JP4460343B2 - High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof - Google Patents
High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof Download PDFInfo
- Publication number
- JP4460343B2 JP4460343B2 JP2004118308A JP2004118308A JP4460343B2 JP 4460343 B2 JP4460343 B2 JP 4460343B2 JP 2004118308 A JP2004118308 A JP 2004118308A JP 2004118308 A JP2004118308 A JP 2004118308A JP 4460343 B2 JP4460343 B2 JP 4460343B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- strength
- rolled steel
- hot
- strength hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 58
- 239000010959 steel Substances 0.000 title claims description 58
- 238000004080 punching Methods 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910001567 cementite Inorganic materials 0.000 claims description 16
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims description 16
- 229910000859 α-Fe Inorganic materials 0.000 claims description 16
- 230000007547 defect Effects 0.000 claims description 13
- 238000005098 hot rolling Methods 0.000 claims description 12
- 238000005096 rolling process Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 238000001816 cooling Methods 0.000 description 11
- 238000001556 precipitation Methods 0.000 description 10
- 238000005728 strengthening Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- -1 reducing workability Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、穴拡げ性に代表されるバーリング加工性や伸びフランジ性と延性に優れた引張強さ690MPa以上の高強度熱延鋼板に関し、その優れた加工性を活かして自動車部品、例えばメンバー類やアーム類などの足周り部品やシャーシなどの材料として有効に活用できる。 The present invention relates to a high-strength hot-rolled steel sheet having a tensile strength of 690 MPa or more excellent in burring workability, stretch flangeability and ductility represented by hole expansibility, and uses such excellent workability for automobile parts such as members. It can be used effectively as a material for foot parts such as arms and arms and chassis.
近年、自動車の燃費向上などのために軽量化を目的として、Al合金等の軽金属や高強度鋼板の自動車部材への適用が進められている。ただ、Al合金等の軽金属は比強度が高いという利点があるものの、鋼に比較して著しく高価であるため、その適用は特殊な用途に限られてきた。より広い範囲で自動車の軽量化を推進するためには、安価な高強度鋼板の適用が強く求められている。 In recent years, application of light metals such as Al alloys and high-strength steel sheets to automobile members has been promoted for the purpose of reducing the weight in order to improve the fuel efficiency of automobiles. However, although light metals such as Al alloys have the advantage of high specific strength, their application has been limited to special applications because they are significantly more expensive than steel. In order to promote weight reduction of automobiles in a wider range, the application of inexpensive high-strength steel sheets is strongly demanded.
一般に材料は高強度になるほど延性が低下して加工性(成形性)が悪くなる。鉄鋼材料においても例外ではなく、これまでに高強度と高延性の両立の試みがなされてきた。一方、自動車のサスペンションアーム等の足廻り部品に使用される材料には、これらの特性に加えて高いバーリング加工性(穴拡げ性)が求められている。しかし、高強度化に伴って穴拡げ性は延性と同様に低下する傾向を示し、複雑な形状をしている自動車の足廻り部品等への高強度鋼板の適用にあたっては、その穴拡げ性が重要な検討課題となる。このような背景からフェライトやベイニティックフェライトなどの組織を主体とし、パーライトやマルテンサイト組織などのいわゆる硬質第2相やセメンタイト相を低減した延性及び穴拡げ性に優れた熱延鋼板が開発されている。 In general, the higher the strength of a material, the lower the ductility and the worse the workability (formability). Steel materials are no exception, and attempts have been made so far to achieve both high strength and high ductility. On the other hand, in addition to these characteristics, materials used for suspension parts such as automobile suspension arms are required to have high burring workability (hole expandability). However, as the strength increases, the hole expandability tends to decrease in the same way as the ductility. When applying high-strength steel sheets to undercarriage parts of automobiles with complex shapes, the hole expandability is reduced. This is an important consideration. Against this background, hot-rolled steel sheets with excellent ductility and hole expansibility have been developed, which are mainly composed of structures such as ferrite and bainitic ferrite, and have reduced so-called hard second phase and cementite phase such as pearlite and martensite structures. ing.
ところで最近これらの高強度熱延鋼板の適用拡大に伴って、素材からプレス加工の際に打ち抜かれた板端面にハガレやメクレ状の欠陥が発生することが問題となっている。これらの欠陥は製品端面の意匠性を著しく損なうばかりか、高強度鋼板ゆえに切り欠きなどの応力集中部となって疲労強度などに影響を及ぼす危険性があるものである。普通鋼の打ち抜き性に関してはそれほど多くの検討はなされていないが、例えば特開平9−49053号公報(特許文献1)には鋼中析出物の制御によって、また、特開2003−41342号公報(特許文献2)には鋼板表層部の組織を微細化することで改善する発明が開示されている。 Recently, along with the expansion of application of these high-strength hot-rolled steel sheets, there is a problem that defects such as peeling or cracking occur on the end face of the plate punched out from the material. These defects not only significantly impair the design of the end face of the product, but also have a risk of affecting the fatigue strength by becoming a stress concentration part such as a notch due to the high strength steel plate. Although many studies have not been made on the punchability of ordinary steel, for example, Japanese Patent Application Laid-Open No. 9-49053 (Patent Document 1) discloses control of precipitates in steel and Japanese Patent Application Laid-Open No. 2003-41342 ( Patent Document 2) discloses an invention that is improved by refining the structure of the steel sheet surface layer.
