.

次に、偏析元素量の測定方法であるが、このような微小領域の偏析元素の分布を厳密に比較するには、三次元アトムプローブ法を用いて、以下のようにしてExcess量を求める方法が適している。つまり、測定対象の試料の結晶粒界部分から、切断及び電解研磨法によって針状の試料を作製する。なお、この際、電解研磨法とあわせて集束イオンビーム加工法を活用しても良い。そして、FIMにより比較的広い視野で結晶粒界を含む領域及び粒界角を観察し、三次元アトムプローブ測定を行う。   Next, as a method for measuring the amount of segregated elements, in order to strictly compare the distribution of segregated elements in such a small region, a method for obtaining the amount of excision as follows using a three-dimensional atom probe method. Is suitable. That is, a needle-like sample is produced from the crystal grain boundary portion of the sample to be measured by cutting and electropolishing. At this time, a focused ion beam processing method may be used together with the electropolishing method. Then, the region including the grain boundary and the grain boundary angle are observed with a relatively wide field of view by FIM, and three-dimensional atom probe measurement is performed.

三次元アトムプローブ測定では、積算されたデータを再構築して実空間での実際の原子の分布像として求めることができる。粒界位置は原子面が不連続となることからこれを粒界面と認識することができ、また種々の元素が偏析している様子が視覚的に観察できる。次に、各元素の偏析量を見積もるため、結晶粒界を含む原子分布像から結晶粒界に対して垂直に直方体を切り出し、ラダーチャートを得た。結晶粒界の観察例及びラダーチャート解析の一例を図2の模式図及び図3のグラフに示す。このようなラダーチャート解析から、各原子の偏析量を、偏析している、つまり固溶量からの上乗せ分の原子個数を単位粒界面積当たりで表すExcess量を用いて評価した(非特許文献1:高橋ら、「塗装焼付硬化型鋼板の粒界偏析炭素量の定量観察」、新日鉄技報、第381号、2004年10月、p.26−30を参照)。   In the three-dimensional atom probe measurement, the accumulated data can be reconstructed and obtained as an actual distribution image of atoms in real space. At the grain boundary position, since the atomic plane is discontinuous, it can be recognized as a grain interface, and the appearance of segregation of various elements can be visually observed. Next, in order to estimate the amount of segregation of each element, a rectangular parallelepiped was cut out perpendicularly to the crystal grain boundary from the atomic distribution image including the crystal grain boundary to obtain a ladder chart. An example of observation of a crystal grain boundary and an example of ladder chart analysis are shown in the schematic diagram of FIG. 2 and the graph of FIG. From such ladder chart analysis, the amount of segregation of each atom was evaluated using the excess amount that is segregated, that is, the number of atoms added from the solid solution amount per unit grain interface area (non-patent document). 1: Takahashi et al., “Quantitative observation of grain boundary segregation carbon content in paint bake hardened steel sheet,” Nippon Steel Technical Report, No. 381, October 2004, p.26-30).

CとBの偏析量の合計と鋼材の打ち抜き端面損傷発生比率との関係を図4のグラフに示す。図4に示すように、打ち抜き端面損傷発生比率が小さい鋼板のフェライトの大角結晶粒界にはC及びBの偏析が認められた。本発明の高強度熱延鋼板では、結晶粒中にTi、Nb、V、Moの炭化物を部分的に分散析出させて結晶粒内に固溶Cを確保し、Ti、Nb、Vの窒化物を析出させてBNの析出を抑制し、結晶粒内に固溶Bを残すことにより、粒界へのCとBの偏析量の合計を適正な範囲とすることができる。これにより、鋼板の打ち抜き時の打ち抜き端面の耐損傷性を良好に維持できる。鋼板の耐端面損傷性が向上する理由としては、偏析したC及びBにより結晶粒界が強化され、打ち抜き加工時に粒界における亀裂の進展が抑制されることが考えられる。   The graph of FIG. 4 shows the relationship between the total amount of segregation of C and B and the punched end face damage occurrence ratio of the steel material. As shown in FIG. 4, segregation of C and B was observed at the ferrite large-angle grain boundaries of the steel sheet having a small punching end face damage occurrence ratio. In the high-strength hot-rolled steel sheet of the present invention, carbides of Ti, Nb, V, and Mo are partially dispersed and precipitated in crystal grains to ensure solid solution C in the crystal grains, and nitrides of Ti, Nb, and V By precipitating BN and suppressing the precipitation of BN and leaving the solid solution B in the crystal grains, the total amount of segregation of C and B at the grain boundaries can be within an appropriate range. Thereby, the damage resistance of the punching end surface at the time of punching a steel plate can be maintained satisfactorily. The reason why the end face damage resistance of the steel sheet is improved may be that the segregated C and B reinforce the crystal grain boundaries and suppress the crack growth at the grain boundaries during the punching process.

また、図5のグラフに示すように、結晶粒界においてC及びBの偏析量を一定以上とし、Pの偏析量を抑制すると、打ち抜き損傷発生比率を低下させることができることがわかった。ここで、図5は、Pの偏析量と打ち抜き端面損傷発生比率との関係を示したグラフである。   Further, as shown in the graph of FIG. 5, it was found that the punching damage generation ratio can be reduced by setting the segregation amount of C and B to a certain level or more and suppressing the segregation amount of P at the grain boundaries. Here, FIG. 5 is a graph showing the relationship between the amount of segregation of P and the punched end face damage occurrence ratio.

以上の結果より、熱延後の冷却中に炭化物及びBNが過剰に析出すると、固溶C及び固溶Bが低減して粒界に偏析するC及びBが少なくなり、打ち抜き端面の損傷が生じることが明らかとなった。そこで、大角結晶粒界に通常の鋼材よりも多くのC及びBを偏析させて打ち抜き加工性を向上させる方法について更なる検討を行った。その結果、本発明者らは、結晶粒内への炭化物及びBNの析出を抑制すると、打ち抜き端面の損傷が抑制されることを見出した。一方、C及びBとは異なり、粒界に偏析すると粒界強化量を低下させる元素があることも見出した。   From the above results, when carbide and BN are excessively precipitated during cooling after hot rolling, solid solution C and solid solution B are reduced, and C and B segregating at the grain boundaries are reduced, resulting in damage to the punched end face. It became clear. Therefore, a further study was conducted on a method for improving the punching workability by segregating more C and B in the large-angle grain boundaries than in ordinary steel materials. As a result, the present inventors have found that when the precipitation of carbides and BN in the crystal grains is suppressed, damage to the punched end face is suppressed. On the other hand, it was also found that, unlike C and B, there is an element that reduces the grain boundary strengthening amount when segregating at the grain boundary.

