JP4333379B2 - Method for producing high-strength thin steel sheet with excellent workability, surface texture and flatness - Google Patents

Method for producing high-strength thin steel sheet with excellent workability, surface texture and flatness Download PDF

Info

Publication number
JP4333379B2
JP4333379B2 JP2004020844A JP2004020844A JP4333379B2 JP 4333379 B2 JP4333379 B2 JP 4333379B2 JP 2004020844 A JP2004020844 A JP 2004020844A JP 2004020844 A JP2004020844 A JP 2004020844A JP 4333379 B2 JP4333379 B2 JP 4333379B2
Authority
JP
Japan
Prior art keywords
less
cooling
steel sheet
temperature
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004020844A
Other languages
Japanese (ja)
Other versions
JP2005213566A (en
Inventor
浩平 長谷川
康英 石黒
才二 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004020844A priority Critical patent/JP4333379B2/en
Publication of JP2005213566A publication Critical patent/JP2005213566A/en
Application granted granted Critical
Publication of JP4333379B2 publication Critical patent/JP4333379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、自動車車体、補強材、ホイール、足廻り部品、その他あらゆる機械構造部品として最適な高強度薄鋼板製造方法に関する。 The present invention, automobile bodies, reinforcements, wheels, undercarriage components, a method of manufacturing other optimal high strength thin steel sheet as any mechanical structural parts.

地球環境保護および乗員の安全性向上のため、自動車用鋼板は、高強度、薄肉化が検討されている。しかし、一般に、材料を高強度化するとプレス成形性が低下するため、高強度鋼板の適用拡大における重要な課題のひとつとして、成形性の向上が挙げられている。   In order to protect the global environment and improve the safety of passengers, high strength and thinning of steel sheets for automobiles are being studied. However, generally, when the strength of the material is increased, the press formability is lowered. Therefore, improvement of formability is cited as one of the important issues in expanding the application of high-strength steel sheets.

上記に応えるものとしては、従来よりフェライト、マルテンサイトを主相とする二相鋼板(他にDual Phase鋼、DP鋼、複合組織鋼などと呼ばれる)があり、前記二相鋼板は、降伏比(以下、YRと称す)が低く、伸びが高いため、プレス成形性(絞り成形性、形状凍結性)に優れ、自動車用材料として注目され、開発が進められてきた。   As a response to the above, there is conventionally a dual-phase steel sheet (otherly called dual phase steel, DP steel, composite structure steel, etc.) having ferrite and martensite as the main phase, and the duplex steel sheet has a yield ratio ( (Hereinafter referred to as YR) and high elongation, it has excellent press formability (drawing formability, shape freezing property), and has been attracting attention and developed as an automotive material.

例えば、熱延鋼板における二相組織形成は、熱間圧延後の冷却過程で、等軸フェライトを多量に析出させ、残ったオーステナイト中に溶質元素を濃化させることにより焼入れ性を増し、マルテンサイト化させることで行なわれる。   For example, the formation of a two-phase structure in a hot-rolled steel sheet increases the hardenability by concentrating solute elements in the remaining austenite by precipitating a large amount of equiaxed ferrite in the cooling process after hot rolling. It is done by making it.

しかし、概ね350℃以上の高温で巻取りを行うと、巻取り後にオーステナイトがベイナイト変態し、目標とするフェライトとマルテンサイトの二相組織が得られない。一方、巻取り温度が低いと、冷却熱歪みで板形状が劣化する問題がある。これらの課題を解決するために、Cr添加鋼が開発された。さらに、熱延後の冷却過程においてフェライト生成を促進するために、Si,Pなどのフェライト安定化元素の多量添加鋼が開発された。また、熱延後の冷却方法においても、フェライト析出が促進されるA1点付近で冷却を一旦停止し、10秒程度保持する、いわゆる二段冷却法が提案されている。特許文献1〜3には、これら技術を組み合わせた方法が開示されている。   However, when winding is performed at a high temperature of approximately 350 ° C. or more, austenite undergoes bainite transformation after winding, and the target two-phase structure of ferrite and martensite cannot be obtained. On the other hand, when the coiling temperature is low, there is a problem that the plate shape deteriorates due to cooling heat distortion. In order to solve these problems, Cr-added steel was developed. In addition, in order to promote the formation of ferrite in the cooling process after hot rolling, steels with a large amount of ferrite stabilizing elements such as Si and P were developed. As a cooling method after hot rolling, a so-called two-stage cooling method is proposed in which the cooling is temporarily stopped in the vicinity of the point A1 where the precipitation of ferrite is promoted and held for about 10 seconds. Patent Documents 1 to 3 disclose methods combining these techniques.

さらに、特許文献4〜6には、熱間圧延後、即時、急速冷却を行う方法が開示されている。特に、特許文献4では、低Si含有鋼において上記の方法がとられている。
特開平4-289126号公報 特開平9-67641号公報 特開平10-195588公報 特開2002-69534公報 特開2001-192736公報 特開2001-355023号公報
Furthermore, Patent Documents 4 to 6 disclose a method of performing rapid cooling immediately after hot rolling. In particular, in Patent Document 4, the above method is used for low Si-containing steel.
JP-A-4-289126 JP 9-67641 A Japanese Patent Laid-Open No. 10-195588 JP 2002-69534 JP Japanese Patent Laid-Open No. 2001-192736 JP 2001-355023

しかしながら、特許文献1〜3は、いずれも機械的特性は良好なものの、Si,P,Alを多量に添加する必要があるため、赤スケール生成による表面性状の劣化、塗装性の劣化や溶接性の劣化の問題があり、その適用範囲が限られている。   However, although Patent Documents 1 to 3 all have good mechanical properties, it is necessary to add a large amount of Si, P, and Al. Therefore, surface properties deteriorate due to red scale generation, paintability deterioration and weldability. There is a problem of deterioration, and its application range is limited.

特許文献4、5では、YRは考慮されていない。   In Patent Documents 4 and 5, YR is not considered.