しかしながら、上記従来技術は基本的に低強度の極低炭素鋼板の打ち抜き性に関する技術であり、本発明が対象とする引張強さ690MPa以上の高強度熱延鋼板に適用できるとは言い難い。すなわち、特許文献1に記載の発明は、軟質鋼板が故に発生し易い打ち抜き時のバリ発生に関するものであり、具体的には鋼中にTi4 C2 S2 を析出せしめてこれにより打ち抜き端面内の剪断面部分にボイドを発生させてクラックを進展させることでバリを低減させる技術である。すなわち、特許文献1に記載された発明ではバリは低減できてもかえって端面の欠陥は助長させている可能性がある。 However, the above prior art is basically a technique related to the punchability of a low-strength ultra-low carbon steel sheet, and it is difficult to say that it can be applied to a high-strength hot-rolled steel sheet having a tensile strength of 690 MPa or more, which is the subject of the present invention. That is, the invention described in Patent Document 1 relates to the generation of burrs at the time of punching, which is likely to occur because of a soft steel plate. Specifically, Ti 4 C 2 S 2 is precipitated in the steel and thereby the inside of the punching end surface is formed. This is a technique for reducing burrs by generating voids in the shearing surface portion of the steel and advancing cracks. That is, in the invention described in Patent Document 1, there is a possibility that defects on the end face are promoted even though burrs can be reduced.
また、特許文献2に記載の発明も、軟質な冷延鋼板と対象としたバリ発生防止に関するものであり、打ち抜き端面そのものの性状については何ら配慮されていない。そこで本発明は、上記従来技術では検討されているとは言い難い、高強度熱延鋼、とりわけ自動車足回り部品へ適用が期待される延性と穴拡げ性に優れた引張強さが690MPa以上の高強度熱延鋼板を前提とした、打ち抜き端面の欠陥を防止する技術を提供することを目的とするものである。 The invention described in Patent Document 2 is also related to the soft cold-rolled steel sheet and the prevention of burr generation, and no consideration is given to the properties of the punched end face itself. Therefore, the present invention is hardly considered in the above prior art, and has a tensile strength of 690 MPa or more excellent in ductility and hole expansibility expected to be applied to high-strength hot-rolled steel, particularly automobile undercarriage parts. An object of the present invention is to provide a technique for preventing defects on a punched end face on the premise of a high-strength hot-rolled steel sheet.
本発明者らは、延性と穴拡げ性に優れた引張強さが690MPa以上の高強度熱延鋼板を用いてまず種々のクリアランスにて打ち抜き加工を行い、その端面性状について目視で調査した。その結果、通常穴拡げ試験で推奨されている12.5%前後のクリアランスで打ち抜いた場合には確認できないハガレやメクレ状の欠陥が、クリアランスを増加させることで明瞭に発生することを確認した。そこで以下では17〜23%のクリアランスを用いて調査を進めた。 The inventors first performed punching with various clearances using a high-strength hot-rolled steel sheet having a tensile strength of 690 MPa or more and excellent in ductility and hole expansibility, and visually examined the end face properties. As a result, it was confirmed that cracks and crevices that could not be confirmed when punched with a clearance of around 12.5% normally recommended in the hole expansion test were clearly generated by increasing the clearance. Therefore, in the following, the investigation was advanced using a clearance of 17 to 23%.
次に、熱延鋼板の化学組成や現在通常に採用されている連続熱間圧延設備により工業的規模で生産されている熱延鋼板の製造プロセスを念頭において、この打ち抜き端面の欠陥に及ぼす製造条件の影響を鋭意研究した結果、鋼中のPの含有量を少量に制御することで基本的な鋼組成や製造プロセスは従来の高強度熱延鋼板のそれに何ら変更を加えることなく欠陥の発生を防止できることを見出し、本発明をなしたものである。 Next, in consideration of the chemical composition of the hot-rolled steel sheet and the manufacturing process of the hot-rolled steel sheet produced on an industrial scale by the continuous hot rolling equipment currently used normally, the production conditions affecting the defects on this punched end face As a result of diligent research on the effects of steel, the basic steel composition and manufacturing process are controlled by controlling the P content in the steel to a small level, so that defects can be generated without any change to that of conventional high-strength hot-rolled steel sheets. The present invention has been made by finding out that it can be prevented.
即ち、本発明の要旨は以下の通りである。
(1)質量%にて、C:0.01〜0.07%、Si:0.77〜2%、Mn:0.05〜3%、Al:0.005〜0.5%、N≦0.005%、S≦0.005%、Ti:0.03〜0.2%、P≦0.01%、B:0.0002〜0.002%を含み、残部がFe及び不可避的不純物からなる鋼であって、フェライト又はベイニティックフェライト組織を面積率最大の相とし、硬質第2相及びセメンタイトが面積率で3%以下であり、引張強さが690MPa以上であり、打ち抜き時のクリアランスが17〜23%で、端面性状のハガレ及びメクレの欠陥がないことを特徴とする打ち抜き加工性に優れた高強度熱延鋼板。
That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.01 to 0.07%, Si: 0.77 to 2%, Mn: 0.05 to 3%, Al: 0.005 to 0.5%, N ≦ 0.005%, S ≦ 0.005%, Ti: 0.03-0.2%, P ≦ 0.01%, B: 0.0002-0.002% , the balance being Fe and inevitable impurities a steel consisting of ferrite or bainitic ferrite structure and area ratio up phase, is 3% or less hard second phase and cementite area ratio and a tensile strength of Ri der than 690 MPa, when punching A high-strength hot-rolled steel sheet excellent in punching workability, characterized by having a clearance of 17 to 23% and no defects in the end surface properties and cracks .