[高強度熱延鋼板]
以下に、本発明の打ち抜き加工性に優れた高強度熱延鋼板について詳しく説明する。
[High-strength hot-rolled steel sheet]
Hereinafter, the high-strength hot-rolled steel sheet excellent in punching workability of the present invention will be described in detail.

「偏析量」
最も厳しいクリアランス条件における、打ち抜き端面損傷の発生率が0.3以内であれば、実用鋼として許容できる範囲である。本発明における検討では、16%のクリアランスが最も厳しい条件であったが、これは、鋼板の材質、工具により変化するため、クリアランスを12.5〜25%の間で変化させ、打ち抜き加工を行って端面の性状を確認し、最も厳しいクリアランスの条件を確認する必要がある。最も厳しいクリアランスの条件で鋼板の打ち抜き加工を行った際の端面損傷を0.3以内とするためには、結晶粒界の粒界偏析元素量を以下のように適正化することが必要である。
`` Segregation amount ''
If the incidence of punching end face damage is within 0.3 under the strictest clearance conditions, it is an acceptable range for practical steel. In the study in the present invention, the clearance of 16% was the most severe condition, but this varies depending on the material of the steel plate and the tool, so the punching is performed by changing the clearance between 12.5 and 25%. Therefore, it is necessary to confirm the properties of the end face and the most severe clearance conditions. In order to keep the damage to the end face when the steel sheet is punched under the strictest clearance conditions within 0.3, it is necessary to optimize the amount of grain boundary segregation elements at the grain boundaries as follows. .

図4のグラフに示すように、結晶粒界のCの偏析量とBの偏析量の合計を4〜10atoms/nmとすれば、最も厳しいクリアランスの条件で鋼板の打ち抜き加工を行った際の端面損傷を0.2以内にすることができる。Cの偏析量とBの偏析量の合計が4atoms/nm未満であると、粒界強化量が不足し、打ち抜き端面損傷の発生が顕著になる。 As shown in the graph of FIG. 4, when the total amount of C segregation and B segregation at the grain boundaries is 4 to 10 atoms / nm 2 , the steel sheet was punched under the most severe clearance conditions. End face damage can be within 0.2. When the total amount of segregation of C and segregation of B is less than 4 atoms / nm 2 , the grain boundary strengthening amount is insufficient, and punching end face damage becomes remarkable.

一方、結晶粒界のCの偏析量とBの偏析量の合計が10atoms/nmを超えると、結晶粒界にCが濃化してセメンタイトの析出が抑えられなくなり、打ち抜き加工時に粒界における亀裂の進展を助長し、打ち抜き端面の損傷の起点になる。結晶粒界のCの偏析量とBの偏析量の合計量の更に好ましい範囲は、打ち抜き端面損傷がほとんど発生しなくなる6〜9atoms/nmである。 On the other hand, if the total amount of C segregation and B segregation at the grain boundary exceeds 10 atoms / nm 2 , C concentrates at the grain boundary and the precipitation of cementite cannot be suppressed. This is a starting point for damage to the punched end face. A more preferable range of the total amount of C segregation and B segregation at the grain boundaries is 6 to 9 atoms / nm 2 at which damage to the punched end face hardly occurs.

更に、C単独の偏析量は、2atoms/nm以上であることが好ましい。この理由としては、Bは粒界強化を補う役割を果たすものの、Bのみで4atoms/nmの偏析量を達成するためには過剰のB添加が必要であり、延性や加工性の低下を招く。したがって、Cの偏析量は2atoms/nm以上であることが好ましい。 Furthermore, the segregation amount of C alone is preferably 2 atoms / nm 2 or more. The reason for this is that although B plays a role in supplementing the grain boundary strengthening, in order to achieve a segregation amount of 4 atoms / nm 2 with only B, excessive addition of B is necessary, resulting in a decrease in ductility and workability. . Therefore, the segregation amount of C is preferably 2 atoms / nm 2 or more.

なお、詳細を後述する熱間圧延の巻き取り温度を350〜600℃の範囲とすることにより、Cの偏析量とBの偏析量の合計量を、4〜10atoms/nmの範囲とすることができる。更に、巻き取り温度の上限を550℃以下とすることにより、Cの偏析量を2atoms/nm以上とすることができる。 In addition, the total amount of the segregation amount of C and the segregation amount of B is made into the range of 4-10 atoms / nm < 2 > by setting the coiling temperature of the hot rolling mentioned later for details in the range of 350-600 degreeC. Can do. Furthermore, by setting the upper limit of the coiling temperature to 550 ° C. or less, the amount of segregation of C can be set to 2 atoms / nm 2 or more.

一方、Pについては、偏析量が少ないほうが好ましい。この理由としては、Pは粒界を脆化させる効果を持つからであると考えられる。また、Pの偏析量が増加すると、打ち抜き加工時の亀裂の進展が助長され、損傷の発生率が高められるためである。また、Pが偏析サイトを占めることでCやBの偏析量を低下させてしまうことも懸念される。このような理由により、Pの偏析量は1atoms/nm以下とすることが好ましい。また、Pの偏析量を1atoms/nm以下とするには、Pの含有量を0.02%以下に制限すれば良い。 On the other hand, as for P, it is preferable that the amount of segregation is small. This is probably because P has the effect of embrittlement of the grain boundaries. Moreover, when the amount of segregation of P increases, the progress of the crack at the time of stamping is promoted, and the occurrence rate of damage is increased. In addition, there is a concern that the amount of segregation of C and B may be reduced due to P occupying the segregation sites. For these reasons, the amount of segregated P is preferably 1 atoms / nm 2 or less. Further, in order to set the amount of segregation of P to 1 atoms / nm 2 or less, the P content may be limited to 0.02% or less.

