JP2007056283A - High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method - Google Patents

High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method Download PDF

Info

Publication number
JP2007056283A
JP2007056283A JP2005239918A JP2005239918A JP2007056283A JP 2007056283 A JP2007056283 A JP 2007056283A JP 2005239918 A JP2005239918 A JP 2005239918A JP 2005239918 A JP2005239918 A JP 2005239918A JP 2007056283 A JP2007056283 A JP 2007056283A
Authority
JP
Japan
Prior art keywords
steel pipe
welded steel
decarburization
thick
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005239918A
Other languages
Japanese (ja)
Inventor
Tetsuo Ishizuka
哲夫 石塚
Hiroyuki Mimura
裕幸 三村
Motofumi Koyumiba
基文 小弓場
Naoki Takasugi
直樹 高杉
Takahiro Ichiyama
貴博 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005239918A priority Critical patent/JP2007056283A/en
Publication of JP2007056283A publication Critical patent/JP2007056283A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance and also to provide its manufacturing method. <P>SOLUTION: The thick-wall electric resistance welded steel tube has a composition consisting of, by mass, 0.15 to 0.5% C, 0.05 to 0.5% Si, 0.3 to 2% Mn, ≤0.05% P, ≤0.05% S, ≤0.05% Al, 0.005 to 0.05% Ti, 0.0005 to 0.01% B, 0.001 to 0.01% N, further either or both of 0.01 to 0.2% Sb and 0.2 to 0.5% Cu and the balance Fe with inevitable impurities. Moreover, critical cooling velocity Vc represented by equality logVc=2.94-0.75β (where β=2.7+0.4Si+Mn) is <30°C/s, and t/D as a ratio between wall thickness (t) and outside diameter D ranges from >0.15 to 0.30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車の走行安定性を確保するための中空スタビライザーに適し、焼入れ性および耐脱炭性に優れた高強度厚肉電縫溶接鋼管およびその製造方法に関する。   The present invention relates to a high-strength thick-walled electric-welded welded steel pipe that is suitable for a hollow stabilizer for ensuring the running stability of an automobile, and is excellent in hardenability and decarburization resistance, and a method for manufacturing the same.

自動車の燃費向上対策のひとつとして、車体の軽量化が進められている。自動車のコーナリング時に車体のローリングを緩和し、高速走行時に車体の安定性を確保するスタビライザーもその対象として挙げられている。従来、スタビライザーは、棒鋼などの中実材を所要の形状に加工して製造されていたが、軽量化を図るため継目無鋼管や電縫溶接鋼管などの中空材を使用して製造されることが多くなっている。
スタビラーザー用の電縫溶接鋼管として、特許文献1には、組成を規定することにより、電縫溶接部及び母材部の金属組織が均一で、電縫溶接部及び母材部の硬度差が小さく、加工性に優れた中空スタビライザー用電縫溶接鋼管が開示されており、また、特許文献2には、Ti、Nの含有量を規定することにより焼入れ性を確保する、中空スタビラーザー用電縫溶接鋼管が開示されている。
特開文献3には、肉厚と鋼管の外径との比t/Dが20%以上であり、引張強度が400〜755N/mmとする中空スタビライザー用電縫溶接鋼管が提案され、縮径圧延により肉厚を増加させることが開示されている。
また、特許文献4には、素管を縮径圧延し、引張強さが580MPa超、降伏比が70%以下であるハイドロフォーミングに耐える加工性に優れた自動車構造部材用高強度鋼管が提案され、さらに、特許文献5には、縮径圧延における加熱温度、縮径率などを特定することにより、曲げ加工、縮径加工、管端扁平加工などの複合二次加工性に優れた高張力鋼管の製造方法が提案されている。
また、特許文献6には、素材素管を冷間曲げ加工によりスタビラーザー形状に成形する成形工程と、この成形鋼管に焼入れ、焼き戻し熱処理を施す中空スタビライザーの製造方法において、前記素材素管を、母鋼管に加熱処理を施した後、圧延温度600〜850℃、累積縮径率40%以上で絞り圧延を施したものとする耐疲労特性に優れた中空スタビライザーの製造方法が開示されている。
また、特許文献7には、質量%で、C:0.15〜0.3%、Mn:0.5〜2.0%、Cu:0.05〜0.30%を含み、更に、Si≦0.41%、P≦0.02%、Al≦0.03%、Nb≦0.020%、B≦0.001%、Ti≦0.01%、Cr≦0.42%のうちから選択される1種以上を含有し、不可避的不純物として、0≦Ni+Mo<0.15%およびS≦0.003%に限定し、残部がFeからなる加工性に優れ、腐食による水素侵入後の残留強度率の高い焼き入れ用電縫鋼管が開示されている。
As one of the measures to improve the fuel efficiency of automobiles, weight reduction of the car body is being promoted. Stabilizers that reduce the rolling of the car body when cornering an automobile and ensure the stability of the car body when driving at high speed are also cited as targets. Conventionally, stabilizers were manufactured by processing solid materials such as steel bars into the required shape, but they must be manufactured using hollow materials such as seamless steel pipes and ERW welded steel pipes to reduce weight. Has increased.
As an electric resistance welded steel pipe for stabilizers, in Patent Document 1, by defining the composition, the metal structure of the electric resistance welded part and the base metal part is uniform, and the hardness difference between the electric resistance welded part and the base metal part is small. In addition, an electric resistance welded steel pipe for a hollow stabilizer having excellent workability is disclosed, and Patent Document 2 discloses electric resistance welding for a hollow stabilizer that ensures hardenability by defining the contents of Ti and N. A steel pipe is disclosed.
Japanese Patent Laid-Open Publication No. 2003-28259 proposes an electric resistance welded steel pipe for a hollow stabilizer in which the ratio t / D between the wall thickness and the outer diameter of the steel pipe is 20% or more and the tensile strength is 400 to 755 N / mm 2 It is disclosed to increase the wall thickness by radial rolling.
Patent Document 4 proposes a high-strength steel pipe for automobile structural members that is excellent in workability to withstand hydroforming, in which a raw pipe is reduced in diameter, has a tensile strength of over 580 MPa, and a yield ratio is 70% or less. Furthermore, Patent Document 5 discloses a high-tensile steel pipe excellent in composite secondary workability such as bending, diameter reduction, and tube end flattening by specifying the heating temperature, diameter reduction ratio, etc. in diameter reduction rolling. The manufacturing method of this is proposed.
Further, in Patent Document 6, in the forming step of forming the raw material pipe into a stabilizer shape by cold bending, and the manufacturing method of the hollow stabilizer for quenching and tempering the formed steel pipe, the raw material pipe is A method for producing a hollow stabilizer excellent in fatigue resistance is disclosed in which a base steel pipe is subjected to heat treatment and then drawn at a rolling temperature of 600 to 850 ° C. and a cumulative diameter reduction ratio of 40% or more.
Patent Document 7 includes, in mass%, C: 0.15 to 0.3%, Mn: 0.5 to 2.0%, Cu: 0.05 to 0.30%, and Si ≦ 0.41%, P ≦ 0.02%, Al ≦ 0.03%, Nb ≦ 0.020%, B ≦ 0.001%, Ti ≦ 0.01%, Cr ≦ 0.42% Containing at least one selected, limited to 0 ≦ Ni + Mo <0.15% and S ≦ 0.003% as unavoidable impurities, the balance being excellent in workability made of Fe, after hydrogen intrusion due to corrosion A hardened ERW steel pipe with a high residual strength rate is disclosed.

ところで、例えば、スタビライザーは、電縫溶接鋼管をさらに縮径圧延し、所要の肉厚/外径比とした厚肉電縫溶接鋼管を、1)曲げ加工などの冷間成形加工により所要の形状に成形し、これを加熱、水冷して焼入れした後、焼戻しを施すか、或いは、2)厚肉電縫溶接鋼管を加熱し、プレスなどの熱間成形加工により所要の形状に成形し、引き続いて水冷して焼入れした後、焼戻しを施すことによって製造される。後者の熱間成形加工による方法は、前者の冷間成形加工による方法に比べて、加工成形が容易であり、複雑な形状にも対応できる点で優れているため、製造プロセスとして有利である。
しかしながら、この方法では、加熱後成形するので、焼入れまでの時間が長くなり、成形した部材の温度が低下すること、プレス金型と素材鋼管(電縫溶接鋼管)との接触による温度の低下、或いは加熱スケールの生成による温度の不均一の発生などのために、全体に十分な焼入れ状態を確保することが困難となり焼入れ不足の発生が懸念され、さらに焼入れ性の優れたものが必要である。
By the way, for example, a stabilizer further reduces the diameter of an electric resistance welded steel pipe to obtain a required shape by cold forming such as bending 1). Or after tempering by heating, cooling with water and then tempering, or 2) heating the thick ERW welded steel pipe and forming it into the required shape by hot forming such as pressing. It is manufactured by tempering after cooling with water and quenching. The latter method by hot forming is advantageous as a manufacturing process because it is easier to process and can handle complex shapes than the former method by cold forming.
However, in this method, since the molding is performed after heating, the time until quenching becomes long, the temperature of the molded member decreases, the temperature decreases due to the contact between the press die and the material steel pipe (electrically welded steel pipe), Alternatively, due to generation of non-uniform temperature due to the generation of a heating scale, it is difficult to ensure a sufficient quenching state as a whole, and there is a concern that insufficient quenching may occur, and a material with excellent quenchability is required.

また、熱間成形の場合は、冷間成形と比べて加熱処理が増えるため、成形した鋼管部材に脱炭が生じることは避けられない。すなわち、焼入れ、焼き戻しのための加熱のほかに、成形のための加熱が加わるため、フェライト脱炭層が形成されやすいことは避けられない。このようなフェライト脱炭層が存在すると、自動車部材とした場合に、表層部の強度や硬さといった機械的材質が低下し、所要の表面硬さや表面の強度が得られないのみならず、曲げ加工やねじ切り加工、他の部材と接合といった二次加工を施す場合に割れや、切削不良、接合不良などのなどの加工不良の原因となる。従って、耐脱炭性の優れた電縫溶接鋼管が求められている。
また、車体の軽量化はさらに加速化する趨勢にあり、スタビライザー用の電縫溶接鋼管としてさらに、強度、靭性の高いものが求められている。
Further, in the case of hot forming, heat treatment increases as compared with cold forming, and therefore decarburization is unavoidable in the formed steel pipe member. That is, in addition to heating for quenching and tempering, heating for molding is added, and thus it is inevitable that a ferrite decarburized layer is easily formed. When such a ferrite decarburized layer is present, in the case of an automobile member, mechanical materials such as the strength and hardness of the surface layer portion are lowered, and not only the required surface hardness and surface strength can be obtained, but also bending processing is performed. In the case of secondary processing such as cutting, threading, and joining with other members, it may cause processing defects such as cracks, cutting defects, and bonding defects. Accordingly, there is a need for an electric resistance welded steel pipe having excellent decarburization resistance.
Further, the weight reduction of the vehicle body is in a trend of further acceleration, and there is a demand for a high strength and toughness as an electric resistance welded steel pipe for a stabilizer.

WO2002/070767号公報WO2002 / 070767 特開平2004−011009号公報Japanese Patent Laid-Open No. 2004-011009 特開2004−009126号公報Japanese Patent Laid-Open No. 2004-009126 特開2003−201543号公報JP 2003-201543 A 特開2004−292922号公報JP 2004-292922 A 特開2005−076047号公報JP-A-2005-076047 特許第3653871号Japanese Patent No. 3655381

特許文献1〜特許文献7に記載のスタビライザー用電縫溶接鋼管や、高強度鋼管は、自動車構造部材用鋼管として有用ではあるが、上述のように自動車構造用部材の製造工程におけるプロセスの変化により生じている問題に対して十分対応できるものではない。
本発明は、上記の問題点に鑑み、十分な焼入れ性と優れた耐脱炭性を有する高強度の厚肉電縫溶接鋼管及びその製造方法を提供することを課題とする。
The electric resistance welded steel pipe for stabilizers and the high strength steel pipes described in Patent Documents 1 to 7 are useful as steel pipes for automobile structural members, but as described above, due to process changes in the manufacturing process of automobile structural members It is not enough to deal with the problems that occur.
In view of the above-described problems, an object of the present invention is to provide a high-strength thick-walled electric-welded steel pipe having sufficient hardenability and excellent decarburization resistance and a method for producing the same.

本発明の厚肉電縫溶接鋼管は、上記の課題を解決するためになされたものであり、溶接性、靭性を損なわない程度にCを極力増やして強度(硬度)を向上させると共に、Cu或いはSbを添加して耐脱炭性を向上させ、さらに、鋼材の組成を臨界冷却速度Vcが特定の範囲となるように調整することによって、焼入れ性を確保するようにしたものである。そして、本発明の厚肉電縫溶接鋼管の製造においては、加熱温度、断面減少率を特定の範囲として電縫溶接鋼管に縮径圧延を施すものである。
その要旨とするところは以下のとおりである。
(1)質量%で、
C:0.15〜0.5%、Si:0.05〜0.5%、Mn:0.3〜2%、P:0.05%以下、S:0.05%以下、Al:0.05%以下、Ti:0.005〜0.05%、B:0.0005〜0.01%、N:0.001〜0.01%を含有し、さらに、
Cu:0.2〜0.5%、Sb:0.01〜0.2%の1種又は2種を含有し、残部がFe及び不可避的不純物からなり、式<1>で表される臨界冷却速度Vcが30℃/s未満であり、肉厚tと外径Dの比であるt/Dが0.15超〜0.30の範囲であることを特徴とする焼入れ性及び耐脱炭性に優れた高強度厚肉電縫溶接鋼管。
logVc=2.94−0.75β ・・・<1>
ただし、β=2.7C+0.4Si+Mn。
(2)質量%で、さらに、
Cr:0.1〜1%、Mo:0.05〜1%、Nb:0.01〜0.1%、V:0.01〜0.5%、Ni:0.1〜1%の1種または2種以上を含有することを特徴とする(1)に記載の焼入れ性及び耐脱炭性に優れた高強度厚肉電縫溶接鋼管。
ただし、式<1>において、
β=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+2Mo。
(3)大気中において800℃で1時間保持した後のフェライト脱炭層の厚さが0.15mm未満であることを特徴とする(1)又は(2)に記載の焼入れ性及び耐脱炭性に優れた高強度厚肉電縫溶接鋼管。
(4)(1)または(2)に記載の成分を有する電縫溶接鋼管を、800〜1200℃に加熱し、断面減少率が40〜80%の範囲で縮径圧延することを特徴とする焼入れ性及び耐脱炭性に優れた高強度厚肉電縫溶接鋼管の製造方法。
The thick-walled ERW welded steel pipe of the present invention is made to solve the above-mentioned problems, and increases the strength (hardness) by increasing C as much as possible without impairing the weldability and toughness. The decarburization resistance is improved by adding Sb, and the hardenability is ensured by adjusting the composition of the steel material so that the critical cooling rate Vc is in a specific range. And in manufacture of the thick-walled electric resistance welded steel pipe of this invention, diameter reduction rolling is given to an electric resistance welded steel pipe by making heating temperature and a cross-sectional reduction rate into a specific range.
The gist is as follows.
(1) In mass%,
C: 0.15-0.5%, Si: 0.05-0.5%, Mn: 0.3-2%, P: 0.05% or less, S: 0.05% or less, Al: 0 0.05% or less, Ti: 0.005-0.05%, B: 0.0005-0.01%, N: 0.001-0.01%,
Cu: 0.2 to 0.5%, Sb: 0.01 to 0.2% of one or two kinds, the balance consists of Fe and inevitable impurities, the criticality represented by the formula <1> Hardening and decarburization resistance, characterized in that the cooling rate Vc is less than 30 ° C./s, and the ratio of the wall thickness t to the outer diameter D is in the range of more than 0.15 to 0.30. High strength thick wall ERW welded steel pipe with excellent properties
logVc = 2.94−0.75β <1>
However, β = 2.7C + 0.4Si + Mn.
(2) In mass%,
Cr: 0.1 to 1%, Mo: 0.05 to 1%, Nb: 0.01 to 0.1%, V: 0.01 to 0.5%, Ni: 0.1 to 1% The high-strength thick-walled electric-welded steel pipe excellent in hardenability and decarburization resistance according to (1), characterized by containing seeds or two or more kinds.
However, in formula <1>
β = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + 2Mo.
(3) The hardenability and decarburization resistance according to (1) or (2), wherein the thickness of the ferrite decarburized layer after holding at 800 ° C. for 1 hour in the air is less than 0.15 mm Excellent high-strength thick-walled ERW welded steel pipe.
(4) The ERW welded steel pipe having the component described in (1) or (2) is heated to 800 to 1200 ° C. and reduced in diameter in the range of 40 to 80% in cross-section reduction rate. A method for producing a high-strength thick-walled ERW welded steel pipe with excellent hardenability and decarburization resistance.

本発明の厚肉電縫溶接鋼管は、焼入れ性に極めて優れているため、スタビライザーなどの製造において熱間成形加工を行った後、直ちに焼入れ処理を行った場合でも十分な焼入れ効果を得ることができ、また、焼入れ手段も水冷に限らず、水冷に比べて冷却速度が小さい油焼入れによっても十分な焼入れ効果を得ることができる。
また、耐脱炭性に優れているため、自動車部材を製造するに際して、熱間成形し、焼入れ、焼き戻ししても、フェライト脱炭層の形成が従来に比べて格段に小さく、部材表面の硬さ、強度が内部と同様に維持されるとともに、二次加工における加工不良の発生を低減することができる。
さらに、強度、靭性に優れて、繰り返し荷重に対する耐久性にも優れており、スタビライザーをより軽量化することが可能となる。
Since the thick-walled ERW welded steel pipe of the present invention is extremely excellent in hardenability, a sufficient quenching effect can be obtained even when a quenching treatment is performed immediately after hot forming in the manufacture of a stabilizer or the like. Further, the quenching means is not limited to water cooling, and a sufficient quenching effect can be obtained by oil quenching with a cooling rate lower than that of water cooling.
In addition, since it has excellent decarburization resistance, the formation of a ferrite decarburized layer is much smaller than before even when hot forming, quenching, and tempering when manufacturing an automobile member, and the surface of the member is hard. The strength can be maintained in the same manner as the inside, and the occurrence of processing defects in the secondary processing can be reduced.
Furthermore, it is excellent in strength and toughness, and is excellent in durability against repeated loads, and the stabilizer can be further reduced in weight.

発明者らは、スタビラーザー用の厚肉電縫溶接鋼管の焼入れ性を向上させると共に、強度、靭性をさらに強化する方法を検討した。
先ず、強度について、C量を変えた表1に示すような組成の電縫溶接鋼管用の鋼材(試験材A、B、C)、および比較の鋼材(従来材A,B)について水冷焼入れ、焼き戻し後の硬さを調査した。図1は、水冷焼入れ、焼き戻し後の硬さの変化とC量との関係を示したものである。
図1から判るように、C量が増えることによって硬度が増加し、例えば、従来材の硬度レベルよりほぼ10%以上高くなっており、強度を向上させることができることが判る。なお、その効果は、C:0.25%以上とすると、一層顕著であることがわかる。
Inventors examined the method of improving the hardenability of the thick-wall ERW welded steel pipe for stabilizers, and further strengthening strength and toughness.
First, with regard to strength, water-cooled quenching is performed on steel materials (test materials A, B, C) for ERW welded steel pipes having compositions as shown in Table 1 with varying amounts of C, and comparative steel materials (conventional materials A, B). The hardness after tempering was investigated. FIG. 1 shows the relationship between the change in hardness after water-cooled quenching and tempering and the C content.
As can be seen from FIG. 1, the hardness increases as the amount of C increases. For example, the hardness increases by about 10% or more from the hardness level of the conventional material, and it can be seen that the strength can be improved. In addition, it turns out that the effect is more remarkable when C: 0.25% or more.

次に、焼入れ性について検討した。
図1には100%および90%マルテンサイト組織の硬さとC量の関係も同時に示したが、試験材A、B、Cは少なくとも90%マルテンサイト組織まで焼きが入れば従来材の10%以上の硬さが確保できていることがわかる。従って、焼入れ性の指標としては、例えば、鉄と鋼74(1988)p.1073により従来から知られている、90%マルテンサイト組織が得られる臨界冷却速度Vc(℃/sec)を用いれば良い。これは、通常、下記<1>式で表されている。
logVc=2.94−0.75β ・・・<1>
ただし、β=2.7C+0.4Si+Mn、或いは、β=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+2Mo。
図1から、水焼入れでは90%以上のマルテンサイト組織が得られていることは明らかであるが、油焼入れの場合には水焼入れに比べて冷却速度が大きく減少する。通常、スタビライザーに用いられるサイズの鋼管を油焼入れした時に達せられる冷却速度は30℃/sである。従って、油焼入れでも90%マルテンサイト組織を確保するために、本発明においては、臨界冷却速度Vcを30℃/sec未満とした。
上述のように、素材鋼管の強度を向上させるために、C量を増やすとともに、<1>で示される臨界冷却速度Vcが30℃/sec未満となるように成分を選択するものである。
Next, the hardenability was examined.
FIG. 1 also shows the relationship between the hardness and C content of the 100% and 90% martensite structures, but the test materials A, B, and C are at least 10% of the conventional materials if they are quenched to at least 90% martensite structure. It can be seen that the hardness of can be secured. Therefore, as an index of hardenability, for example, iron and steel 74 (1988) p. A critical cooling rate Vc (° C./sec), which is conventionally known from 1073 and can obtain a 90% martensite structure, may be used. This is usually expressed by the following formula <1>.
logVc = 2.94−0.75β <1>
However, β = 2.7C + 0.4Si + Mn or β = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + 2Mo.
From FIG. 1, it is clear that a martensite structure of 90% or more is obtained by water quenching, but in the case of oil quenching, the cooling rate is greatly reduced compared to water quenching. Usually, the cooling rate achieved when oil-quenching a steel pipe of a size used for a stabilizer is 30 ° C./s. Therefore, in order to ensure a 90% martensite structure even in oil quenching, the critical cooling rate Vc is set to less than 30 ° C./sec in the present invention.
As described above, in order to improve the strength of the material steel pipe, the amount of C is increased, and the components are selected so that the critical cooling rate Vc represented by <1> is less than 30 ° C./sec.

次に、本発明者らは、耐脱炭性を向上させる方法について検討した。
従来、ばね鋼などC含有量が0.5%を越える高C鋼においては、2相域の温度で熱処理する場合に、Cu,Sb、Snなどを添加することによって脱炭を抑制することが可能であることが知られている。
しかしながら、C含有量が0.3%前後の中C鋼において、しかも2相域の温度を急速に通過させるような場合、すなわち、γ相温度域〜水冷して焼入れする場合、さらには、熱間成形において加熱が加わるような場合において、脱炭を抑制する効果の有無については明らかではない。
そこで、発明者らは、C含有量を0.3%前後とする中C鋼にSbを添加した試験材を製作し、中C鋼を加熱して焼入れ、焼き戻しする場合の脱炭の抑制に対するSb添加の効果を確認した。
Next, the present inventors examined a method for improving the decarburization resistance.
Conventionally, in a high C steel having a C content exceeding 0.5%, such as spring steel, decarburization can be suppressed by adding Cu, Sb, Sn, etc. when heat treatment is performed at a temperature in a two-phase region. It is known to be possible.
However, in the medium C steel having a C content of around 0.3%, and when the temperature in the two-phase region is rapidly passed, that is, in the case of quenching by cooling from the γ-phase temperature region to water, It is not clear whether or not there is an effect of suppressing decarburization when heating is applied in the inter-forming.
Therefore, the inventors manufactured a test material in which Sb was added to medium C steel with a C content of around 0.3%, and suppressed decarburization when the medium C steel was heated and quenched and tempered. The effect of Sb addition on the was confirmed.

すなわち、表1に示した試験材A(C:0.28%)に、Sb:0.05%を含有させた厚肉電縫溶接鋼管用の鋼材、試験材A’を準備し、さらに比較のため表1の厚肉電縫溶接鋼管用の鋼材、試験材A(C:0.28%)及び従来の中空スタビライザー用電縫溶接鋼管用の鋼材、従来材A(C:0.26%)を準備し、これらの鋼材から採取した試験片を大気中、800℃で1hr加熱する脱炭熱処理したのち、断面組織を観察した。
なお、この脱炭熱処理は、脱炭性の差を明確にすることを目的としたため、本発明の厚肉電縫溶接鋼管が自動車構造用部材を製造するための成形ならびに調質処理の過程において受けると考えられる加熱条件よりは遙かに脱炭しやすい条件である。
That is, a steel material for thick-walled electric-welded welded steel pipe containing 0.05% Sb and test material A ′ prepared in test material A (C: 0.28%) shown in Table 1 was further compared. Therefore, steel materials for thick-walled ERW welded steel pipes shown in Table 1, test material A (C: 0.28%), conventional steel materials for ERW welded steel pipes for hollow stabilizers, conventional material A (C: 0.26%) ) Were prepared, and the specimens taken from these steel materials were subjected to decarburization heat treatment in the atmosphere at 800 ° C. for 1 hour, and then the cross-sectional structure was observed.
Since this decarburization heat treatment was intended to clarify the difference in decarburization properties, the thick-walled ERW welded steel pipe of the present invention was used in the process of forming and tempering treatment for manufacturing automobile structural members. It is a condition that is much easier to decarburize than the heating condition considered to be received.

図2は、断面組織を示す写真であり、(a)は従来材A、(b)は試験材A、(c)はSbを含有する試験材A’をそれぞれ示す。
図2から判るように、Sbを添加しない従来材A、試験材Aでは、表面から180〜200μmまでの表層部が脱炭されたフェライト相となり、結晶粒が粗大化しているのに対し、Sbを添加した試験材A’は、フェライト脱炭層は全く認められない。
脱炭抑制効果を、Cu,Snについても同様の方法を用いて確認したところ、Cuについては、Sbと同様に脱炭抑制効果が確認できた。しかしながら、Snについては十分ではないことがわかった。
フェライト脱炭層は、形成されないことがもっとも望ましいが、800℃×1時間の加熱条件で、その厚さが表面から0.15mm未満であれば、実際の製造プロセスでのフェライト脱炭層の厚さは、スタビラーザーなど、自動車構造用部材として許容できるレベルにあることから、本発明においては、大気中、800℃で1hr時間加熱した際に形成されるフェライト脱炭層の厚さを0.15mm未満とするものである。
このようにフェライト脱炭層を抑制するには、Sb:0.01〜0.2%、好ましくは、0.01〜0.10%、または、Cu:0.2〜0.5%を単独又は複合して含有する必要がある。
FIG. 2 is a photograph showing a cross-sectional structure, where (a) shows a conventional material A, (b) shows a test material A, and (c) shows a test material A ′ containing Sb.
As can be seen from FIG. 2, in the conventional material A and test material A to which Sb is not added, the surface layer portion from the surface to 180 to 200 μm becomes a decarburized ferrite phase, and the crystal grains are coarsened. In the test material A ′ to which is added, no ferrite decarburized layer is observed.
When the decarburization suppression effect was confirmed also about Cu and Sn using the same method, the decarburization suppression effect was able to be confirmed about Cu similarly to Sb. However, it has been found that Sn is not sufficient.
It is most desirable that the ferrite decarburized layer is not formed, but if the thickness is less than 0.15 mm from the surface under heating conditions of 800 ° C. × 1 hour, the thickness of the ferrite decarburized layer in the actual manufacturing process is In the present invention, the thickness of the ferrite decarburized layer formed when heated at 800 ° C. for 1 hour in the atmosphere is less than 0.15 mm. Is.
In order to suppress the ferrite decarburization layer in this way, Sb: 0.01 to 0.2%, preferably 0.01 to 0.10%, or Cu: 0.2 to 0.5% alone or It is necessary to contain in combination.

従来、C含有量が0.3%前後の中C鋼においては、脱炭抑制効果に対するSb及び/又はCuの添加効果は明らかではなかったが、上記のように、中C鋼においてSb及び/又はCuを添加することにより、耐脱炭性を向上させることができることが確認された。
このように、本発明の厚肉電縫溶接鋼管は、C含有量を高めることにより高強度し、かつSb及び/又はCuを添加することによって耐脱炭性を向上させ、さらに、その他の成分を適切に制御することによって、臨界冷却速度を低くし、焼入れ性を向上させたものである。
Conventionally, in medium C steel with a C content of around 0.3%, the effect of addition of Sb and / or Cu on the decarburization suppressing effect was not clear, but as described above, in medium C steel, Sb and / or Alternatively, it was confirmed that the decarburization resistance can be improved by adding Cu.
Thus, the thick ERW welded steel pipe of the present invention has high strength by increasing the C content and improves decarburization resistance by adding Sb and / or Cu, and other components. By appropriately controlling the temperature, the critical cooling rate is lowered and the hardenability is improved.

以下に、本発明における厚肉電縫溶接鋼管の化学成分について説明する。
Cは、基地中に固溶或いは炭化物として析出し、鋼の強度を増加させる元素である。
一般的な自動車構造用部材としては少なくとも100kg/mmの強度が必要であり、それに相当するHv320前後の硬さが90%マルテンサイト組織で得られるのは、C量が0.15%の場合であるから、Cは0.15%以上含有することが必要であるが、0.5%を超えて含有すると、加工性や溶接性が劣化するため、含有量を0.15〜0.5%の範囲とする。なお、好ましくは、0.25%〜0.40%である。
Below, the chemical component of the thick-walled electric resistance welded steel pipe in this invention is demonstrated.
C is an element that increases the strength of steel by being precipitated as solid solution or carbide in the matrix.
A general automobile structural member needs to have a strength of at least 100 kg / mm 2 , and a corresponding hardness of around Hv320 is obtained with a 90% martensite structure when the C content is 0.15%. Therefore, it is necessary that C is contained in an amount of 0.15% or more. However, if it exceeds 0.5%, the workability and weldability deteriorate, so the content is 0.15 to 0.5. % Range. In addition, Preferably, it is 0.25%-0.40%.

Siは、固溶強化に寄与する合金元素であり、その効果を得るためには0.05%以上含有することが必要であるが、0.5%を超えて含有すると、電縫溶接時の溶接欠陥となるSi−Mn系の介在物を生成しやすくなり、電縫溶接部の健全性に悪影響を及ぼす。
このため、含有量を0.05〜0.5%の範囲とする。なお、好ましくは、0.10〜0.3%である。
Si is an alloy element that contributes to solid solution strengthening, and in order to obtain its effect, it is necessary to contain 0.05% or more. Si-Mn-based inclusions that become welding defects are easily generated, which adversely affects the soundness of the ERW weld.
For this reason, content is made into the range of 0.05 to 0.5%. In addition, Preferably, it is 0.10 to 0.3%.

Mnは、焼き入れ性を向上させる元素であり、含有量が0.3%未満では焼き入れ性の向上効果を十分に確保することができず、また、2%を超えると溶接性及び溶接部の健全性にも悪影響を及ぼすため、含有量を0.3〜2%の範囲とする。なお、好ましくは、0.8〜1.5%である。   Mn is an element that improves the hardenability. If the content is less than 0.3%, the effect of improving the hardenability cannot be sufficiently ensured. In order to adversely affect the soundness of the film, the content is made 0.3 to 2%. In addition, Preferably, it is 0.8 to 1.5%.

Alは、溶鋼の脱酸材として必要な元素であり、また、Nを固定する元素でもあるため、その量は結晶粒径や機械的性質に大きな影響を及ぼす。含有量が0.05%を超えると、結晶粒径が粗大化して靱性が低下したり、非金属介在物が多くなって製品に表面疵が発生しやすくなるため、その含有量は0.05%以下とする。なお、好ましくは、0.03%以下である。   Since Al is an element necessary as a deoxidizer for molten steel and also an element for fixing N, its amount has a great influence on the crystal grain size and mechanical properties. If the content exceeds 0.05%, the crystal grain size becomes coarse and the toughness is reduced, or non-metallic inclusions increase and surface defects are likely to occur in the product. % Or less. In addition, Preferably, it is 0.03% or less.

Bは、微量の添加で鋼材の焼き入れ性を大幅に向上させる元素であり、また、粒界強化の効果もある。含有量が0.0005%未満で焼き入れ性を向上させる効果が期待できず、一方、0.01%を超えると粗大なB含有相を生成する傾向があり、また脆化が起こりやすくなる。このため、その含有量は0.0005%〜0.01%とする。なお、好ましくは、0.0010超〜0.0020%である。   B is an element that greatly improves the hardenability of the steel material by adding a small amount, and also has an effect of strengthening the grain boundary. If the content is less than 0.0005%, the effect of improving the hardenability cannot be expected. On the other hand, if the content exceeds 0.01%, a coarse B-containing phase tends to be formed, and embrittlement tends to occur. For this reason, the content is made 0.0005% to 0.01%. In addition, Preferably, it is more than 0.0010 to 0.0020%.

Tiは、鋼中Nを固定してBNの析出を抑制することにより、B添加による焼き入れ性を安定的かつ効果的に向上させるために作用するが、含有量が0.005%未満ではその効果が期待できず、一方、0.05%を超えると靱性が劣化する傾向があるため、その含有量は0.005〜0.05%の範囲とする。なお、好ましくは、0.01〜0.02%である。   Ti acts to stably and effectively improve the hardenability by adding B by fixing N in steel and suppressing precipitation of BN, but if the content is less than 0.005%, The effect cannot be expected, but if it exceeds 0.05%, the toughness tends to deteriorate, so the content is made 0.005 to 0.05%. In addition, Preferably, it is 0.01 to 0.02%.

Nは、窒化物または炭窒化物を析出させ、強度を高めるための重要な元素である。その効果は0.001%以上を含有させることにより発揮されるが、含有量が0.01%を超えるとBNの析出による焼入れ性の低下や、窒化物の粗大化および時効硬化により靱性が劣化する傾向が見られる。このため、その含有量は0.001〜0.01%の範囲とする。なお、好ましくは、0.002〜0.005%である。   N is an important element for precipitating nitride or carbonitride and increasing the strength. The effect is exerted by adding 0.001% or more, but if the content exceeds 0.01%, the toughness deteriorates due to a decrease in hardenability due to precipitation of BN, coarsening of nitride, and age hardening. The tendency to do is seen. For this reason, the content is made 0.001 to 0.01% of range. In addition, Preferably, it is 0.002 to 0.005%.

Pは、耐溶接割れ性および靱性に悪影響を及ぼす元素であるため、0.05%以下に限定する。なお、好ましくは、0.03%以下である。   P is an element that adversely affects weld crack resistance and toughness, so is limited to 0.05% or less. In addition, Preferably, it is 0.03% or less.

Sは、鋼材の非金属介在物の形成に影響し、鋼管の曲げ性、扁平性などの加工性を劣化させると共に、靱性の劣化や異方性及び再熱割れ感受性の増大の原因となる。また、溶接部の健全性も影響を悪影響を及ぼす。このため、その含有量は0.05%以下に限定する。なお、好ましくは、0.01%以下である。   S affects the formation of non-metallic inclusions in the steel material, and deteriorates workability such as bendability and flatness of the steel pipe, and causes toughness deterioration and anisotropy and increased reheat cracking sensitivity. Also, the soundness of the welded part has an adverse effect. For this reason, the content is limited to 0.05% or less. In addition, Preferably, it is 0.01% or less.

Cuは、Sbと同様に、脱炭を抑制する効果のある元素であるが、含有量が0.2%未満では、その効果を十分に得ることはできず、一方、0.5%を超えて含有してもその効果は飽和する一方、熱間加工性が低下し、表面性状が損なわれやすくなる。このため含有量は、0.2〜0.5%とする。なお、好ましくは、0.2〜0.4%である。   Cu, like Sb, is an element that has an effect of suppressing decarburization. However, if the content is less than 0.2%, the effect cannot be sufficiently obtained, while it exceeds 0.5%. Even if contained, the effect is saturated, while the hot workability is lowered and the surface properties are easily impaired. For this reason, content is made into 0.2 to 0.5%. In addition, Preferably, it is 0.2 to 0.4%.

Sbは、上述のように、脱炭を抑制する効果のある元素であるが、含有量が0.01%未満では、その効果を十分に得ることはできず、一方、0.2%を超えて含有してもその効果は飽和する一方、熱間加工性が低下し、表面性状が損なわれやすくなる。このため含有量は、0.01〜0.2%とする。なお、好ましくは、0.01〜0.10%である。
なお、本発明においては、上述のように、Cu、Sbを、それぞれの含有量の範囲において、単独または複合して含有させることができる。
As described above, Sb is an element having an effect of suppressing decarburization. However, if the content is less than 0.01%, the effect cannot be sufficiently obtained, while it exceeds 0.2%. Even if contained, the effect is saturated, while the hot workability is lowered and the surface properties are easily impaired. For this reason, content is made into 0.01 to 0.2%. In addition, Preferably, it is 0.01 to 0.10%.
In the present invention, as described above, Cu and Sb can be contained alone or in combination within the range of the respective contents.

本発明の厚肉電縫溶接鋼管は、必要に応じて、Cr、Mo、Nb,V、Niの一種または二種以上を含有することができる。   The thick-walled electric resistance welded steel pipe of the present invention may contain one or more of Cr, Mo, Nb, V, and Ni as required.

Crは、焼き入れ性を向上させる元素であり、また、基地中にM23型炭化物を析出させる効果を有し、強度を高めると共に炭化物を微細化する作用を有する。含有量が0.1%未満ではこれらの作用、効果を十分に期待することはできず、また、1%を超えると電縫溶接時に欠陥を発生しやすくなる。このため、その含有量は0.1〜1%の範囲とする。なお、好ましくは、0.1〜0.6%である。 Cr is an element that improves the hardenability and has the effect of precipitating M 23 C 6 type carbide in the matrix, and has the effect of increasing the strength and miniaturizing the carbide. If the content is less than 0.1%, these actions and effects cannot be sufficiently expected, and if it exceeds 1%, defects are likely to occur during ERW welding. For this reason, the content shall be 0.1 to 1% of range. In addition, Preferably, it is 0.1 to 0.6%.

Moは、焼き入れ性を向上させる効果を有する元素であり、固溶強化をもたらす効果を有する元素である。含有量が0.05%未満ではこれらの効果を十分期待することができず、一方、1%を超えると粗大炭化物を析出しやすく、靱性を劣化させるため、その含有量は0.05〜1%の範囲とする。なお、好ましくは、0.1〜0.5%である。   Mo is an element having an effect of improving the hardenability and is an element having an effect of causing solid solution strengthening. If the content is less than 0.05%, these effects cannot be sufficiently expected. On the other hand, if the content exceeds 1%, coarse carbides are likely to be precipitated and the toughness is deteriorated. % Range. In addition, Preferably, it is 0.1 to 0.5%.

Nbは、Nb炭窒化物による析出強化の効果を有するのに加えて、C含有量が0.3%前後の中炭素レベルの鋼材において、鋼材の結晶粒径を微細化し、靱性を向上させる効果を有している。
含有量が0.01%未満では、強度、靱性の向上効果が十分ではなく、0.1%を超えて含有すると炭化物が増加し、靱性が低下する。このため、その含有量は0.01〜0.1%の範囲とする。なお、好ましくは、0.02〜0.04%である。
In addition to having the effect of precipitation strengthening by Nb carbonitride, Nb has an effect of improving the toughness by refining the crystal grain size of the steel material in a medium carbon level steel material having a C content of around 0.3%. have.
If the content is less than 0.01%, the effect of improving the strength and toughness is not sufficient. If the content exceeds 0.1%, carbides increase and the toughness decreases. For this reason, the content is made 0.01 to 0.1% of range. In addition, Preferably, it is 0.02 to 0.04%.

Vは、焼き入れ性を向上させる効果を有する元素であり、V炭窒化物による析出強化の効果を有する元素である。含有量が0.01%未満ではこれらの効果を十分期待することができず、一方、0.5%を超えると粗大炭化物を析出しやすく、靱性を劣化させるため、その含有量は0.01〜0.5%の範囲とする。なお、好ましくは、0.02〜0.05%である。   V is an element having an effect of improving hardenability, and an element having an effect of precipitation strengthening by V carbonitride. If the content is less than 0.01%, these effects cannot be sufficiently expected. On the other hand, if the content exceeds 0.5%, coarse carbides are liable to precipitate and the toughness is deteriorated. It is made into the range of -0.5%. In addition, Preferably, it is 0.02 to 0.05%.

Niは、焼き入れ性及び靱性を向上させる効果を有する元素である。含有量が0.1%未満ではその効果を期待できず、一方、1%を超えると焼き入れ後にも残留γが存在する可能性があり、疲労耐久性を劣化させる。このため、その含有量は、0.1〜1%の範囲とする。なお、好ましくは、0.015〜0.5%である。   Ni is an element having an effect of improving hardenability and toughness. If the content is less than 0.1%, the effect cannot be expected. On the other hand, if it exceeds 1%, residual γ may exist even after quenching, and fatigue durability is deteriorated. For this reason, the content shall be 0.1 to 1% of range. In addition, Preferably, it is 0.015-0.5%.

次に、鋼管の肉厚t(mm)と鋼管の外径D(mm)との比であるt/Dの範囲を0.15超〜0.30のとした理由について説明する。
スタビライザーの軽量化のためにはt/Dが小さいほど望ましい。しかし、t/Dが小さいほど使用時に加わる主応力が大きくなるために疲労特性が低下する。一方、t/Dが大きくなると軽量化の効果が少なくなるのに加えて、電縫鋼管の製造が困難になる。最低限の疲労強度を確保するためにt/Dの下限を0.15超、製造性と軽量化の観点から上限を0.30に定めた。
Next, the reason why the range of t / D, which is the ratio between the thickness t (mm) of the steel pipe and the outer diameter D (mm) of the steel pipe, is set to be more than 0.15 to 0.30 will be described.
A smaller t / D is desirable for reducing the weight of the stabilizer. However, the smaller the t / D, the greater the main stress applied during use, so the fatigue characteristics deteriorate. On the other hand, when t / D is increased, the effect of weight reduction is reduced, and in addition, it is difficult to manufacture an electric resistance welded steel pipe. In order to ensure the minimum fatigue strength, the lower limit of t / D was set to more than 0.15, and the upper limit was set to 0.30 from the viewpoints of manufacturability and weight reduction.

本発明の厚肉電縫溶接鋼管の製造方法について説明する。
所要の化学組成を有するように溶製した溶鋼を、鋳造して鋳片とするか、或いは一旦鋼塊とした後、熱間圧延して鋼片とし、この鋳片または鋼片を熱間圧延して熱間圧延鋼板とする。
この熱間圧延鋼板を通常の電縫溶接鋼管の製造方法、例えば熱間或いは冷間での電気抵抗溶接により電縫溶接鋼管とする。
本発明の肉厚電縫溶接鋼管は、上述のように鋼管の肉厚/外径の比、t/D、を0.15超〜0.30とするものであり、電縫溶接鋼管造管機の能力がこのような範囲の肉厚/外径比の電縫溶接鋼管の造管能力を有する場合は、上記の熱間圧延鋼板を用いて直接、本発明の電縫溶接鋼管を製造することができる。
The manufacturing method of the thick-walled ERW welded steel pipe of the present invention will be described.
Molten steel melted to have the required chemical composition is cast into a slab, or once made into a steel ingot, then hot rolled into a steel slab, and this slab or steel slab is hot rolled Thus, a hot rolled steel sheet is obtained.
This hot-rolled steel sheet is made into an ERW welded steel pipe by a conventional method for producing ERW welded pipe, for example, hot or cold electric resistance welding.
The thickness electric resistance welded steel pipe of the present invention has a thickness / outer diameter ratio, t / D, of more than 0.15 to 0.30 as described above. When the capacity of the machine has the ability to make an electric resistance welded steel pipe having a wall thickness / outer diameter ratio in such a range, the electric resistance welded steel pipe of the present invention is directly manufactured using the hot-rolled steel sheet. be able to.

しかしながら、電縫溶接鋼管は、肉厚が厚いほど、管の外径が小さいほど、また鋼管用鋼材の強度が高いほど製造が困難となる。一般に肉厚/外径比t/Dが0.15以下の電縫溶接鋼管は、通常の電縫溶接鋼管造管機により製造可能であるが、t/Dが0.15を超えると製造能力を超えるため通常の電縫溶接鋼管造管機では、t/Dが0.15超〜0.30とする本発明の厚肉電縫溶接鋼管を直接製造することは困難となることが多い。
従って、通常の電縫溶接鋼管の造管機にて肉厚/外径比が0.15以下の電縫溶接鋼管(これを母管とも称する)を製造し、さらに、これに熱間で縮径圧延を施して肉厚/外径比が0.15超〜0.30の厚肉電縫溶接鋼管を製造するものである。
However, an ERW welded steel pipe becomes more difficult to manufacture as the wall thickness increases, the outer diameter of the pipe decreases, and the strength of the steel material for steel pipe increases. Generally, an electric resistance welded steel pipe having a wall thickness / outer diameter ratio t / D of 0.15 or less can be manufactured by an ordinary electric resistance welded steel pipe making machine, but if t / D exceeds 0.15, the manufacturing capability Therefore, it is often difficult to directly manufacture the thick-walled electric-welded steel pipe of the present invention having a t / D of more than 0.15 to 0.30 in an ordinary electric-welded steel pipe-making machine.
Accordingly, an electric resistance welded steel pipe having a wall thickness / outer diameter ratio of 0.15 or less (also referred to as a mother pipe) is manufactured by an ordinary electric resistance welded steel pipe making machine, and is further hot-compressed. Thick-walled ERW welded steel pipe having a thickness / outer diameter ratio of more than 0.15 to 0.30 is manufactured by diameter rolling.

縮径圧延は、ストレッチレデューサーなどを用いて行うことができる。
ステレッチレデューサーは、圧延軸の周りに3ロール或いは4ロールを有する圧延スタンドを複数、圧延軸に直列に備えた圧延装置であり、この圧延装置の各圧延スタンドのロール回転数及び圧下力を調整することにより、鋼管の管軸方向(圧延方向)の張力及び円周方向の圧縮力を制御し、これによって肉厚/外径比を増加させる縮径圧延を行うことができる。
すなわち、縮径圧延においは、鋼管の外径の圧下力により外径が縮小される一方で肉厚は増加するが、他方、鋼管の管軸方向に働く張力により肉厚が減少するので、両者のバランスにより最終の肉厚が決定される。このように縮径圧延した鋼管の肉厚は、上記圧延スタンドの間の張力により主として決定されるので、目標肉厚を得るための圧延スタンド間の張力を圧延理論などから求め、その張力が働くように各圧延スタンドのロール回転数を設定することが必要である。
Reduction rolling can be performed using a stretch reducer or the like.
The Strech Reducer is a rolling device equipped with a plurality of rolling stands having three or four rolls around the rolling axis and in series with the rolling shaft, and the roll rotation speed and rolling force of each rolling stand of this rolling device are adjusted. By doing so, it is possible to perform reduction rolling that controls the tension in the tube axis direction (rolling direction) and the compressive force in the circumferential direction of the steel pipe, thereby increasing the thickness / outer diameter ratio.
That is, in the diameter reduction rolling, the outer diameter is reduced by the rolling force of the outer diameter of the steel pipe while the wall thickness is increased, but on the other hand, the wall thickness is decreased by the tension acting in the tube axis direction of the steel pipe. The final wall thickness is determined by the balance. Since the thickness of the steel pipe reduced in diameter in this way is mainly determined by the tension between the rolling stands, the tension between the rolling stands to obtain the target thickness is obtained from the rolling theory and the tension works. Thus, it is necessary to set the number of roll rotations of each rolling stand.

上述のように、本発明は、上記電縫溶接鋼管(母管)を800〜1200℃に加熱し、断面減少率40〜80%で熱間での縮径圧延を施して、肉厚/外径比を0.15超〜0.30とした厚肉電縫溶接鋼管とするものである。
ここで、断面減少率とは、(縮径前の鋼管の外径−縮径後の鋼管の外径)/縮径前の鋼管の外径×100(%)である。
As described above, the present invention heats the above-mentioned ERW welded steel pipe (mother pipe) to 800 to 1200 ° C., and performs hot diameter reduction rolling with a cross-section reduction rate of 40 to 80%, so that the thickness / outside This is a thick ERW welded steel pipe having a diameter ratio of more than 0.15 to 0.30.
Here, the cross-sectional reduction rate is (outer diameter of steel pipe before diameter reduction-outer diameter of steel pipe after diameter reduction) / outer diameter of steel pipe before diameter reduction × 100 (%).

縮径圧延時の電縫溶接鋼管の加熱温度は、800℃未満では変形抵抗が大きく、一方、1200℃を超えると、加熱スケールの発生が著しくなり表面性状が劣化する。このため、加熱温度は、800〜1200℃の範囲とする。   When the heating temperature of the ERW welded steel pipe at the time of diameter reduction rolling is less than 800 ° C., the deformation resistance is large. For this reason, heating temperature shall be the range of 800-1200 degreeC.

また、縮径圧延時の断面減少率が40%未満では圧縮力が不十分であり、肉厚/外径比が0.15以下の電縫溶接鋼管(母管)から肉厚/外径比が0.15超〜0.30の厚肉電縫溶接鋼管とすることが困難である。一方、断面減少率が80%を超えると、縮径圧延による鋼管の表面疵の発生が著しくなりまた、均一な形状の確保が困難になる。このため、縮径圧延における断面減少率は40〜80%とする。   Also, if the cross-section reduction rate during reduction rolling is less than 40%, the compressive force is insufficient, and the wall thickness / outer diameter ratio from an electric resistance welded steel pipe (master tube) with a wall thickness / outer diameter ratio of 0.15 or less. Is more than 0.15 to 0.30, it is difficult to make a thick ERW welded steel pipe. On the other hand, if the cross-section reduction rate exceeds 80%, the generation of surface flaws on the steel pipe due to reduced diameter rolling becomes significant, and it becomes difficult to ensure a uniform shape. For this reason, the cross-sectional reduction rate in the reduced diameter rolling is 40 to 80%.

なお、本発明の肉厚電縫溶接鋼管が縮径圧延により製造されたものであるか否かは、管軸方向に垂直な断面(C断面)の内面の角張り状態の観察或いは、肉厚測定によって判断することができる。
例えば、縮径圧延に用いられるストレッチレデューサーは、上述のように、圧延軸の周りに3ロール或いは4ロールを有する圧延スタンドを複数、圧延軸に直列に備えた圧延装置であり、通常、隣合う圧延スタンド(例えば、NおよびN+1圧延スタンド)のロールは位相がずらされており、3ロール圧延スタンドの場合は60゜、4ロール圧延スタンドの場合は45゜だけ位相をずらした配置となっている。
従って、縮径圧延によって製造された厚肉電縫溶接鋼管の管軸方向に垂直な断面(C断面)の内面形状は、ストレッチレデューサーが3ロールの圧延スタンドを備える場合は六角形、4ロールの圧延スタンドを備える場合は八角形となる。
また、ストレッチレデューサーの連続する4つの圧延スタンド(例えば、N、N+1、N+2、N+3圧延スタンド)においてロールの位相を、3ロール圧延スタンドの場合に30゜、60゜、90゜とずらし、4ロール圧延スタンドの場合に22.5゜、45゜、67.5゜、とずらした場合は、縮径圧延後の厚肉電縫溶接鋼管の管軸方向に垂直な断面(C断面)の内面形状は、それぞれ、3ロール圧延スタンドを備える場合は、十二角形、4ロール圧延スタンドを備える場合は、十六角形となる。
このように、厚肉電縫溶接鋼管の管軸方向に垂直な断面の内面形状が、上述のような多角形状を形成している場合は、この厚肉電縫溶接鋼管が縮径圧延により製造されたものであることがわかる。
Whether or not the thick-walled ERW welded steel pipe of the present invention is manufactured by reduced diameter rolling is determined by observing the angled state of the inner surface of the cross section (C cross section) perpendicular to the pipe axis direction, It can be judged by measurement.
For example, as described above, a stretch reducer used for diameter reduction rolling is a rolling device provided with a plurality of rolling stands having three or four rolls around a rolling axis in series with the rolling axis, and is usually adjacent to each other. The rolls of the rolling stands (for example, N and N + 1 rolling stands) are out of phase, and are arranged out of phase by 60 ° for a 3 roll rolling stand and 45 ° for a 4 roll rolling stand. .
Therefore, the inner surface shape of the cross section (C cross section) perpendicular to the tube axis direction of the thick-walled ERW welded steel pipe manufactured by reduced diameter rolling is hexagonal, four rolls when the stretch reducer has a three roll rolling stand. When a rolling stand is provided, an octagon is formed.
Also, in the four rolling stands (for example, N, N + 1, N + 2, N + 3 rolling stands) of the stretch reducer, the phase of the roll is shifted to 30 °, 60 °, 90 ° in the case of the 3-roll rolling stand, When the rolling stand is shifted to 22.5 °, 45 ° or 67.5 °, the inner surface shape of the cross section (C cross section) perpendicular to the tube axis direction of the thick-walled ERW welded steel pipe after diameter reduction rolling Are respectively a dodecagonal shape when equipped with a three-roll rolling stand and a hexagonal shape when equipped with a four-roll rolling stand.
Thus, when the inner surface shape of the cross section perpendicular to the tube axis direction of the thick-walled ERW welded steel pipe forms the polygonal shape as described above, this thick-walled ERW welded steel pipe is manufactured by reduction rolling. It can be seen that

以下、本発明を実施例によりさらに具体的に説明する。
表2に示す組成を有する各種鋼を溶製し、鋳片に鋳造した。この鋳片を1150℃に加熱し、圧延仕上げ温度890℃、巻き取り温度630℃で熱間圧延し、板厚6mm鋼板とした。この熱間圧延鋼板を所定の幅にスリットし、高周波電縫溶接により外径90mmの電縫溶接鋼管(母管)とした。引き続き高周波誘導加熱によりこの鋼管を980℃に加熱した後、縮径圧延を施し、肉厚7mm、外径35mmの肉厚電縫溶接鋼管とした。
また、表2のNo.8鋼にて製造した電縫溶接鋼管について、縮径圧延における断面減少率を変化させ、肉厚5〜7.5mm、外径30〜35mmの肉厚電縫溶接鋼管を製造した。
得られた厚肉電縫溶接鋼管を960℃に加熱し水冷して焼入れを行い、300℃×1hrの焼き戻しを行なった。これらの鋼管より試験片を採取して各種の試験を行い、本発明の厚肉電縫溶接鋼管の特性を確認した。
硬さは肉厚中心部をHv9.8Nで5点計測し平均値を求めた。弾性は5mmサブサイズ2mmVノッチシャルピー試験片を用いて試験し、vTrsを求めた。疲労特性は、ばね論文集、28(1983)p.49に記載の方法により、曲げ半径80mmで、中実材相当の第一主応力振幅の計算値が600MPaとなる条件で実施した。フェライト脱炭層の厚さは800℃×1時間の条件で大気中で加熱した後、光学顕微鏡で撮影した写真から測定した。これらの特性の結果を表2および表3に示す。
Hereinafter, the present invention will be described more specifically with reference to examples.
Various steels having the compositions shown in Table 2 were melted and cast into slabs. This slab was heated to 1150 ° C. and hot-rolled at a rolling finish temperature of 890 ° C. and a winding temperature of 630 ° C. to obtain a steel plate having a thickness of 6 mm. This hot-rolled steel sheet was slit into a predetermined width, and an ERW welded steel pipe (master pipe) having an outer diameter of 90 mm was formed by high-frequency ERW welding. Subsequently, the steel pipe was heated to 980 ° C. by high-frequency induction heating, and then subjected to reduction rolling to obtain a thick ERW welded steel pipe having a thickness of 7 mm and an outer diameter of 35 mm.
In Table 2, No. About the ERW welded steel pipe manufactured with 8 steel, the cross-section reduction rate in diameter reduction rolling was changed, and the thickness ERW welded steel pipe of thickness 5-7.5mm and outer diameter 30-35mm was manufactured.
The obtained thick-walled electric resistance welded steel pipe was heated to 960 ° C., cooled with water, quenched, and tempered at 300 ° C. × 1 hr. Specimens were collected from these steel pipes and subjected to various tests to confirm the characteristics of the thick-walled ERW welded steel pipe of the present invention.
The hardness was measured at five points at the center of the wall thickness at Hv 9.8N, and the average value was obtained. Elasticity was tested using a 5 mm sub-size 2 mm V notch Charpy test piece to determine vTrs. Fatigue properties are described in Spring Journal, 28 (1983) p. 49, the bending radius was 80 mm, and the first principal stress amplitude corresponding to the solid material was calculated to be 600 MPa. The thickness of the ferrite decarburized layer was measured from a photograph taken with an optical microscope after heating in air at 800 ° C. for 1 hour. The results of these characteristics are shown in Tables 2 and 3.

表2に示した、本発明の化学成分を有するNo.1〜10の鋼は、硬さ、靭性、耐脱炭性において優れた特性を有していることがわかる。
それに対して、No.11の鋼はVcが大きいために焼きが十分に入らず、0.22%Cにしては十分な硬さが得られなかった例である。No.12の鋼はCuやSbが無添加のため、激しく脱炭した例である。No.13の鋼はC量が不足していたため、自動車構造用部材として最低限必要な硬さが得られなかったのに加えて、CuやSbが無添加のため、激しく脱炭した例である。
表3に示した、本発明鋼管No.a〜eは、破断繰り返し数が50×10回を超える十分な疲労強度を有していることがわかる。
それに対して、No.fの鋼管は、t/Dが小さすぎて十分な疲労強度が得られなかった例である。
No. 2 having the chemical components of the present invention shown in Table 2. It turns out that the steel of 1-10 has the characteristic excellent in hardness, toughness, and decarburization resistance.
In contrast, no. Steel No. 11 is an example in which the Vc is large, so that the steel does not sufficiently baked and sufficient hardness cannot be obtained at 0.22% C. No. Steel No. 12 is an example of intense decarburization because Cu and Sb are not added. No. Steel No. 13 was an example in which the amount of C was insufficient, so that the minimum required hardness for an automobile structural member could not be obtained, and in addition, Cu and Sb were not added, so that the steel was vigorously decarburized.
As shown in Table 3, the present steel pipe No. It can be seen that a to e have sufficient fatigue strength at which the number of repeated fractures exceeds 50 × 10 3 times.
In contrast, no. The steel pipe of f is an example where t / D is too small to obtain sufficient fatigue strength.

厚肉電縫溶接鋼管用鋼材の焼入れ、焼き戻し後の硬さとC量との関係を示す図である。It is a figure which shows the relationship between the hardness after hardening and tempering of the steel material for thick-walled electric-welded steel pipes, and C amount. 脱炭熱処理後の鋼材の断面組織を示す写真であり、(a)は従来材の場合、(b)はC:0.28%を含有する試験材Aの場合、(c)は本発明のC:0.28%、Sb:0.05%を含有する試験材A’の場合をそれぞれ示す。It is a photograph which shows the cross-sectional structure of the steel material after decarburization heat processing, (a) is the case of a conventional material, (b) is the case of the test material A containing 0.28% of C, (c) is the present invention. The case of test material A ′ containing C: 0.28% and Sb: 0.05% is shown.

Claims (4)

質量%で、
C:0.15〜0.5%、
Si:0.05〜0.5%、
Mn:0.3〜2%、
P:0.05%以下、
S:0.05%以下、
Al:0.05%以下、
Ti:0.005〜0.05%、
B:0.0005〜0.01%、
N:0.001〜0.01% を含有し、
さらに、Cu:0.2〜0.5%、Sb:0.01〜0.2%の1種又は2種を含有し、残部がFe及び不可避的不純物からなり、式<1>で表される臨界冷却速度Vcが30℃/s未満であり、肉厚tと外径Dの比であるt/Dが0.15超〜0.30の範囲であることを特徴とする焼入れ性及び耐脱炭性に優れた高強度厚肉電縫溶接鋼管。
logVc=2.94−0.75β ・・・<1>
ただし、β=2.7C+0.4Si+Mn
% By mass
C: 0.15-0.5%
Si: 0.05 to 0.5%,
Mn: 0.3-2%,
P: 0.05% or less,
S: 0.05% or less,
Al: 0.05% or less,
Ti: 0.005 to 0.05%,
B: 0.0005 to 0.01%
N: 0.001 to 0.01% is contained,
Further, it contains one or two of Cu: 0.2 to 0.5% and Sb: 0.01 to 0.2%, and the balance is composed of Fe and inevitable impurities, and is represented by the formula <1>. The critical cooling rate Vc is less than 30 ° C./s, and the ratio of the thickness t to the outer diameter D is t / D in the range of more than 0.15 to 0.30. High-strength thick-walled ERW welded steel pipe with excellent decarburization.
logVc = 2.94−0.75β <1>
However, β = 2.7C + 0.4Si + Mn
質量%で、さらに、
Cr:0.1〜1%、
Mo:0.05〜1%、
Nb:0.01〜0.1%、
V:0.01〜0.5%、
Ni:0.1〜1%の1種または2種以上を含有することを特徴とする請求項1に記載の焼入れ性及び耐脱炭性に優れた高強度厚肉電縫溶接鋼管。
ただし、式<1>において、
β=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+2Mo
In mass%,
Cr: 0.1 to 1%,
Mo: 0.05 to 1%
Nb: 0.01 to 0.1%,
V: 0.01-0.5%
The high-strength thick-walled electric-welded steel pipe excellent in hardenability and decarburization resistance according to claim 1, comprising Ni: 0.1 to 1% or two or more.
However, in formula <1>
β = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + 2Mo
大気中において800℃で1時間保持した後のフェライト脱炭層の厚さが0.15mm未満であることを特徴とする請求項1又は2に記載の焼入れ性及び耐脱炭性に優れた高強度厚肉電縫溶接鋼管。   The high strength excellent in hardenability and decarburization resistance according to claim 1 or 2, wherein the thickness of the ferrite decarburized layer after holding at 800 ° C for 1 hour in the air is less than 0.15 mm Thick ERW welded steel pipe. 請求項1または2に記載の成分を有する電縫溶接鋼管を、800〜1200℃に加熱し、断面減少率が40〜80%の範囲で縮径圧延することを特徴とする焼入れ性及び耐脱炭性に優れた高強度厚肉電縫溶接鋼管の製造方法。   An electric resistance welded steel pipe having the component according to claim 1 or 2 is heated to 800 to 1200 ° C. and reduced in diameter in a range of 40 to 80% in cross-section reduction ratio and hardenability and resistance to desorption. Manufacturing method of high strength thick wall ERW welded steel pipe with excellent charcoal properties.
JP2005239918A 2005-08-22 2005-08-22 High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method Withdrawn JP2007056283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239918A JP2007056283A (en) 2005-08-22 2005-08-22 High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239918A JP2007056283A (en) 2005-08-22 2005-08-22 High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007056283A true JP2007056283A (en) 2007-03-08

Family

ID=37920017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239918A Withdrawn JP2007056283A (en) 2005-08-22 2005-08-22 High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007056283A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093728A1 (en) * 2008-01-21 2009-07-30 Jfe Steel Corporation Hollow member and method for manufacturing same
JP2010070789A (en) * 2008-09-17 2010-04-02 Nippon Steel Corp Machine structural steel pipe having excellent fatigue characteristic and bending formability, and method of manufacturing the same
JP2016222969A (en) * 2015-05-29 2016-12-28 Jfeスチール株式会社 Wear resistant steel sheet excellent in low temperature toughness and corrosive wear resistance
CN111511946A (en) * 2017-12-27 2020-08-07 杰富意钢铁株式会社 Electric resistance welded steel pipe and method for manufacturing electric resistance welded steel pipe
WO2020230795A1 (en) 2019-05-13 2020-11-19 Jfeスチール株式会社 Electric-resistance-welded steel pipe for hollow stabilizer
US20210310091A1 (en) * 2018-12-19 2021-10-07 Jfe Steel Corporation Electric resistance welded steel pipe or tube

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093728A1 (en) * 2008-01-21 2009-07-30 Jfe Steel Corporation Hollow member and method for manufacturing same
JP2009197327A (en) * 2008-01-21 2009-09-03 Jfe Steel Corp Hollow member and method for production thereof
JP2010070789A (en) * 2008-09-17 2010-04-02 Nippon Steel Corp Machine structural steel pipe having excellent fatigue characteristic and bending formability, and method of manufacturing the same
JP2016222969A (en) * 2015-05-29 2016-12-28 Jfeスチール株式会社 Wear resistant steel sheet excellent in low temperature toughness and corrosive wear resistance
EP3733894A4 (en) * 2017-12-27 2020-11-04 JFE Steel Corporation Electric-resistance-welded steel pipe and manufacturing method for electric-resistance-welded steel pipe
KR20200096652A (en) * 2017-12-27 2020-08-12 제이에프이 스틸 가부시키가이샤 Electric electrode welded steel pipe and method of manufacturing electric electrode welded steel pipe
CN111511946A (en) * 2017-12-27 2020-08-07 杰富意钢铁株式会社 Electric resistance welded steel pipe and method for manufacturing electric resistance welded steel pipe
CN111511946B (en) * 2017-12-27 2021-12-07 杰富意钢铁株式会社 Electric resistance welded steel pipe and method for manufacturing electric resistance welded steel pipe
KR102390423B1 (en) 2017-12-27 2022-04-22 제이에프이 스틸 가부시키가이샤 Electric resistance welded steel pipe or tube and production method for electric resistance welded steel pipe or tube
US11512361B2 (en) 2017-12-27 2022-11-29 Jfe Steel Corporation Electric resistance welded steel pipe or tube and production method for electric resistance welded steel pipe or tube
US20210310091A1 (en) * 2018-12-19 2021-10-07 Jfe Steel Corporation Electric resistance welded steel pipe or tube
WO2020230795A1 (en) 2019-05-13 2020-11-19 Jfeスチール株式会社 Electric-resistance-welded steel pipe for hollow stabilizer
KR20220004758A (en) 2019-05-13 2022-01-11 제이에프이 스틸 가부시키가이샤 Electric resistance welded steel pipe for hollow stabilizer

Similar Documents

Publication Publication Date Title
JP5005543B2 (en) High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
US9493865B2 (en) Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method of producing same
JP4264212B2 (en) Steel pipe with excellent formability and method for producing the same
JP6465249B2 (en) ERW steel pipe for high-strength thin-walled hollow stabilizer and method for manufacturing the same
JP4102195B2 (en) ERW welded steel pipe for hollow stabilizer
JP5142141B2 (en) Hot-rolled steel sheets for hydroforming, steel pipes for hydroforming, and methods for producing them
US6736910B2 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
JP4837601B2 (en) Steel pipe for hollow parts and manufacturing method thereof
JP4824145B1 (en) Automotive undercarriage parts excellent in low cycle fatigue characteristics and manufacturing method thereof
CN108368575B (en) Rolling wire rod for cold forging tempered product
JP4853075B2 (en) Hot-rolled steel sheet for hydroforming and its manufacturing method, and electric resistance welded steel pipe for hydroforming
WO2008105216A1 (en) Electric resistance welded steel pipe prior to heat treatment and process for manufacturing the same
JP2004011009A (en) Electric resistance welded steel tube for hollow stabilizer
JP6819198B2 (en) Rolled bar for cold forged tempered products
WO2010110490A1 (en) Electric resistance welded steel pipe having excellent workability and excellent post-quenching fatigue properties
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
CN109642284B (en) Electric welding steel pipe for torsion beam
JP2007056283A (en) High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method
JP5125601B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP7160235B1 (en) Hot shrinking ERW pipe
JP5512231B2 (en) ERW steel pipe for drive shaft with excellent static torsional strength and method for manufacturing the same
CN111511935B (en) Hot-rolled steel sheet having excellent durability and method for producing same
JP2001220643A (en) Medium or high carbon steel sheet excellent in local ductility

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104