(2)さらに、質量%にて、V:0.01〜0.2%、Nb:0.01〜0.2%、Mo:0.01〜0.2%の一種または二種以上を含有し、かつ
Ti/48+V/51+Nb/93+Mo/96−C/12−N/14−S/32≧0%を満足することを特徴とする前記(1)記載の打ち抜き加工性に優れた高強度熱延鋼板。
(2) Further, in mass%, V: 0.01 to 0.2%, Nb: 0.01 to 0.2%, Mo: 0.01 to 0.2%, or one or more of them are contained. And Ti / 48 + V / 51 + Nb / 93 + Mo / 96-C / 12-N / 14-S / 32 ≧ 0%, and high strength heat excellent in punching workability as described in (1) above Rolled steel sheet.
(3)さらに、質量%にて、Ca:0.0005〜0.02%、REM:0.0005〜0.2%の一種または二種を含有することを特徴とする前記(1)または(2)記載の打ち抜き加工性に優れた高強度熱延鋼板。
(4)前記(1)〜(3)のいずれか1項に記載の鋼板を製造する方法であって、前記(1)〜(3)のいずれか1項に記載の成分を有する鋼片の熱間圧延に際し、熱延加熱温度を1200℃以上とし、Ar3 変態点以上で熱間仕上圧延を終了した後、450℃から650℃で巻き取ることを特徴とする打ち抜き加工性に優れた高強度熱延鋼板の製造方法にある。
( 3 ) Furthermore, the above-mentioned (1) or ( 1), further comprising one or two of Ca: 0.0005 to 0.02% and REM: 0.0005 to 0.2% in mass%. 2) A high-strength hot-rolled steel sheet having excellent punchability as described.
(4) the (1) to (3) A method of manufacturing a steel sheet according to any one of the above (1) to a steel slab having a component according to any one of (3) In hot rolling, the hot rolling heating temperature is set to 1200 ° C. or higher, and after finishing hot finish rolling at the Ar 3 transformation point or higher, it is excellent in punching workability characterized by winding at 450 ° C. to 650 ° C. It exists in the manufacturing method of a strength hot-rolled steel sheet.
本発明は大きなクリアランスで打ち抜かれた場合でも打ち抜き端面に欠陥が発生しない、引張強さが690MPa以上の穴拡げ性と延性に優れた高強度熱延鋼板及びその製造方法を提供するものであり、その優れた加工性を活かして自動車部品、例えばメンバー類やアーム類などの足周り部品やシャーシなどの材料として有効な、工業的価値が高い発明である。 The present invention provides a high-strength hot-rolled steel sheet excellent in hole expansibility and ductility with a tensile strength of 690 MPa or more, in which no defect occurs in the punched end face even when punched with a large clearance, and a method for producing the same. It is an invention with high industrial value that is effective as a material for automobile parts, for example, foot parts such as members and arms, and chassis, taking advantage of its excellent workability.
以下に本発明を更に詳細に説明する。
まず、本発明における鋼のミクロ組織の限定理由を記述する。
本発明のミクロ組織はフェライト又はベイニティックフェライト組織を面積率最大の相とするものであり、残部として穴拡げ性を大きく低下させる硬質第2相は面積率で3%以下(0%を含む)とする。ここで硬質第2相とはマルテンサイトやパーライトが代表的なものであるが、穴拡げ加工の際これに先行して行われる打ち抜き加工においてマルテンサイトに変態する可能性のある残留オーステナイトも含む。更にセメンタイトもやはり硬質であり穴拡げ性を劣化させる。
The present invention is described in further detail below.
First, the reasons for limiting the microstructure of the steel in the present invention will be described.
The microstructure of the present invention has a ferrite or bainitic ferrite structure as a phase with the largest area ratio, and the hard second phase that greatly reduces hole expansibility as the balance is 3% or less (including 0%) in area ratio. ). Here, the hard second phase is typically martensite or pearlite, but also includes retained austenite that may be transformed into martensite in the punching process that is performed prior to the hole expansion process. Furthermore, cementite is also hard and deteriorates the hole expandability.
そこで本発明ではフェライト又はベイニティックフェライト組織を面積率最大の相とし、硬質第2相及びセメンタイトを面積率で3%以下と規定した。なお、セメンタイトの面積率はフェライト又はベイニティックフェライト組織と硬質第2相の面積の内数であり、好ましくはセメンタイトの面積率は1%以下である。ここで言うセメンタイトの存在状態はフェライト粒界などに塊状に存在するものの他、ベイナイト組織内のラス状の境界に生成するものも含まれる。 Therefore, in the present invention, the ferrite or bainitic ferrite structure is defined as the phase with the largest area ratio, and the hard second phase and cementite are defined as 3% or less in area ratio. The area ratio of cementite is the number of areas of the ferrite or bainitic ferrite structure and the hard second phase, and preferably the area ratio of cementite is 1% or less. The existence state of cementite here includes not only those present in a lump at the ferrite grain boundary or the like, but also those generated at the lath-like boundary in the bainite structure.