「化学成分組成」
以下に、本発明の高強度熱延鋼板の化学成分組成の限定条件について詳述する。
本発明において、鋼板組織として上記粒界偏析量を有し、鋼板の伸びを20%以上、穴拡げ率を80%以上、引張強度を690MPa以上とし、最も厳しいクリアランスの条件で鋼板の打ち抜き加工を行った際の端面損傷を0.3以内とするためには、鋼板の成分組成を以下のように規定することが好ましい。なお、以下の説明において示す「%」は、特に説明がない限り、「質量%」を意味するものとする。
また、以下に説明する基本成分により、本発明の目的とする効果は十分に発揮されるものであるが、本発明の目的とする上記鋼板特性を阻害しない範囲で、その他の成分を含有することは許容されるものである。例えば、0.2%未満のCrや、0.15%未満のCu等を含有しても良い。
"Chemical composition"
Below, the limitation conditions of the chemical component composition of the high-strength hot-rolled steel sheet of the present invention will be described in detail.
In the present invention, the steel sheet structure has the above grain boundary segregation amount, the steel sheet has an elongation of 20% or more, the hole expansion ratio is 80% or more, the tensile strength is 690 MPa or more, and the steel sheet is punched under the strictest clearance conditions. In order to make the end face damage when performed within 0.3, it is preferable to define the composition of the steel sheet as follows. In the following description, “%” means “% by mass” unless otherwise specified.
In addition, the basic components described below are sufficient to achieve the intended effect of the present invention, but contain other components as long as they do not impair the steel sheet characteristics targeted by the present invention. Is acceptable. For example, less than 0.2% Cr or less than 0.15% Cu may be contained.

(C:0.010〜0.200%)
Cは、強度の向上に寄与する元素であり、0.010%以上の添加が必要である。また、粒界へのC偏析量を確保するためには、0.020%以上の添加がより好ましい。一方、Cの含有量が0.200%を超えると、セメンタイトの生成や、パーライトやマルテンサイトなどの変態組織の形成が促進され、伸びや穴拡げ性が低下する。したがって、C量は、0.010〜0.200%の範囲とする。
(C: 0.010-0.200%)
C is an element that contributes to the improvement of strength and needs to be added in an amount of 0.010% or more. Moreover, in order to ensure the amount of C segregation to a grain boundary, 0.020% or more of addition is more preferable. On the other hand, when the content of C exceeds 0.200%, formation of cementite and formation of a transformation structure such as pearlite and martensite are promoted, and elongation and hole expansibility are lowered. Therefore, the C content is in the range of 0.010 to 0.200%.

(B:0.0002〜0.0030%)
Bは、本発明における重要な元素であり、Bの添加により、粒界のCの偏析が不足した場合であっても、打ち抜き端面の損傷が防止される。このような効果を得るためには、Bを0.0002%以上添加することが必要である。一方、Bを0.0030%超で添加すると、延性等の加工性の低下を招く。したがって、Bの含有量は0.0002〜0.0030%の範囲とする。
(B: 0.0002 to 0.0030%)
B is an important element in the present invention, and even if the segregation of C at the grain boundary is insufficient due to the addition of B, damage to the punched end face is prevented. In order to obtain such an effect, it is necessary to add B in an amount of 0.0002% or more. On the other hand, when B is added in excess of 0.0030%, workability such as ductility is lowered. Therefore, the B content is in the range of 0.0002 to 0.0030%.

(Si:0.01〜1.50%)
Siは、固溶強化元素として強度向上に有効であり、このような効果を得るには0.01%以上の添加が必要である。一方、Si含有量が1.50%を超えると加工性が劣化する。したがって、Siの含有量は0.01〜1.50%の範囲とする。
(Si: 0.01-1.50%)
Si is effective for improving the strength as a solid solution strengthening element, and 0.01% or more of addition is necessary to obtain such an effect. On the other hand, if the Si content exceeds 1.50%, workability deteriorates. Therefore, the Si content is in the range of 0.01 to 1.50%.

(Mn:0.25〜3.00%)
Mnは、脱酸、脱硫のために必要な元素であり、また固溶強化元素としても有効である。このような効果を得るためには、Mn含有量を0.25%以上とすることが必要である。一方、Mn含有量が3.00%を超えると、偏析が生じやすくなり伸びフランジ性を劣化させる。したがって、Mnの含有量は0.25〜3.00%の範囲とすることが必要である。
(Mn: 0.25 to 3.00%)
Mn is an element necessary for deoxidation and desulfurization, and is also effective as a solid solution strengthening element. In order to obtain such an effect, the Mn content needs to be 0.25% or more. On the other hand, if the Mn content exceeds 3.00%, segregation is likely to occur and stretch flangeability is deteriorated. Therefore, the Mn content needs to be in the range of 0.25 to 3.00%.

(P:0.02%以下)
Pは不純物であり、Pの含有量は0.05%以下に制限することが必要である。また、Pの粒界への偏析を抑制して、粒界割れを防止するためには、0.02%以下に制限することがより好ましい。
(P: 0.02% or less)
P is an impurity, and the content of P needs to be limited to 0.05% or less. Further, in order to suppress segregation of P to grain boundaries and prevent grain boundary cracking, it is more preferable to limit to 0.02% or less.

更に、本発明では、Cの偏析量を制御するため、鋼板のフェライト結晶粒内の炭化物析出元素として、Ti、V、Nb、Moのうちの何れか1種又は2種以上を含有させることが必要である。また、Bの粒界偏析を促進するためには、窒化物析出元素であるTi、V、Nbのうちの何れか1種又は2種以上を含有させて、BNの析出を抑制することが好ましい。   Furthermore, in the present invention, in order to control the segregation amount of C, one or more of Ti, V, Nb, and Mo may be contained as a carbide precipitation element in the ferrite crystal grains of the steel sheet. is necessary. In order to promote grain boundary segregation of B, it is preferable to contain any one or more of Ti, V and Nb which are nitride precipitation elements to suppress the precipitation of BN. .

(Ti:0.03〜0.20%)
(V :0.01〜0.20%)
(Nb:0.01〜0.20%)
Ti、V、Nbは、フェライト結晶粒内に炭化物及び窒化物を析出し、析出強化により鋼板の強度を上昇させる元素である。炭化物及び窒化物を充分に生成させるには、Tiの添加量を0.03%以上、V、Nbの添加量をそれぞれ0.01%以上にすることが好ましい。一方、Ti、V、Nbのそれぞれの添加量が0.20%超になると、炭化物及び窒化物が粗大化することがある。したがって、Ti含有量を0.03〜0.20%、V、Nbの含有量を、それぞれ、0.01〜0.20%とすることが好ましい。
(Ti: 0.03-0.20%)
(V: 0.01-0.20%)
(Nb: 0.01-0.20%)
Ti, V, and Nb are elements that precipitate carbide and nitride in ferrite crystal grains and increase the strength of the steel sheet by precipitation strengthening. In order to sufficiently generate carbide and nitride, it is preferable that the addition amount of Ti is 0.03% or more, and the addition amounts of V and Nb are each 0.01% or more. On the other hand, if the added amounts of Ti, V, and Nb exceed 0.20%, carbides and nitrides may become coarse. Therefore, the Ti content is preferably 0.03 to 0.20%, and the V and Nb contents are preferably 0.01 to 0.20%, respectively.

(Mo:0.01〜0.20%)
Moは、炭化物形成元素であり、フェライト結晶粒内に炭化物を析出し、析出強化に寄与し、また、セメンタイト生成に寄与するCを固着する目的で含有することができる。炭化物を十分に生成させるには、Moを0.01%以上添加することが好ましい。一方、Moの添加量が0.20%を超えると、粗大な炭化物が生成することがある。したがって、Moの含有量を0.01〜0.20%の範囲とすることが好ましい。
(Mo: 0.01-0.20%)
Mo is a carbide forming element and can be contained for the purpose of fixing C which contributes to precipitation strengthening and contributes to the formation of cementite in the ferrite crystal grains. In order to sufficiently generate carbide, it is preferable to add Mo by 0.01% or more. On the other hand, when the addition amount of Mo exceeds 0.20%, coarse carbides may be generated. Therefore, the Mo content is preferably in the range of 0.01 to 0.20%.

更に、本発明の高強度熱延鋼板では、化学成分組成におけるN、S、及び、Alの含有量の上限を以下のように制限するのが好ましい。   Furthermore, in the high-strength hot-rolled steel sheet of the present invention, it is preferable to limit the upper limit of the N, S, and Al contents in the chemical component composition as follows.

(N:0.009%以下)
Nは、窒化物を形成し、鋼板の加工性を低下させるため、その含有量を0.009%以下に制限することが好ましい。
(N: 0.009% or less)
N forms nitrides and lowers the workability of the steel sheet, so the content is preferably limited to 0.009% or less.

(S:0.005%以下)
Sは、MnSなどの介在物として伸びフランジ性を劣化させ、更に熱間圧延時に割れを引き起こすので、含有量を極力低下させるのが好ましい。特に、熱間圧延時に割れを防止し、加工性を良好にするためには、Sの含有量を0.005%以下に制限することが好ましい。
(S: 0.005% or less)
S, as inclusions such as MnS, deteriorates stretch flangeability and further causes cracking during hot rolling, so the content is preferably reduced as much as possible. In particular, in order to prevent cracking during hot rolling and improve workability, it is preferable to limit the S content to 0.005% or less.

(Al:0.002%以上)
Alは、窒化物などの析出物を形成して鋼板の加工性を損なうため、0.5%以下に制限することが好ましい。なお、溶鋼脱酸のためには、0.002%以上を添加することがより好ましい。
(Al: 0.002% or more)
Since Al forms precipitates such as nitrides and impairs the workability of the steel sheet, it is preferably limited to 0.5% or less. In addition, it is more preferable to add 0.002% or more for molten steel deoxidation.

なお、本発明においては、上記基本成分の他に、鋼板の強度の向上する目的で 固溶強化元素として、Wを添加してもよい。   In the present invention, in addition to the above basic components, W may be added as a solid solution strengthening element for the purpose of improving the strength of the steel sheet.

[高強度熱延鋼板の製造方法]
本発明の打ち抜き加工性に優れた高強度熱延鋼板の製造方法は、上記記載の成分を有する鋼材を1200℃以上に加熱し、Ar点以上の温度で圧延を完了し、次いで、50℃/s以上の冷却速度で600〜650℃の範囲内に冷却し、更に、10℃/s以下の冷却速度で350〜600℃の範囲内に冷却して巻き取る方法である。
また、本発明の高強度熱延鋼板の製造方法は、上記10℃/s以下の速度で鋼板を冷却し、巻き取りを行なう際の温度を350〜550℃の範囲とすることができる。
[Method for producing high-strength hot-rolled steel sheet]
The method for producing a high-strength hot-rolled steel sheet having excellent punchability according to the present invention heats a steel material having the above-described components to 1200 ° C. or higher, completes rolling at a temperature of Ar 3 points or higher, and then 50 ° C. This is a method of cooling in a range of 600 to 650 ° C. at a cooling rate of not less than / s, and further winding in a range of 350 to 600 ° C. at a cooling rate of not more than 10 ° C./s.
Moreover, the manufacturing method of the high-strength hot-rolled steel sheet of the present invention can cool the steel sheet at a speed of 10 ° C./s or less and set the temperature at the time of winding to a range of 350 to 550 ° C.

「熱間圧延温度」
鋼材を常法によって溶製、鋳造し、得られた鋼片を熱間圧延する。鋼片は、生産性の観点から、連続鋳造設備で製造することが好ましい。熱間圧延の加熱温度は、炭化物形成元素と炭素を十分に鋼材中に分解溶解させるため、1200℃以上とする。鋳造後、鋼片を冷却して、1200℃以上の温度で圧延を開始しても良い。1200℃以下に冷却された鋼片を加熱する場合は、1時間以上の保持を行うことが好ましい。
熱間圧延の終了温度は、鋼板の特性ばらつきを抑えるために、Ar変態点以上とし、オーステナイト域で熱延を終了することが必要である。
"Hot rolling temperature"
Steel material is melted and cast by a conventional method, and the obtained steel slab is hot-rolled. The steel slab is preferably manufactured by continuous casting equipment from the viewpoint of productivity. The heating temperature of the hot rolling is set to 1200 ° C. or higher in order to sufficiently decompose and dissolve the carbide forming element and carbon in the steel material. After casting, the steel slab may be cooled and rolling may be started at a temperature of 1200 ° C. or higher. When heating a steel piece cooled to 1200 ° C. or lower, it is preferable to hold for at least 1 hour.
The end temperature of hot rolling should be not less than the Ar 3 transformation point in order to suppress variations in the characteristics of the steel sheet, and it is necessary to end hot rolling in the austenite region.

「熱間圧延終了後の冷却速度並びに温度」
熱間圧延終了後は、フェライト変態、パーライト変態及び粗大な炭化物の形成を極力抑制するために、冷却速度を50℃/s以上とし、冷却の終了温度を650℃以下にすることが必要である。また、冷却の終了温度は、Bの偏析量を確保するため、600℃以上にすることが必要である。
"Cooling rate and temperature after hot rolling"
After the hot rolling is completed, in order to suppress the ferrite transformation, pearlite transformation, and formation of coarse carbide as much as possible, it is necessary to set the cooling rate to 50 ° C./s or more and the cooling end temperature to 650 ° C. or less. . Moreover, in order to ensure the amount of segregation of B, it is necessary to make the end temperature of cooling 600 degreeC or more.

「鋼板の巻き取り前の冷却速度並びに巻き取り温度」
続いて、フェライト変態及び微細炭化物の析出を実現させるため、鋼板を、10℃/s以下の速度で巻取り温度まで冷却することが必要である。鋼板の冷却速度が10℃/sよりも速いと、炭化物の析出が不十分になり、Cの偏析量が増加する。上記熱間圧延終了後の冷却により、50℃/s以上の冷却速度で600〜650℃の温度範囲への鋼板の冷却を終了した後、巻き取り前に10℃/s以下の冷却速度で10s以下の冷却を行う。これにより、部分的にフェライト変態及び部分的に炭化物を微細析出させ、Cの偏析量を確保することができる。また、鋼板を、冷却が終了した温度で保持しても良いが、この場合は、生産性の観点から保持時間を10s以下にすることが好ましい。10℃/s以下での冷却時間が10sより長いと炭化物の析出が進み、偏析させるべきCが不足してしまい、本発明のCの粒界偏析量を得ることが困難となる。
"Cooling speed and winding temperature before winding the steel sheet"
Subsequently, in order to realize the ferrite transformation and precipitation of fine carbides, it is necessary to cool the steel sheet to the coiling temperature at a rate of 10 ° C./s or less. When the cooling rate of the steel plate is faster than 10 ° C./s, carbide precipitation becomes insufficient and the amount of segregation of C increases. After finishing the hot rolling, cooling of the steel sheet to a temperature range of 600 to 650 ° C. is completed at a cooling rate of 50 ° C./s or more, and then 10 s at a cooling rate of 10 ° C./s or less before winding. The following cooling is performed. As a result, the ferrite transformation is partially performed and the carbide is finely precipitated partially, and the segregation amount of C can be secured. Further, the steel sheet may be held at a temperature at which cooling is completed, but in this case, the holding time is preferably 10 s or less from the viewpoint of productivity. If the cooling time at 10 ° C./s or less is longer than 10 s, the precipitation of carbides proceeds, the C to be segregated becomes insufficient, and it becomes difficult to obtain the C grain boundary segregation amount of the present invention.

一方、冷却後の巻き取り温度は、C及びBの粒界偏析を達成するためには、350〜600℃の範囲とすることが必要である。巻き取り温度が350℃未満では、C及びBの偏析量が不足し、硬質なマルテンサイトが生成して伸びフランジ性を劣化させる可能性がある。一方、巻き取り温度の上限が600℃超では、伸びフランジ性に有害なパーライトセメンタイトが生成する可能性がある。また、巻き取り温度を550℃超とすると、結晶粒内で炭化物の析出が進行する。したがって、粒界への偏析C量を確保するためには、550℃以下とすることが好ましい。   On the other hand, in order to achieve grain boundary segregation of C and B, the coiling temperature after cooling needs to be in the range of 350 to 600 ° C. When the coiling temperature is less than 350 ° C., the segregation amount of C and B is insufficient, and hard martensite may be generated to deteriorate stretch flangeability. On the other hand, if the upper limit of the coiling temperature exceeds 600 ° C., pearlite cementite that is harmful to stretch flangeability may be generated. Further, when the coiling temperature exceeds 550 ° C., the precipitation of carbide proceeds in the crystal grains. Therefore, in order to ensure the amount of segregation C to the grain boundary, it is preferable to set it as 550 degrees C or less.

なお、通常の熱間圧延機で水冷を行い、終了温度を600℃とした場合は、水冷終了から巻き取りまでの間の空冷により、巻き取り温度は600℃未満となり、空冷時にBの粒界偏析を達成することが可能である。また、巻き取り温度を600℃とする場合には、水冷終了から巻き取りまでの間の温度低下を考慮して終了温度を決定すれば良い。   In addition, when water cooling is performed with a normal hot rolling mill and the end temperature is set to 600 ° C., the coiling temperature becomes less than 600 ° C. due to air cooling from the end of water cooling to winding, and the grain boundary of B during air cooling. Segregation can be achieved. When the winding temperature is 600 ° C., the end temperature may be determined in consideration of the temperature drop from the end of water cooling to the winding.

以上説明したように、本発明の打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法によれば、伸びフランジ性と延性とのバランスが良好であり、特に引張強さが690MPa以上という高強度を有し、なお且つ打ち抜き加工のクリアランスの条件に依らず、打ち抜き時の端面の損傷発生を抑えた打ち抜き加工性に優れた熱延高強度鋼板及びその製造方法を提供することができるので、産業上の貢献が極めて顕著である。   As described above, according to the high-strength hot-rolled steel sheet excellent in punching workability and the manufacturing method thereof according to the present invention, the balance between stretch flangeability and ductility is good, and particularly, the tensile strength is as high as 690 MPa or more. Because it can provide a hot-rolled high-strength steel sheet that has strength and is excellent in punching workability that suppresses the occurrence of damage to the end face during punching, regardless of the clearance conditions of the punching process, and its manufacturing method. The industrial contribution is very remarkable.

以下、本発明に係る打ち抜き加工性に優れた高強度熱延鋼板の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, examples of the high-strength hot-rolled steel sheet excellent in punching workability according to the present invention will be given and the present invention will be described more specifically, but the present invention is not limited to the following examples from the beginning, The present invention can be implemented with appropriate modifications within a range that can be adapted to the gist of the following, and these are all included in the technical scope of the present invention.

まず、下記表1に示す化学成分組成を有する符号AからI迄の鋼を溶解した。表1における成分値は、化学分析値で質量%を示し、また、下記表1の成分値における「0」は、意図的に添加していないことを意味する。また、下記表1中の下線は、本発明の範囲外であることを意味する。   First, steels having symbols A to I having chemical composition shown in Table 1 below were melted. The component values in Table 1 indicate mass% as chemical analysis values, and “0” in the component values in Table 1 below means that they are not intentionally added. Moreover, the underline in the following Table 1 means outside the scope of the present invention.

Figure 0005087980
Figure 0005087980

次に、下記表2に示す製造条件で熱間圧延を行い、熱延鋼板を製造した。ここで、下記表2における熱延終了温度は、全てAr以上である。また、1次冷却は、熱延終了直後の冷却処理であり、2次冷却は巻き取り前の冷却処理である。また、下記表2中の下線は、本発明の範囲外でることを意味する。 Next, hot rolling was performed under the production conditions shown in Table 2 below to produce a hot rolled steel sheet. Here, the hot rolling end temperatures in Table 2 below are all Ar 3 or higher. The primary cooling is a cooling process immediately after the end of hot rolling, and the secondary cooling is a cooling process before winding. Moreover, the underline in the following Table 2 means outside the scope of the present invention.

Figure 0005087980
Figure 0005087980

これらの各鋼板より、JIS Z 2201に記載の5号試験片を加工して、JIS Z 2241に記載の試験方法に沿って、引張特性を評価した。
また、伸びフランジ性の一つとして、穴拡げ試験は、日本鉄鋼連盟規格JFS T 1001−1996記載の試験方法に従って評価した。
また、打ち抜き端面の損傷の発生の比率は、穴拡げ試験と同様に10mm径の穴を打ち抜き、その端面形状を目視で観察し、円形に打ち抜いた端面のうち損傷が認められる範囲の角度を測定することにより比率を求めた。
From these steel plates, No. 5 test piece described in JIS Z 2201 was processed, and tensile properties were evaluated along the test method described in JIS Z 2241.
Further, as one of the stretch flangeability, the hole expansion test was evaluated according to the test method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996.
In addition, the ratio of occurrence of damage to the punched end face is determined by punching a 10 mm diameter hole in the same manner as the hole expansion test, visually observing the shape of the end face, and measuring the angle within a range where damage is recognized in the circular punched end face. The ratio was obtained by

また、上記各鋼板から0.3mm×0.3mm×10mmの柱状試料を切り出し、その目的粒界部分を電解研磨又は集束イオンビーム加工法により先鋭な針状形状とし、三次元アトムプローブ測定を行った。まず、粒界における各元素の偏析量を見積もるため、結晶粒界を含む原子分布像から結晶粒界に対して垂直に直方体を切り出し、ラダーチャートを得た。次いで、ラダーチャート解析から、各原子の偏析量を、Excess量を用いて評価した。そして、各鋼材において、5つ以上の粒界について各元素の偏析量を調べ、その平均値を各鋼材の各元素偏析量とした。
これら各評価結果の一覧を下記表3に示す。
In addition, a columnar sample of 0.3 mm × 0.3 mm × 10 mm is cut out from each of the above steel plates, and the target grain boundary portion is sharpened by electrolytic polishing or focused ion beam processing, and three-dimensional atom probe measurement is performed. It was. First, in order to estimate the segregation amount of each element at the grain boundary, a rectangular parallelepiped was cut out from the atomic distribution image including the grain boundary perpendicular to the grain boundary to obtain a ladder chart. Next, from the ladder chart analysis, the segregation amount of each atom was evaluated using the Excess amount. And in each steel material, the segregation amount of each element was investigated about five or more grain boundaries, and the average value was made into each element segregation amount of each steel material.
A list of these evaluation results is shown in Table 3 below.

Figure 0005087980
Figure 0005087980

表3において、試験No.2、3、5、7〜9、11は、鋼板の成分及び製造条件を本発明の範囲内とした例である。これら本発明例の鋼板は、高強度で、穴広げ性が良好であり、また、打ち抜き端面の損傷比率も小さいことが、表3に示す評価結果から明らかである。   In Table 3, test no. 2, 3, 5, 7-9, and 11 are examples in which the components and production conditions of the steel sheet are within the scope of the present invention. It is clear from the evaluation results shown in Table 3 that these steel plates of the present invention have high strength, good hole expansibility, and a small damage ratio on the punched end face.

一方、No.1及び6は1次冷却の終了温度が高く、No.4及び10は1次冷却の冷却速度が遅く、No.10は巻き取り温度も高いため、CとBの粒界偏析量の合計が不足し、打ち抜き端面の損傷が発生した例である。
No.12は、Bの添加量が不足しており、粒界偏析量を達成することができず、打ち抜き時の端面損傷が発生した例である。一方、No.13は、Bの添加量が範囲を超えており、C及びBの粒界偏析量が増加し、打ち抜き端面の損傷が発生し、また、伸びが低下した例である。
No.14は、Pの含有量が多く、伸び及び穴拡げ率が低下し、打ち抜き端面の損傷が発生した例である。
On the other hand, no. Nos. 1 and 6 have high end temperatures for primary cooling. Nos. 4 and 10 have a slow primary cooling rate. No. 10 is an example in which the total temperature of the grain boundary segregation of C and B is insufficient due to the high winding temperature, and the punched end face is damaged.
No. No. 12 is an example in which the amount of addition of B is insufficient, the grain boundary segregation amount cannot be achieved, and end face damage occurs during punching. On the other hand, no. No. 13 is an example in which the amount of addition of B exceeds the range, the grain boundary segregation amount of C and B increases, damage to the punched end face occurs, and elongation decreases.
No. No. 14 is an example in which the P content is large, the elongation and the hole expansion rate are reduced, and damage to the punched end surface occurs.

上記結果より、本発明で規定する範囲内の化学成分の鋼材を用い、本発明で規定する範囲内の製造条件によって鋼板を製造した場合、優れた伸びフランジ性と延性を両立し、特に、引張強さが690MPa以上という高強度を有し、極めて厳しい条件で打ち抜き加工を行った場合でも、確実に端面の損傷を防止することができる、打ち抜き加工性に優れた高強度熱延鋼板が得られることが明らかである。   From the above results, when using a steel material having a chemical composition within the range specified by the present invention and producing a steel sheet under the manufacturing conditions within the range specified by the present invention, both excellent stretch flangeability and ductility are achieved. A high-strength hot-rolled steel sheet having a high strength of 690 MPa or more and capable of reliably preventing damage to the end face even when punching is performed under extremely severe conditions is obtained. It is clear.

本発明に係る打ち抜き加工性に優れた高強度熱延鋼板の一例を説明する図であり、打ち抜き加工のクリアランスと打ち抜き端面損傷発生率との相関を示すグラフである。It is a figure explaining an example of the high intensity | strength hot-rolled steel plate excellent in the punching property which concerns on this invention, and is a graph which shows the correlation with the clearance of a punching process, and a punching end surface damage incidence. 本発明に係る打ち抜き加工性に優れた高強度熱延鋼板の一例を説明する図であり、結晶粒界位置の三次元原子分布像を示す模式図である。It is a figure explaining an example of the high intensity | strength hot-rolled steel plate excellent in the punching property which concerns on this invention, and is a schematic diagram which shows the three-dimensional atomic distribution image of a crystal grain boundary position. 本発明に係る打ち抜き加工性に優れた高強度熱延鋼板の一例を説明する図であり、図2に示す結晶粒界位置の三次元原子分布像を解析したラダーチャート解析グラフである。It is a figure explaining an example of the high intensity | strength hot-rolled steel plate excellent in the punching property which concerns on this invention, and is a ladder chart analysis graph which analyzed the three-dimensional atomic distribution image of the crystal grain boundary position shown in FIG. 本発明に係る打ち抜き加工性に優れた高強度熱延鋼板の一例を説明する図であり、C及びBの偏析量と打ち抜き端面損傷発生率の相関を示すグラフである。It is a figure explaining an example of the high intensity | strength hot-rolled steel plate excellent in the punching property which concerns on this invention, and is a graph which shows the correlation of the segregation amount of C and B, and a punching end surface damage incidence. 本発明に係る打ち抜き加工性に優れた高強度熱延鋼板の一例を説明する図であり、P偏析量と打ち抜き端面損傷発生率の相関を示すグラフである。It is a figure explaining an example of the high intensity | strength hot-rolled steel plate excellent in the punching property which concerns on this invention, and is a graph which shows the correlation of the amount of P segregation and punching end surface damage incidence.

Claims (5)

質量%で、
C :0.010〜0.200%、
Si:0.01〜1.50%、
Mn:0.25〜3.00%、
B :0.0002〜0.0030%
をそれぞれ含有し、
P :0.05%以下
に制限し、更に、
Ti:0.03〜0.20%、
Nb:0.01〜0.20%、
V :0.01〜0.20%、
Mo:0.01〜0.20%
のうちの何れか1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、フェライトの大角結晶粒界へのCの偏析量とBの偏析量との合計が4〜10atoms/nmの範囲であることを特徴とする打ち抜き加工性に優れた高強度熱延鋼板。
% By mass
C: 0.010-0.200%
Si: 0.01 to 1.50%,
Mn: 0.25 to 3.00%,
B: 0.0002 to 0.0030%
Each containing
P: limited to 0.05% or less,
Ti: 0.03 to 0.20%,
Nb: 0.01-0.20%,
V: 0.01-0.20%,
Mo: 0.01-0.20%
And the balance is composed of Fe and inevitable impurities, and the sum of the segregation amount of C and the segregation amount of B to the large-angle grain boundaries of ferrite is 4 to 10 atoms. A high-strength hot-rolled steel sheet excellent in punching workability, characterized by being in the range of / nm 2 .
質量%で、
P :0.02%以下
に制限し、フェライトの大角結晶粒界へのPの偏析量が1atoms/nm以下であることを特徴とする請求項1に記載の打ち抜き加工性に優れた高強度熱延鋼板。
% By mass
2. High strength excellent in punching workability according to claim 1, wherein P is limited to 0.02% or less, and the amount of segregation of P to the large-angle grain boundaries of ferrite is 1 atoms / nm 2 or less. Hot rolled steel sheet.
フェライトの大角結晶粒界へのCの偏析量が2atoms/nm以上であることを特徴とする請求項1又は2に記載の打ち抜き加工性に優れた高強度熱延鋼板。 The high-strength hot-rolled steel sheet with excellent punchability according to claim 1 or 2 , wherein the amount of segregation of C to the large-angle grain boundaries of ferrite is 2 atoms / nm 2 or more. 請求項1又は2に記載の高強度熱延鋼板を製造する方法であって、
請求項1又は2に記載の成分を有する鋼材を1200℃以上に加熱し、Ar点以上の温度で圧延を完了し、次いで、50℃/s以上の冷却速度で600〜650℃の範囲内に冷却し、更に、10℃/s以下の冷却速度で350〜600℃の範囲内に冷却して巻き取ることを特徴とする打ち抜き加工性に優れた高強度熱延鋼板の製造方法。
A method for producing the high-strength hot-rolled steel sheet according to claim 1 or 2,
The steel material having the component according to claim 1 or 2 is heated to 1200 ° C or higher, and rolling is completed at a temperature of Ar 3 or higher, and then within a range of 600 to 650 ° C at a cooling rate of 50 ° C / s or higher. A method for producing a high-strength hot-rolled steel sheet excellent in punching workability, wherein the steel sheet is further cooled to a temperature of 350 to 600 ° C. and wound at a cooling rate of 10 ° C./s or less.
請求項3に記載の高強度熱延鋼板を製造する方法であって、
請求項1又は2に記載の成分を有する鋼材を1200℃以上に加熱し、Ar点以上の温度で圧延を完了し、次いで、50℃/s以上の冷却速度で600〜650℃の範囲内に冷却し、更に、10℃/s以下の冷却速度で350〜550℃の範囲内に冷却して巻き取ることを特徴とする打ち抜き加工性に優れた高強度熱延鋼板の製造方法。
A method for producing the high-strength hot-rolled steel sheet according to claim 3,
The steel material having the component according to claim 1 or 2 is heated to 1200 ° C or higher, and rolling is completed at a temperature of Ar 3 or higher, and then within a range of 600 to 650 ° C at a cooling rate of 50 ° C / s or higher. A method for producing a high-strength hot-rolled steel sheet excellent in punching workability, wherein the steel sheet is further cooled to a temperature of 350 ° C./s at a cooling rate of 10 ° C./s or less and wound up.
JP2007111563A 2007-04-20 2007-04-20 High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof Active JP5087980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111563A JP5087980B2 (en) 2007-04-20 2007-04-20 High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111563A JP5087980B2 (en) 2007-04-20 2007-04-20 High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008266726A JP2008266726A (en) 2008-11-06
JP5087980B2 true JP5087980B2 (en) 2012-12-05

Family

ID=40046605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111563A Active JP5087980B2 (en) 2007-04-20 2007-04-20 High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5087980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7062339B2 (en) 2018-08-30 2022-05-06 株式会社チノー Temperature measuring method and temperature measuring device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861434B2 (en) * 2011-12-14 2016-02-16 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in punchability and manufacturing method thereof
JP5887903B2 (en) * 2011-12-15 2016-03-16 Jfeスチール株式会社 High strength hot-rolled steel sheet excellent in weldability and method for producing the same
JP5741426B2 (en) * 2011-12-27 2015-07-01 新日鐵住金株式会社 High strength hot-rolled steel sheet and manufacturing method thereof
KR101706478B1 (en) 2012-06-26 2017-02-13 신닛테츠스미킨 카부시키카이샤 High-strength hot-rolled steel sheet and process for producing same
WO2014050954A1 (en) 2012-09-27 2014-04-03 新日鐵住金株式会社 Hot-rolled steel sheet, and production method therefor
JP6292022B2 (en) * 2014-05-15 2018-03-14 新日鐵住金株式会社 High strength hot-rolled steel sheet and manufacturing method thereof
EP3260565B1 (en) 2015-02-20 2019-07-31 Nippon Steel Corporation Hot-rolled steel sheet
WO2016132549A1 (en) 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
MX2017010532A (en) 2015-02-25 2017-12-14 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet or plate.
WO2016135898A1 (en) 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
CN109563586B (en) 2016-08-05 2021-02-09 日本制铁株式会社 Steel sheet and plated steel sheet
KR102186320B1 (en) 2016-08-05 2020-12-03 닛폰세이테츠 가부시키가이샤 Steel plate and plated steel plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036917A (en) * 1996-07-25 1998-02-10 Nippon Steel Corp Production of high strength hot-rolled steel plate excellent in stretch-flanging property
JP3397283B2 (en) * 1996-08-08 2003-04-14 新日本製鐵株式会社 High toughness ultra-thick high-tensile steel material and method of manufacturing the same
JP3945180B2 (en) * 2000-04-13 2007-07-18 住友金属工業株式会社 High-strength galvannealed steel sheet and high-strength steel sheet excellent in hole expansibility and ductility, and methods for producing them
JP3821036B2 (en) * 2002-04-01 2006-09-13 住友金属工業株式会社 Hot rolled steel sheet, hot rolled steel sheet and cold rolled steel sheet
JP2004315857A (en) * 2003-04-14 2004-11-11 Nippon Steel Corp High-strength hot-rolled steel sheet superior in stampability, and manufacturing method therefor
JP4460343B2 (en) * 2004-04-13 2010-05-12 新日本製鐵株式会社 High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7062339B2 (en) 2018-08-30 2022-05-06 株式会社チノー Temperature measuring method and temperature measuring device

Also Published As

Publication number Publication date
JP2008266726A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5087980B2 (en) High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
JP6019117B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
EP3263733B1 (en) Cold-rolled steel sheet and method of manufacturing same
EP2468911B1 (en) Hot pressed member, steel sheet for hot pressed member, and method for producing hot pressed member
JP5454738B2 (en) Hot rolled steel sheet for gas soft nitriding and method for producing the same
EP3421635B1 (en) High-strength cold-rolled steel sheet having excellent bendability
KR101926244B1 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
WO2018011978A1 (en) Hot-dip galvanized steel sheet
WO2013065346A1 (en) High-strength hot-rolled steel sheet having excellent bending characteristics and low-temperature toughness and method for producing same
KR101831094B1 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
JP6292022B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
WO2016136672A1 (en) Hot-rolled steel sheet or plate
EP3492610B1 (en) High-strength steel sheet
JP7115628B2 (en) Hot-rolled steel sheet and its manufacturing method
CN114630917A (en) Hot-rolled steel sheet and method for producing same
JP4879808B2 (en) High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
JPWO2020145259A1 (en) Steel plate and its manufacturing method
EP4074854A1 (en) Hot-rolled steel sheet
EP4043593A1 (en) High-strength steel sheet, impact absorbing member, and method for manufacturing high-strength steel sheet
JP2022064241A (en) Steel sheet and method for producing the same, and member
JP7188618B2 (en) hot rolled steel
WO2023026582A1 (en) Hot-rolled steel plate
JP7239072B1 (en) High-strength hot-rolled steel sheet and method for producing high-strength hot-rolled steel sheet
WO2023038084A1 (en) Hot-rolled steel sheet
EP4043594A1 (en) High-strength steel sheet, shock-absorbing member, and method for producing high-strength steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5087980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350