また、特許文献6は、高濃度Si添加鋼の製造技術であるため、鋼板の表面性状が劣る。表面性状を向上させるためにSiを下げることも考えられるが、Siを下げた場合、今度はYR特性が劣ってしまう。このように、YRと表面性状の両者を満足することはできない。   Further, since Patent Document 6 is a technique for producing high-concentration Si-added steel, the surface properties of the steel sheet are inferior. Although it is conceivable to lower Si in order to improve the surface properties, when the Si is lowered, the YR characteristics are inferior this time. Thus, both YR and surface properties cannot be satisfied.

本発明は上記の事情に鑑みなされたもので、表面性状、溶接性などに悪影響を与えるフェライト安定化元素(Si,P,Al)を多量添加することなく、鋼板の機械的特性を向上させる方法を開発することにより、加工性(YR:0.6以下)、表面性状および板平坦度に優れた高強度薄鋼板製造方法を提供することを目的とする。なお、歪分解能を高め、形状凍結性を良好とするためには、YRは0.6以下とする必要がある。 The present invention has been made in view of the above circumstances, and a method for improving the mechanical properties of a steel sheet without adding a large amount of ferrite stabilizing elements (Si, P, Al) that adversely affect surface properties, weldability, and the like. by developing, processability (YR: 0.6 or less), and an object thereof is to provide a method for producing a high strength thin steel sheet excellent in surface properties and strip flatness. It should be noted that YR needs to be 0.6 or less in order to increase the strain resolution and to improve the shape freezing property.

本発明者らは、上記の課題を解決すべく、鋭意研究した。その結果、熱間圧延後、2秒以内に150℃/秒以上の超急速冷却を行い、750〜650℃に一定時間保持することにより、フェライト安定化元素を多量添加しない場合でも、従来の二段冷却法と比較して、著しく微細フェライト生成が促進される現象を見出し、これを二相型熱延高強度鋼板の製造に応用し、本発明を完成させた。   The present inventors have intensively studied to solve the above problems. As a result, after hot rolling, ultra-rapid cooling at 150 ° C / second or more within 2 seconds and holding at 750 to 650 ° C for a certain period of time, even when a large amount of ferrite stabilizing element is not added, As compared with the stage cooling method, a phenomenon in which the formation of fine ferrite was remarkably promoted was found, and this was applied to the production of a two-phase hot-rolled high-strength steel sheet to complete the present invention.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

1]mass%で、C:0.05〜0.15%、Si:0.5%以下、Mn:1.0〜1.8%、Cr:0.5〜1.5%、P:0.06%以下、S:0.01%以下、N:0.005%以下、SolAl:0.01〜0.1%を含有し、残部はFeおよび不可避不純物からなるスラブを鋳造後、直接または加熱して、Ar3点温度以上で熱間圧延を行い、次いで、熱間圧延終了後2秒以内に150℃/秒以上の冷却速度で750〜600℃に冷却し、次いで、750〜600℃の温度範囲内に2〜15秒保持後、20℃/秒以上の冷却速度で冷却し、350〜550℃の温度で巻取ることを特徴とする加工性、表面性状および板平坦度に優れた高強度薄鋼板の製造方法。 [ 1 ] In mass%, C: 0.05 to 0.15%, Si: 0.5% or less, Mn: 1.0 to 1.8%, Cr: 0.5 to 1.5%, P: 0.06% or less, S: 0.01% or less, N: 0.005% Hereinafter, SolAl: 0.01 to 0.1% contained, the balance is Fe or unavoidable impurities after casting, directly or heated, hot-rolled at an Ar3 point temperature or higher, then hot-rolled 2 Cool to 750-600 ° C at a cooling rate of 150 ° C / second or more within 2 seconds, then hold at a temperature range of 750-600 ° C for 2-15 seconds, then cool at a cooling rate of 20 ° C / second or more, A method for producing a high-strength thin steel sheet excellent in workability, surface properties and plate flatness, characterized by winding at a temperature of 350 to 550 ° C.

2]mass%で、C:0.05〜0.15%、Si:0.5%以下、Mn:1.0〜1.8%、Cr:0.5〜1.5%、P:0.06%以下、S:0.01%以下、N:0.005%以下、SolAl:0.01〜0.1%を含み、さらに、Mo:0.3%以下、Nb:0.05%以下、Ti:0.1%以下、B:0.002%の1種または2種以上を含有し、残部はFeおよび不可避不純物からなるスラブを鋳造後、直接または加熱して、Ar3点温度以上で熱間圧延を行い、次いで、熱間圧延終了後2秒以内に150℃/秒以上の冷却速度で750〜600℃に冷却し、次いで、750〜600℃の温度範囲内に2〜15秒保持後、20℃/秒以上の冷却速度で冷却し、350〜550℃の温度で巻取ることを特徴とする加工性、表面性状および板平坦度に優れた高強度薄鋼板の製造方法。 [ 2 ] In mass%, C: 0.05 to 0.15%, Si: 0.5% or less, Mn: 1.0 to 1.8%, Cr: 0.5 to 1.5%, P: 0.06% or less, S: 0.01% or less, N: 0.005% Hereinafter, including SolAl: 0.01-0.1%, further containing Mo: 0.3% or less, Nb: 0.05% or less, Ti: 0.1% or less, B: 0.002% one or more, the balance is Fe and After casting a slab composed of inevitable impurities , directly or by heating, perform hot rolling at an Ar3 point temperature or higher, then 750-600 ° C at a cooling rate of 150 ° C / second or more within 2 seconds after the end of hot rolling Next, after maintaining at a temperature range of 750 to 600 ° C for 2 to 15 seconds, cooling at a cooling rate of 20 ° C / second or more and winding at a temperature of 350 to 550 ° C A method for producing a high-strength thin steel sheet having excellent surface properties and flatness.

お、本明細書において、鋼の成分を示す%は、すべてmass%である。 Contact name herein,% indicating the components of the steel are all mass%.

また、本発明において、高強度薄鋼板とは、機械構造部品として好適な引張り強さが590MPaを超える薄鋼板である。   In the present invention, the high-strength thin steel sheet is a thin steel sheet having a tensile strength suitable for machine structural parts exceeding 590 MPa.