次に、本発明の化学成分の限定理由について説明する。化学成分の量は質量%である。 Cは、0.07%超含有していると加工性が劣化するので、0.07%以下とする。また、0.01%未満では強度が低下するので0.01%以上とする。
Siは、固溶強化元素として強度上昇に有効であるが、所望の強度を得るためには0.01%以上含有する必要がある。しかし、2%超含有すると加工性が劣化する。そこで、Siの含有量は0.01%以上、2%以下とする。
Next, the reasons for limiting the chemical components of the present invention will be described. The amount of chemical component is mass%. If the C content exceeds 0.07%, the workability deteriorates, so the content is made 0.07% or less. Moreover, since intensity | strength will fall if it is less than 0.01%, it shall be 0.01% or more.
Si is effective as a solid solution strengthening element for increasing the strength, but in order to obtain a desired strength, it is necessary to contain 0.01% or more. However, if it exceeds 2%, workability deteriorates. Therefore, the Si content is set to 0.01% or more and 2% or less.
Mnは、固溶強化元素として強度上昇に有効であるが、所望の強度を得るためには0.05%以上必要である。また、3%超添加するとスラブ割れを生ずるため、3%以下とする。
Alは、溶鋼脱酸のために0.005%以上添加する必要があるが、コストの上昇を招くため、その上限を0.5%とする。また、あまり多量に添加すると非金属介在物を増大させ伸びを劣化させるので、好ましくは0.3%以下とする。
Mn is effective for increasing the strength as a solid solution strengthening element, but 0.05% or more is necessary to obtain a desired strength. Further, if over 3% is added, slab cracking occurs, so the content is made 3% or less.
Al needs to be added in an amount of 0.005% or more for deoxidation of molten steel, but the cost is increased, so the upper limit is made 0.5%. Moreover, when adding too much, a nonmetallic inclusion will be increased and elongation will be degraded, Therefore Preferably it is 0.3% or less.
Nは、鋼中にて粗大なTiNを形成する元素であり、基本的には極力低減させるべきであるが、いたずらな低減は製鋼コストの上昇を招くこと、また、製鋼能力も勘案して0.005%以下とする。
Sは、多すぎるとMnSなどの介在物として穴拡げ性を劣化させ、更に熱間圧延時の割れを引き起こすので極力低減させるべきであるが、0.005%以下ならば許容できる範囲である。
N is an element that forms coarse TiN in steel, and should be reduced as much as possible. However, mischievous reduction leads to an increase in steelmaking cost, and 0 in consideration of steelmaking ability. 0.005% or less.
If S is too large, the hole expandability deteriorates as inclusions such as MnS, and cracks during hot rolling should be caused. Therefore, it should be reduced as much as possible, but 0.005% or less is acceptable.
Tiは、析出強化により鋼板の強度上昇に寄与する。ただし、0.03%未満ではこの効果が不十分であり、一方、0.2%超含有すると粗大なTiNの生成が避けられない。従って、Tiの含有量は0.03%以上、0.2%以下とする。
Pは、本発明において制御すべき最も重要な元素であり、この元素を0.01%以下に抑制することで打ち抜き端面の欠陥が防止される。この理由は明らかではないが、Pを低減することにより粒界に偏析するPが減り、粒界脆化が抑えられること、更に、Pの粒界偏析が減少した分、Cの偏析が増加し粒界強度を上昇させるからと考えられる。好ましくは、Pは0.005%以下にすることが望ましい。
Ti contributes to an increase in the strength of the steel sheet by precipitation strengthening. However, if the content is less than 0.03%, this effect is insufficient. On the other hand, if the content exceeds 0.2%, generation of coarse TiN cannot be avoided. Therefore, the Ti content is set to 0.03% or more and 0.2% or less.
P is the most important element to be controlled in the present invention. By suppressing this element to 0.01% or less, defects on the punched end face can be prevented. The reason for this is not clear, but by reducing P, the amount of P segregated at the grain boundaries is reduced, grain boundary embrittlement is suppressed, and further, the amount of segregation of C increases because the grain boundary segregation of P is reduced. This is thought to increase the grain boundary strength. Preferably, P is 0.005% or less.
V,Nb,Moは、共にTiを補完する析出強化元素として、また、この析出によりセメンタイト生成に寄与するCを固着する目的として添加される。ただし、それぞれの含有量が0.01%未満ではこの効果が不十分であり、一方、0.2%超含有するとTiNを形成する際にもTiを補完してしまい粗大析出物の生成に寄与してしまう。従って、V,Nb,Moの含有量は共に0.01%以上、0.2%以下とするが、これらは一種のみならず二種以上を上記範囲において含むことを許容する。更に、これらの元素は下記式を満足することを要件とする(元素名は各元素の化学成分の質量%を意味する)。
Ti/48+V/51+Nb/93+Mo/96−C/12−N/14−S/32≧0
本式はTiを始めとするV,Nb,Moなどの析出物構成元素が鋼中のC,N,Sを十分固定するに必要なだけ添加されていることを規定するものとして公知な式であり、これによりセメンタイト量を低減することが可能となる。
V, Nb, and Mo are both added as precipitation strengthening elements that supplement Ti and for the purpose of fixing C that contributes to the formation of cementite by this precipitation. However, if each content is less than 0.01%, this effect is insufficient. On the other hand, if the content exceeds 0.2%, Ti is supplemented when TiN is formed, contributing to the formation of coarse precipitates. Resulting in. Accordingly, the contents of V, Nb, and Mo are both 0.01% or more and 0.2% or less, but these are allowed to contain not only one type but also two or more types in the above range. Furthermore, these elements are required to satisfy the following formula (element names mean mass% of chemical components of each element).
Ti / 48 + V / 51 + Nb / 93 + Mo / 96-C / 12-N / 14-S / 32 ≧ 0
This formula is a well-known formula that prescribes that precipitate constituent elements such as Ti, V, Nb, and Mo are added as necessary to sufficiently fix C, N, and S in steel. Yes, this makes it possible to reduce the amount of cementite.
Bは、粒界に偏析して、粒界強化を補完する役目がある。ただし、0.0002%未満ではこの効果が不十分であり、一方、0.002%超含有すると延性などの加工性の低下を招く。従って、Bの含有量は0.0002%以上、0.002%以下とする。
CaおよびREMは、破壊の起点となったり、加工性を劣化させる非金属介在物の形態変化させて無害化する元素である。ただし、それぞれ0.0005%未満では添加してもその効果がなく、Caならば0.02%超、REMならば0.2%超添加してもその効果が飽和するので、Ca:0.0005〜0.02%、REM:0.0005〜0.2%の添加とする。
B segregates at the grain boundary and plays a role of supplementing the grain boundary strengthening. However, if the content is less than 0.0002%, this effect is insufficient. On the other hand, if the content exceeds 0.002%, workability such as ductility is deteriorated. Therefore, the B content is set to 0.0002% or more and 0.002% or less.
Ca and REM are elements that are detoxified by changing the form of non-metallic inclusions that become the starting point of destruction or deteriorate the workability. However, if less than 0.0005% is added, there is no effect even if Ca is added, and if Ca exceeds 0.02% and if REM exceeds 0.2%, the effect is saturated. Addition of 0005 to 0.02% and REM: 0.0005 to 0.2%.
次に、本発明の製造方法の限定理由について以下に述べる。
本発明では、目的の成分含有量になるように成分調整した溶鋼を鋳込むことによって得たスラブを熱間圧延するに際し、その加熱温度を1200℃以上とする。これは1200℃未満であると鋼中のTiを始めとするV,Nb,Moなどの析出物構成元素が十分に再固溶されないために、析出強化が不十分となるためである。加熱温度の上限は特に設けないが1400℃以上であるとスケールオフ量が多量になり歩留まりが低下するので、再加熱温度は1400℃未満が望ましい。なお、本発明は上記の鋳片を冷却後に加熱炉にて再加熱する場合のほか、高温鋳片のまま熱間圧延機に直送してもかまわない。
Next, the reasons for limiting the production method of the present invention will be described below.
In this invention, when hot-rolling the slab obtained by casting the molten steel which adjusted the component so that it might become the target component content, the heating temperature shall be 1200 degreeC or more. This is because when the temperature is lower than 1200 ° C., precipitation constituent elements such as V, Nb, and Mo including Ti in the steel are not sufficiently re-dissolved, and thus precipitation strengthening becomes insufficient. The upper limit of the heating temperature is not particularly provided, but if it is 1400 ° C. or higher, the amount of scale-off increases and the yield decreases, so the reheating temperature is preferably less than 1400 ° C. In the present invention, in addition to the case where the above slab is cooled and reheated in a heating furnace, the slab may be directly sent to a hot rolling mill as it is.
熱間圧延工程は、粗圧延を終了後、仕上圧延を行うが、仕上温度がAr3 変態点以上の温度域で終了する必要がある。これは、熱間圧延中に圧延温度がAr3 変態点を切るとひずみが残留して延性が低下するためである。仕上温度の上限は本発明の効果を得るためには特に定める必要はないが、操業上スケール疵が発生する可能性があるのため、1000℃以下とすることが望ましい。 In the hot rolling process, finish rolling is performed after finishing the rough rolling, but the finishing temperature needs to be finished in a temperature range equal to or higher than the Ar 3 transformation point. This is because if the rolling temperature falls below the Ar 3 transformation point during hot rolling, strain remains and ductility decreases. The upper limit of the finishing temperature is not particularly required to obtain the effect of the present invention, but it is desirable that the upper limit of the finishing temperature is 1000 ° C. or less because scale soot may be generated in operation.
仕上圧延を終了した後は、指定の巻取温度まで冷却するが、その冷却速度は本発明の効果を得るためには特に定める必要はない。ただし、冷却速度があまりに遅いと、熱間圧延後の冷却中に析出する析出物のサイズが粗大化して析出強化による強度上昇に寄与しなくなるばかりか、穴拡げ性に有害なセメンタイトのような硬質相やパーライトなどの有害組織が発生する可能性があることから、冷却速度の下限は20℃/s以上が望ましい。一方、冷却の途中のフェライト生成域(約500〜850℃)にて短時間(1〜20秒)の空冷のような低冷速領域(15℃/秒以下)を冷却帯内に設けることで、フェライト変態を促進させるなどの冷却条件の調整を施しても良い。 After finishing rolling, the steel sheet is cooled to a specified winding temperature, but the cooling rate is not particularly required to obtain the effect of the present invention. However, if the cooling rate is too slow, the size of precipitates that precipitate during cooling after hot rolling becomes coarse and does not contribute to the increase in strength due to precipitation strengthening, but it is hard like cementite, which is harmful to hole expandability. Since a harmful tissue such as a phase or pearlite may be generated, the lower limit of the cooling rate is preferably 20 ° C./s or more. On the other hand, by providing a low cooling speed region (15 ° C./second or less) such as air cooling for a short time (1 to 20 seconds) in the cooling zone in the ferrite formation region (about 500 to 850 ° C.) during cooling. Further, the cooling conditions such as promoting the ferrite transformation may be adjusted.
巻取温度は450℃未満では巻取後の析出が不十分となり、析出強化が得られず、更に鋼中に固溶Cが残留して加工性を低下させる恐れがあるばかりか、穴拡げ性に有害な硬質のマルテンサイトが発生する可能性がある。逆に、650℃超では前述の冷却速度があまりに遅い場合に懸念されるものと同様の現象、即ち、析出する析出物のサイズが粗大化して析出強化による強度上昇に寄与しなくなるばかりか、穴拡げ性に有害なセメンタイトのような硬質相やパーライトなどの有害組織が発生する可能性がある。従って、巻取温度は450〜650℃とする。なお、本発明鋼は表面に表面処理(例えば亜鉛メッキ等)が施されていても同様の効果を有し、本発明を逸脱するものではない。 If the coiling temperature is less than 450 ° C., precipitation after winding becomes insufficient, precipitation strengthening cannot be obtained, and solid solution C may remain in the steel, reducing workability, and hole expandability. Hard martensite, which is harmful to water, may occur. On the contrary, if the cooling rate exceeds 650 ° C., the same phenomenon as that which is a concern when the cooling rate is too slow, that is, not only does the precipitate size coarsen and contributes to the increase in strength due to precipitation strengthening, There is a possibility that a hard phase such as cementite harmful to spreadability and harmful tissues such as pearlite may be generated. Therefore, the coiling temperature is set to 450 to 650 ° C. The steel of the present invention has the same effect even if the surface is subjected to surface treatment (for example, galvanizing), and does not depart from the present invention.
以下に、実施例により本発明をさらに説明する。表1に示す化学成分を有するA〜Nの鋼を、転炉にて溶製して連続鋳造し熱間圧延用のスラブを得た。ただし、表中の化学組成についての表示は質量%である。また、表1中には本発明の要件である下記式の左辺の値を併記した。
Ti/48+V/51+Nb/93+Mo/96−C/12−N/14−S/32≧0%これらを表2に示す加熱温度(SRT)で再加熱し、粗圧延後に仕上温度(FT)で1.2〜6.0mmの板厚に圧延した後、巻取温度(CT)でそれぞれ巻き取った。仕上圧延後から巻取りまで20〜60℃/秒で冷却した(No.D1については、仕上圧延後から720℃まで30℃/秒で冷却し、720〜670℃まで8℃/秒で空冷し、その後巻取り温度まで30℃/秒で冷却した)。
The following examples further illustrate the present invention. Steels A to N having chemical components shown in Table 1 were melted in a converter and continuously cast to obtain a slab for hot rolling. However, the display about the chemical composition in a table | surface is the mass%. In Table 1, the value of the left side of the following formula, which is a requirement of the present invention, is also shown.
Ti / 48 + V / 51 + Nb / 93 + Mo / 96-C / 12-N / 14-S / 32 ≧ 0% These were reheated at the heating temperature (SRT) shown in Table 2, and after rough rolling, the finishing temperature (FT) was 1 After rolling to a plate thickness of 0.2 to 6.0 mm, each was wound at a winding temperature (CT). Cooled at 20 to 60 ° C./second from finish rolling to winding (No. D1 was cooled at 30 ° C./second to 720 ° C. after finishing rolling and air cooled at 8 ° C./second to 720 to 670 ° C. And then cooled to the coiling temperature at 30 ° C./second).
このようにして得られた熱延板の鋼板板幅の1/4W位置から切出した試料を圧延方向断面に研磨し、ナイタール試薬にてエッチングし、光学顕微鏡を用い200〜500倍の倍率で観察されたミクロ組織から、面積率最大の相の組織名と硬質第2相が存在する場合はその組織名と各面積率を、また、同試料をピクラール試薬にてエッチングし観察された組織から画像解析によって算出したセメンタイトの面積率を表2に併記する。引張特性は供試材をJIS Z 2201記載の5号試験片に加工してJIS Z 2241記載の試験方法に従って評価した。穴拡げ試験は日本鉄鋼連盟規格JFS T 1001−1996記載の試験方法に従って評価した。 The sample cut out from the 1/4 W position of the steel plate width of the hot-rolled sheet thus obtained was polished into a cross section in the rolling direction, etched with a Nital reagent, and observed at a magnification of 200 to 500 times using an optical microscope. If there is a structure name of the phase with the largest area ratio and a hard second phase, the structure name and each area ratio are displayed from the microstructure, and an image from the structure observed by etching the sample with the Picral reagent. The area ratio of cementite calculated by analysis is also shown in Table 2. The tensile properties were evaluated according to a test method described in JIS Z 2241 after processing the test material into a No. 5 test piece described in JIS Z 2201. The hole expansion test was evaluated according to the test method described in Japan Iron and Steel Federation Standard JFS T 1001-1996.
また、打ち抜き端面の欠陥の発生有無は、前述したように打ち抜き時のクリアランスを17〜23%として穴拡げ試験と同様に10mm径の穴を打ち抜き、その端面状態を目視で観察した。表2にその試験結果を示す。本発明および参考例に沿うA1〜J1は、引張強さTSが690MPa以上で、伸びELが20%以上また穴拡げ値λも90%以上と、いわゆる延性と穴拡げ性に優れた高強度熱延鋼板であり、打ち抜き端面の欠陥も生じていない。 In addition, as described above, the occurrence of defects on the punched end face was determined by punching a 10 mm diameter hole in the same manner as in the hole expansion test with the clearance at the time of punching being 17 to 23% and visually observing the end face state. Table 2 shows the test results. A1 to J1 in accordance with the present invention and the reference examples have a tensile strength TS of 690 MPa or more, an elongation EL of 20% or more, and a hole expansion value λ of 90% or more. It is a rolled steel sheet, and there is no defect in the punched end face.
上記以外は以下の理由によって本発明の範囲外である。すなわち、K1は鋼KでPの含有量以外は、その他の成分や製造条件が本発明の要件を満たしているため、引張特性や穴拡げ性は本発明と遜色ない特性を有するにもかかわらず、打ち抜き端面欠陥は全て発生した。一方、L1はその鋼LにおいてB添加量が38ppmと本発明の上限を超えており、これによってフェライト変態が遅延された結果、セメンタイトが析出しており穴拡げ性が劣位である。 Other than the above is out of the scope of the present invention for the following reasons. That is, K1 is steel K, except for the P content, and other components and manufacturing conditions satisfy the requirements of the present invention, so that the tensile properties and hole expansibility are inferior to those of the present invention. All the punched edge defects occurred. On the other hand, L1 has a B addition amount of 38 ppm in the steel L , which exceeds the upper limit of the present invention, and as a result of the ferrite transformation being delayed, cementite is precipitated and the hole expandability is inferior.
M1はその鋼MのC量が少なく本発明外のため、引張強さが690MPa以下と劣位である。N1は鋼Nにおいて本発明で規定している成分式の条件を満足しないものであり、特にNはTi量そのものも少なく本発明の範囲外であるが、これらは全てセメンタイトを3%超含む組織となっており、特に穴拡げ性が劣化している。 M 1 is inferior in tensile strength to 690 MPa or less because the amount of C of steel M is small and outside the present invention . N1 does not satisfy the conditions of the component formula defined in the present invention in steel N. Particularly, N is small in Ti amount itself and is outside the scope of the present invention, but these all have a structure containing more than 3% cementite. In particular, the hole expandability is deteriorated .
また、鋼成分としては本発明範囲であるにも関わらず製造条件が外れているため特性が不十分となったものが、C2である。即ち、C2では加熱温度SRTが低く本発明外のため、十分にTiなどの析出物構成元素を固溶できておらず、析出強化が不十分で参考例条件のA1や本発明例C1と比較して引張強さTSが低下しているにもかかわらずセメンタイトが多く、穴拡げ性が低下している。 In addition, as a steel component, C2 is one in which the characteristics are insufficient because the manufacturing conditions are out of the scope of the present invention. That is , in C2 , since the heating temperature SRT is low and outside the present invention, precipitate constituent elements such as Ti cannot be sufficiently dissolved, precipitation strengthening is insufficient, and A1 of the reference example condition and the inventive example C1 In comparison with the tensile strength TS, the amount of cementite is large and the hole expansibility is lowered .
Claims (4)
Ti/48+V/51+Nb/93+Mo/96−C/12−N/14−S/32≧0%を満足することを特徴とする請求項1に記載の打ち抜き加工性に優れた高強度熱延鋼板。 Furthermore, it contains one or more of V: 0.01 to 0.2%, Nb: 0.01 to 0.2%, Mo: 0.01 to 0.2% in mass%, and The high-strength hot-rolled steel sheet having excellent punchability according to claim 1, wherein Ti / 48 + V / 51 + Nb / 93 + Mo / 96-C / 12-N / 14-S / 32 ≧ 0% is satisfied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004118308A JP4460343B2 (en) | 2004-04-13 | 2004-04-13 | High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004118308A JP4460343B2 (en) | 2004-04-13 | 2004-04-13 | High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005298924A JP2005298924A (en) | 2005-10-27 |
JP4460343B2 true JP4460343B2 (en) | 2010-05-12 |
Family
ID=35330833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004118308A Expired - Lifetime JP4460343B2 (en) | 2004-04-13 | 2004-04-13 | High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4460343B2 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5087980B2 (en) * | 2007-04-20 | 2012-12-05 | 新日本製鐵株式会社 | High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof |
JP5541263B2 (en) | 2011-11-04 | 2014-07-09 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof |
JP5978614B2 (en) * | 2011-12-15 | 2016-08-24 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet excellent in punchability and manufacturing method thereof |
JP5884164B2 (en) * | 2011-12-27 | 2016-03-15 | Jfeスチール株式会社 | High-tensile hot-rolled steel sheet excellent in punchability and stretch flangeability and manufacturing method thereof |
KR101706478B1 (en) | 2012-06-26 | 2017-02-13 | 신닛테츠스미킨 카부시키카이샤 | High-strength hot-rolled steel sheet and process for producing same |
JP5574070B1 (en) | 2012-09-27 | 2014-08-20 | 新日鐵住金株式会社 | Hot-rolled steel sheet and manufacturing method thereof |
JP5641087B2 (en) * | 2013-04-15 | 2014-12-17 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet excellent in mass production punchability and manufacturing method thereof |
KR101749948B1 (en) | 2013-04-15 | 2017-06-22 | 제이에프이 스틸 가부시키가이샤 | High-strength hot-rolled steel sheet and method for producing the same |
JP5641086B2 (en) * | 2013-04-15 | 2014-12-17 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet excellent in mass production punchability and manufacturing method thereof |
JP6275510B2 (en) * | 2014-02-27 | 2018-02-07 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing the same |
CN104480391B (en) * | 2014-11-24 | 2017-01-04 | 江苏省沙钢钢铁研究院有限公司 | Hot-rolled pickled plate and production method thereof |
KR101957078B1 (en) | 2015-02-20 | 2019-03-11 | 신닛테츠스미킨 카부시키카이샤 | Hot-rolled steel sheet |
WO2016132549A1 (en) | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | Hot-rolled steel sheet |
CN107406929B (en) | 2015-02-25 | 2019-01-04 | 新日铁住金株式会社 | Hot rolled steel plate |
WO2016135898A1 (en) | 2015-02-25 | 2016-09-01 | 新日鐵住金株式会社 | Hot-rolled steel sheet or plate |
CN109563586B (en) | 2016-08-05 | 2021-02-09 | 日本制铁株式会社 | Steel sheet and plated steel sheet |
CN109563580A (en) | 2016-08-05 | 2019-04-02 | 新日铁住金株式会社 | steel sheet and plated steel sheet |
CN108611568A (en) * | 2016-12-12 | 2018-10-02 | 上海梅山钢铁股份有限公司 | The 400MPa grades high reaming hot rolled steel plate of tensile strength and its manufacturing method |
EP4039842B1 (en) | 2019-10-01 | 2023-08-30 | Nippon Steel Corporation | Hot-rolled steel sheet |
MX2022008861A (en) | 2020-01-27 | 2022-08-11 | Nippon Steel Corp | Hot-rolled steel sheet. |
JP7348574B2 (en) | 2020-03-11 | 2023-09-21 | 日本製鉄株式会社 | hot rolled steel plate |
CN116113716B (en) | 2020-08-27 | 2024-10-11 | 日本制铁株式会社 | Hot rolled steel sheet |
KR20230041055A (en) | 2020-08-27 | 2023-03-23 | 닛폰세이테츠 가부시키가이샤 | hot rolled steel |
EP4206344A4 (en) | 2020-08-27 | 2023-12-13 | Nippon Steel Corporation | Hot-rolled steel sheet |
WO2023038084A1 (en) | 2021-09-08 | 2023-03-16 | 日本製鉄株式会社 | Hot-rolled steel sheet |
CN113957345B (en) * | 2021-10-22 | 2022-10-04 | 攀钢集团攀枝花钢铁研究院有限公司 | 590 MPa-grade axle housing steel for cold stamping and preparation method thereof |
-
2004
- 2004-04-13 JP JP2004118308A patent/JP4460343B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005298924A (en) | 2005-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4460343B2 (en) | High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof | |
JP5463685B2 (en) | High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same | |
JP5858174B2 (en) | Low yield ratio high strength cold-rolled steel sheet and method for producing the same | |
JP6260087B2 (en) | High-strength hot-rolled steel sheet with excellent workability and fatigue characteristics and method for producing the same | |
WO2012020511A1 (en) | High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same | |
JP2009203548A (en) | High-strength hot-dip galvanized steel sheet with excellent workability and process for producing the same | |
WO2012002566A1 (en) | High-strength steel sheet with excellent processability and process for producing same | |
KR20100046057A (en) | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same | |
JP2007138262A (en) | High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method | |
JP2011168876A (en) | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method of manufacturing the same | |
KR20130121940A (en) | High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same | |
JP6079726B2 (en) | Manufacturing method of high-strength steel sheet | |
JP7339339B2 (en) | Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same | |
JP6201571B2 (en) | High-strength hot-rolled steel sheet excellent in hole expansibility, elongation and welding characteristics and method for producing the same | |
WO2019159771A1 (en) | High-strength steel sheet and manufacturing method therefor | |
WO2013094130A1 (en) | High-strength steel sheet and process for producing same | |
JP2009102715A (en) | High-strength hot-dip galvanized steel sheet superior in workability and impact resistance, and manufacturing method therefor | |
JP2021531405A (en) | High-strength steel plate with excellent collision resistance and its manufacturing method | |
JP2004315857A (en) | High-strength hot-rolled steel sheet superior in stampability, and manufacturing method therefor | |
JP4772431B2 (en) | Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion | |
JP2006152362A (en) | High-strength steel plate having excellent rigidity and production method thereof | |
JP6037087B1 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP2001226741A (en) | High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor | |
JP2004250749A (en) | High strength thin steel sheet having burring property, and production method therefor | |
JPWO2020148948A1 (en) | High-strength galvanized steel sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100212 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4460343 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140219 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |