JP5512231B2 - ERW steel pipe for drive shaft with excellent static torsional strength and method for manufacturing the same - Google Patents

ERW steel pipe for drive shaft with excellent static torsional strength and method for manufacturing the same Download PDF

Info

Publication number
JP5512231B2
JP5512231B2 JP2009251923A JP2009251923A JP5512231B2 JP 5512231 B2 JP5512231 B2 JP 5512231B2 JP 2009251923 A JP2009251923 A JP 2009251923A JP 2009251923 A JP2009251923 A JP 2009251923A JP 5512231 B2 JP5512231 B2 JP 5512231B2
Authority
JP
Japan
Prior art keywords
steel pipe
less
torsional strength
drive shaft
static torsional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009251923A
Other languages
Japanese (ja)
Other versions
JP2011094217A (en
Inventor
卓也 原
真也 坂本
隆郁 瀬林
満 上川
正彦 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Steel Corp
Original Assignee
Honda Motor Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Steel Corp filed Critical Honda Motor Co Ltd
Priority to JP2009251923A priority Critical patent/JP5512231B2/en
Publication of JP2011094217A publication Critical patent/JP2011094217A/en
Application granted granted Critical
Publication of JP5512231B2 publication Critical patent/JP5512231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、自動車部品として用いられる、静的ねじり強度特性に優れる中空ドライブシャフト用電縫鋼管およびその製造方法に関するものである。   The present invention relates to an electric resistance welded steel pipe for a hollow drive shaft that is excellent in static torsional strength characteristics and is used as an automobile part, and a method for producing the same.

一般に、自動車用として使用される部品、特にドライブシャフトにおいては、要求される特性の1つとして静的ねじり強度がある。従来、ドライブシャフトは中実部品が多く採用されてきたが、近年の自動車の軽量化に伴い、中空化したドライブシャフトの需要が多くなっている。このため、静的ねじり強度に優れた中空ドライブシャフト部品が要求されるようになってきている。静的ねじり強度特性を向上させるためには、一般的に硬さや強度を高めることが効果的であることが知られている。   In general, in parts used for automobiles, particularly drive shafts, one of the required characteristics is static torsional strength. Conventionally, many solid parts have been used for drive shafts, but with the recent reduction in weight of automobiles, the demand for hollow drive shafts has increased. For this reason, a hollow drive shaft component excellent in static torsional strength has been required. In order to improve the static torsional strength characteristics, it is generally known that it is effective to increase the hardness and strength.

特許文献1には、内周表面を、ほぼ軸方向の、ほぼ全面にわたって熱効果処理(熱処理)することが開示されている。例えば、中空ドライブシャフトの外周表面から、ほぼ全面にわたって高周波焼き入れ・焼き戻し行うことにより、外周表面から内周表面までほぼ全面にわたって、全深さ領域に熱処理を行うことが記載されている。
特許文献2においても、中空ドライブシャフトの外周表面から、ほぼ全面にわたって高周波焼き入れ・焼き戻し行うことにより、外周表面から内周表面まで、ほぼ全面にわたって、全深さ領域に熱処理を行うことが記載されている。
Patent Document 1 discloses that the inner peripheral surface is subjected to thermal effect treatment (heat treatment) over substantially the entire surface in the axial direction. For example, it is described that heat treatment is performed on the entire depth region from the outer peripheral surface to the inner peripheral surface by induction hardening and tempering from the outer peripheral surface of the hollow drive shaft to almost the entire surface.
Patent Document 2 also describes that heat treatment is performed on the entire depth region from the outer peripheral surface to the inner peripheral surface by induction hardening and tempering from the outer peripheral surface of the hollow drive shaft to almost the entire surface. Has been.

特許文献3には、静的強度と疲労強度を中実強度以上にするために、中空ドライブシャフトを0.7〜0.9の焼き入れ率で表面焼き入れすることが開示されている。ここで、焼き入れ率とは、400Hv以上になる焼き入れ深さHと肉厚とで定義されている。
特許文献4、5には、外表面からの所定の焼き入れ深さを確保しつつ、内表面の未硬化層を残存させるための製造方法が記載されている。
特許文献6には、中空ドライブシャフトのねじり強度を満足させるため、溶接部と母材部との硬度の比、および、フェライトバンド組織と肉厚との比を規定することが開示されている。
Patent Document 3 discloses that the hollow drive shaft is subjected to surface quenching at a quenching rate of 0.7 to 0.9 in order to make the static strength and fatigue strength higher than the solid strength. Here, the quenching rate is defined by a quenching depth H and a thickness of 400 Hv or more.
Patent Documents 4 and 5 describe manufacturing methods for leaving an uncured layer on the inner surface while ensuring a predetermined quenching depth from the outer surface.
Patent Document 6 discloses that the hardness ratio between the welded portion and the base material portion and the ratio between the ferrite band structure and the wall thickness are specified in order to satisfy the torsional strength of the hollow drive shaft.

このように、中空ドライブシャフトにおける静的ねじり強度を向上させる手段としては、一般に、軸方向のすべてにわたって肉厚方向の硬度を規定する方法が採用されていた。しかしながら、このような方法で製造した部品においても、近年の自動車等の性能向上に伴って要求される高い静的ねじり強度特性を、安定して、かつ、十分に確保できるものではなかった。
また、静的ねじり試験時の破断形態としても、軸方向に対して垂直な破断形態となることが要求されている。
このように、高い静的ねじり強度を有し、かつ、破断形態が最適なものを得るためには、最低硬度を確保する方法以外に、鋼の組織因子として、他の冶金因子も考慮して製造する必要が生じていた。
As described above, as a means for improving the static torsional strength of the hollow drive shaft, generally, a method of defining the hardness in the thickness direction over the entire axial direction has been adopted. However, even in the parts manufactured by such a method, the high static torsional strength characteristics required in accordance with the recent performance improvement of automobiles and the like cannot be secured stably and sufficiently.
Moreover, it is requested | required that it may become a fracture | rupture form perpendicular | vertical with respect to an axial direction also as a fracture | rupture form at the time of a static torsion test.
In this way, in order to obtain a high static torsional strength and an optimal fracture mode, in addition to the method of ensuring the minimum hardness, other metallurgical factors are also considered as a steel structure factor. There was a need to manufacture.

特開2002−349538号公報JP 2002-349538 A 特開2002−356742号公報JP 2002-356742 A 特開2003−90325号公報JP 2003-90325 A 特開2006−2809号公報JP 2006-2809 A 特開2006−2185号公報JP 2006-2185 A 特開2004−162125号公報JP 2004-162125 A

本発明は上記問題に鑑みてなされたものであり、自動車用部品、特に、電縫鋼管を冷間加工して所定の形状に成形し、高周波焼き入れを施して中空部品としたドライブシャフト用電縫鋼管において、静的ねじり強度に優れたドライブシャフト用電縫鋼管およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems. In particular, automotive parts, in particular, electric shafts for drive shafts, which are cold-worked into a predetermined shape by hot working and subjected to induction hardening to form hollow parts. An object of the present invention is to provide an electric-sealed steel pipe for a drive shaft that is excellent in static torsional strength and a manufacturing method thereof.

本発明は以下の構成を要旨とするものである。   The gist of the present invention is as follows.

[1] 鋼成分が、質量%で、C:0.25〜0.55%、Si:0.35%以下、Mn:0.600〜1.50%、Al:0.001〜0.060%、O:0.0001〜0.0025%、S:0.0025%以下、P:0.010%以下、N:0.005%以下、B:0.0003%未満を含有し、残部Fe及び不可避不純物からなる電縫鋼管であって、当該電縫鋼管の管軸方向に垂直の断面の最小硬度(Hv)と、当該断面の旧オーステナイト粒度番号(GS)との関係が、下記(1)式を満足することを特徴とする静的ねじり強度に優れたドライブシャフト用電縫鋼管。
0.25Hv − 65GS + 500 > 0 ・・・・・ (1)
[2] 鋼成分が、更に、質量%で、Cr:0.05〜1.00%、Mo:0.05〜1.00%、Ni:0.10〜2.00%、Cu:0.10〜2.00%、Nb:0.001〜0.20%、V:0.001〜0.20%、Ti:0.001〜0.20%、Mg:0.0001〜0.0050%、Ca:0.0001〜0.0100%のうち一種または二種以上を含有することを特徴とする上記[1]に記載の静的ねじり強度に優れたドライブシャフト用電縫鋼管。
[3] 上記[1]又は[2]に記載のドライブシャフト用電縫鋼管の製造方法であって、上記[1]又は[2]に記載の鋼成分を有する電縫鋼管を造管した後、当該電縫鋼管を900℃以上1000℃以下の温度で焼入れし、その後、100℃以上300℃以下の焼戻し温度で焼戻し処理を実施することを特徴とする静的ねじり強度に優れたドライブシャフト用電縫鋼管の製造方法
[1] Steel component is mass%, C: 0.25 to 0.55%, Si: 0.35% or less, Mn: 0.600 to 1.50%, Al: 0.001 to 0.060 %, O: 0.0001 to 0.0025 %, S: 0.0025% or less, P: 0.010% or less, N: 0.005% or less, B: less than 0.0003%, and the balance Fe And the relationship between the minimum hardness (Hv) of the cross section perpendicular to the pipe axis direction of the ERW steel pipe and the prior austenite grain size number (GS) of the cross section (1) ERW steel pipe for drive shafts with excellent static torsional strength, characterized by satisfying
0.25Hv-65GS + 500> 0 (1)
[2] The steel component is further in mass%, Cr: 0.05 to 1.00%, Mo: 0.05 to 1.00%, Ni: 0.10 to 2.00%, Cu: 0.00. 10 to 2.00%, Nb: 0.001 to 0.20%, V: 0.001 to 0.20%, Ti: 0.001 to 0.20%, Mg: 0.0001 to 0.0050% Ca: 0.0001 to 0.0100% of one or more of them are contained, [1] The electric-welded steel pipe for drive shafts having excellent static torsional strength according to the above [1].
[3] A method for producing an electric resistance welded steel pipe for a drive shaft according to [1] or [2], wherein the electric resistance welded steel pipe having the steel component according to [1] or [2] is formed. The drive shaft excellent in static torsional strength, wherein the electric resistance welded steel pipe is quenched at a temperature of 900 ° C. or higher and 1000 ° C. or lower and then tempered at a temperature of 100 ° C. or higher and 300 ° C. or lower . A method for manufacturing ERW steel pipes .

本発明の静的ねじり強度に優れたドライブシャフト用電縫鋼管およびその製造方法によれば、上記構成により、優れた静的ねじり強度を有する中空部品であるドライブシャフト用電縫鋼管が得られるので、自動車および機械構造用部品として満足できるドライブシャフト用電縫鋼管を提供することが可能となることから、産業上の効果は極めて大きい。   According to the ERW steel pipe for a drive shaft having excellent static torsional strength and the manufacturing method thereof according to the present invention, an ERW steel pipe for driveshaft, which is a hollow part having excellent static torsional strength, can be obtained by the above configuration. Since it becomes possible to provide an electric resistance welded steel pipe for a drive shaft that can be satisfied as a component for automobiles and mechanical structures, the industrial effect is extremely large.

以下、本発明の静的ねじり強度に優れたドライブシャフト用電縫鋼管およびその製造方法の実施の形態について説明する。なお、この実施形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an electric resistance welded steel pipe for a drive shaft and a manufacturing method thereof according to the present invention will be described below. In addition, since this embodiment is described in detail for better understanding of the gist of the invention, the present invention is not limited unless otherwise specified.

本発明の静的ねじり強度に優れたドライブシャフト用電縫鋼管(以下、電縫鋼管と略称することがある)は、鋼成分が、質量%で、C:0.25〜0.55%、Si:0.35%以下、Mn:0.600〜1.50%、Al:0.001〜0.060%、O:0.0001〜0.0050%、S:0.0025%以下、P:0.010%以下、N:0.005%以下、B:0.0003%未満を含有し、残部Fe及び不可避不純物からなり、当該電縫鋼管の管軸方向に垂直の断面の最小硬度(Hv)と、当該断面の旧オーステナイト粒度番号(GS)との関係が、下記(1)式を満足する構成とされている。
0.25Hv − 65GS + 500 > 0 ・・・・・ (1)
The electric resistance welded steel pipe for drive shafts (hereinafter sometimes abbreviated as electric resistance welded steel pipe) having excellent static torsional strength according to the present invention has a steel component of mass%, C: 0.25 to 0.55%, Si: 0.35% or less, Mn: 0.600 to 1.50%, Al: 0.001 to 0.060%, O: 0.0001 to 0.0050%, S: 0.0025% or less, P : 0.010% or less, N: 0.005% or less, B: Less than 0.0003%, consisting of the balance Fe and inevitable impurities, the minimum hardness of the cross section perpendicular to the tube axis direction of the ERW steel pipe ( The relationship between Hv) and the prior austenite grain size number (GS) of the cross section satisfies the following formula (1).
0.25Hv-65GS + 500> 0 (1)

本発明の電縫鋼管においては、化学成分、硬度、および、オーステナイト結晶粒径を特定条件下で組み合わせて規定しており、以下に、要件ごとに詳細に説明する。   In the ERW steel pipe of the present invention, the chemical composition, hardness, and austenite crystal grain size are defined in combination under specific conditions, and will be described in detail below for each requirement.

<鋼成分>
以下に、本発明における鋼成分についての限定理由を説明する。本発明においては、以下に示す各元素を含有し、残部Feおよび不可避的不純物からなる鋼成分とされた電縫鋼管を用いる。
なお、以下の説明における各元素の含有量の単位は、特に指定の限り、質量%で表されるものとする。
<Steel component>
Below, the reason for limitation about the steel component in this invention is demonstrated. In the present invention, an ERW steel pipe containing the following elements and having a steel component composed of the remaining Fe and inevitable impurities is used.
In addition, unless otherwise specified, the unit of content of each element in the following description shall be represented by mass%.

「C:炭素」0.25〜0.55%
Cは、自動車および機械構造用部品としての、強度確保並びに高周波焼き入れ性を確保するために必要な元素であるが、0.25%未満では最終製品の強度が不足し、高周波焼き入れ性も確保できない。また、Cの含有量が0.55%を超えると、むしろ硬くなって冷間加工性の劣化を招く。
従って、Cの含有量は、0.25〜0.55%の範囲とする。
“C: Carbon” 0.25 to 0.55%
C is an element necessary for securing strength and high-frequency hardenability for automobiles and machine structural parts. However, if it is less than 0.25%, the strength of the final product is insufficient, and high-frequency hardenability is also achieved. It cannot be secured. On the other hand, if the C content exceeds 0.55%, it becomes rather hard and causes deterioration of cold workability.
Therefore, the C content is in the range of 0.25 to 0.55%.

「Si:ケイ素」0.35%以下
Siは、固溶体強化によって硬さの上昇を招き、冷間加工性が劣化する。
従って、Siの含有量は、0.35%以下とした。
“Si: silicon” 0.35% or less Si increases hardness by solid solution strengthening, and cold workability deteriorates.
Therefore, the Si content is set to 0.35% or less.

「Mn:マンガン」0.600〜1.50%
Mnは、高周波焼き入れ性の確保に有効な元素であるが、0.600%未満ではこの効果が不十分である。一方、Mnの含有量が1.50%を超えると、むしろ硬くなって冷間加工性の劣化を招く。
従って、Mnの含有量は、0.60〜1.50%の範囲とする。
“Mn: Manganese” 0.600 to 1.50%
Mn is an element effective for ensuring induction hardenability, but if it is less than 0.600%, this effect is insufficient. On the other hand, when the content of Mn exceeds 1.50%, it becomes rather hard and causes deterioration of cold workability.
Therefore, the Mn content is in the range of 0.60 to 1.50%.

「Al:アルミニウム」0.001〜0.060%
Alは、脱酸元素であり、酸化物を生成する。Alの含有量が0.001%未満では脱酸の効果がなく、0.060%を超えると脱酸効果は飽和する。
従って、Alの含有量は、0.001〜0.06%の範囲とする。
"Al: Aluminum" 0.001-0.060%
Al is a deoxidizing element and generates an oxide. When the Al content is less than 0.001%, there is no deoxidation effect, and when it exceeds 0.060%, the deoxidation effect is saturated.
Therefore, the Al content is in the range of 0.001 to 0.06%.

「O:酸素」O:0.0001〜0.0050%、
Oは、鋼中に不可避的に含有される成分であり、酸化物を生成する。Oの含有量を0.0001%未満とする制御は困難であり、また、0.0050%を超えると介在物が多くなるため、ねじり強度、疲労強度を劣化させる。
従って、Oの含有量は、0.0001〜0.0050%の範囲とする。
“O: oxygen” O: 0.0001 to 0.0050%,
O is a component inevitably contained in the steel and generates an oxide. It is difficult to control the O content to be less than 0.0001%, and when it exceeds 0.0050%, inclusions increase, and the torsional strength and fatigue strength are deteriorated.
Therefore, the content of O is set to a range of 0.0001 to 0.0050%.

「S:硫黄」0.0025%以下
Sは、Mnと結合してMnSを形成する。MnSは、冷間加工において割れの発生起点となりかねないため、Sの含有量はできるだけ少ないことが望ましい。
従って、Sの含有量は、0.0025%以下とする。
“S: sulfur” 0.0025% or less S combines with Mn to form MnS. Since MnS may become a starting point of cracking in cold working, it is desirable that the content of S is as small as possible.
Therefore, the content of S is set to 0.0025% or less.

「P:リン」0.010%以下
Pは、鋼中に不可避的に含有される成分であるが、Pは鋼中で粒界偏析や中心偏析を起こし、延性劣化の原因となるので、その含有量を0.010%以下に制限する。
“P: Phosphorus” 0.010% or less P is a component inevitably contained in steel, but P causes grain boundary segregation and center segregation in steel and causes ductility deterioration. The content is limited to 0.010% or less.

「N:窒素」N:0.005%以下
Nは、鋼中に不可避的に含有される成分であるが、Nを多く含むと、靭性あるいは延性劣化の原因となるので、その含有量を0.005%以下に制限する。
“N: Nitrogen” N: 0.005% or less N is a component inevitably contained in steel, but if N is contained in a large amount, it causes toughness or ductility deterioration. Limited to 0.005% or less.

「B:ボロン(ホウ素)」B:0.0003%未満
Bは、高周波焼き入れ性の確保に有効な元素であるが、0.0003%以上だと強度がばらつく可能性がある。
従って、Bの含有量は、0.0003%未満とする。
"B: Boron (boron)" B: less than 0.0003% B is an element effective for ensuring high-frequency hardenability, but if it is 0.0003% or more, the strength may vary.
Therefore, the B content is less than 0.0003%.

本発明においては、上記各元素を必須としたうえで、さらに、以下に説明する各元素のうちの一種または二種以上を選択的に添加することができる。
以下、各選択添加元素の含有量の限定理由について説明する。
In this invention, after making each said element essential, 1 type or 2 types or more of each element demonstrated below can be added selectively.
Hereinafter, the reason for limiting the content of each selectively added element will be described.

「Cr:クロム」0.05〜1.00%
Crは、高周波焼き入れ性の確保に有効な元素であるが、0.05%未満ではこの効果が不十分とある。一方、Crの含有量が1.00%を超えると、むしろ硬くなって冷間加工性の劣化を招く。
従って、Crの含有量は、0.05〜1.00%の範囲とする。
"Cr: Chromium" 0.05-1.00%
Cr is an element effective for ensuring induction hardenability, but if it is less than 0.05%, this effect is insufficient. On the other hand, when the content of Cr exceeds 1.00%, it is rather hard and causes deterioration of cold workability.
Therefore, the Cr content is in the range of 0.05 to 1.00%.

「Mo:モリブデン」0.05〜1.00%
Moは、高周波焼き入れ性の確保に有効な元素であるが、0.05%未満ではこの効果が不十分である。一方、Moの含有量が1.00%を超えると、むしろ硬くなって冷間加工性の劣化を招く。
従って、Moの含有量は0.05〜1.00%の範囲とする。
"Mo: Molybdenum" 0.05-1.00%
Mo is an element effective for ensuring high-frequency hardenability, but if it is less than 0.05%, this effect is insufficient. On the other hand, if the Mo content exceeds 1.00%, it becomes rather hard and causes deterioration of cold workability.
Therefore, the Mo content is in the range of 0.05 to 1.00%.

「Ni:ニッケル」0.10〜2.00%、
Niは、高周波焼き入れ性の確保に有効な元素であるが、0.10%未満ではこの効果が不十分である。一方、Niの含有量が2.00%を超えると、むしろ硬くなって冷間加工性の劣化を招く。
従って、Niの含有量は、0.10〜2.00%の範囲とする。
“Ni: nickel” 0.10 to 2.00%,
Ni is an element effective for ensuring high-frequency hardenability, but if it is less than 0.10%, this effect is insufficient. On the other hand, if the Ni content exceeds 2.00%, it becomes rather hard and causes deterioration of cold workability.
Therefore, the Ni content is in the range of 0.10 to 2.00%.

「Cu:銅」0.10〜2.00%
Cuは、高周波焼き入れ性の確保に有効な元素であるが、0.10%未満ではこの効果が不十分である。一方、Cuの含有量が2.00%を超えると、むしろ硬くなって冷間加工性の劣化を招く。
従って、Cuの含有量は、0.10〜2.00%の範囲とする。
"Cu: Copper" 0.10 to 2.00%
Cu is an element effective for ensuring induction hardenability, but if less than 0.10%, this effect is insufficient. On the other hand, if the Cu content exceeds 2.00%, it becomes rather hard and causes deterioration of cold workability.
Therefore, the Cu content is in the range of 0.10 to 2.00%.

「Nb:ニオブ」0.001〜0.20%
Nbは、CやNとの親和力が強いことから、NbCNとして析出する。中空化構造とされたドライブシャフトを焼き入れする場合には、NbCNがピニング粒子として作用し、オーステナイト結晶粒の成長を抑制して粒径粗大化を抑える働きがある。しかしながら、Nbの含有量が0.001%未満では、上記効果が不十分である。一方、Nbの含有量が0.20%を超えると、NbCNの析出硬化が顕著となり、冷間加工性の劣化を招く。
従って、Nbの含有量は、0.001〜0.20%の範囲とする。
“Nb: Niobium” 0.001 to 0.20%
Nb precipitates as NbCN because of its strong affinity with C and N. When quenching a hollow drive shaft, NbCN acts as pinning particles, and suppresses the growth of austenite crystal grains and suppresses coarsening of the grain size. However, if the Nb content is less than 0.001%, the above effect is insufficient. On the other hand, when the content of Nb exceeds 0.20%, precipitation hardening of NbCN becomes remarkable, resulting in deterioration of cold workability.
Therefore, the Nb content is in the range of 0.001 to 0.20%.

「V:バナジウム」0.001〜0.20%、
Vは、Cとの親和力が強いことから、VCとして析出する。中空化構造とされたドライブシャフトを焼き入れする場合には、VCがピニング粒子として作用し、オーステナイト結晶粒の成長を抑制して粒径粗大化を抑える働きがある。しかしながら、Vの含有量が0.001%未満では、上記効果が不十分である。一方、Vの含有量が0.20%を超えると、VCの析出硬化が顕著となり、冷間加工性の劣化を招く。
従って、Vの含有量は、0.001〜0.20%の範囲とする。
“V: vanadium” 0.001 to 0.20%,
V precipitates as VC because of its strong affinity with C. When quenching a hollow drive shaft, VC acts as pinning particles, and suppresses the growth of austenite crystal grains and suppresses coarsening of the grain size. However, when the V content is less than 0.001%, the above effect is insufficient. On the other hand, when the content of V exceeds 0.20%, precipitation hardening of VC becomes remarkable, which causes deterioration of cold workability.
Therefore, the V content is in the range of 0.001 to 0.20%.

「Ti:チタン」0.001〜0.20%、
Tiは、Nとの親和力が強いことから、TiNとして析出する。中空化構造とされたドライブシャフトを焼き入れする場合には、TiNがピニング粒子として作用し、オーステナイト結晶粒の成長を抑制して粒径粗大化を抑える働きがある。しかしながら、Tiの含有量が0.001%未満では、上記効果が不十分である。一方、Tiの含有量が0.20%を超えると、TiNの析出硬化が顕著となり、冷間加工性の劣化を招く。
従って、Tiの含有量は、0.001〜0.20%の範囲とする。
“Ti: Titanium” 0.001 to 0.20%,
Ti precipitates as TiN because of its strong affinity with N. When quenching a hollow drive shaft, TiN acts as pinning particles, and has the function of suppressing the growth of austenite crystal grains and suppressing the coarsening of the grain size. However, when the Ti content is less than 0.001%, the above effects are insufficient. On the other hand, when the Ti content exceeds 0.20%, precipitation hardening of TiN becomes remarkable, which causes deterioration of cold workability.
Therefore, the Ti content is in the range of 0.001 to 0.20%.

「Mg:マグネシウム」0.0001〜0.0050%
Mgは、脱酸元素であり、酸化物を生成する。この酸化物は、MnSの析出核になり、MnSの微細均一分散に効果がある。しかしながら、Mgの含有量が0.0001%未満では効果がなく、また、0.0050%を超えても、歩留まりが極端に低下するばかりで効果は飽和する。
従って、Mgの含有量は、0.0001〜0.0050%の範囲とする。
“Mg: Magnesium” 0.0001 to 0.0050%
Mg is a deoxidizing element and generates an oxide. This oxide becomes a precipitation nucleus of MnS and is effective in fine and uniform dispersion of MnS. However, if the Mg content is less than 0.0001%, there is no effect, and if it exceeds 0.0050%, the yield is drastically lowered and the effect is saturated.
Therefore, the Mg content is in the range of 0.0001 to 0.0050%.

「Ca:カルシウム」0.0001〜0.0100%
Caは、母材および電縫溶接部の介在物の形態を調整し、冷間加工性を向上するのに 有効である。しかしながら、Caの含有量が多すぎると鋼中の介在物が増加し、逆に冷間加工性を劣化させる。
従って、Caの含有量は、0.0001〜0.0100%の範囲とする。
“Ca: calcium” 0.0001 to 0.0100%
Ca is effective for adjusting the form of inclusions in the base metal and the ERW weld and improving the cold workability. However, when there is too much content of Ca, the inclusion in steel will increase and conversely cold workability will deteriorate.
Therefore, the Ca content is in the range of 0.0001 to 0.0100%.

<硬度とオーステナイト粒度番号>
本発明では、電縫鋼管の管軸方向に垂直の断面の最小硬度(Hv)と、当該断面の旧オーステナイト粒度番号(GS)との関係が、次式{0.25Hv−65GS+500>0}を満足する構成とされている。
以下、硬さとオーステナイト結晶粒径の限定理由について詳述する。
<Hardness and austenite grain size number>
In the present invention, the relationship between the minimum hardness (Hv) of the cross section perpendicular to the pipe axis direction of the ERW steel pipe and the prior austenite grain size number (GS) of the cross section is expressed by the following expression {0.25Hv−65GS + 500> 0}. It is considered to be a satisfactory configuration.
Hereinafter, the reasons for limiting the hardness and the austenite grain size will be described in detail.

後述する製造条件により、冷間加工後に高周波焼き入れした鋼材からなる中空部品である、本発明のドライブシャフト用電縫鋼管のねじり疲労強度は、部品の硬さと相関があり、ねじり疲労強度向上のためには硬さを高くする必要がある。本発明者等が鋭意検討した結果、本発明で規定する化学成分を有する鋼材は、通常の高周波焼き入れ後の中空部品の最小硬さ(HV)とオーステナイト粒径(GS)との関係が、次式{0.25Hv−65GS+500>0}を満足することで、静的ねじり強度が確保でき、かつ、ドライブシャフトの軸方向に対して垂直に破断することが確認された。   The torsional fatigue strength of the ERW steel pipe for drive shafts of the present invention, which is a hollow part made of a steel material induction-hardened after cold working according to the manufacturing conditions described later, has a correlation with the hardness of the part, improving the torsional fatigue strength. Therefore, it is necessary to increase the hardness. As a result of intensive studies by the present inventors, the steel material having the chemical components defined in the present invention has a relationship between the minimum hardness (HV) of hollow parts after normal induction hardening and the austenite grain size (GS). By satisfying the following formula {0.25Hv-65GS + 500> 0}, it was confirmed that the static torsional strength could be secured and the fracture occurred perpendicular to the axial direction of the drive shaft.

一方、高周波焼き入れ後の中空部品である、本発明のドライブシャフト用電縫鋼管の最小硬さ(HV)とオーステナイト粒度(GS)の関係が、次式{0.25Hv−65GS+500<0}のような関係であると、安定した静的ねじり強度が得られず、かつ、せん断方向に破断が生じてしまうことが明らかとなった。従って、本発明においては、電縫鋼管を冷間加工して所定の形状に成形し、高周波焼き入れ後の中空部品であるドライブシャフト用電縫鋼管の肉厚方向と周方向の全域において、最小硬度(Hv)とオーステナイト粒度番号(GS)との関係を、次式{0.25Hv−65GS+500>0}とした。   On the other hand, the relationship between the minimum hardness (HV) and the austenite grain size (GS) of the electric resistance welded steel pipe for drive shafts of the present invention, which is a hollow part after induction hardening, is represented by the following formula {0.25Hv−65GS + 500 <0}. With such a relationship, it has been clarified that stable static torsional strength cannot be obtained and breakage occurs in the shear direction. Therefore, in the present invention, the ERW steel pipe is cold-worked and formed into a predetermined shape, and is minimum in the entire thickness direction and circumferential direction of the ERW steel pipe for drive shafts, which is a hollow part after induction hardening. The relationship between the hardness (Hv) and the austenite grain size number (GS) was represented by the following formula {0.25Hv−65GS + 500> 0}.

なお、上記断面の硬さは、管軸方向に垂直の断面において、内表面から外表面にむけて1mmピッチで荷重10kgにて測定し、溶接部が存在する場合に、その場所と90°、180°ならびに270°における位置の肉厚方向の硬度測定を行い、これらの最小硬度(Hv)をもとめることで測定できる。
また、オーステナイト粒度番号は、3%硝酸+97%エタノール溶液にて管軸方向の断面を腐食し、そのオーステナイト粒径を観察することによって測定できる。この際、50倍から200倍の視野にて、肉厚方向および円周方向の領域を光学顕微鏡写真にて撮影し、オーステナイトの粒度番号をASTMに準拠して測定できる。
Note that the hardness of the cross section is measured at a load of 10 kg at a pitch of 1 mm from the inner surface to the outer surface in a cross section perpendicular to the tube axis direction. It can be measured by measuring the hardness in the thickness direction at the positions of 180 ° and 270 ° and determining the minimum hardness (Hv).
The austenite particle size number can be measured by corroding the cross section in the tube axis direction with a 3% nitric acid + 97% ethanol solution and observing the austenite particle size. At this time, in the field of view of 50 to 200 times, regions in the thickness direction and the circumferential direction can be taken with an optical micrograph, and the particle size number of austenite can be measured according to ASTM.

<静的ねじり強度>
本発明において説明する静的ねじり強度とは、ねじりせん断応力によって表される。電縫鋼管の静的ねじり強度の測定方法としては、例えば、ねじり疲労試験機を使用し、ねじり角度を徐々に増加させながら、順次トルクを測定して破断するまでのトルクを求め、試験サンプルである電縫鋼管の断面寸法から、計算によってせん断応力を求めることで測定可能である。
<Static torsional strength>
The static torsional strength described in the present invention is expressed by torsional shear stress. As a method of measuring the static torsional strength of ERW steel pipe, for example, using a torsional fatigue tester, gradually increasing the torsional angle, measuring the torque until it breaks, and using the test sample It can be measured by calculating the shear stress from the cross-sectional dimensions of a certain ERW steel pipe.

<製造方法(製造条件)>
本発明の静的ねじり強度に優れたドライブシャフト用電縫鋼管の製造方法は、上述した本発明の電縫鋼管を製造するにあたり、まず、上記鋼成分を有する電縫鋼管を造管した後、当該電縫鋼管を900℃以上1000℃以下の温度で焼入れし、その後、焼戻し処理を実施する方法である。
<Manufacturing method (manufacturing conditions)>
The method for producing an electric resistance welded steel pipe for a drive shaft having excellent static torsional strength according to the present invention, in producing the above-described electric resistance welded steel pipe of the present invention, after first forming an electric resistance welded steel pipe having the above steel components, The electric resistance welded steel pipe is quenched at a temperature of 900 ° C. or higher and 1000 ° C. or lower, and then tempered.

本発明の製造方法では、鋼管を冷間加工して所定の形状に成形し、高周波焼き入れを施し、所望の特性を有する自動車および機械構造用の部品、本発明においては、ドライブシャフト用電縫鋼管に仕上げる。この際の高周波焼き入れの方法としては、特に限定されるものではなく、この分野における通常の方法で行えばよい。また、本発明が適用可能な鋼管としては、電縫鋼管のみならず、例えば、棒鋼などをくりぬいて本願の構成を満足するものであれば、特に限定されない。
以下に、本発明で規定する製造条件について、詳細に説明する。
According to the manufacturing method of the present invention, a steel pipe is cold-worked and formed into a predetermined shape, subjected to induction hardening, and parts for automobiles and machine structures having desired characteristics. Finish in steel pipe. The method of induction hardening at this time is not particularly limited, and may be performed by a normal method in this field. Further, the steel pipe to which the present invention can be applied is not particularly limited as long as it satisfies the configuration of the present application by hollowing out not only an electric resistance steel pipe but also, for example, a steel bar.
Below, the manufacturing conditions prescribed | regulated by this invention are demonstrated in detail.

「焼入れ処理温度」
本発明では、電縫鋼管を造管後、当該電縫鋼管を焼き入れする際の焼き入れ温度を、900℃以上1000℃以下の温度に規定した。焼入れ温度が900℃未満であると、焼き入れ性が下がり、静的ねじり強度が所定の強度を満たさなくなるため、900℃以上に規定した。一方、焼入れ温度が1000℃を超えると、オーステナイト粒径が粗大化して靭性が低下し、軸方向に垂直な破断が生じなくなる。従って、焼き入れ温度の範囲を、900℃以上1000℃以下とした。
"Quenching temperature"
In the present invention, after forming the ERW steel pipe, the quenching temperature when quenching the ERW steel pipe is defined as a temperature of 900 ° C. or higher and 1000 ° C. or lower. When the quenching temperature is less than 900 ° C., the hardenability is lowered, and the static torsional strength does not satisfy the predetermined strength. On the other hand, if the quenching temperature exceeds 1000 ° C., the austenite grain size becomes coarse and the toughness is lowered, and no fracture perpendicular to the axial direction occurs. Accordingly, the quenching temperature range is set to 900 ° C. or higher and 1000 ° C. or lower.

「焼戻し処理温度」
本発明の製造方法においては、焼戻し処理における焼き戻し温度を100℃以上300℃以下の範囲とすることが好ましい。焼き戻し温度が100℃以下であると、水素の拡散が不十分となり、割れが生じることが懸念されるので、100℃以上とすることが好ましい。一方、焼入れ温度が300℃を超えると、焼き戻しに伴う組織の回復が起こり、静的ねじり強度を確保できなくなる。従って、焼き戻し温度の範囲を100℃以上300℃以下とした。
“Tempering treatment temperature”
In the production method of the present invention, the tempering temperature in the tempering treatment is preferably in the range of 100 ° C. or more and 300 ° C. or less. When the tempering temperature is 100 ° C. or lower, hydrogen diffusion becomes insufficient and there is a concern that cracking may occur. On the other hand, if the quenching temperature exceeds 300 ° C., the structure is recovered due to tempering, and static torsional strength cannot be ensured. Therefore, the range of the tempering temperature is set to 100 ° C. or more and 300 ° C. or less.

以上説明したような、本発明に係る静的ねじり強度に優れたドライブシャフト用電縫鋼管およびその製造方法によれば、上記構成により、優れた静的ねじり強度を有する中空部品であるドライブシャフト用電縫鋼管が得られるので、自動車および機械構造用部品として満足できるドライブシャフト用電縫鋼管を提供することが可能となることから、産業上の効果は極めて大きい。   As described above, according to the ERW steel pipe for a drive shaft having excellent static torsional strength and a method for manufacturing the same according to the present invention, the drive shaft that is a hollow part having excellent static torsional strength is provided by the above configuration. Since the electric resistance welded steel pipe can be obtained, it is possible to provide an electric resistance welded steel pipe for a drive shaft that is satisfactory as a part for automobiles and machine structures. Therefore, the industrial effect is extremely large.

以下、本発明の静的ねじり強度に優れたドライブシャフト用電縫鋼管およびその製造方法の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the present invention will be described in more detail by giving examples of the drive shaft electric resistance welded steel pipe excellent in static torsional strength of the present invention and its manufacturing method, but the present invention is originally limited to the following examples. However, the present invention can be carried out with appropriate modifications within a range that can meet the gist of the preceding and following descriptions, and these are all included in the technical scope of the present invention.

[電縫鋼管の製造]
製鋼工程において溶鋼の脱酸・脱硫と化学成分を制御し、連続鋳造により、下記表1に示す化学成分組成を有し、また、下記表2に示す板厚とされた鋼番号1〜16の鋼帯を製造した。次いで、これらの鋼帯を、下記表2に示す外径で、連続的に管状に成形した後、この管状鋼帯のエッジ部を高周波溶接によって溶接した。次いで、得られた管状鋼帯を、下記表2に示す条件で、900℃以上1000℃以下にて再加熱焼き入れした後、100℃以上300℃以下の温度で焼き戻すことにより、鋼番号1〜16の電縫鋼管を製造した。
[Manufacture of ERW steel pipe]
In the steel making process, the deoxidation / desulfurization and chemical components of the molten steel are controlled, and by continuous casting, the chemical components composition shown in Table 1 below is used, and the steel thicknesses 1 to 16 are set to the plate thicknesses shown in Table 2 below. A steel strip was produced. Next, these steel strips were continuously formed into a tubular shape with the outer diameters shown in Table 2 below, and then the edge portions of the tubular steel strips were welded by high frequency welding. Next, the obtained tubular steel strip was tempered at 900 ° C. or higher and 1000 ° C. or lower under the conditions shown in Table 2 below, and then tempered at a temperature of 100 ° C. or higher and 300 ° C. or lower. ˜16 ERW steel pipes were produced.

[評価試験]
上記方法によって製造した電縫鋼管について、以下のような評価試験を行い、結果を下記表3に示した。
まず、最小硬度(Hv)としては、ビッカ−ス硬度計による肉厚方向の硬度分布からの、最小の硬度を求めた。この際の荷重は10kgとした。
また、オーステナイト粒度番号は、3%硝酸+97%エタノール溶液にて管軸方向の断面を腐食し、そのオーステナイト粒径を観察した。この際、50倍から200倍の視野にて肉厚方向および円周方向の領域を光学顕微鏡写真にて撮影し、ASTMに準拠してオーステナイトの粒径を測定することにより、オーステナイト粒度番号を導き出した。
[Evaluation test]
The electric resistance welded steel pipe manufactured by the above method was subjected to the following evaluation test, and the results are shown in Table 3 below.
First, as the minimum hardness (Hv), the minimum hardness was determined from the hardness distribution in the thickness direction by a Vickers hardness meter. The load at this time was 10 kg.
As for the austenite particle size number, the section in the tube axis direction was corroded with 3% nitric acid + 97% ethanol solution, and the austenite particle size was observed. At this time, the region in the thickness direction and the circumferential direction is photographed with an optical micrograph in a field of view of 50 to 200 times, and the austenite grain size number is derived by measuring the austenite grain size in accordance with ASTM. It was.

また、静的ねじり強度は、市販のねじり疲労試験機を使用し、ねじり角度を徐々に増加させながら、順次トルクを測定して破断するまでのトルクを求め、電縫鋼管の断面寸法から、計算によってせん断応力を求めることで測定した。
また、破断形態については、上記ねじり疲労試験機を用いた試験によって破断した電縫鋼管の破断面を、走査電子顕微鏡観察することによって確認した。
The static torsional strength is calculated from the cross-sectional dimensions of the ERW steel pipe using a commercially available torsional fatigue tester, measuring the torque until the torsion angle is gradually increased while gradually increasing the torsion angle. Measured by determining the shear stress.
Moreover, about the fracture | rupture form, it confirmed by observing the fracture surface of the ERW steel pipe fractured | ruptured by the test using the said torsional fatigue testing machine by scanning electron microscope.

本実施例の電縫鋼管の化学成分組成の一覧を表1に示すとともに、電縫鋼管の外径および肉厚(板厚)、焼入れ温度並びに焼戻し温度の条件の一覧を下記表2に示し、また、最小硬度(Hv)、オーステナイト粒度番号、静的ねじり強度および破断形態の評価結果一覧を下記表3に示す。   A list of chemical composition of the ERW steel pipe of this example is shown in Table 1, and a list of conditions of the outer diameter and thickness (sheet thickness), quenching temperature, and tempering temperature of the ERW steel pipe is shown in Table 2 below. Table 3 below shows a list of evaluation results of minimum hardness (Hv), austenite grain size number, static torsional strength, and fracture mode.

Figure 0005512231
Figure 0005512231

Figure 0005512231
Figure 0005512231

Figure 0005512231
Figure 0005512231

[評価結果]
表1〜表3に示す鋼番号1〜12は、本発明の各規定を満たす本発明例であり、鋼番号13〜16は、何れかの要件が本発明の規定範囲外とされた比較例である。
表3の評価結果一覧に示すように、本発明で規定する鋼成分を有する鋼帯を成形・溶接し、さらに、本発明で規定する焼入れ処理および焼戻し処理を施した鋼番号1〜12の電縫鋼管は、最小硬度(Hv)とオーステナイト粒度番号(GS)との関係が、次式{0.25Hv−65GS+500>0}を満足する鋼特性であることが確認された。これら鋼番号1〜12の電縫鋼管は、静的ねじり強度が3500Nmを超え、所定の特性を達成しており、また、破断形態が軸方向に対して垂直であり、良好な破断形態であることが確認できた。
[Evaluation results]
Steel numbers 1 to 12 shown in Tables 1 to 3 are examples of the present invention that satisfy the respective specifications of the present invention, and steel numbers 13 to 16 are comparative examples in which any requirement is outside the specified range of the present invention. It is.
As shown in the evaluation result list of Table 3, steel strips having steel components specified in the present invention were formed and welded, and the steel Nos. 1 to 12 were subjected to quenching treatment and tempering treatment specified in the present invention. It was confirmed that the relationship between the minimum hardness (Hv) and the austenite grain size number (GS) of the sewn steel pipe is a steel characteristic satisfying the following formula {0.25Hv−65GS + 500> 0}. These ERW steel pipes having steel numbers 1 to 12 have a static torsional strength exceeding 3500 Nm, achieving predetermined characteristics, and the fracture form is perpendicular to the axial direction, which is a good fracture form. I was able to confirm.

これに対して、比較例である鋼番号13〜16の電縫鋼管は、何れかの要件が本発明の規定範囲外であるため、静的ねじり強度が所定以上の強度(3500Nm)を達成できないか、あるいは、破断形態が軸方向に垂直な形態とならなかった。   On the other hand, the electric resistance welded steel pipes of steel numbers 13 to 16, which are comparative examples, cannot achieve a strength (3500 Nm) of static torsional strength or higher because any requirement is outside the specified range of the present invention. Or the fracture form did not become a form perpendicular to the axial direction.

鋼番号13では、鋼成分においてNが本発明で規定する上限値を超えており、また、焼入れ温度が本発明で規定する下限値未満となっている。このため、最小硬度(Hv)とオーステナイト粒度番号(GS)との関係が次式{0.25Hv−65GS+500>0}を満足しておらず、静的ねじり強度が3500Nm未満で不十分であるとともに、せん断割れの破断形態となり、軸方向に垂直な形態が得られなかった。
また、鋼番号14では、焼入れ温度が本発明で規定する上限値を超えている。このため、オーステナイト粒が粗大化し、せん断割れの破断形態となり、軸方向に垂直な形態が得られず、また、静的ねじり強度も所定の強度を達成できなかった。
In Steel No. 13, N in the steel component exceeds the upper limit defined in the present invention, and the quenching temperature is less than the lower limit defined in the present invention. For this reason, the relationship between the minimum hardness (Hv) and the austenite grain size number (GS) does not satisfy the following formula {0.25Hv-65GS + 500> 0}, and the static torsional strength is less than 3500 Nm and is insufficient. The fracture form of shear cracks was not obtained, and a form perpendicular to the axial direction could not be obtained.
In Steel No. 14, the quenching temperature exceeds the upper limit defined in the present invention. For this reason, the austenite grains are coarsened to form a fracture form of shear cracks, a form perpendicular to the axial direction cannot be obtained, and the static torsional strength cannot achieve a predetermined strength.

また、鋼番号15では、焼戻し温度が本発明で規定する上限値を超えている。このため、最小硬度とオーステナイト粒度番号との関係が次式{0.25Hv−65GS+500>0}を満足しておらず、所望の静的ねじり強度である3500Nm以上の強度が得られなかった。
また、鋼番号16では、焼戻し温度が本発明で規定する下限値未満となっているため、水素割れが発生し、所望の静的ねじり強度である3500Nm以上の強度が得られず、また、軸方向に垂直な破断形態が得られなかった。
Moreover, in the steel number 15, the tempering temperature exceeds the upper limit prescribed | regulated by this invention. For this reason, the relationship between the minimum hardness and the austenite grain size number does not satisfy the following formula {0.25Hv-65GS + 500> 0}, and a desired static torsional strength of 3500 Nm or more cannot be obtained.
In Steel No. 16, since the tempering temperature is less than the lower limit specified in the present invention, hydrogen cracking occurs, and the desired static torsional strength of 3500 Nm or more cannot be obtained. The fracture form perpendicular to the direction was not obtained.

また、鋼番号17、19は、C量あるいはMn量が本発明で規定する下限値を下回っているため、最小硬度とオーステナイト粒度番号との関係が、次式{0.25Hv−65GS+500>0}を満足しておらず、所望の静的ねじり強度である3500Nm以上の強度が得られなかった。
また、鋼番号18は、C量が本発明で規定する上限値を超えているため、水素割れが発生し、静的ねじり強度が3500Nm未満で不十分であるとともに、水素割れの破断形態となり、軸方向に垂直な形態が得られなかった。
また、鋼番号20は、Mn量が本発明で規定する上限値を超えているため、静的ねじり強度が3500Nm未満で不十分であるとともに、軸方向に垂直な形態が得られなかった。
In Steel Nos. 17 and 19, the amount of C or Mn is less than the lower limit specified in the present invention, so the relationship between the minimum hardness and the austenite grain number is represented by the following formula {0.25Hv-65GS + 500> 0}. The desired static torsional strength of 3500 Nm or higher was not obtained.
Steel No. 18 has an amount of C exceeding the upper limit defined in the present invention, so that hydrogen cracking occurs, the static torsional strength is insufficient at less than 3500 Nm, and the hydrogen cracking form is broken. A shape perpendicular to the axial direction could not be obtained.
In Steel No. 20, the amount of Mn exceeded the upper limit defined in the present invention, so that the static torsional strength was insufficient at less than 3500 Nm, and a form perpendicular to the axial direction could not be obtained.

以上説明した実施例の結果より、本発明の静的ねじり強度に優れたドライブシャフト用電縫鋼管およびその製造方法が、静的ねじり強度に優れ、また、良好な破断形態とされたドライブシャフト用電縫鋼管が得られることが明らかである。   From the results of the embodiments described above, the drive shaft ERW steel pipe excellent in static torsional strength and the manufacturing method thereof according to the present invention are excellent in static torsional strength and have a good fracture shape. It is clear that an ERW steel pipe is obtained.

Claims (3)

鋼成分が、質量%で、
C :0.25〜0.55%、
Si:0.35%以下、
Mn:0.600〜1.50%、
Al:0.001〜0.060%、
O :0.0001〜0.0025%、
S :0.0025%以下、
P :0.010%以下、
N :0.005%以下、
B :0.0003%未満
を含有し、残部Fe及び不可避不純物からなる電縫鋼管であって、
当該電縫鋼管の管軸方向に垂直の断面の最小硬度(Hv)と、当該断面の旧オーステナイト粒度番号(GS)との関係が、下記(1)式を満足することを特徴とする静的ねじり強度に優れたドライブシャフト用電縫鋼管。
0.25Hv − 65GS + 500 > 0 ・・・・・ (1)
Steel component is mass%,
C: 0.25 to 0.55%,
Si: 0.35% or less,
Mn: 0.600 to 1.50%,
Al: 0.001 to 0.060%,
O: 0.0001 to 0.0025 %,
S: 0.0025% or less,
P: 0.010% or less,
N: 0.005% or less,
B: ERW steel pipe containing less than 0.0003% and comprising the balance Fe and inevitable impurities,
The static relationship characterized in that the relationship between the minimum hardness (Hv) of the cross section perpendicular to the pipe axis direction of the ERW steel pipe and the prior austenite grain size number (GS) of the cross section satisfies the following formula (1): ERW steel pipe for drive shafts with excellent torsional strength.
0.25Hv-65GS + 500> 0 (1)
鋼成分が、更に、質量%で、
Cr:0.05〜1.00%、
Mo:0.05〜1.00%、
Ni:0.10〜2.00%、
Cu:0.10〜2.00%、
Nb:0.001〜0.20%、
V :0.001〜0.20%、
Ti:0.001〜0.20%、
Mg:0.0001〜0.0050%、
Ca:0.0001〜0.0100%
のうち一種または二種以上を含有することを特徴とする請求項1に記載の静的ねじり強度に優れたドライブシャフト用電縫鋼管。
Steel component is further mass%,
Cr: 0.05-1.00%,
Mo: 0.05-1.00%,
Ni: 0.10 to 2.00%,
Cu: 0.10 to 2.00%,
Nb: 0.001 to 0.20%,
V: 0.001 to 0.20%,
Ti: 0.001 to 0.20%,
Mg: 0.0001 to 0.0050%,
Ca: 0.0001 to 0.0100%
1 or 2 or more types are contained among these, The electric-resistance-welded steel pipe for drive shafts excellent in the static torsional strength of Claim 1 characterized by the above-mentioned.
請求項1又は請求項2に記載のドライブシャフト用電縫鋼管の製造方法であって、
請求項1又は請求項2に記載の鋼成分を有する電縫鋼管を造管した後、当該電縫鋼管を900℃以上1000℃以下の温度で焼入れし、その後、100℃以上300℃以下の焼戻し温度で焼戻し処理を実施することを特徴とする静的ねじり強度に優れたドライブシャフト用電縫鋼管の製造方法
A method for producing an electric resistance welded steel pipe for a drive shaft according to claim 1 or 2,
After the electric resistance welded steel pipe having the steel component according to claim 1 or 2 is formed, the electric resistance welded steel pipe is quenched at a temperature of 900 ° C or higher and 1000 ° C or lower, and then tempered at a temperature of 100 ° C or higher and 300 ° C or lower. A method for producing an electric resistance welded steel pipe for a drive shaft excellent in static torsional strength, characterized by performing tempering treatment at a temperature .
JP2009251923A 2009-11-02 2009-11-02 ERW steel pipe for drive shaft with excellent static torsional strength and method for manufacturing the same Active JP5512231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009251923A JP5512231B2 (en) 2009-11-02 2009-11-02 ERW steel pipe for drive shaft with excellent static torsional strength and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009251923A JP5512231B2 (en) 2009-11-02 2009-11-02 ERW steel pipe for drive shaft with excellent static torsional strength and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2011094217A JP2011094217A (en) 2011-05-12
JP5512231B2 true JP5512231B2 (en) 2014-06-04

Family

ID=44111448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009251923A Active JP5512231B2 (en) 2009-11-02 2009-11-02 ERW steel pipe for drive shaft with excellent static torsional strength and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5512231B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149179B2 (en) * 2018-12-20 2022-10-06 山陽特殊製鋼株式会社 Mechanical parts for automobiles made of induction hardened steel with excellent static torsional strength and torsional fatigue strength

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268877A (en) * 1990-03-16 1991-11-29 Sumitomo Metal Ind Ltd Manufacture of sulfide stress cracking resistant welded steel pipe for oil well
JP2580909B2 (en) * 1991-10-25 1997-02-12 住友金属工業株式会社 Manufacturing method of high strength ERW steel pipe
JP4501578B2 (en) * 2004-07-30 2010-07-14 Jfeスチール株式会社 Manufacturing method of hollow drive shaft with excellent fatigue resistance
JP2007262469A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Steel pipe and its production method
CN101514433A (en) * 2007-03-16 2009-08-26 株式会社神户制钢所 Automobile high-strength electric resistance welded steel pipe with excellent low-temperature impact property and method of manufacturing the same

Also Published As

Publication number Publication date
JP2011094217A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
KR101706839B1 (en) Hollow stabilizer, and steel pipe for hollow stabilizers and method for production thereof
KR100545621B1 (en) Electric welded steel tube for hollow stabilizer
JP5866820B2 (en) Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
US9862014B2 (en) Method for electric resistance welded steel tube
JP5657026B2 (en) High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof
JP5005543B2 (en) High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
WO2019181130A1 (en) Wear-resistant steel and method for producing same
WO2011145234A1 (en) Automotive underbody part having excellent low cycle fatigue properties, and process for production thereof
US20180066344A1 (en) Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt
WO2006046503A1 (en) Steel pipe for air bag inflator and method for production thereof
JP5196934B2 (en) High fatigue life quenched and tempered steel pipe and method for manufacturing the same
JP2004011009A (en) Electric resistance welded steel tube for hollow stabilizer
JP4740397B2 (en) ERW steel pipe with excellent workability and fatigue characteristics after quenching
WO2020003720A1 (en) Electric-resistance-welded steel pipe for producing hollow stabilizer, hollow stabilizer, and method for producing same
WO2015146141A1 (en) Stabilizer steel having high strength and excellent corrosion resistance, vehicle stabilizer employing same, and method for manufacturing same
JP2007056283A (en) High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method
JP5512231B2 (en) ERW steel pipe for drive shaft with excellent static torsional strength and method for manufacturing the same
JP4790512B2 (en) Structural high-strength cast steel
KR20140056767A (en) Axle beam and method of manufacturing the same
CN113631735A (en) Electric welded steel pipe for hollow stabilizer, and method for producing same
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
KR20140072246A (en) Steel sheet and method of manufacturing the same
KR20150049660A (en) High strength steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5512231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250