本発明によれば、加工性、表面性状および板平坦度に優れた高強度薄鋼板を得ることができる。このように本発明により得られる薄鋼板は、高強度でありながら低YR(0.6以下)、高延性を有し、プレス成形性に優れ、また、表面性状、スポット溶接性にも優れるので、容易に自動車部品や機械構造部品に用いることができる。また、従来の軟質鋼板と同じ工程で製造することが可能であり、特別な元素を添加することなしに良好な性能が得られるため、低製造コスト化が可能である。したがって、今後広く実用化が期待され、自動車軽量化による地球環境の保全、および安全性の向上を通して社会の発展に寄与すると考えられる。   According to the present invention, a high-strength thin steel sheet excellent in workability, surface properties, and plate flatness can be obtained. Thus, the thin steel sheet obtained by the present invention has high strength and low YR (0.6 or less), high ductility, excellent press formability, and excellent surface properties and spot weldability, so it is easy to use. It can be used for automobile parts and machine structural parts. Moreover, since it can be manufactured in the same process as a conventional soft steel plate and good performance can be obtained without adding a special element, the manufacturing cost can be reduced. Therefore, it is expected to be widely put into practical use in the future, and it is thought that it contributes to the development of society through the preservation of the global environment and the improvement of safety by reducing the weight of automobiles.

本発明の高強度薄鋼板は、成分を下記に示すように規定し、等軸フェライト体積率を60%以上、マルテンサイト体積率を5〜30%とすることを特徴とし、これらは本発明において最も重要な要件である。このように成分及び組織を規定することにより、加工性、表面性状および板平坦度に優れた高強度薄鋼板を得ることができる。また、上記高強度薄鋼板は、Ar3点温度以上で熱間圧延を行い、次いで、熱間圧延終了後2秒以内に150℃/秒以上の冷却速度で750〜600℃に冷却し、次いで、750〜600℃の温度範囲内に2〜15秒保持後、20℃/秒以上の冷却速度で冷却し、350〜550℃の温度で巻取ることにより製造することが可能となる。このように、製造方法において、熱間圧延後、2秒以内に150℃/秒以上の超急速冷却を行い、750〜650℃に一定時間保持することも本発明において重要な要件である。   The high-strength thin steel sheet of the present invention is characterized in that the components are defined as shown below, the equiaxed ferrite volume fraction is 60% or more, and the martensite volume fraction is 5 to 30%. It is the most important requirement. By defining the components and the structure in this way, a high-strength thin steel plate excellent in workability, surface properties, and plate flatness can be obtained. The high-strength thin steel sheet is hot-rolled at an Ar3 point temperature or higher, then cooled to 750-600 ° C at a cooling rate of 150 ° C / second or more within 2 seconds after the hot rolling is completed, It is possible to manufacture by holding in a temperature range of 750 to 600 ° C. for 2 to 15 seconds, cooling at a cooling rate of 20 ° C./second or more, and winding at a temperature of 350 to 550 ° C. Thus, in the manufacturing method, after hot rolling, it is also an important requirement in the present invention to perform ultra-rapid cooling at 150 ° C./second or more within 2 seconds and hold at 750 to 650 ° C. for a certain time.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

最初に本発明鋼板の化学成分の限定理由について述べる。   First, the reasons for limiting the chemical components of the steel sheet of the present invention will be described.

C:0.05〜0.15%
Cはマルテンサイト相を強化するために重要な元素であり、十分な効果を達成するためには0.05%以上添加する必要がある。一方、添加量が0.15%を超えると、オーステナイトが安定化して、二相化が困難となり、延性が低下する。以上より、Cは0.05%以上0.15%以下とする。なお、スポット溶接性を考慮すると、添加量が0.07%未満では引張せん断強度が低下する場合があるので0.07%以上が好ましい。また、0.10%を超えると十字引張強度が低下する場合があるので0.10%以下が好ましい。
C: 0.05-0.15%
C is an important element for strengthening the martensite phase, and it is necessary to add 0.05% or more in order to achieve a sufficient effect. On the other hand, when the addition amount exceeds 0.15%, austenite is stabilized, it becomes difficult to form a two-phase, and ductility is lowered. From the above, C is made 0.05% to 0.15%. In consideration of spot weldability, if the addition amount is less than 0.07%, the tensile shear strength may decrease, so 0.07% or more is preferable. Further, if it exceeds 0.10%, the cross tensile strength may decrease, so 0.10% or less is preferable.

Si:0.5%以下
Siは赤スケールにより表面性状を劣化させるばかりか、塗装性、溶接性も劣化させる。0.5%を超えるとSiの悪影響が顕著となる。以上より、Siは0.5%以下とする。表面性状が特に重視される用途の場合は、Siは0.25%未満が好ましい。
Si: 0.5% or less
Si not only deteriorates the surface properties due to the red scale, but also deteriorates the paintability and weldability. If it exceeds 0.5%, the adverse effect of Si becomes remarkable. From the above, Si is 0.5% or less. In applications where surface properties are particularly important, Si is preferably less than 0.25%.

Mn:1.0〜1.8%
Mnは熱延後、冷却中におけるパーライトの生成を抑制するため、二相組織形成に重要な役割を担う。1.0%未満ではその効果が十分でなく、パーライトが生成して、YRが上昇し、プレス成形性が劣化する。一方、1.8%を超えるとオーステナイトが安定化しすぎて、等軸フェライトの生成が妨げられる。以上より、Mnは1.0%以上1.8%以下とする。なお、コイル内の強度ばらつきを抑制するためにはMnが1.3%以上とすることが好ましい。
Mn: 1.0-1.8%
Mn plays an important role in the formation of a two-phase structure in order to suppress the formation of pearlite during cooling after hot rolling. If it is less than 1.0%, the effect is not sufficient, pearlite is generated, YR increases, and press formability deteriorates. On the other hand, if it exceeds 1.8%, austenite is excessively stabilized, and the formation of equiaxed ferrite is prevented. From the above, Mn is 1.0% or more and 1.8% or less. Note that Mn is preferably set to 1.3% or more in order to suppress variation in strength in the coil.

Cr:0.5〜1.5%
Crは巻き取ったコイルの冷却過程におけるオーステナイトのベイナイト変態を抑制し、目標とするフェライト、マルテンサイト二相組織を達成するために重要な元素である。0.5%未満ではこの効果が十分でない。一方、1.5%を超えると、熱延後1次冷却中におけるフェライト変態を遅延させ、鋼板特性を劣化させる。以上より、Crは0.5%以上1.5%以下とする。また、1.2%を超えると化成処理性が劣化する場合があるので、Crは1.2%以下が好ましい。さらに、コイル内の強度ばらつきを抑制するためには、Crは0.8%以上とすることが好ましい。
Cr: 0.5-1.5%
Cr is an important element for suppressing the bainite transformation of austenite during the cooling process of the coil wound and achieving the target ferrite and martensite two-phase structure. If it is less than 0.5%, this effect is not sufficient. On the other hand, if it exceeds 1.5%, the ferrite transformation during the primary cooling after hot rolling is delayed and the steel sheet properties are deteriorated. From the above, Cr is 0.5% to 1.5%. Further, if it exceeds 1.2%, chemical conversion processability may be deteriorated, so Cr is preferably 1.2% or less. Further, in order to suppress the intensity variation in the coil, Cr is preferably 0.8% or more.

P:0.06%以下
Pは溶接部の靭性を劣化させるため、溶接部の接合強度を低下させる。0.06%を超えるとこの悪影響が顕著となる。以上より、Pは0.06%以下とする。
P: 0.06% or less
Since P deteriorates the toughness of the welded portion, it lowers the joint strength of the welded portion. If it exceeds 0.06%, this adverse effect becomes significant. Therefore, P is set to 0.06% or less.

S:0.01%以下
Sは粗鋼中に含有される不純物であり、素材鋼板の成形性および溶接性を劣化させるので、可能な限り製鋼工程で除去、低減することが望ましい。しかしながら、Sを必要以上に低減すると精錬コストが上昇するので、Sは実質的に無害となる0.01%以下とする。
S: 0.01% or less
S is an impurity contained in the crude steel, and deteriorates the formability and weldability of the raw steel plate. Therefore, it is desirable to remove and reduce it as much as possible in the steelmaking process. However, if S is reduced more than necessary, the refining cost increases, so S is made 0.01% or less, which is substantially harmless.

N:0.005%以下
Nは粗鋼中に含有される不純物であり、素材鋼板の成形性を劣化させるので、可能な限り製鋼工程で除去、低減することが望ましい。しかしながら、Nを必要以上に低減すると精錬コストが上昇するので、Nは実質的に無害となる0.005%以下とする。
N: 0.005% or less
N is an impurity contained in the crude steel and deteriorates the formability of the raw steel plate. Therefore, it is desirable to remove and reduce it as much as possible in the steel making process. However, since refining costs increase if N is reduced more than necessary, N is made 0.005% or less, which is substantially harmless.

SolAl:0.01〜0.1%
Alは脱酸およびNをAlNとして析出させるために添加される。0.01%未満では脱酸・脱窒の効果が十分でなく、一方0.1%を超えるとAl添加の効果が飽和し不経済となる。以上より、SolAl は0.01%以上0.1%以下とする。
SolAl: 0.01-0.1%
Al is added to deoxidize and precipitate N as AlN. If it is less than 0.01%, the effect of deoxidation / denitrification is not sufficient. On the other hand, if it exceeds 0.1%, the effect of Al addition is saturated and uneconomical. From the above, SolAl should be 0.01% or more and 0.1% or less.

また、本発明鋼は、上記の必須添加元素で目的とする特性が得られるが、上記の必須添加元素に加えて、強度上昇のためMo、Nb、Ti、Bを必要に応じて1種または2種以上で添加してもよい。その場合、それぞれの添加量が0.3%、0.05%、0.1%、0.002%を超えると、二相組織の生成を妨げ、機械的特性が劣化(YRが上昇または伸びが低下)するので、添加する場合は、Moは0.3%以下、Nbは0.05%以下、Tiは0.1%以下、Bは0.002%以下とする。   In addition, the steel of the present invention can achieve the desired characteristics with the above-mentioned essential additive elements, but in addition to the above-mentioned essential additive elements, Mo, Nb, Ti, B may be used alone or as needed to increase the strength. Two or more kinds may be added. In that case, if each added amount exceeds 0.3%, 0.05%, 0.1%, 0.002%, the formation of the two-phase structure is hindered, and the mechanical properties deteriorate (YR increases or elongation decreases). In this case, Mo is 0.3% or less, Nb is 0.05% or less, Ti is 0.1% or less, and B is 0.002% or less.

なお、可避的不純物として、例えば、Oは非金属介在物を形成し品質に悪影響を及ぼすため、Oは0.003%以下に低減するのが望ましい。 As non avoidable impurities, eg, O because an adverse effect on the quality to form a nonmetallic inclusion, O is desirably reduced to 0.003% or less.

次に本発明の金属組織の限定理由について説明する。   Next, the reason for limiting the metal structure of the present invention will be described.

まず、等軸フェライト体積率は60%以上とする。等軸フェライト体積率は本発明の特徴である低YR特性の発現に極めて重要である。YRを0.6以下とするためには、等軸フェライトの体積率が60%以上とする必要がある。なお、上記理由により、好ましくは95%以下である。   First, the equiaxed ferrite volume fraction is set to 60% or more. The equiaxed ferrite volume fraction is extremely important for the expression of the low YR characteristic that is a feature of the present invention. In order to make YR 0.6 or less, the volume ratio of equiaxed ferrite needs to be 60% or more. For the above reason, it is preferably 95% or less.

次に、マルテンサイト体積率は5〜30%とする。マルテンサイト体積率は強度、延性および低YR特性に影響を及ぼすため、上記等軸フェライト体積率同様、本発明においては重要な要件である。マルテンサイト体積率が5%未満では強度が低く、低YR特性が得られない。一方、30%超えでは延性が低下する。したがって、マルテンサイト体積率は5%以上30%以下とする。さらに良好な低YR特性を得るためには、マルテンサイト体積率は10%以上20%以下が好ましい。なお、残部組織は針状フェライト、ベイナイト、パーライトなどであるが、等軸フェライトとマルテンサイトの各体積率が上記の範囲であれば本発明の効果を奏するので、残部組織の体積率は特に限定しない。   Next, the martensite volume ratio is set to 5 to 30%. Since the martensite volume fraction affects the strength, ductility, and low YR characteristics, it is an important requirement in the present invention, as with the equiaxed ferrite volume fraction. When the martensite volume fraction is less than 5%, the strength is low and low YR characteristics cannot be obtained. On the other hand, if it exceeds 30%, the ductility decreases. Therefore, the martensite volume ratio is set to 5% or more and 30% or less. In order to obtain better low YR characteristics, the martensite volume ratio is preferably 10% or more and 20% or less. The remaining structure is acicular ferrite, bainite, pearlite, etc., but if the volume ratio of equiaxed ferrite and martensite is in the above range, the effect of the present invention is exhibited, so the volume ratio of the remaining structure is particularly limited. do not do.

次に、本発明の加工性、表面性状および板平坦度に優れた高強度薄鋼板の製造方法について説明する。   Next, the manufacturing method of the high-strength thin steel plate excellent in workability, surface properties and plate flatness of the present invention will be described.

本発明の高強度薄鋼板は、上記化学成分範囲に調整されたスラブを鋳造後、直接または加熱して、Ar3点温度以上で熱間圧延を行い、次いで、熱間圧延終了後2秒以内に150℃/秒以上の冷却速度で750〜600℃に冷却し、次いで、750〜600℃の温度範囲内に2〜15秒保持後、20℃/秒以上の冷却速度で冷却し、350〜550℃の温度で巻取ることにより得られる。   The high-strength thin steel sheet of the present invention, after casting a slab adjusted to the above chemical composition range, directly or by heating, performs hot rolling at an Ar3 point temperature or higher, and then within 2 seconds after the end of hot rolling. Cool to 750-600 ° C. at a cooling rate of 150 ° C./second or higher, then hold at a temperature range of 750-600 ° C. for 2-15 seconds, then cool at a cooling rate of 20 ° C./second or higher, 350-550 It is obtained by winding at a temperature of ° C.

上記において、スラブの鋳造方法は限定しない。連続鋳造の場合は直接、そのまま熱間圧延してもよいし、冷却後、再加熱し、熱間圧延を実施してよい。   In the above, the casting method of a slab is not limited. In the case of continuous casting, it may be directly hot-rolled as it is, or may be reheated after cooling and hot-rolled.

熱間圧延はAr3点温度以上で実施する。Ar3点以下の温度では、フェライト、オーステナイト2相域で熱間圧延され、等軸フェライトの生成が妨げられ、YRが上昇し、延性が低下する。   Hot rolling is performed at an Ar3 point temperature or higher. At temperatures below the Ar3 point, hot rolling is performed in the two-phase region of ferrite and austenite, which prevents the formation of equiaxed ferrite, increases YR, and decreases ductility.

熱間圧延終了後2秒以内に、150℃/秒以上の冷却速度で、保持温度である750〜600℃まで冷却する。この熱間圧延直後の1次冷却は本発明による効果(等軸フェライト生成促進による低YRの効果)発現のため最も重要な要件である。このように1次冷却を規定し、即時、急速冷却を行うことにより、1次冷却の次に行われる750〜600℃での保持において等軸フェライトの微細析出を飛躍的に促進させることが可能となる。熱間圧延終了後、冷却開始までの時間が2秒を超えると、オーステナイト粒界にフェライトが不均一に生成して、冷却後保持中の等軸フェライトの析出を妨げる。また冷却速度が150℃/秒未満では、冷却中におけるフェライトのオーステナイト粒界上への不均一析出がやはり抑制できず、冷却後保持中の等軸フェライトの析出を妨げる。   Within 2 seconds after the end of hot rolling, it is cooled to a holding temperature of 750 to 600 ° C. at a cooling rate of 150 ° C./second or more. The primary cooling immediately after the hot rolling is the most important requirement for the effect of the present invention (low YR effect by promoting the formation of equiaxed ferrite). By defining primary cooling in this way and performing immediate and rapid cooling, it is possible to dramatically accelerate fine precipitation of equiaxed ferrite in the holding at 750 to 600 ° C, which is performed next to primary cooling. It becomes. If the time from the end of hot rolling to the start of cooling exceeds 2 seconds, ferrite is generated nonuniformly at the austenite grain boundaries, preventing precipitation of equiaxed ferrite during holding after cooling. If the cooling rate is less than 150 ° C./second, the heterogeneous precipitation of ferrite on the austenite grain boundaries during cooling cannot be suppressed, and the precipitation of equiaxed ferrite during holding after cooling is prevented.

1次冷却後、750〜600℃の温度範囲内に2〜15秒保持する。保持を行なう温度域が750℃超えでは、フェライト生成の駆動力が小さく、析出促進効果が得られない。一方、600℃未満ではFe原子の拡散で律速されるフェライト析出が遅延し、十分な等軸フェライト生成が得られない。また、保持時間が2秒未満ではフェライト析出時間十分でなく、低YR特性が得られない。一方、15秒を超えて保持するとパーライトの生成が開始するため、機械的特性が劣化する。   After primary cooling, hold in the temperature range of 750-600 ° C for 2-15 seconds. If the holding temperature range exceeds 750 ° C., the driving force for ferrite formation is small, and the precipitation promoting effect cannot be obtained. On the other hand, if the temperature is lower than 600 ° C., ferrite precipitation limited by the diffusion of Fe atoms is delayed and sufficient equiaxed ferrite formation cannot be obtained. Also, if the holding time is less than 2 seconds, the ferrite precipitation time is not sufficient, and low YR characteristics cannot be obtained. On the other hand, if the holding time is longer than 15 seconds, the generation of pearlite starts and the mechanical properties deteriorate.

保持後、20℃/秒以上の冷却速度で2次冷却し、350〜550℃以下の温度で巻取る。2次冷却における冷却速度は、冷却中におけるパーライト、ベイナイトの生成抑制のために20℃/秒以上とする必要がある。巻取り温度が550℃を超えるとパーライト変態が抑制できない。一方、巻取り温度が350℃未満では冷却熱歪みにより板平坦度が劣化する。以上より巻取り温度は350〜550℃とする。さらに、2次冷却終了温度の温度制御を良好とし、コイル内の強度ばらつきを抑制するためには、巻取り温度は450℃以上が好ましい。   After holding, secondary cooling is performed at a cooling rate of 20 ° C./second or more, and winding is performed at a temperature of 350 to 550 ° C. or less. The cooling rate in the secondary cooling needs to be 20 ° C./second or more in order to suppress the formation of pearlite and bainite during cooling. When the coiling temperature exceeds 550 ° C, the pearlite transformation cannot be suppressed. On the other hand, when the coiling temperature is less than 350 ° C., the flatness of the plate deteriorates due to cooling thermal distortion. From the above, the winding temperature is 350 to 550 ° C. Furthermore, the coiling temperature is preferably 450 ° C. or higher in order to improve the temperature control of the secondary cooling end temperature and suppress the intensity variation in the coil.

なお、以上により得られた本発明の高強度薄鋼板に対し、さらに形状矯正のため、スキンパス圧延を実施してもよい。また、開発鋼板を下地として溶融亜鉛または電気亜鉛めっきなど各種の表面処理を行なってもよい。   The high-strength thin steel sheet of the present invention obtained as described above may be subjected to skin pass rolling for further shape correction. Various surface treatments such as hot dip galvanization or electrogalvanization may be performed using the developed steel plate as a base.

表1に示す化学成分を有するスラブを連続鋳造後、いったん冷却し、次いで、1100〜1300℃に加熱し、Ar3点温度〜850℃で最終圧延を行い、板厚を1.6〜3.0mmとした。次いで、最終圧延終了後1秒以内に300〜500℃/秒の冷却速度で680〜720℃まで冷却し、同温度範囲内において7〜12秒保持し、次いで、25〜30℃/秒で冷却し、370〜420℃以下で巻き取り、熱延鋼板を得た。ただし、鋼番号4では一次冷却速停止温度を550℃とし、鋼番号5では巻取り温度を570℃とすることにより、表1記載の組織構成に調整した。   Slabs having chemical components shown in Table 1 were continuously cast and then cooled, then heated to 1100 to 1300 ° C., and finally rolled at an Ar 3 point temperature of 850 ° C. to a thickness of 1.6 to 3.0 mm. Next, within 1 second after the end of the final rolling, it is cooled to 680-720 ° C at a cooling rate of 300-500 ° C / second, held for 7-12 seconds within the same temperature range, and then cooled at 25-30 ° C / second And it wound up at 370-420 degrees C or less, and obtained the hot-rolled steel plate. However, in Steel No. 4, the primary cooling rate stop temperature was set to 550 ° C., and in Steel No. 5, the coiling temperature was set to 570 ° C. to adjust the structure shown in Table 1.

Figure 0004333379
Figure 0004333379

上記により得られた熱延鋼板に対し、機械的特性、表面性状、スポット溶接性、板平坦度を評価した。得られた結果を表2に示す。なお、各評価方法は以下の通りである。機械的特性はJIS5号引張試験片を圧延方向と直角に採取し、JISZ2241に準拠して試験した。:表面性状は赤スケールの有無を目視により判定した。スポット溶接性は5×√板厚(mm)のナゲットが形成される条件でスポット溶接後、たがね試験による破断形態で母材が破断した場合を○、溶接部が破断した場合を×と判定した。鋼板平坦度は波高さで評価し、10mm以下を○、10mm超えを×とした。   Mechanical properties, surface properties, spot weldability, and plate flatness were evaluated for the hot-rolled steel plates obtained as described above. The results obtained are shown in Table 2. Each evaluation method is as follows. For mechanical properties, JIS No. 5 tensile test specimens were sampled at right angles to the rolling direction and tested according to JISZ2241. : The surface property was visually determined for the presence or absence of a red scale. Spot weldability is ◯ when the base material breaks in the form of fracture in the chisel test after spot welding under the condition that a 5 × √thickness (mm) nugget is formed, and × when the weld breaks. Judged. The flatness of the steel sheet was evaluated based on the wave height.

Figure 0004333379
Figure 0004333379

表2より本発明鋼はいずれも機械的特性に優れ(YR:0.6以下)、表面性状、溶接性および板平坦度が良好であることがわかる。また、鋼番号12、20はSi濃度がやや高いため、表面性状がやや劣化したが、実用上問題ないレベルと判断した。   Table 2 shows that the steels of the present invention are all excellent in mechanical properties (YR: 0.6 or less), and have good surface properties, weldability and plate flatness. Steel Nos. 12 and 20 were judged to have practically no problem although the surface properties were slightly deteriorated because the Si concentration was slightly high.

これに対し、比較例である鋼番号1はC濃度が本発明範囲外で低いため、マルテンサイトの硬度が不十分で、その結果YRが高い。鋼番号4、5は等軸フェライト体積率またはマルテンサイト体積率が本発明範囲外であるため、良好な二相組織が得られず、YRが高い。鋼番号9はC濃度が本発明範囲外で高いため、フェライト生成が遅延し、良好な二相組織が得られず、YRが高い。また、溶接性も劣化した。鋼番号13はSi濃度が本発明範囲外で高いため、赤スケールが発生して、表面性状が不良であった。鋼番号14はMn濃度が本発明範囲外で低いため、冷却段階でオーステナイトが不安定化し、パーライトが発生したため、YRが高い。鋼番号17はMn濃度が本発明範囲外で高いため、等軸フェライトの生成量が少なく、YRが高い。鋼番号18はCr濃度が本発明範囲外で低いため、巻取り後にオーステナイトがベイナイト変態し、そのため、YRが高い。鋼番号19はCr濃度が本発明範囲外で高いため、1次冷却および保持中に十分等軸フェライトが生成せず、その結果、二相組織が得られず、YRが高い。鋼番号21はP濃度が本発明範囲外で高いため、スポット溶接性が著しく劣化した。   On the other hand, Steel No. 1, which is a comparative example, has a low C concentration outside the scope of the present invention, so the martensite hardness is insufficient and, as a result, the YR is high. In Steel Nos. 4 and 5, the equiaxed ferrite volume fraction or martensite volume fraction is outside the range of the present invention, so that a good two-phase structure cannot be obtained and YR is high. Steel No. 9 has a high C concentration outside the scope of the present invention, so that ferrite formation is delayed, a good two-phase structure cannot be obtained, and YR is high. Also, the weldability deteriorated. Steel No. 13 had a high Si concentration outside the range of the present invention, so a red scale was generated and the surface properties were poor. In Steel No. 14, the Mn concentration is low outside the range of the present invention, so that austenite becomes unstable and pearlite is generated in the cooling stage, so that YR is high. Since Steel No. 17 has a high Mn concentration outside the range of the present invention, the production amount of equiaxed ferrite is small and the YR is high. Steel No. 18 has a low Cr concentration outside the range of the present invention, so that austenite undergoes bainite transformation after winding, and therefore YR is high. Steel No. 19 has a high Cr concentration outside the range of the present invention, so that equiaxed ferrite is not sufficiently generated during primary cooling and holding. As a result, a two-phase structure cannot be obtained and YR is high. Since Steel No. 21 had a high P concentration outside the range of the present invention, spot weldability was significantly deteriorated.

表1に示す化学成分を有するスラブの一部を用い、表3に示す製造条件で、熱間圧延、冷却、巻取りを行い、熱延鋼板を得た。   Using a part of the slab having the chemical components shown in Table 1, hot rolling, cooling and winding were performed under the production conditions shown in Table 3 to obtain a hot rolled steel sheet.

Figure 0004333379
Figure 0004333379

上記により得られた熱延鋼板に対し、機械的特性、表面性状、スポット溶接性、板平坦度を評価した。得られた結果を表4に示す。なお、各評価方法は実施例1と同様である。   Mechanical properties, surface properties, spot weldability, and plate flatness were evaluated for the hot-rolled steel plates obtained as described above. The results obtained are shown in Table 4. Each evaluation method is the same as in Example 1.

Figure 0004333379
Figure 0004333379

表4より本発明鋼はいずれも、機械的特性に優れている(YR:0.6以下)ことがわかる。また、表面性状、スポット溶接性は実施例2の範囲ではいずれも良好であった。   Table 4 shows that all of the steels of the present invention are excellent in mechanical properties (YR: 0.6 or less). Further, the surface properties and spot weldability were both good within the range of Example 2.

これに対し、比較例である符号Dは圧延終了後、1次冷却開始までの時間が本発明範囲外で長いため、冷却開始前にフェライトが不均一に生成し、良好な二相組織とならず、YRが高い。符号Eは1次冷却速度が本発明範囲外で低いため、冷却中にフェライトが不均一に生成し、良好な二相組織とならず、YRが高い。符号Iは1次冷却停止温度が本発明範囲外で高いため、その後の保持中におけるフェライト生成が不十分で、良好な二相組織とならず、YRが高い。符号Mは1次冷却停止温度が本発明範囲外で低いため、その後の保持中におけるフェライト生成が不十分で、良好な二相組織とならず、YRが高い。符号Nは1次冷却後の保持時間が本発明範囲外で十分でないため、フェライト生成が不十分で、良好な二相組織とならず、YRが高い。符号Qは1次冷却後の保持時間が本発明範囲外で長いため、保持中にパーライトが生成し、良好な二相組織とならず、YRが高い。符号Rは2次冷却速度が本発明範囲外で低いため、冷却中にベイナイトが生成して、良好な二相組織とならず、YRが高い。符号SおよびTは巻取り温度が本発明範囲外で低いため、冷却時の熱歪みにより板平坦度が劣化した。符号Uは巻取り温度が本発明範囲外で高いため、巻取り後にベイナイトが生成し、良好な二相組織とならず、YRが高い。   In contrast, Code D, which is a comparative example, has a long time from the end of rolling to the start of primary cooling outside the scope of the present invention, so that ferrite is generated unevenly before the start of cooling, and a good two-phase structure is obtained. The YR is high. In the code E, the primary cooling rate is low outside the range of the present invention, so that ferrite is generated non-uniformly during cooling, does not form a good two-phase structure, and YR is high. Since the primary cooling stop temperature of Code I is high outside the range of the present invention, ferrite formation during the subsequent holding is insufficient, and a good two-phase structure is not obtained, and YR is high. Since the primary cooling stop temperature of Code M is low outside the range of the present invention, ferrite formation during the subsequent holding is insufficient, the two-phase structure is not good, and YR is high. Since the holding time after the primary cooling is not sufficient outside the range of the present invention, the symbol N has insufficient ferrite formation, does not have a good two-phase structure, and has a high YR. Since the symbol Q has a long holding time after the primary cooling outside the range of the present invention, pearlite is generated during the holding, and a good two-phase structure is not obtained, and the YR is high. Since the secondary cooling rate of the symbol R is low outside the range of the present invention, bainite is generated during cooling and does not form a good two-phase structure, and the YR is high. Since the winding temperatures of codes S and T were low outside the range of the present invention, the flatness of the plate deteriorated due to thermal strain during cooling. Since the coiling temperature U is high outside the range of the present invention, bainite is generated after winding, and a good two-phase structure is not obtained, and the YR is high.

本発明鋼板は優れたプレス成形性を有し、また優れた表面性状を有するため、外観性状が重視される成形部品等の用途にも適用できる。   Since the steel sheet of the present invention has excellent press formability and excellent surface properties, it can also be applied to uses such as formed parts in which appearance properties are important.

Claims (2)

mass%で、C:0.05〜0.15%、Si:0.5%以下、Mn:1.0〜1.8%、Cr:0.5〜1.5%、P:0.06%以下、S:0.01%以下、N:0.005%以下、SolAl:0.01〜0.1%を含有し、残部はFeおよび不可避不純物からなるスラブを鋳造後、直接または加熱して、Ar3点温度以上で熱間圧延を行い、次いで、熱間圧延終了後2秒以内に150℃/秒以上の冷却速度で750〜600℃に冷却し、次いで、750〜600℃の温度範囲内に2〜15秒保持後、20℃/秒以上の冷却速度で冷却し、350〜550℃の温度で巻取ることを特徴とする加工性、表面性状および板平坦度に優れた高強度薄鋼板の製造方法。 In mass%, C: 0.05-0.15%, Si: 0.5% or less, Mn: 1.0-1.8%, Cr: 0.5-1.5%, P: 0.06% or less, S: 0.01% or less, N: 0.005% or less, SolAl : 0.01-0.1% contained, the balance is Fe or unavoidable impurities slab after casting, directly or heated, hot-rolled at Ar3 point temperature or higher, then within 2 seconds after hot-rolling is finished Cool to 750-600 ° C. at a cooling rate of 150 ° C./second or higher, then hold at a temperature range of 750-600 ° C. for 2-15 seconds, then cool at a cooling rate of 20 ° C./second or higher, 350-550 A method for producing a high-strength thin steel sheet excellent in workability, surface properties and plate flatness, characterized by winding at a temperature of ° C. mass%で、C:0.05〜0.15%、Si:0.5%以下、Mn:1.0〜1.8%、Cr:0.5〜1.5%、P:0.06%以下、S:0.01%以下、N:0.005%以下、SolAl:0.01〜0.1%を含み、さらに、Mo:0.3%以下、Nb:0.05%以下、Ti:0.1%以下、B:0.002%の1種または2種以上を含有し、残部はFeおよび不可避不純物からなるスラブを鋳造後、直接または加熱して、Ar3点温度以上で熱間圧延を行い、次いで、熱間圧延終了後2秒以内に150℃/秒以上の冷却速度で750〜600℃に冷却し、次いで、750〜600℃の温度範囲内に2〜15秒保持後、20℃/秒以上の冷却速度で冷却し、350〜550℃の温度で巻取ることを特徴とする加工性、表面性状および板平坦度に優れた高強度薄鋼板の製造方法。 In mass%, C: 0.05-0.15%, Si: 0.5% or less, Mn: 1.0-1.8%, Cr: 0.5-1.5%, P: 0.06% or less, S: 0.01% or less, N: 0.005% or less, SolAl : Including 0.01 to 0.1%, Mo: 0.3% or less, Nb: 0.05% or less, Ti: 0.1% or less, B: 0.002% or more, containing the balance from Fe and inevitable impurities After casting, the slab is cast directly or heated and hot rolled at an Ar3 point temperature or higher, and then cooled to 750 to 600 ° C at a cooling rate of 150 ° C / second or more within 2 seconds after the hot rolling is completed. Next, after maintaining in the temperature range of 750 to 600 ° C for 2 to 15 seconds, cooling at a cooling rate of 20 ° C / second or more and winding at a temperature of 350 to 550 ° C, surface properties And a method for producing a high-strength thin steel sheet excellent in sheet flatness.
JP2004020844A 2004-01-29 2004-01-29 Method for producing high-strength thin steel sheet with excellent workability, surface texture and flatness Expired - Fee Related JP4333379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020844A JP4333379B2 (en) 2004-01-29 2004-01-29 Method for producing high-strength thin steel sheet with excellent workability, surface texture and flatness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020844A JP4333379B2 (en) 2004-01-29 2004-01-29 Method for producing high-strength thin steel sheet with excellent workability, surface texture and flatness

Publications (2)

Publication Number Publication Date
JP2005213566A JP2005213566A (en) 2005-08-11
JP4333379B2 true JP4333379B2 (en) 2009-09-16

Family

ID=34904657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020844A Expired - Fee Related JP4333379B2 (en) 2004-01-29 2004-01-29 Method for producing high-strength thin steel sheet with excellent workability, surface texture and flatness

Country Status (1)

Country Link
JP (1) JP4333379B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5128797B2 (en) * 2006-09-12 2013-01-23 株式会社神戸製鋼所 Method for cooling hot-rolled steel sheet
JP5070824B2 (en) * 2006-11-30 2012-11-14 Jfeスチール株式会社 Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same
JP5125081B2 (en) * 2006-11-30 2013-01-23 Jfeスチール株式会社 Cold-rolled steel sheet with excellent flatness after punching and method for producing the same
CN102912244A (en) * 2012-10-23 2013-02-06 鞍钢股份有限公司 780MPa-grade tensile strength hot rolling double-phase steel plate and manufacture method thereof
US20180023162A1 (en) 2015-02-20 2018-01-25 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
WO2016132549A1 (en) 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
ES2769224T3 (en) 2015-02-25 2020-06-25 Nippon Steel Corp Hot rolled steel sheet
WO2016135898A1 (en) 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
KR101751530B1 (en) * 2015-12-28 2017-06-27 주식회사 포스코 Steel sheet for tool and method of manufacturing for the same
BR112019000766B8 (en) 2016-08-05 2023-03-14 Nippon Steel & Sumitomo Metal Corp STEEL SHEET
MX2019000051A (en) 2016-08-05 2019-04-01 Nippon Steel & Sumitomo Metal Corp Steel sheet and plated steel sheet.
CN109628839B (en) * 2019-01-17 2020-05-05 武汉钢铁有限公司 Wheel steel with excellent welding performance and production method thereof
CN114645188A (en) * 2022-02-08 2022-06-21 包头钢铁(集团)有限责任公司 Method for efficiently producing hot-rolled steel strip for 2-4 mm extreme thin-specification high-quality stirring tank with tensile strength of 650MPa

Also Published As

Publication number Publication date
JP2005213566A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP4214006B2 (en) High strength steel sheet with excellent formability and method for producing the same
JP4661306B2 (en) Manufacturing method of ultra-high strength hot-rolled steel sheet
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
JP4333379B2 (en) Method for producing high-strength thin steel sheet with excellent workability, surface texture and flatness
JPH04259325A (en) Production of hot rolled high strength steel sheet excellent in workability
JP5394306B2 (en) High-strength steel plate with excellent plating properties and manufacturing method thereof
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP2010156031A (en) Hot dip galvanized high strength steel sheet having excellent formability, and method for producing the same
CN112739834A (en) Hot-rolled steel sheet and method for producing same
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
JP3247907B2 (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JPH10280090A (en) High strength cold rolled steel sheet having superior shape and excellent in bendability, and its production
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
JPH1180890A (en) High strength hot rolled steel plate and its production
JP3908964B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP3762700B2 (en) High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
KR101382854B1 (en) Ultra high strength cold rolled steel sheets having high yield ratio, excellent weldability and bendability and method for manufacturing the same
JP2001064727A (en) Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging
JP5672736B2 (en) High-strength thin steel sheet with excellent material stability and manufacturing method thereof
KR950007784B1 (en) Making method of cold rolling steel sheet
RU2785760C1 (en) Cold-rolled martensitic steel and method for producing martensitic steel
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees