JP5125601B2 - High tensile welded steel pipe for automobile structural members and method for manufacturing the same - Google Patents
High tensile welded steel pipe for automobile structural members and method for manufacturing the same Download PDFInfo
- Publication number
- JP5125601B2 JP5125601B2 JP2008044266A JP2008044266A JP5125601B2 JP 5125601 B2 JP5125601 B2 JP 5125601B2 JP 2008044266 A JP2008044266 A JP 2008044266A JP 2008044266 A JP2008044266 A JP 2008044266A JP 5125601 B2 JP5125601 B2 JP 5125601B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- less
- tube
- thickness direction
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、トーションビーム、アクスルビーム、トレーリングアーム、サスペンションアームなどの自動車構造部材用鋼管として好適な、590MPa以上の引張強さを有する高張力溶接鋼管に係り、とくにトーションビーム用として、成形性および断面成形後の耐ねじり疲労特性の改善に関する。 The present invention relates to a high-tensile welded steel pipe having a tensile strength of 590 MPa or more suitable as a steel pipe for automobile structural members such as a torsion beam, an axle beam, a trailing arm, and a suspension arm. It relates to improvement of torsional fatigue resistance after forming.
近年の地球環境の保全という観点から、自動車の燃費向上が強く求められている。そのため、自動車等の車体の徹底した軽量化が指向されている。自動車等の構造部材についても例外ではなく、軽量化と安全性との両立を図るために、一部の構造部材では、高強度化された電縫鋼管が採用されつつある。従来では、素材(電縫鋼管)を所定の形状に成形した後、焼入れ処理等の調質処理を施して、部材の高強度化が図られていた。しかし、調質処理を採用することは工程が複雑になり、部材の製造期間が長期化するうえ、部材製造コストの高騰を招くという問題がある。 In recent years, there has been a strong demand for improving the fuel efficiency of automobiles from the viewpoint of protecting the global environment. Therefore, a thorough weight reduction of the body of an automobile or the like is aimed at. Structural members such as automobiles are no exception, and in order to achieve both weight reduction and safety, some structural members are adopting highly-strengthened ERW steel pipes. Conventionally, after forming a material (electrically welded steel pipe) into a predetermined shape, a tempering process such as a quenching process is performed to increase the strength of the member. However, adopting the tempering treatment has a problem in that the process becomes complicated, the manufacturing period of the member becomes longer, and the manufacturing cost of the member increases.
このような問題に対し、例えば特許文献1には、自動車等の構造部材用超高張力電縫鋼管の製造方法が記載されている。特許文献1に記載された技術は、C、Si、Mn、P、S、Al、Nを適正量に調整したうえ、B:0.0003〜0.003%を含み、さらにMo、Ti、Nb、Vのうちの1種以上を含有する組成の鋼素材に、950℃以下Ar3変態点以上で仕上圧延を終了し、250℃以下で巻取る熱間圧延を施し管用鋼帯とし、該管用鋼帯を造管して電縫鋼管としたのち、500〜650℃で時効処理を施す、電縫鋼管の製造方法である。この技術によれば、Bの変態組織強化とMo,Ti,Nb等の析出硬化により、調質処理を施すことなく、1000MPaを超える超高張力鋼管を得ることができるとしている。 For such a problem, for example, Patent Document 1 describes a method of manufacturing an ultra-high-strength ERW steel pipe for a structural member such as an automobile. The technique described in Patent Document 1 includes C: Si, Mn, P, S, Al, N adjusted to an appropriate amount, and B: 0.0003 to 0.003%, and further among Mo, Ti, Nb, and V. The steel material having a composition containing one or more of the above is subjected to finish rolling at 950 ° C or less at the Ar 3 transformation point and hot rolling at 250 ° C or less to form a steel strip for pipes. This is a method for producing an ERW steel pipe, which is made into an ERW steel pipe and then subjected to an aging treatment at 500 to 650 ° C. According to this technology, it is said that an ultra-high strength steel pipe exceeding 1000 MPa can be obtained without tempering treatment by strengthening the transformation structure of B and precipitation hardening of Mo, Ti, Nb and the like.
また、特許文献2には、自動車のドアインパクトビーム用及びスタビライザー用として好適な、引張強さ:1470N/mm2以上の高強度とかつ高延性を有する電縫鋼管の製造方法が記載されている。特許文献2に記載された技術は、C:0.18〜0.28%、Si:0.10〜0.50%、Mn:0.60〜1.80%を含み、P、Sを適正範囲に調整したうえ、Ti:0.020〜0.050%、B:0.0005〜0.0050%を含有し、さらにCr、MoおよびNbのうちの1種以上を含有する組成の素材鋼からなる鋼板を用いて製造した電縫鋼管に850〜950℃でノルマ処理を施し、さらに、焼入れ処理を施す、電縫鋼管の製造方法である。この技術によれば、1470N/mm2以上の高強度と、10〜18%程度の延性を有する電縫鋼管が得られ、自動車のドアインパクトビーム用及びスタビライザー用として好適であるとしている。
しかしながら、特許文献1に記載された技術で製造された電縫鋼管は、伸びElが14%以下と低延性であるため成形性に劣り、プレス成形あるいはハイドロフォーム成形を伴うトーションビーム、アクスルビーム、トレーリングアーム、サスペンションアーム等の自動車構造部材用としては不適であるという問題があった。
また、特許文献2に記載された技術で製造された電縫鋼管は、伸びElが高々18%であり、曲げ加工により成形されるスタビライザー用としては好適であるが、プレス成形あるいはハイドロフォーム成形を伴う部材用としては、延性が不足し、プレス成形あるいはハイドロフォーム成形を伴うトーションビーム、アクスルビーム等の自動車構造部材用としては不適であるという問題があった。また、特許文献2に記載された技術では、ノルマ処理および焼入れ処理を必要とし、工程が複雑であり、寸法精度、経済性という観点からも問題を残していた。
However, the ERW steel pipe manufactured by the technique described in Patent Document 1 is inferior in formability because of its low ductility, with an elongation El of 14% or less, and a torsion beam, axle beam, tray with press molding or hydroform molding. There is a problem that it is not suitable for automobile structural members such as ring arms and suspension arms.
In addition, the ERW steel pipe manufactured by the technique described in Patent Document 2 has an elongation El of 18% at most, and is suitable for a stabilizer formed by bending. For the accompanying member, there is a problem that the ductility is insufficient and it is not suitable for an automobile structural member such as a torsion beam and an axle beam accompanied by press molding or hydroforming. Further, the technique described in Patent Document 2 requires a normalization process and a quenching process, has a complicated process, and has left a problem in terms of dimensional accuracy and economy.
本発明は、上記した従来技術の問題を有利に解決し、焼入れ処理を施すことのない非焼入れ型で、トーションビーム、アクスルビーム、トレーリングアーム、サスペンションアームなどの自動車構造部材用とし好適である、引張強さ590MPa以上を有し、優れた成形性、優れた低温靱性および優れた断面成形加工後の耐ねじり疲労特性を有する高張力溶接鋼管およびその製造方法を提供することを目的とする。 The present invention advantageously solves the above-mentioned problems of the prior art, is a non-quenched type that is not subjected to quenching, and is suitable for automotive structural members such as torsion beams, axle beams, trailing arms, suspension arms, An object of the present invention is to provide a high-strength welded steel pipe having a tensile strength of 590 MPa or more, excellent formability, excellent low-temperature toughness, and excellent torsional fatigue resistance after cross-section forming, and a method for producing the same.
なお、本発明でいう「優れた成形性」とは、JIS Z 2201の規定に準拠したJIS 12号試験片を用い、JIS Z 2241の規定に準拠して行った引張試験での伸びElが15%以上(JIS 11号試験片では22%以上)を示す場合をいうものとする。
また、本発明でいう「優れた断面成形加工後の耐ねじり疲労特性」とは、図1(特開2001−321846号公報の図11)に示すように、鋼管の長手中央部分をV字形状に断面を成形加工したのち、両端部をチャッキングにより固定してねじり疲労試験を、1Hz、両振りの条件で行い、5×105繰返し疲れ限度σBを求め、得られた5×105繰返し疲れ限度σBと鋼管引張強さTSとの比、(σB/TS)が0.40以上である場合をいうものとする。
The “excellent formability” as used in the present invention refers to a JIS No. 12 test piece compliant with JIS Z 2201 and an elongation El of 15 in a tensile test conducted in accordance with JIS Z 2241. % Or more (22% or more for JIS 11 test piece).
In addition, “excellent torsional fatigue resistance after cross-section forming” as used in the present invention means that the longitudinal center portion of the steel pipe is V-shaped as shown in FIG. 1 (FIG. 11 of JP-A-2001-331846). After the cross section was molded, both ends were fixed by chucking and a torsional fatigue test was conducted under the conditions of 1 Hz and double swing. The 5 × 10 5 repeated fatigue limit σ B was obtained, and the obtained 5 × 10 5 The ratio between the repeated fatigue limit σ B and the steel pipe tensile strength TS, (σ B / TS) is 0.40 or more.
また、本発明でいう「優れた低温靭性」とは、図1(特開2001−321846号公報の図11)に示すように、試験材(鋼管)の長手中央部分をV字形状に断面を成形加工したのち、試験材(鋼管)の平坦部分より、管円周方向(C方向)が試験片長さとなるように展開し、JIS Z 2242の規定に準拠してVノッチ試験片(1/4サイズ)を切出し、シャルピー衝撃試験を実施した場合の破面遷移温度vTrsが、−40℃以下である場合をいうものとする。 In addition, “excellent low temperature toughness” as used in the present invention means that the longitudinal center portion of the test material (steel pipe) has a V-shaped cross section as shown in FIG. 1 (FIG. 11 of JP-A-2001-331846). After forming, expand from the flat part of the test material (steel pipe) so that the pipe circumferential direction (C direction) is the length of the test piece, and V-notch test piece (1/4 according to JIS Z 2242) Size) and when the Charpy impact test is performed, the fracture surface transition temperature vTrs is −40 ° C. or lower.
本発明者らは、上記した目的を達成するため、強度、成形性、低温靭性、断面成形加工後の耐ねじり疲労特性等の特性を高度なレベルで両立させるために、これら特性に影響する各種要因、とくに鋼管の組成、製造条件について系統的な検討を鋭意行った。その結果、鋼管素材(熱延鋼帯)の表層組織を、適正な組織に調整し、さらに該鋼管素材に適正条件の電縫造管工程を施し溶接鋼管(電縫鋼管)とすることにより、とくに表層の硬さばらつき、肉厚方向の硬さばらつきが減少し、とくに断面成形加工後の耐ねじり疲労特性が顕著に向上し、引張強さ590MPa以上の高強度を有し、かつ優れた低温靭性、優れた成形性、および断面成形加工後の優れた耐ねじり疲労特性を兼備する高張力溶接鋼管とすることができることを見出した。 In order to achieve the above-described object, the present inventors have various properties that affect these properties in order to achieve a high level of properties such as strength, formability, low temperature toughness, and torsional fatigue resistance after cross-section forming processing. We have made a systematic examination of the factors, especially the composition and manufacturing conditions of steel pipes. As a result, by adjusting the surface structure of the steel pipe material (hot-rolled steel strip) to an appropriate structure, and further applying an electric-welded pipe process to the steel pipe material to obtain a welded steel pipe (electric-welded steel pipe), In particular, the hardness variation of the surface layer and the hardness variation in the thickness direction are reduced, especially the torsional fatigue resistance after cross-section forming processing is significantly improved, the tensile strength is higher than 590 MPa, and excellent low temperature It has been found that a high-tensile welded steel pipe having toughness, excellent formability, and excellent torsional fatigue resistance after cross-section forming can be obtained.
本発明はこのような知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.03〜0.24%、Si:0.002〜0.95%、Mn:1.01〜1.99%、Al:0.01〜0.08%、Nb:0.001〜0.15%を含有し、不純物であるP、S、N、Oを、P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整して含み、残部Feおよび不可避的不純物からなる組成と、管最外表面および管最内表面から肉厚方向に50μmまでの領域が、円周方向断面の平均結晶粒径が2.0〜14μmであるフェライト相と該フェライト相以外の第二相からなる組織とを有し、前記フェライト相の組織分率が体積率で60%以上であり、該フェライト相中に1.5〜60nmのNb炭化物が析出してなり、前記領域の平均硬さHV0−50と、管最外表面または管最内表面から肉厚方向に50〜200μmの範囲の領域の平均硬さHV50−200との差ΔHV(=HV50−200−HV0−50)がビッカース硬さで40ポイント以下、前記管最外表面または管最内表面から肉厚方向に50μmまでの領域の硬さの標準偏差σがビッカース硬さで20ポイント以下であり、低温靭性、成形性、および断面成形加工後の耐ねじり疲労特性に優れることを特徴とする自動車構造部材用高張力溶接鋼管。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.03 to 0.24%, Si: 0.002 to 0.95%, Mn: 1.01 to 1.99%, Al: 0.01 to 0.08%, Nb: 0.001 to 0.15%, P which is an impurity, Containing S, N, and O adjusted to P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, O: 0.003% or less, and the composition comprising the balance Fe and inevitable impurities, and the outermost pipe The region from the innermost surface and the innermost surface of the pipe to the thickness direction of 50 μm has a ferrite phase whose average crystal grain size in the circumferential cross section is 2.0 to 14 μm and a structure composed of a second phase other than the ferrite phase. The ferrite phase has a volume fraction of 60% or more, and 1.5 to 60 nm of Nb carbide is precipitated in the ferrite phase, and the average hardness HV 0-50 in the region, The difference ΔHV (= HV 50−200 −HV 0−50 ) from the average hardness HV 50−200 in the range of 50 to 200 μm in the thickness direction from the surface or innermost surface of the tube is 4 in Vickers hardness. The standard deviation σ of the hardness of the area from 0 point or less to the pipe outermost surface or the innermost surface to 50 μm in the thickness direction is 20 points or less in terms of Vickers hardness, low temperature toughness, formability, and cross-section molding A high-strength welded steel pipe for automotive structural members characterized by excellent torsional fatigue resistance after processing.
(2)(1)において、前記組成に加えてさらに、質量%で、V:0.001〜0.15%、W:0.001〜0.15%、Ti:0.001〜0.15%、Cr:0.001〜0.45%、Mo:0.001〜0.45%、Cu: 0.001〜0.45%、Ni: 0.001〜0.45%、B:0.0001〜0.0009%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有する組成とすることを特徴とする自動車構造部材用高張力溶接鋼管。 (2) In (1), in addition to the above composition, in terms of mass%, V: 0.001 to 0.15%, W: 0.001 to 0.15%, Ti: 0.001 to 0.15%, Cr: 0.001 to 0.45%, Mo: 0.001 -0.45%, Cu: 0.001-0.45%, Ni: 0.001-0.45%, B: One or more selected from 0.0001-0.0009%, and / or Ca: 0.0001-0.005% A high-tensile welded steel pipe for automobile structural members, characterized in that the composition is
(3)(1)または(2)において、前記最外表面および最内表面から肉厚方向に50μmまでの領域における管軸方向断面の介在物率が、JIS G 0555-2003に記載の方法で測定した値で0.10%以下であることを特徴とする自動車構造部材用高張力鋼管。
(4)(1)ないし(3)のいずれかにおいて、管内外面表面の、次(2)式
αf=1+2√(d/ρ)‥‥(2)
(ここで、d:表面凹凸の深さ(μm)、ρ:表面凹部先端の曲率半径(μm))
で定義される応力集中係数αfが10以下であることを特徴とする自動車構造部材用高張力鋼管。
(3) In (1) or (2), the inclusion ratio in the cross section in the tube axis direction in the region from the outermost surface and the innermost surface to 50 μm in the thickness direction is determined by the method described in JIS G 0555-2003. A high-tensile steel pipe for automobile structural members characterized by a measured value of 0.10% or less.
(4) In any one of (1) to (3), the following equation (2)
α f = 1 + 2√ (d / ρ) (2)
(Where, d: depth of surface irregularities (μm), ρ: radius of curvature of the surface concave portions (μm))
A high-tensile steel pipe for automobile structural members, characterized in that the stress concentration coefficient α f defined by
(5)鋼管素材に、電縫造管工程を施して溶接鋼管とするにあたり、前記鋼管素材が、質量%で、C:0.03〜0.24%、Si:0.002〜0.95%、Mn:1.01〜1.99%、Al:0.01〜0.08%、Nb:0.001〜0.15%を含有し、不純物であるP、S、N、Oを、P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整して含み、残部Feおよび不可避的不純物からなる組成の鋼素材に、1160〜1320℃に加熱した後、仕上圧延圧下率:80〜97%、仕上圧延終了温度:980〜760℃とする仕上圧延を行う熱間圧延と、該熱間圧延終了後、750〜650℃の温度範囲で2s以上の徐冷を行う徐冷処理とを施し、巻取り温度:660〜510℃で巻取る熱延工程を施してなる熱延鋼帯であり、前記電縫造管工程が、前記鋼管素材を酸洗、スリッティングしたのち、該鋼管素材に次(1)式
幅絞り率=[(素材鋼管の幅)−π{(製品外径)−(製品肉厚)}]/π{(製品外径)−(製品肉厚)}×(100%)‥‥(1)
で定義される幅絞り率を10%以下として、連続的にロール成形し電縫溶接して溶接鋼管とする工程であり、前記溶接鋼管が、低温靭性、成形性、および断面成形加工後の耐ねじり疲労特性に優れること、を特徴とする自動車構造部材用高張力鋼管の製造方法。
(5) When a steel pipe material is subjected to an electric forging pipe process to make a welded steel pipe, the steel pipe material is in mass%, C: 0.03-0.24%, Si: 0.002-0.95%, Mn: 1.01-1.99% , Al: 0.01 to 0.08%, Nb: 0.001 to 0.15%, impurities P, S, N, and O are P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, O: After adjusting to 0.003% or less and heating to 1160-1320 ° C. to a steel material composed of the balance Fe and unavoidable impurities, finish rolling reduction: 80-97%, finish rolling finish temperature: 980-760 A hot rolling for finishing rolling at ℃ and a gradual cooling treatment for gradual cooling for 2 seconds or more in the temperature range of 750 to 650 ° C. after completion of the hot rolling, and a winding temperature of 660 to 510 ° C. It is a hot-rolled steel strip that is subjected to a hot-rolling process of winding, and after the electric sewing pipe process pickling and slitting the steel pipe material, the following (1) width drawing ratio = [(Width of steel tube) −π {(Product outer diameter) − (Product thickness)}] / π {(Product outer diameter) − (Product thickness)} × (100%) (1)
The width drawing ratio defined by the above is a process of continuously roll-forming and electro-welding to form a welded steel pipe with a width drawing ratio of 10% or less. The welded steel pipe has low-temperature toughness, formability, and resistance after cross-section forming. A method for producing a high-strength steel pipe for automobile structural members, characterized by excellent torsional fatigue characteristics.
(6)(5)において、前記組成に加えてさらに、質量%で、V:0.001〜0.15%、W:0.001〜0.15%、Ti:0.001〜0.15%、Cr:0.001〜0.45%、Mo:0.001〜0.45%、Cu: 0.001〜0.45%、Ni: 0.001〜0.45%、B:0.0001〜0.0009%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有する組成とすることを特徴とする自動車構造部材用高張力溶接鋼管の製造方法。 (6) In (5), in addition to the above composition, in terms of mass%, V: 0.001 to 0.15%, W: 0.001 to 0.15%, Ti: 0.001 to 0.15%, Cr: 0.001 to 0.45%, Mo: 0.001 -0.45%, Cu: 0.001-0.45%, Ni: 0.001-0.45%, B: One or more selected from 0.0001-0.0009%, and / or Ca: 0.0001-0.005% The manufacturing method of the high tension welded steel pipe for motor vehicle structural members characterized by the above-mentioned.
本発明によれば、590MPa以上の引張強さを有し、優れた低温靭性、優れた成形性と、優れた断面成形加工後の耐ねじり疲労特性とを有する高張力溶接鋼管を容易に、しかも調質処理を施すことなく安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、自動車構造部材の特性向上に顕著に寄与するという効果もある。 According to the present invention, a high-strength welded steel pipe having a tensile strength of 590 MPa or more, excellent low temperature toughness, excellent formability, and excellent torsional fatigue resistance after cross-section forming processing can be easily obtained. It can be manufactured at low cost without any tempering treatment, and has a remarkable industrial effect. Moreover, according to the present invention, there is an effect that it contributes remarkably to the improvement of the characteristics of the automobile structural member.
まず、本発明の高張力溶接鋼管(以下、本発明鋼管ともいう)の組成限定理由について説明する。なお、以下、組成における質量%はとくに断らない限り単に%で記す。
C:0.03〜0.24%
Cは、強度を増加させる元素であり、所望の鋼管強度を確保し、鋼管の耐疲労特性、とくに耐ねじり疲労特性を向上させるうえで必須の元素である。このような効果は0.03%以上の含有で認められるが、0.24%を超える含有は、体積率で60%以上のフェライト相主体の組織とすることができず、所望の優れた鋼管延性、優れた低温靭性が確保できなくなる。なお、好ましくは0.08〜0.20%である。
First, the reasons for limiting the composition of the high-tensile welded steel pipe of the present invention (hereinafter also referred to as the present invention steel pipe) will be described. Hereinafter, mass% in the composition is simply expressed as% unless otherwise specified.
C: 0.03-0.24%
C is an element that increases the strength, and is an essential element for securing the desired steel pipe strength and improving the fatigue resistance characteristics, particularly the torsional fatigue resistance characteristics of the steel pipe. Such an effect is recognized when the content is 0.03% or more. However, when the content exceeds 0.24%, it cannot be a structure mainly composed of a ferrite phase with a volume ratio of 60% or more. Low temperature toughness cannot be secured. In addition, Preferably it is 0.08 to 0.20%.
Si:0.002〜0.95%
Siは、フェライト生成元素であり、熱延工程でのフェライト変態を促進する作用を有し、所望の組織と必要な成形性を確保するために必須の元素である。このような効果は、O.002%以上の含有で認められる。一方、O.95%を超える含有は、表面性状、電縫溶接性が低下する。このため、SiはO.002〜0.95%の範囲に限定した。なお、好ましくは0.10〜0.30%である。
Si: 0.002 to 0.95%
Si is a ferrite-forming element, has an action of promoting ferrite transformation in the hot rolling process, and is an essential element for ensuring a desired structure and necessary formability. Such an effect is recognized when the content is O.002% or more. On the other hand, if the content exceeds O.95%, surface properties and ERW weldability deteriorate. For this reason, Si was limited to the range of O.002 to 0.95%. In addition, Preferably it is 0.10 to 0.30%.
Mn:1.01〜1.99%
Mnは、強度を増加させ、所望の鋼管強度を確保して鋼管の疲労強度を高め、耐疲労特性を向上させる作用、とくに耐ねじり疲労特性を向上させる作用を有する元素である。このような効果は1.01%以上の含有で認められるが、1.99%を超える含有は、フェライト変態が抑制され、所望のフェライト相主体の組織とすることができず、所望の優れた成形性を確保できなくなる。このため、Mnは1.01〜1.99%の範囲に限定した。なお、好ましくは1.20〜1.80%である。
Mn: 1.01-1.99%
Mn is an element that increases the strength, secures the desired steel pipe strength, increases the fatigue strength of the steel pipe, and improves the fatigue resistance characteristics, particularly the torsional fatigue characteristics. Such an effect is recognized when the content is 1.01% or more, but when the content exceeds 1.99%, the ferrite transformation is suppressed and a desired ferrite phase-based structure cannot be obtained, and the desired excellent formability is ensured. become unable. For this reason, Mn was limited to the range of 1.01-1.99%. In addition, Preferably it is 1.20 to 1.80%.
Al:0.01〜0.08%
Alは、製鋼時の脱酸剤として作用するとともに、熱延工程でのオーステナイト粒の成長を抑制し、結晶粒の微細化、とくにフェライト粒の微細化に寄与する元素である。このような効果は0.01%以上の含有で認められる。一方、O.08%を超える含有は、上記した効果が飽和し、含有量に見合う効果が期待できないうえ、酸化物系介在物が増大し、耐疲労特性が低下する。このため、Alは0.01〜0.08%の範囲に限定した。なお、好ましくは0.02〜0.06%である。
Al: 0.01-0.08%
Al is an element that acts as a deoxidizer during steelmaking and suppresses the growth of austenite grains in the hot rolling process and contributes to refinement of crystal grains, particularly refinement of ferrite grains. Such an effect is recognized when the content is 0.01% or more. On the other hand, when the content exceeds O.08%, the above-described effects are saturated, and an effect commensurate with the content cannot be expected. In addition, oxide inclusions increase, and fatigue resistance characteristics deteriorate. For this reason, Al was limited to the range of 0.01 to 0.08%. In addition, Preferably it is 0.02 to 0.06%.
Nb:0.001〜0.15%
Nbは、鋼中ではCと結合し、炭化物として析出し、熱延工程における回復・再結晶による粒成長を抑制し、所望の粒径(2.0〜14μm)を有するフェライト相とするとともに、炭化物として析出し表層の硬さを確保し、疲労強度を高め、耐疲労特性を向上させる作用を有する。このような効果はO.001%以上の含有で認められる。一方、O.15%を超える含有は、析出炭化物による強度上昇が顕著となり、延性が著しく低下する、このため、Nbは0.001〜0.15%の範囲に限定した。なお、好ましくは0.010〜0.049%である。
Nb: 0.001 to 0.15%
Nb combines with C in steel and precipitates as carbide, suppresses grain growth due to recovery and recrystallization in the hot rolling process, and forms a ferrite phase having a desired particle size (2.0 to 14 μm). It has the action of precipitating and securing the hardness of the surface layer, increasing the fatigue strength, and improving the fatigue resistance. Such an effect is recognized when the content is O.001% or more. On the other hand, if the content exceeds O.15%, the strength rises due to the precipitated carbides and the ductility is remarkably lowered. Therefore, Nb is limited to the range of 0.001 to 0.15%. In addition, Preferably it is 0.010 to 0.049%.
本発明では、不純物であるP、S、N、Oを、P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整する。
P:O.019%以下
Pは、Mnとの凝固共偏析を介し、低温靱性を低下させるとともに、電縫溶接性を劣化させる悪影響を有する元素であり、できるだけ低減することが好ましい。0.019%を超えて含有すると、上記した悪影響が顕著となるため、Pは0.019%以下に限定した。
In the present invention, impurities P, S, N, and O are adjusted to P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, and O: 0.003% or less.
P: O.019% or less P is an element having an adverse effect of lowering the low temperature toughness and degrading the electroweldability through solidification co-segregation with Mn, and is preferably reduced as much as possible. If the content exceeds 0.019%, the above-described adverse effects become remarkable, so P is limited to 0.019% or less.
S:0.010%以下
Sは、鋼中ではMnS等の介在物として存在し、成形時の微細割れや疲労亀裂の起点として作用し、耐疲労特性、成形性を低下させる悪影響を有する元素であり、本発明ではできるだけ低減することが好ましい。0.010%を超えて含有すると、上記した悪影響が顕著となる。このため、Sは0.010%以下に限定した。なお、好ましくは0.005%以下である。
S: 0.010% or less S is an element that exists as an inclusion such as MnS in steel and acts as a starting point of fine cracks and fatigue cracks during forming, and has an adverse effect of reducing fatigue resistance and formability. In the present invention, it is preferable to reduce as much as possible. When the content exceeds 0.010%, the above-described adverse effects become remarkable. For this reason, S was limited to 0.010% or less. In addition, Preferably it is 0.005% or less.
N:O.008%以下
Nは、鋼中に固溶Nとして残存すると、鋼管の成形性、低温靭性を低下させる悪影響を有する元素であり、本発明ではできるだけ低減することが好ましい。0.008%を超えて含有すると、上記した悪影響が顕著となるため、Nは0.008%以下に限定した。なお、好ましくはO.0049%以下である。
N: O.008% or less N is an element having an adverse effect of lowering the formability and low-temperature toughness of a steel pipe if it remains as a solid solution N in the steel, and is preferably reduced as much as possible in the present invention. When the content exceeds 0.008%, the above-mentioned adverse effects become remarkable, so N is limited to 0.008% or less. In addition, Preferably it is O.0049% or less.
O:0.003%以下
Oは、鋼中では酸化物系介在物として存在し、鋼の耐疲労特牲、低温靭性を低下させる悪影響を有する元素であり、本発明ではできるだけ低減することが好ましい。0.003%を超える含有は、上記した悪影響が顕著となるため、OはO.003%以下に限定した。なお、好ましくはO.002%以下である。
O: 0.003% or less O is an element that exists as an oxide inclusion in steel and has an adverse effect of lowering the fatigue resistance and low temperature toughness of the steel, and is preferably reduced as much as possible in the present invention. If the content exceeds 0.003%, the above-described adverse effects become remarkable, so O is limited to O.003% or less. In addition, Preferably it is O.002% or less.
上記した成分が基本成分であるが、本発明では上記した基本組成に加えてさらに、V:0.001〜O.15%、W:O.001〜0.15%、Ti:0.001〜O.15%、Cr:0.001〜0.45%、Mo:0.001〜O.45%、Cu:0.001〜0.45%、Ni:O.001〜0.45%、B:0.0001〜0.0009%のうちから選ばれた1種または2種以上、および/または、Ca:O.O001〜0.O05%を含有することができる。 The above components are basic components, but in the present invention, in addition to the above basic composition, V: 0.001 to 0.15%, W: O.001 to 0.15%, Ti: 0.001 to 0.15%, Cr : 0.001 to 0.45%, Mo: 0.001 to O.45%, Cu: 0.001 to 0.45%, Ni: O.001 to 0.45%, B: one or more selected from 0.0001 to 0.0009%, And / or Ca: O.O001-0.005%.
V、W、Ti、Cr、Mo、Cu、Ni、Bはいずれも、Mn、Nbの、疲労強度を高め、耐疲労特性を向上させる作用を補完する働きがある元素で有り、必要に応じて選択して1種または2種以上を含有できる。
Vは、上記した作用に加えてさらに、炭化物として析出し、表層近傍の硬さを高め、疲労強度を向上させるとともに、Nbの、熱延工程における回復・再結晶による粒成長を抑制し、フェライト相を所望の微細結晶粒径とする作用を補完する働きも有する。このような効果は、0.001%以上の含有で発現するが、0.15%を超える含有は成形性、低温靭性を低下させる。このため、含有する場合には、Vは0.001〜0.15%の範囲に限定することが好ましい。
V, W, Ti, Cr, Mo, Cu, Ni, and B are all elements of Mn and Nb that have the function of enhancing the fatigue strength and complementing the fatigue resistance properties. It can contain 1 type (s) or 2 or more types by selecting.
In addition to the above-described effects, V further precipitates as carbides, increases the hardness in the vicinity of the surface layer, improves fatigue strength, suppresses grain growth due to recovery and recrystallization of Nb in the hot rolling process, and ferrite It also has the function of complementing the effect of making the phase a desired fine crystal grain size. Such an effect is manifested at a content of 0.001% or more, but a content exceeding 0.15% degrades moldability and low-temperature toughness. For this reason, when it contains, it is preferable to limit V to 0.001 to 0.15% of range.
Wは、上記した作用に加えてさらに、炭化物として析出し、表層近傍の硬さを高め、疲労強度を向上させるとともに、Nbの、熱延工程における回復・再結晶による粒成長を抑制し、フェライト相を所望の微細結晶粒径とする作用を補完する働きを有する。このような効果は、0.001%以上の含有で発現するが、0.15%を超える含有は成形性、低温靭性を低下させる。このため、含有する場合には、Wは0.001〜0.15%の範囲に限定することが好ましい。 In addition to the above-described effects, W further precipitates as carbides, increases the hardness in the vicinity of the surface layer, improves fatigue strength, and suppresses the grain growth due to recovery and recrystallization of Nb in the hot rolling process. It has the function of complementing the effect of making the phase a desired fine crystal grain size. Such an effect is manifested at a content of 0.001% or more, but a content exceeding 0.15% degrades moldability and low-temperature toughness. For this reason, when it contains, it is preferable to limit W to 0.001 to 0.15% of range.
Tiは、上記した作用に加えてさらに、Nと結合し固溶N量を低減することにより、鋼管の成形性向上に寄与する。またさらに、余剰Tiは炭化物として析出し、表層の硬さを確保し、疲労強度を向上させるとともに、Nbの、熱延工程における回復・再結晶による粒成長を抑制し、フェライト相を所望の微細結晶粒径とする作用を補完する働きを有する。このような効果は、0.001%以上の含有で発現するが、0.15%を超える含有は、析出炭化物による強度上昇、延性低下、低温靭性低下が顕著となる。このため、含有する場合には、Tiは0.001〜0.15%の範囲に限定することが好ましい。なお、さらに好ましくはO.0010〜O.080%である。 In addition to the above-described action, Ti further contributes to improving the formability of the steel pipe by combining with N and reducing the amount of solute N. Furthermore, excess Ti precipitates as carbides, ensuring the hardness of the surface layer, improving fatigue strength, suppressing grain growth due to recovery and recrystallization of Nb in the hot rolling process, and reducing the ferrite phase to the desired fineness. It has a function of complementing the effect of making the crystal grain size. Such an effect is manifested with a content of 0.001% or more. However, when the content exceeds 0.15%, an increase in strength, a decrease in ductility, and a decrease in low-temperature toughness due to precipitated carbides become significant. For this reason, when it contains, it is preferable to limit Ti to the range of 0.001 to 0.15%. Further, it is more preferably O.0010 to O.080%.
Crは、上記したMnの、疲労強度をたかめ、耐疲労特性を向上させる作用を補完する働きに加えてさらに、表層近傍の析出物、フェライト粒の粗大化抑制に効果がある元素である。このような効果は、0.001%以上の含有で認められるが、O.45%を超える含有は成形性を低下させる。このため、含有する場合には、Crは0.001〜0.45%の範囲に限定することが好ましい。なお、さらに好ましくは0.08〜O.29%である。 Cr is an element that is effective in suppressing the coarsening of precipitates and ferrite grains in the vicinity of the surface layer, in addition to the function of increasing the fatigue strength and improving the fatigue resistance properties of Mn described above. Such an effect is recognized when the content is 0.001% or more, but when the content exceeds O.45%, the moldability is lowered. For this reason, when it contains, it is preferable to limit Cr to 0.001 to 0.45% of range. Further, it is more preferably 0.08 to O.29%.
Moは、炭化物として析出し、上記したNbの、疲労強度をたかめ、耐疲労特性を向上させる作用を補完する働きがある。このような効果は、0.001%以上の含有で認められるが、O.45%を超える含有は成形性を低下させる。このため、含有する場合には、Moは0.001〜0.45%の範囲に限定することが好ましい。残留応力除去焼鈍等を行わない場合には、0.045%未満とすることがより好ましい。なお、さらに好ましくは0.045〜0.30%である。 Mo precipitates as carbides, and has the function of supplementing the above-described effects of increasing the fatigue strength and improving the fatigue resistance of Nb. Such an effect is recognized when the content is 0.001% or more, but when the content exceeds O.45%, the moldability is lowered. For this reason, when it contains, it is preferable to limit Mo to 0.001 to 0.45% of range. When the residual stress removal annealing or the like is not performed, the content is more preferably less than 0.045%. In addition, More preferably, it is 0.045 to 0.30%.
Cuは、上記した作用に加えさらに、耐食性を向上させる働きを有する。このような効果は、0.001%以上の含有で認められるが、0.45%を超える含有は、成形性を低下させる。このため、含有する場合には、Cuは0.001〜0.45%の範囲に限定することが好ましい。なお、さらに好ましくは0.2%以下である。
Niは、Cuと同様に、上記した作用に加えさらに、耐食性を向上させる働きを有する。このような効果は、0.001%以上の含有で認められるが、0.45%を超える含有は、成形性を低下させる。このため、含有する場合には、Niは0.001〜0.45%の範囲に限定することが好ましい。なお、より好ましくは0.2%以下である。
Cu has a function of improving the corrosion resistance in addition to the above-described action. Such an effect is recognized when the content is 0.001% or more. However, when the content exceeds 0.45%, the moldability is deteriorated. For this reason, when it contains, it is preferable to limit Cu to 0.001 to 0.45% of range. More preferably, it is 0.2% or less.
Ni, like Cu, has a function of improving the corrosion resistance in addition to the above-described action. Such an effect is recognized when the content is 0.001% or more. However, when the content exceeds 0.45%, the moldability is deteriorated. For this reason, when it contains, it is preferable to limit Ni to 0.001 to 0.45% of range. In addition, More preferably, it is 0.2% or less.
Bは、Crと同様に上記したMnの、疲労強度をたかめ、耐疲労特性を向上させる作用を補完する働きがある。このような効果は、0.0001%以上の含有で認められるが、O.0009%を超える含有は成形性を低下させる。このため、含有する場合には、Bは0.0001〜0.0009%の範囲に限定することが好ましい。
Ca:0.0001〜0.005%
Ca は、展伸した介在物(MnS)を粒状の介在物(Ca(Al)S(O))とする、いわゆる介在物の形態を制御する作用を有し、この介在物の形態制御を介して、成形時の微細割れおよび疲労亀裂発生を抑制し、成形性、耐疲労特性、低温靭性を向上させる効果を有する元素であり、必要に応じて含有できる。このような効果は、0.0001%以上の含有で顕著となるが、0.005%を超える含有は、非金属介在物が増加しかえって耐ねじり疲労特性が低下する。このため、含有する場合には、Caは0.0001〜0.005%の範囲に限定することが好ましい。
B, like Cr, supplements the above-described effects of increasing the fatigue strength and improving the fatigue resistance of Mn. Such an effect is recognized when the content is 0.0001% or more, but when the content exceeds O.0009%, the moldability is deteriorated. For this reason, when it contains, it is preferable to limit B to 0.0001 to 0.0009% of range.
Ca: 0.0001 to 0.005%
Ca has a function of controlling the form of inclusions, in which the expanded inclusions (MnS) are granular inclusions (Ca (Al) S (O)). Thus, it is an element that has the effect of suppressing the occurrence of fine cracks and fatigue cracks during molding, and improving moldability, fatigue resistance, and low temperature toughness, and can be contained as required. Such an effect becomes remarkable when the content is 0.0001% or more. However, when the content exceeds 0.005%, the non-metallic inclusions are increased, and the torsional fatigue resistance is lowered. For this reason, when it contains, it is preferable to limit Ca to 0.0001 to 0.005% of range.
なお、上記した成分以外の残部は、Feおよび不可避的不純物である。
つぎに、本発明鋼管の組織限定理由について説明する。
本発明鋼管では、少なくとも管表層が微細化した組織を有する。管表層の組織は、優れた成形性、優れた耐疲労特性等を確保するうえで重要である。本発明鋼管の管最外表面および管最内表面から肉厚方向に50μmまでの管表層の領域は、平均結晶粒径が、円周方向断面(管長手方向と直交する断面)で、2.0〜14μmである微細フェライト相と、該フェライト相以外の第二相とからなる組織を有する。
The balance other than the components described above is Fe and inevitable impurities.
Next, the reason for limiting the structure of the steel pipe of the present invention will be described.
The steel pipe of the present invention has a structure in which at least the pipe surface layer is refined. The structure of the pipe surface layer is important for ensuring excellent formability, excellent fatigue resistance, and the like. The region of the pipe surface layer from the outermost surface of the steel pipe of the present invention and the innermost surface of the pipe up to 50 μm in the thickness direction has an average grain size of 2.0 to 2.0 in the circumferential section (cross section perpendicular to the longitudinal direction of the pipe). It has a structure composed of a fine ferrite phase of 14 μm and a second phase other than the ferrite phase.
フェライト相の平均結晶粒径が、2.0μm未満では、所望の成形性が確保できず、局所的な減肉、表面肌荒れ、微細割れが生じやすく、これらが応力集中部となり耐疲労特性が大きく低下する。一方、フェライト相の平均結晶粒径が14μmを超えると、成形性が低下するとともに、表面硬さが低下し耐疲労特性が低下する。このため、最外表面および最内表面から肉厚方向に50μmまでの領域においては、フェライト相の平均結晶粒径を2.0〜14μmの範囲に限定した。なお、好ましくは8μm以下である。 If the average crystal grain size of the ferrite phase is less than 2.0 μm, the desired formability cannot be ensured, and local thinning, rough surface, and fine cracks are likely to occur, and these become stress-concentrated portions, resulting in a significant reduction in fatigue resistance. To do. On the other hand, when the average crystal grain size of the ferrite phase exceeds 14 μm, the formability is lowered, the surface hardness is lowered, and the fatigue resistance is lowered. For this reason, in the region from the outermost surface and the innermost surface to 50 μm in the thickness direction, the average crystal grain size of the ferrite phase was limited to the range of 2.0 to 14 μm. The thickness is preferably 8 μm or less.
本発明鋼管の管最外表面および管最内表面から肉厚方向に50μmまでの管表層の領域におけるフェライト相は、体積率で60%以上の組織分率を有する。フェライト相の組織分率が、60%未満では、所望の成形性が確保できず、局所的な減肉、表面肌荒れ、微細割れが応力集中部となり疲労特性が大きく低下する。このため、管最外表面および管最内表面から肉厚方向に50μmまでの領域では、フェライト相の体積分率を60%以上に限定した。なお、好ましくは75%以上、99%以下である。ここでいう「フェライト相」は、ポリゴナルフェライト、アシキュラーフェライト、ウィッドマンステッテンフェライト、ベイニティックフェライトを含むものとする。また、第二相としては、フェライト以外の、カーバイド、パーライト、ベイナイト、マルテンサイトのいずれか、あるいはそれらの混合相が例示できる。なお、第二相の組織分率は、成形性の観点から体積率で20%以下とすることが好ましい。 The ferrite phase in the region of the pipe outer layer from the outermost surface of the steel pipe of the present invention and the innermost surface of the pipe up to 50 μm in the thickness direction has a structure fraction of 60% or more by volume. When the structure fraction of the ferrite phase is less than 60%, desired formability cannot be ensured, and local thinning, rough surface, and fine cracks become stress-concentrated portions and fatigue characteristics are greatly reduced. For this reason, the volume fraction of the ferrite phase was limited to 60% or more in the region from the outermost surface of the tube and the innermost surface of the tube to the thickness direction of 50 μm. In addition, Preferably they are 75% or more and 99% or less. The “ferrite phase” here includes polygonal ferrite, acicular ferrite, Widmanstatten ferrite, and bainitic ferrite. Examples of the second phase include any one of carbide, pearlite, bainite, martensite other than ferrite, or a mixed phase thereof. Note that the volume fraction of the second phase is preferably 20% or less from the viewpoint of moldability.
また、管表層のフェライト相に含まれるNb炭化物の大きさは、所望の表面硬さを確保し、高い耐疲労特性を確保するとともに、所望の成形性を確保するために重要な因子である。本発明では、管最外表面および管最内表面から肉厚方向に50μmまでの管表層領域におけるフェライト相中に析出するNb炭化物の平均粒径を1.5〜60nmの範囲に限定した。
管表層のフェライト相中のNb炭化物の平均粒径が1.5nm未満では、降伏強さが著しく高くなり、所望の成形性が確保できなくなるため、局所的な減肉、表面肌荒れ、微細割れが応力集中部となり断面成形加工後の5×105繰返し疲れ限度σBと鋼管引張強さTSとの比、σB/TSが0.40を下回り、断面成形加工後の耐ねじり疲労特性が低下する。一方、管表層のフェライト相中のNb炭化物の平均粒径が60nmを超えると、管表層領域の硬さが低下し、肉厚方向の硬さばらつきが大きくなり、断面成形加工後の5×105繰返し疲れ限度と鋼管引張強さTSとの比、σB/TS が0.40を下回るようになり、耐ねじり疲労特性が低下する。このため、最外表面および最内表面から肉厚方向に50μmまでの管表層領域におけるフェライト相中のNb炭化物を平均粒径で1.5nm 〜60nmの範囲に限定した。なお、好ましくは5nm〜50nmである。
The size of the Nb carbide contained in the ferrite phase of the tube surface layer is an important factor for ensuring desired surface hardness, ensuring high fatigue resistance, and ensuring desired formability. In the present invention, the average particle size of Nb carbides precipitated in the ferrite phase in the tube surface region from the outermost surface of the tube and the innermost surface of the tube up to 50 μm in the thickness direction is limited to a range of 1.5 to 60 nm.
If the average particle size of Nb carbide in the ferrite phase of the tube surface layer is less than 1.5 nm, the yield strength is remarkably increased and the desired formability cannot be ensured, so local thinning, rough surface, and fine cracks are stressed. The ratio between 5 × 10 5 repeated fatigue limit σ B after cross-section forming and steel pipe tensile strength TS, σ B / TS, is less than 0.40, and the torsional fatigue resistance after cross-section forming decreases. On the other hand, when the average particle size of Nb carbide in the ferrite phase of the tube surface layer exceeds 60 nm, the hardness of the tube surface region decreases, the hardness variation in the thickness direction increases, and 5 × 10 after cross-section forming processing 5 Repeat the fatigue limit and the ratio of the steel pipe tensile strength TS, σ B / TS is now below 0.40, resistance torsional fatigue characteristics are lowered. For this reason, Nb carbides in the ferrite phase in the tube surface region from the outermost surface and the innermost surface to the thickness direction of 50 μm in the thickness direction were limited to an average particle size in the range of 1.5 nm to 60 nm. In addition, Preferably it is 5 nm-50 nm.
ここで、管表層領域のフェライト相中のNb炭化物の平均粒径は、鋼管から組織観察用試料を採取し、抽出レプリカ法を用い、透過型電子顕微鏡(TEM)(倍率:10万倍)で、5視野観察した。観察される析出物のうち、EDS分析によりNbを含まないセメンタイト、TiNなどを同定、除外し、Nbを含有する炭化物(Nb炭化物)について、画像解析装置により、Nb炭化物の面積を測定し、その面積から円相当直径を算出し、それらの算術平均値を、その試料におけるNb炭化物の平均粒径とした。なお、Nbの単独炭化物、Mo、Ti、V等を含むMo、Ti、V等との複合炭化物などもNb炭化物としてカウントした。 Here, the average particle size of Nb carbide in the ferrite phase in the tube surface layer region is obtained by taking a sample for observing the structure from a steel tube and using an extraction replica method with a transmission electron microscope (TEM) (magnification: 100,000 times) Five visual fields were observed. Among the observed precipitates, EDS analysis identifies and excludes cementite and TiN that do not contain Nb, and for Nb-containing carbides (Nb carbides), the area of Nb carbides is measured by an image analyzer, The equivalent circle diameter was calculated from the area, and the arithmetic average value thereof was defined as the average particle diameter of Nb carbide in the sample. In addition, Nb single carbide, composite carbide with Mo, Ti, V, etc. including Mo, Ti, V, etc. were counted as Nb carbide.
上記した組成と上記した組織を有する本発明溶接鋼管は、管最外表面および最内表面から肉厚方向に50μmまで領域の平均硬さHV0−50と、管最外表面および最内表面から肉厚方向に50〜200μmの範囲の領域の平均硬さHV50−200との差ΔHV(=HV50−200−HV0−50)がビッカース硬さで40ポイント以下、かつ、管最外表面および最内表面から肉厚方向に50μmまでの領域における硬さの標準偏差σがビッカース硬さで20ポイント以下、断面成形加工後の5×105繰返し疲れ限度σBと鋼管引張強さTSとの比σB/TSが0.40以上を有する鋼管である。 The welded steel pipe of the present invention having the above composition and the above structure has an average hardness HV 0-50 in the region from the outermost surface and innermost surface to 50 μm in the thickness direction, and from the outermost surface and innermost surface of the tube. The difference ΔHV (= HV 50−200 −HV 0−50 ) from the average hardness HV 50−200 in the region of 50 to 200 μm in the thickness direction is less than 40 points in Vickers hardness and the outermost surface of the pipe And the standard deviation σ of hardness in the region from the innermost surface to 50 μm in the thickness direction is 20 points or less in Vickers hardness, 5 × 10 5 repeated fatigue limit σ B and steel pipe tensile strength TS after section forming Is a steel pipe having a ratio σ B / TS of 0.40 or more.
管最外表面および最内表面から肉厚方向に50μmまでの領域の平均硬さHV0−50と、管最外表面および最内表面から肉厚方向に50〜200μmの範囲の領域の平均硬さHV50−200との差ΔHV(=HV50−200−HV0−50):ビッカース硬さで40ポイント以下
管最外表面および最内表面から肉厚方向に50μmまでの領域、すなわち管表層は、管内層部と比べて、熱間圧延時の歪・熱履歴が異なり、管内層部の硬さと相違する硬さとなる場合が多い。とくに、管表層が、管内層部に比べて相対的に軟質である場合には、成形時に管表層に歪が集中し、成形後に管表層に大きな引張の残留応力が残ることになる。このため、管表層部分の疲労強度が低下することになる。
Average hardness HV 0-50 in the region from the outermost surface of the tube and the innermost surface to 50 μm in the thickness direction, and average hardness in the region in the range of 50 to 200 μm in the thickness direction from the outermost surface of the tube and the innermost surface Difference from HV 50-200 ΔHV (= HV 50-200 -HV 0-50 ): 40 points or less in Vickers hardness Area from pipe outermost surface and innermost surface to 50μm in thickness direction, ie tube surface layer Compared to the inner layer portion of the tube, the strain and heat history during hot rolling differ, and the hardness is often different from the hardness of the inner layer portion of the tube. In particular, when the tube surface layer is relatively soft as compared with the tube inner layer portion, strain concentrates on the tube surface layer at the time of molding, and a large tensile residual stress remains on the tube surface layer after molding. For this reason, the fatigue strength of the pipe surface layer portion is reduced.
管内層の平均硬さと管表層の平均硬さとの差と、断面成形加工後の疲労強度との関係を図2に示す。図2には、管内層を管最外表面および最内表面から肉厚方向に50〜200μmの範囲の領域で代表させ、管最外表面および最内表面から肉厚方向に50〜200μmの範囲の領域のビッカース硬さでの平均硬さHV50−200と、管最外表面および最内表面から肉厚方向に50μmまでの領域のビッカース硬さでの平均硬さHV0−50との差、ΔHV=(HV50−200−HV0−50)と、断面成形加工後の5×105繰返し疲れ限度σBと鋼管引張強さTSとの比、σB/TS との関係を示す。 FIG. 2 shows the relationship between the difference between the average hardness of the tube inner layer and the average hardness of the tube surface layer and the fatigue strength after the cross-section forming process. In FIG. 2, the pipe inner layer is represented by a region in the range of 50 to 200 μm from the outermost surface of the tube and the innermost surface in the thickness direction, and a range of 50 to 200 μm in the thickness direction from the outermost surface of the tube and the innermost surface. The difference between the average hardness HV 50-200 in the Vickers hardness of the area of the tube and the average hardness HV 0-50 in the Vickers hardness of the area from the outermost surface and the innermost surface to the thickness direction of 50 μm , ΔHV = (HV 50−200 −HV 0−50 ), and the relationship between 5 × 10 5 repeated fatigue limit σ B after section forming and steel pipe tensile strength TS, σ B / TS.
なお、各領域の平均硬さは、各領域を肉厚方向に3ブロック(計6ブロック)に分け、各ブロックで10点(管長手方向に中心位置で)、ビッカース硬さ計(荷重:0.025kgf、試験力:0.245N)で硬さHV0.025を測定し、得られた計60点の測定結果を算術平均し、各領域の平均硬さとした。
図2から、ΔHVが40ポイントを超えると、σB/TSが0.40を下回ることがわかる。このため、本発明では、HV50−200とHV0−50との差ΔHVを40ポイント以下に限定した。なお、好ましくはΔHVが30ポイント以下である。
The average hardness of each area is divided into 3 blocks in the thickness direction (6 blocks in total), 10 points in each block (center position in the longitudinal direction of the pipe), Vickers hardness meter (load: 0.025) kgf, test force: 0.245 N), the hardness HV0.025 was measured, and the obtained 60 points of measurement results were arithmetically averaged to obtain the average hardness of each region.
FIG. 2 shows that when ΔHV exceeds 40 points, σ B / TS is less than 0.40. Therefore, in the present invention, the difference ΔHV between HV 50-200 and HV 0-50 is limited to 40 points or less. Note that ΔHV is preferably 30 points or less.
管最外表面および最内表面から肉厚方向に50μmまで領域の硬さの標準偏差σ0−50:ビッカース硬さで20ポイント以下
管表層は、その平均硬さに加えて、そのばらつき(標準偏差)が疲労強度に大きな影響を及ぼす。これは、疲労亀裂が疲労強度の最弱部位で先ず発生するためと考えられる。管最外表面および最内表面から肉厚方向に50μmまで領域の硬さの標準偏差σ0−50と、断面成形加工後の5×105繰返し疲れ限度σBと鋼管引張強さTSとの比、σB/TS との関係を図3に示す。
Standard deviation of hardness in the region from the outermost surface of the tube and the innermost surface to 50 μm in the thickness direction σ 0-50 : Vickers hardness is 20 points or less. Deviation) has a great influence on fatigue strength. This is presumably because fatigue cracks first occur at the weakest part of fatigue strength. The standard deviation σ 0-50 of the hardness in the region from the outermost surface and the innermost surface to the thickness direction of 50 μm, the 5 × 10 5 repeated fatigue limit σ B and the steel pipe tensile strength TS after cross-section forming The relationship between the ratio and σ B / TS is shown in FIG.
なお、管最外表面および最内表面から肉厚方向に50μmまで領域の硬さの標準偏差σ0−50は、該領域を肉厚方向に3ブロック(計6ブロック)に分け、各ブロックで10点(管長手方向に中心位置で)、ビッカース硬さ計(荷重:0.025kgf、試験力:0.245N)で硬さHV0.025を測定し、得られた計60点の測定結果から算出した。
図3から、σ0−50が、ビッカース硬さで20ポイントを超えると、σB/TSが0.40を下回り、耐ねじり疲労特性が低下する。これは、管表層内の硬さが相対的に低い部分から、疲労亀裂が発生し、ねじり疲労寿命が低下するためであると考えられる。このため、最外表面および最内表面から肉厚方向50μmまでの領域における硬さの標準偏差σ0−50を、ビッカース硬さで20ポイント以下に限定した。なお、好ましくは15ポイント以下である。
The standard deviation σ 0-50 of the hardness of the region from the outermost surface and the innermost surface to 50 μm in the thickness direction is divided into 3 blocks (6 blocks in total) in the thickness direction. The hardness HV0.025 was measured with 10 points (at the center position in the longitudinal direction of the pipe) and a Vickers hardness tester (load: 0.025 kgf, test force: 0.245 N), and calculated from the measurement results obtained for a total of 60 points. .
From FIG. 3, when σ 0-50 exceeds 20 points in terms of Vickers hardness, σ B / TS is less than 0.40, and the torsional fatigue resistance is reduced. This is presumably because fatigue cracks are generated from the portion having a relatively low hardness in the tube surface layer, and the torsional fatigue life is reduced. For this reason, the standard deviation σ 0-50 of the hardness in the region from the outermost surface and the innermost surface to the thickness direction of 50 μm was limited to 20 points or less in terms of Vickers hardness. In addition, Preferably it is 15 points or less.
つぎに、本発明溶接鋼管の好ましい製造方法について説明する。
上記した組成の溶鋼をまず、転炉等の公知の溶製方法で溶製し、連続鋳造法等の公知の鋳造方法で鋼素材とすることが好ましい。ついで、これら鋼素材に、熱延工程を施し、熱延鋼帯等の鋼管素材とすることが好ましい。
熱延工程は、鋼素材に、1160〜1320℃に加熱した後、粗圧延を経て、仕上圧延圧下率:80〜97%、仕上圧延終丁温度:980〜760℃とする仕上圧延を行う熱間圧延と、該熱間圧延終了後、750〜650℃の温度範囲で2s以上の徐冷を行う徐冷処理とを施し、巻取り温度:660〜510℃で巻取り熱延鋼帯とする工程とすることが好ましい。
Below, the preferable manufacturing method of this invention welded steel pipe is demonstrated.
It is preferable that the molten steel having the above-described composition is first melted by a known melting method such as a converter and made into a steel material by a known casting method such as a continuous casting method. Subsequently, it is preferable to subject these steel materials to a hot-rolling step to obtain a steel pipe material such as a hot-rolled steel strip.
In the hot rolling process, the steel material is heated to 1160 to 1320 ° C. and then subjected to rough rolling, and finish rolling is performed at a rolling reduction ratio of 80 to 97% and final rolling final temperature of 980 to 760 ° C. After the hot rolling and after the hot rolling, the steel sheet is subjected to a slow cooling process in which annealing is performed at a temperature range of 750 to 650 ° C. for 2 seconds or more to obtain a hot rolled steel strip at a winding temperature of 660 to 510 ° C. It is preferable to set it as a process.
鋼素材の加熱温度:1160〜1320℃
鋼素材の加熱温度は、鋼中のNbの再固溶、析出状況を通じて、特に鋼板表層の析出物サイズ、硬度プロファイルに影響を及ぼし、軟化を抑制し、良好な疲労強度を確保するために重要である。加熱温度が1160℃未満では、連続鋳造時に析出した粗大なNb炭窒化物が未固溶炭窒化物として残存するため、フェライト相中のNb炭化物が粗大化(平均粒径で60nmを超え)し、所望の耐ねじり疲労特性が確保できない。一方、加熱温度が1320℃を超えて高温となると、結晶粒が粗大化するため、その後の熱延工程で得られる最外表面および最内表面から肉厚方向に50μmまでの領域のフェライト相が粗大化(円周方向断面の平均粒径が14μmを超え)し、表面硬さが低下し、成形性が低下するとともに、耐ねじり疲労特性が低下する。このため、鋼素材の加熱温度は1160〜1320℃の範囲に限定することが好ましい。なお、さらに好ましくは1200〜1300℃である。また、Nbの固溶状態の均一性と十分な固溶時問の確保という観点から、鋼素材の均熱時間は30min以上とすることが好ましい。
Heating temperature of steel material: 1160-1320 ℃
The heating temperature of the steel material affects the precipitate size and hardness profile of the steel sheet surface layer, especially through the re-solidification and precipitation of Nb in the steel, which is important for suppressing softening and ensuring good fatigue strength. It is. When the heating temperature is less than 1160 ° C, coarse Nb carbonitrides precipitated during continuous casting remain as undissolved carbonitrides, so the Nb carbides in the ferrite phase become coarse (average particle size exceeds 60 nm). The desired torsional fatigue resistance characteristics cannot be ensured. On the other hand, when the heating temperature exceeds 1320 ° C., the crystal grains become coarse, so that the ferrite phase in the region from the outermost surface and the innermost surface to 50 μm in the thickness direction is obtained in the subsequent hot rolling process. It becomes coarse (the average particle diameter of the circumferential cross section exceeds 14 μm), the surface hardness is lowered, the moldability is lowered, and the torsional fatigue resistance is lowered. For this reason, it is preferable to limit the heating temperature of a steel raw material to the range of 1160-1320 degreeC. In addition, it is 1200-1300 degreeC more preferably. Further, from the viewpoint of ensuring the uniformity of the solid solution state of Nb and ensuring a sufficient solid solution time, the soaking time of the steel material is preferably set to 30 min or more.
仕上圧延圧下率:80〜97%
熱延工程における仕上圧延圧下率は、鋼材のオーステナイト域での再結晶・回復挙動、圧延歪誘起析出を通して、鋼管素材(熱延鋼帯)の最外表面および最内表面から肉厚方向に50μmまでの領域の組織、すなわちフェライト相分率、フェライト相粒径、フェライト相中のNb炭化物の粒径等に、さらに硬度プロファイルに影響を及ぼし、良好な耐ねじり疲労特性を確保するために、特に重要な因子である。
Finish rolling reduction: 80-97%
The finish rolling reduction in the hot rolling process is 50 μm from the outermost and innermost surfaces of the steel pipe material (hot-rolled steel strip) to the thickness direction through recrystallization and recovery behavior in the austenite region of steel and rolling strain-induced precipitation. In order to ensure good torsional fatigue resistance, it also affects the hardness profile and the structure of the region up to, ie, ferrite phase fraction, ferrite phase particle size, Nb carbide particle size in the ferrite phase, etc. It is an important factor.
仕上圧延圧下率が80%未満では、鋼管素材(熱延鋼帯)の最外表面および最内表面から肉厚方向に50μmまでの領域におけるフェライト相分率が60%(体積率)を下回り、また該領域におけるフェライト相の平均粒径が円周方向断面で14μmを超え、表面硬さが低下し成形性が低下するとともに、耐ねじり疲労特性が低下する。一方、仕上圧延圧下率が97%を超えると、特に圧延剪断歪の集中する、最外表面および最内表面から肉厚方向に50μmまでの領域におけるフェライト相の平均粒径が2.0μm未満となり、硬さの標準偏差σがビッカース硬さで20ポイントを超え、所望の成形性が確保できず、また局所的な減肉・表面肌荒れ、微細割れが応力集中部となり、さらには局所的な歪誘起析出により、硬さが相対的に低い部分から疲労亀裂の発生が助長され、所望の耐ねじり疲労特性を確保できなくなる。このため、仕上圧延圧下率は80〜97%の範囲に限定することが好ましい。なお、さらに好ましくは89〜95%である。 When the finish rolling reduction is less than 80%, the ferrite phase fraction in the region from the outermost surface and the innermost surface of the steel pipe material (hot rolled steel strip) to 50 μm in the thickness direction is less than 60% (volume ratio), In addition, the average grain size of the ferrite phase in the region exceeds 14 μm in the circumferential cross section, the surface hardness is lowered, the formability is lowered, and the torsional fatigue resistance is lowered. On the other hand, when the finish rolling reduction exceeds 97%, the average grain diameter of the ferrite phase in the region from the outermost surface and the innermost surface to the thickness direction of 50 μm is less than 2.0 μm, particularly where the rolling shear strain is concentrated, The standard deviation σ of hardness exceeds 20 points in terms of Vickers hardness, the desired formability cannot be secured, local thinning, rough surface, fine cracks become stress concentrated parts, and local strain induction Precipitation promotes the generation of fatigue cracks from relatively low hardness portions, making it impossible to ensure desired torsional fatigue resistance characteristics. For this reason, it is preferable to limit the finish rolling reduction in the range of 80 to 97%. In addition, More preferably, it is 89 to 95%.
仕上圧延終了温度:980〜760℃
熱延工程における仕上圧延終了温度は、鋼帯表層のフェライト相分率、平均粒径を所定範囲に調整して良好な鋼管成形性を確保するために重要である。仕上圧延終了温度が980℃を超えると、得られる鋼管素材のフェライト相平均粒径が14μmを超え、またフェライト相分率が60体積%未満となり、成形性が低下するとともに、表面性状が低下し、耐ねじり疲労特性が低下する。一方、仕上圧延終了温度が760℃を下回ると、鋼帯表層のフェライト相の平均粒径が2.0μmを下回り、成形性が低下するとともに、歪誘起析出により、Nb炭化物の平均粒径が60nmを超え、所望の耐ねじり疲労特性を確保できなくなる。このため、仕上圧延終了温度は980〜760℃の範囲に限定することが好ましい。なお、さらに好ましくは900〜880℃である。また、良好な表面性状、所望の表層硬さを確保するという観点から、仕上圧延前に140kg/cm2(1.4MPa)以上の水圧でのデスケーリングを行なうことが好ましい。
Finishing rolling finish temperature: 980-760 ° C
The finish rolling finish temperature in the hot rolling process is important for ensuring good steel pipe formability by adjusting the ferrite phase fraction and the average grain size of the steel strip surface layer to a predetermined range. If the finish rolling finish temperature exceeds 980 ° C, the average ferrite phase particle size of the resulting steel pipe material exceeds 14 µm, and the ferrite phase fraction is less than 60% by volume, which reduces formability and surface properties. The torsional fatigue resistance is reduced. On the other hand, when the finish rolling finish temperature is below 760 ° C., the average grain size of the ferrite phase of the steel strip surface is less than 2.0 μm, the formability is lowered, and strain-induced precipitation reduces the average grain size of Nb carbide to 60 nm. The desired torsional fatigue resistance characteristics cannot be ensured. For this reason, it is preferable that the finish rolling end temperature is limited to a range of 980 to 760 ° C. In addition, it is 900-880 degreeC more preferably. Further, from the viewpoint of securing good surface properties and desired surface hardness, it is preferable to perform descaling at a water pressure of 140 kg / cm 2 (1.4 MPa) or more before finish rolling.
徐冷処理:750〜650℃の温度範囲で2s以上の徐冷
本発明では、熱延工程の仕上圧延終了後、直ちに巻き取るのではなく、巻取りまでの間に750〜650℃の温度範囲で2s以上の徐冷を行う徐冷処理を施す。ここで、徐冷とは、冷却速度20℃/s以下の冷却をいうものとする。上記した温度範囲における徐冷の時間は、2s以上とすることが好ましい。これにより、体積率で60%以上のフェライト相分率となる組織を確保でき、JIS 12号試験片での伸びElが15%以上となる引張特性を確保できる。2s未満では、所望の組織を確保できなくなり、所望の成形性、耐ねじり疲労特性が確保できなくなる。なお、より好ましくは4s以上である。
Slow cooling treatment: Slow cooling for 2 s or more in the temperature range of 750 to 650 ° C. In the present invention, the temperature range of 750 to 650 ° C. is not taken up immediately after the finish rolling in the hot rolling process but before winding. Then, a slow cooling process is performed in which slow cooling is performed for 2 seconds or more. Here, slow cooling refers to cooling at a cooling rate of 20 ° C./s or less. The slow cooling time in the above temperature range is preferably 2 s or more. As a result, a structure having a ferrite phase fraction of 60% or more in volume ratio can be secured, and a tensile property in which the elongation El in the JIS No. 12 test piece is 15% or more can be secured. If it is less than 2 s, the desired structure cannot be secured, and the desired formability and torsional fatigue resistance cannot be secured. More preferably, it is 4 seconds or longer.
巻取り温度:660〜510℃
徐冷処理を施された熱延鋼帯は、ついで、コイル状に巻き取られる。巻取り温度は660〜510℃の温度範囲とすることが好ましい。巻取り温度は、熱延鋼帯の組織分率、とくに鋼帯表層のフェライト相分率と析出物の析出状態を決定する重要な因子である。巻取り温度が510℃未満では、所望のフェライト相分率が得られず、所望の成形性が得られないうえ、Nb炭化物の平均粒径が1.5nm未満となり、所望の耐ねじり疲労特性が確保できなくなる。一方、巻取り温度が660℃を超えると、フェライト相の平均粒径が14μmを超え、成形性が低下するとともに、巻取り後のスケール成長により、表面性状が低下し耐ねじり疲労特性が低下する。さらにまた、Nb炭化物の平均寸法が60nmを超え、所望のねじり疲労特性が確保できなくなる。このため、巻取り温度は660〜510℃の範囲とすることが好ましい。なお、さらに好ましくは600〜560℃である。
Winding temperature: 660-510 ° C
The hot-rolled steel strip that has been subjected to the slow cooling treatment is then wound into a coil shape. The winding temperature is preferably in the temperature range of 660 to 510 ° C. The coiling temperature is an important factor that determines the structure fraction of the hot-rolled steel strip, particularly the ferrite phase fraction of the steel strip surface layer and the precipitation state of the precipitates. If the coiling temperature is less than 510 ° C, the desired ferrite phase fraction cannot be obtained, the desired formability cannot be obtained, and the average grain size of Nb carbide is less than 1.5 nm, ensuring the desired torsional fatigue resistance. become unable. On the other hand, when the coiling temperature exceeds 660 ° C., the average grain size of the ferrite phase exceeds 14 μm, and the formability deteriorates, and the surface properties deteriorate due to the scale growth after winding and the torsional fatigue resistance property decreases. . Furthermore, the average dimension of Nb carbide exceeds 60 nm, and desired torsional fatigue characteristics cannot be ensured. For this reason, the winding temperature is preferably in the range of 660 to 510 ° C. In addition, it is 600-560 degreeC more preferably.
上記した組成の鋼素材に、上記した条件で熱延工程を施すことにより、ミクロ組織、析出物状態、さらに硬さプロファイルが最適化され、優れた成形性を有し、しかも鋼管に造管した後にも、成形性、低温靭性に優れ、さらに断面成形加工後の優れた耐ねじり疲労特性を兼備する、トーションビーム用として好適な鋼管素材(熱延鋼帯)を得ることができる。なお、鋼管素材(熱延鋼帯)の優れた表面性状は、優れた耐ねじり疲労特性の確保に大きく寄与している。 By subjecting the steel material having the above composition to a hot rolling process under the above-described conditions, the microstructure, precipitate state, and hardness profile are optimized, and it has excellent formability and is formed into a steel pipe. Later, it is possible to obtain a steel pipe material (hot-rolled steel strip) suitable for torsion beams, which has excellent formability and low-temperature toughness and also has excellent torsional fatigue resistance after cross-section forming. In addition, the excellent surface properties of the steel pipe material (hot rolled steel strip) greatly contributes to ensuring excellent torsional fatigue resistance.
本発明では、上記した鋼管素材(熱延鋼帯)に、さらに電縫造管工程を施して溶接鋼管とする。つぎに、好ましい電縫造管工程について説明する。
鋼管素材は、熱延ままとしてもよいが、鋼管素材に酸洗処理、ショットブラスト等を施し表面の黒皮を除去することが好ましい。また、さらに、耐食牲、塗膜密着性の観点から鋼管素材に亜鉛メッキ、アルミメッキ、ニッケルメッキ、有機皮膜処理などの表面処理を施すこともできる。
In the present invention, the above-described steel pipe material (hot-rolled steel strip) is further subjected to an electric sewing pipe process to obtain a welded steel pipe. Next, a preferred electric sewing tube process will be described.
The steel pipe material may be hot rolled, but it is preferable to remove the black skin on the surface by subjecting the steel pipe material to pickling treatment, shot blasting, or the like. Furthermore, surface treatments such as galvanizing, aluminum plating, nickel plating, and organic film treatment can be applied to the steel pipe material from the viewpoint of corrosion resistance and coating film adhesion.
酸洗まま、あるいは表面処理を施された鋼管素材に、電縫造管工程を施す。
電縫造管工程は、鋼管素材を連続的にロール成形し電縫溶接して溶接鋼管とする工程とする。電縫造管工程では、幅絞り率:10%以下(0%を含む)の電縫造管を施すことが好ましい。鋼管素材を連続的にロール成形し電縫溶接する場合には、幅絞り率は所望の成形性を確保するための重要な因子である。幅絞り率が10%を超えると造管に伴う成形性の低下が顕著となり、所望の鋼管成形性が確保できなくなる。このため、幅絞り率は10%以下(0%を含む)とすることが好ましい。なお、より好ましくは1%以上である。幅絞り率(%)は、次(1)式
幅絞り率(%)=[(鋼管素材の幅)−π{(製品鋼管外径)−(製品鋼管肉厚)}]/π{(製品鋼管外径)−(製品鋼管肉厚)}×(100%)………(1)
で定義される値とする。
An electric sewing pipe process is performed on the steel pipe material that has been pickled or surface-treated.
The electric sewing pipe process is a process in which a steel pipe material is continuously roll-formed and electro-welded to form a welded steel pipe. In the electric sewing tube process, it is preferable to apply an electric sewing tube having a width drawing ratio of 10% or less (including 0%). When a steel pipe material is continuously roll-formed and electro-welded, the width drawing ratio is an important factor for ensuring a desired formability. If the width drawing ratio exceeds 10%, the formability drop due to pipe making becomes remarkable, and the desired steel pipe formability cannot be ensured. For this reason, it is preferable that the width drawing ratio is 10% or less (including 0%). More preferably, it is 1% or more. The width drawing ratio (%) is expressed by the following equation (1): width drawing ratio (%) = [(width of steel pipe material) −π {(outer diameter of product steel pipe) − (product steel pipe wall thickness)}] / π {(product Steel pipe outer diameter)-(product steel pipe wall thickness)} x (100%) ......... (1)
The value defined in.
なお、本発明では、鋼管素材は熱延鋼帯に限定されることはない。上記した組成、組織を有する素材であれば、上記したような熱延鋼帯に、冷間圧延−焼鈍を施した冷延焼鈍鋼帯、あるいはさらに各種表面処理を施した表面処理鋼帯を用いても何ら問題はない。また、電縫造管工程に代えて、ロールフォーミング、切板のプレス閉断面化、造管後の冷間・温間・熱間での縮径圧延および焼鈍等の熱処理等を組み合わせた造管工程としてもよい、さらに電縫溶接に代えて、レーザー溶接、アーク潜接、プラズマ溶接などを用いても何ら問題はない。本発明鋼管を用いて成形された部材は、成形ままで優れた特性を発揮するが、付加的に部材成形後に、残留応力除去焼鈍等の熱処理、あるいはショットピーニング等による表面の高硬度化や圧縮残留応力付与を施すこともなんら問題ない。 In the present invention, the steel pipe material is not limited to the hot-rolled steel strip. If it is a material having the composition and structure described above, a hot-rolled steel strip as described above, a cold-rolled annealed steel strip subjected to cold rolling-annealing, or a surface-treated steel strip subjected to various surface treatments is used. There is no problem. In addition, instead of electric sewing pipe process, pipe forming that combines roll forming, press-cut section of cut plate, heat treatment such as cold, warm, hot diameter reduction and annealing after pipe forming. There is no problem even if laser welding, arc latent welding, plasma welding, or the like is used in place of electric welding. The member formed using the steel pipe of the present invention exhibits excellent characteristics as it is formed, but additionally, after forming the member, the surface is hardened or compressed by heat treatment such as residual stress removal annealing or shot peening. There is no problem in applying residual stress.
つぎに、実施例に基づきさらに本発明について説明する。 Next, the present invention will be further described based on examples.
(実施例1)
表1に示す組成のスラブ(鋼素材)を、約1250℃に加熱し、仕上圧延圧下率:93%、仕上圧延終了温度:約860℃とする熱間圧延を施し、熱間圧延終了後、750℃〜650℃の温度範囲で5s間徐冷する徐冷処理を施したのち、巻取り温度:590℃で巻き取る熱延工程を施し、熱延鋼帯(板厚:約3mm)とした。
Example 1
A slab (steel material) having the composition shown in Table 1 is heated to about 1250 ° C., subjected to hot rolling with a finish rolling reduction ratio of 93% and a finish rolling finishing temperature of about 860 ° C. After the hot rolling is completed, After performing a slow cooling treatment that gradually cools for 5 s in a temperature range of 750 ° C. to 650 ° C., a hot rolling process of winding at a winding temperature of 590 ° C. was performed to obtain a hot rolled steel strip (plate thickness: about 3 mm). .
ついで、これら熱延鋼帯を鋼管素材として、酸洗を施し、所定の幅寸法にスリット加工したのち、連続的にロール成形してオ一プン管とし、該オープン管を高周波抵抗溶接により電縫溶接する電縫造管工程により溶接鋼管(外径φ89.1mm×肉厚約3mm)とした。なお、電縫造管工程では、(1)式で定義される幅絞り率を4%とした。
これら溶接鋼管から、試験片を採取し、組織観察試験、析出物観察試験、引張試験、ねじり疲労試験、低温靭性試験を実施した。試験方法はつぎの通りとした。
Next, these hot-rolled steel strips are used as steel pipe materials, pickled and slitted to a predetermined width, then continuously rolled into open pipes, and the open pipes are electro-sealed by high-frequency resistance welding. A welded steel pipe (outer diameter φ89.1 mm x wall thickness about 3 mm) was made by the electro-welded pipe process for welding. In the electric sewing tube process, the width drawing ratio defined by the equation (1) was set to 4%.
Specimens were collected from these welded steel pipes and subjected to a structure observation test, a precipitate observation test, a tensile test, a torsional fatigue test, and a low temperature toughness test. The test method was as follows.
(1)組織観察試験
得られた溶接鋼管から、円周方向断面が観察面となるように、組織観察用試験片を採取して、研磨し、ナイタール腐食して、走査型電子顕微鏡(3000倍)で組織を観察し、撮像して、画像解析装置を用いて、フェライト相の組織分率(体積%)、フェライト相の平均結晶粒径(円相当径)を測定した。測定は、管最外表面、管最内表面から肉厚方向に50μmまでの領域(管表層)を肉厚方向に3ブロックに分けて行った。各ブロックにおいて、フェライト相の組織分率(体積%)、フェライト相の平均結晶粒径を測定し、各ブロック(計6ブロック)の測定値を算術平均し、管表層におけるフェライト組織分率、フェライト相の平均結晶粒径とした。
(1) Microstructure observation test From the obtained welded steel pipe, a specimen for microstructural observation was collected so that the circumferential cross-section became the observation surface, polished, and subjected to nital corrosion, and a scanning electron microscope (3000 times) ) Were observed and imaged, and using an image analyzer, the structure fraction (volume%) of the ferrite phase and the average crystal grain size (equivalent circle diameter) of the ferrite phase were measured. The measurement was performed by dividing a region (tube surface layer) from the outermost surface of the tube and the innermost surface of the tube up to 50 μm in the thickness direction into three blocks in the thickness direction. In each block, the ferrite phase structure fraction (% by volume) and the average crystal grain size of the ferrite phase were measured, and the measured values of each block (total of 6 blocks) were arithmetically averaged. The average crystal grain size of the phase was taken.
(2)析出物観察試験
得られた溶接鋼管から、円周方向断面が観察面となるように、析出物観察試験片を採取して、抽出レプリカ法を用いて組織観察用試料を作製し、透過型電子顕微鏡(TEM)を用いて、10万倍で計6視野観察し、EDS分析によりNbを含まないセメンタイト、TiNなどを同定・除外し、Nbを含有する炭化物(Nb炭化物)について、画像解析により、各Nb炭化物の面積を測定しその面積から円相当直径を算出し、それらの算術平均値をNb炭化物の平均粒径とした。なお、Ti、Mo等を含む複合炭化物なども、Nb炭化物としてカウントした。また、測定は、管最外表面、管最内表面から肉厚方向に50μmまでの領域を肉厚方向に3ブロックに分けて行い、各ブロック2視野ずつ行った。
(2) Precipitate observation test From the obtained welded steel pipe, a precipitate observation test piece is collected so that the circumferential cross section becomes the observation plane, and a sample for structure observation is prepared using the extraction replica method. Using a transmission electron microscope (TEM), observe a total of 6 fields at a magnification of 100,000, identify and exclude Nb-free cementite, TiN, etc. by EDS analysis. Images of Nb-containing carbides (Nb carbides) By analysis, the area of each Nb carbide was measured, the equivalent circle diameter was calculated from the area, and the arithmetic average value thereof was taken as the average particle diameter of the Nb carbide. Note that composite carbides containing Ti, Mo and the like were also counted as Nb carbides. The measurement was performed by dividing the area from the outermost surface of the tube and the innermost surface of the tube to 50 μm in the thickness direction into three blocks in the thickness direction, and each block had two fields of view.
(3)引張試験
得られた溶接鋼管から、管軸方向が引張方向となるように、JIS Z 2201の規定に準拠してJIS 12号試験片を切出し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(引張強さTS、降伏強さYS、El)を求め、強度と成形性を評価した。
(5)ねじり疲労試験
得られた溶接鋼管から、試験材(長さ:1500mm)を採取し、該試験材の中央部約1000mmLに、図1(特開2001−321846号公報の図11)に示すように、鋼管の長手中央部分をV字形状に断面を成形加工したのち、両端部をチャッキングにより固定して、ねじり疲労試験を実施した。
(3) Tensile test JIS No. 12 test piece was cut out from the obtained welded steel pipe in accordance with the provisions of JIS Z 2201 and pulled in accordance with the provisions of JIS Z 2241 so that the pipe axis direction would be the tensile direction. Tests were conducted to determine tensile properties (tensile strength TS, yield strength YS, El), and to evaluate strength and formability.
(5) Torsional fatigue test From the obtained welded steel pipe, a test material (length: 1500 mm) was sampled, and the center part of the test material was about 1000 mmL, as shown in FIG. 1 (FIG. 11 of JP-A-2001-331846). As shown in the figure, after the cross section of the steel pipe was formed into a V-shaped cross section, both ends were fixed by chucking and a torsional fatigue test was performed.
ねじり疲労試験は、1Hz、両振りの条件で行い、応力水準を種々変化させ、負荷応力Sにおける破断までの繰返し回数Nを求めた。得られたS‐N線図より5×105繰返し疲れ限度σB(MPa)を求め、σB/TS、(ここでTSは鋼管の引張強さMPa)で耐ねじり疲労特性を評価した。なお、負荷応力は最初にダミー片でねじり試験を行い、疲労亀裂位置を確認し、その位置に3軸歪ゲージを貼付けて実測した。
(6)低温靭性試験
得られた溶接鋼管から、試験材(長さ:1500mm)を採取し、ねじり疲労試験材と同一条件で断面成形加工を行ない、断面成形加工ままの試験材平坦部分より、管円周方向(C方向)が試験片長さとなるように展開し、JIS Z 2242の規定に準拠してVノッチ試験片(1/4サイズ)を切出し、シャルピー衝撃試験を実施し、破面遷移温度vTrsを求め、低温靭性を評価した。
The torsional fatigue test was conducted under the conditions of 1 Hz and double swing. Various stress levels were changed, and the number of repetitions N until the fracture at the load stress S was obtained. The 5 × 10 5 repeated fatigue limit σ B (MPa) was determined from the obtained SN diagram, and torsional fatigue resistance was evaluated by σ B / TS (where TS is the tensile strength of the steel pipe MPa). The load stress was measured by first conducting a torsion test with a dummy piece, confirming the fatigue crack position, and attaching a triaxial strain gauge at that position.
(6) Low temperature toughness test From the obtained welded steel pipe, a test material (length: 1500mm) is sampled and subjected to cross-section molding under the same conditions as the torsional fatigue test material. Expand the pipe circumferential direction (C direction) to be the test piece length, cut out a V-notch test piece (1/4 size) according to JIS Z 2242, conduct Charpy impact test, and transition to fracture surface The temperature vTrs was obtained and the low temperature toughness was evaluated.
得られた結果を表2に示す。 The obtained results are shown in Table 2.
本発明例(鋼管No.1〜8、No.10)はいずれも、管最外表面および管最内表面から肉厚方向に50μmまでの領域におけるフェライト相の組織分率が60体積%以上で、かつフェライト相の平均結晶粒径が2〜14μmであり、フェライト相中のNb炭化物の平均粒径が1.5〜60nmである組織を有し、引張強さが590MPa以上で、JIS12号試験片での伸びElが15%以上を満足する成形性に優れた溶接鋼管となっている。また、本発明例はいずれも、管最外表面および管最内表面から肉厚方向に50〜200μmの領域の平均硬さHV50−200と管最外表面および管最内表面から肉厚方向に50μmまでの領域の平均硬さHV0−50との差ΔHV(=HV50−200 −HV0−50)が40ポイント以下、管最外表面および管最内表面から肉厚方向に50μmまでの領域の硬さの標準偏差σ0−50が20ポイント以下であり、断面成形加工後のねじり疲労試験での5×105繰返し疲れ限度σBと鋼管強度TSとの比(σB/TS) がO.40以上であり、優れた耐ねじり疲労特性を有する溶接鋼管となっている。また、本発明例いずれも、断面成形加工後のシャルピー衝撃試験における破面遷移温度vTrsがいずれも−40℃以下と優れた低温靭性を示している。 Examples of the present invention (steel pipe Nos. 1 to 8 and No. 10) all have a structure fraction of ferrite phase in the region from the outermost pipe surface and the innermost pipe surface to 50 μm in the thickness direction of 60 vol% or more. And the average crystal grain size of the ferrite phase is 2 to 14 μm, the average grain size of Nb carbide in the ferrite phase is 1.5 to 60 nm, the tensile strength is 590 MPa or more, This is a welded steel pipe with excellent formability that satisfies an elongation El of 15% or more. Further, in all of the examples of the present invention, the average hardness HV 50-200 in the region of 50 to 200 μm in the thickness direction from the outermost surface of the tube and the innermost surface of the tube and the thickness direction from the outermost surface of the tube and the innermost surface of the tube The difference ΔHV (= HV 50-200 -HV 0-50 ) from the average hardness HV 0-50 in the region up to 50 μm is 40 points or less, from the outermost surface of the tube and the innermost surface of the tube to the thickness direction of 50 μm The standard deviation σ 0-50 of the hardness of the steel region is 20 points or less, and the ratio of the 5 × 10 5 cyclic fatigue limit σ B to the steel pipe strength TS (σ B / TS in the torsional fatigue test after cross-section forming processing) ) Is O.40 or more, and the welded steel pipe has excellent torsional fatigue resistance. In addition, all of the inventive examples show excellent low-temperature toughness with fracture surface transition temperatures vTrs of −40 ° C. or lower in the Charpy impact test after cross-section forming.
一方、鋼組成が本発明の範囲を外れる比較例(鋼管No.11〜33)は、組織等が本発明の範囲を外れ、少なくとも強度、成形性、耐ねじり疲労特性、低温靭性のいずれかが低下している。C、Mn、Al、Nb、S、N、O、V、W、Ti、Cu、Ni、B、Caが本発明範囲を超える比較例(鋼管No.12、No.16、No.18、No.20、No.22〜27、No.30〜33)はいずれも、Elが15%未満と低く延性が不足し、また(σB/TS) が0.40未満と耐ねじり疲労特性が低下している。 On the other hand, in the comparative examples (steel pipe Nos. 11 to 33) in which the steel composition is out of the scope of the present invention, the structure is out of the scope of the present invention, and at least one of strength, formability, torsional fatigue resistance, and low temperature toughness is present. It is falling. C, Mn, Al, Nb, S, N, O, V, W, Ti, Cu, Ni, B, and Ca are comparative examples exceeding the scope of the present invention (steel pipe No. 12, No. 16, No. 18, No. .20, No.22 to 27, and No.30 to 33) are low in El with less than 15%, lack of ductility, and (σ B / TS) is less than 0.40, resulting in reduced torsional fatigue resistance. Yes.
また、Siが本発明範囲を超える比較例(鋼管No.14)は、(σB/TS) が0.40未満と、耐ねじり疲労特性が低く、かつvTrsが−40℃を超え、低温靭性が低下している。また、Cr、Moが本発明範囲を超える比較例(鋼管No.28、No.29)はいずれも、Elが15%未満と低くく、延性が不足している。また、C、Si、Mn、Al、Nbが本発明範囲から低く外れる比較例(鋼管No.11、No.13、No.15、No.17、No.19)はいずれも、(σB/TS) が0.40未満と、耐ねじり疲労特性が低下している。 In addition, the comparative example (steel pipe No. 14) in which Si exceeds the scope of the present invention has (σ B / TS) less than 0.40, low torsional fatigue resistance, vTrs exceeds −40 ° C., and low temperature toughness decreases. doing. Moreover, in the comparative examples (steel pipes No. 28 and No. 29) in which Cr and Mo exceed the scope of the present invention, El is as low as less than 15% and the ductility is insufficient. Further, all of the comparative examples (steel pipes No. 11, No. 13, No. 15, No. 17, No. 19) in which C, Si, Mn, Al, and Nb deviate from the scope of the present invention are all (σ B / If TS) is less than 0.40, the torsional fatigue resistance is reduced.
なお、得られた溶接鋼管(鋼管No.1〜8、No.10〜33)の表面性状についても調査した。得られた溶接鋼管の円周方向断面を撮像し、表面凹凸の深さd、表面凹部先端の曲率半径ρを測定した。得られたd、ρを用いて、
次(2)式
αf=1+2√(d/ρ)‥‥(2)
(ここで、d:表面凹凸の深さ(μm)、ρ:表面凹部先端の曲率半径(μm))
で定義される応力集中係数αfを求めた。その結果、各溶接鋼管のαfはいずれも、10以下であり、表面性状は良好であった。
The surface properties of the obtained welded steel pipes (steel pipes Nos. 1 to 8, Nos. 10 to 33) were also investigated. A circumferential cross section of the obtained welded steel pipe was imaged, and the depth d of the surface unevenness and the radius of curvature ρ of the tip of the surface recess were measured. Using the obtained d and ρ,
Next (2) Formula α f = 1 + 2√ (d / ρ) (2)
(Where, d: depth of surface irregularities (μm), ρ: radius of curvature of the surface concave portions (μm))
The stress concentration coefficient α f defined by As a result, α f of each welded steel pipe was 10 or less, and the surface properties were good.
また、得られた溶接鋼管(鋼管No.1〜8、No.10〜33)から管軸方向断面が観察面となるように試験片を採取し、研磨後、ノーエッチで管最外表面および管最内表面から肉厚方向に50μmまでの領域について、JIS G 0555-2003に記載の方法で介在物率を測定した。その結果、Sの高い製品管(鋼管No.22)を除き、管最外表面および管最内表面から肉厚方向に50μmまでの領域における介在物率はO.10%以下であった。 In addition, specimens were taken from the obtained welded steel pipes (steel pipes Nos. 1 to 8, Nos. 10 to 33) so that the cross section in the pipe axis direction becomes the observation surface, and after polishing, the outermost surface of the pipe and the pipe were etched without etching. The inclusion rate was measured by the method described in JIS G 0555-2003 for the region from the innermost surface to 50 μm in the thickness direction. As a result, the inclusion rate in the region from the outermost surface of the tube and the innermost surface of the tube to the thickness direction of 50 μm was O.10% or less except for the product tube with high S (steel tube No. 22).
得られた結果を表4に示す。 The results obtained are shown in Table 4.
本発明例(鋼管No.35、 No.38〜40、 No.43、 No.46、 No.48〜50、 No.52〜58)はいずれも、管最外表面および管最内表面から肉厚方向に50μmまでの領域におけるフェライト相の組織分率で60体積%以上で、かつフェライト相の平均結晶粒径が2〜14μmであり、フェライト相中のNb炭化物の平均粒径が1.5〜60nmである組織を有し、引張強さが590MPa以上で、JIS12号試験片での伸びElが15%以上を満足する成形性に優れた溶接鋼管となっている。また、本発明例はいずれも、管最外表面および管最内表面から肉厚方向に50〜200μmの領域の平均硬さHV50−200と管最外表面および管最内表面から肉厚方向に50μmまでの領域の平均硬さHV0−50との差ΔHV(=HV50−200−HV0−50)が40ポイント以下、管最外表面および管最内表面から肉厚方向に50μmまでの領域の硬さの標準偏差σ0−50が20ポイント以下であり、断面成形加工後のねじり疲労試験での5×105繰返し疲れ限度σBと鋼管強度TSとの比(σB/TS) がO.40以上であり、優れた耐ねじり疲労特性を有する溶接鋼管となっている。また、本発明例いずれも、断面成形加工後のシャルピー衝撃試験における破面遷移温度vTrsがいずれも−40℃以下と優れた低温靭性を示している。 Examples of the present invention (steel pipe No. 35, No. 38 to 40, No. 43, No. 46, No. 48 to 50, No. 52 to 58) are all made from the outermost pipe surface and the innermost pipe surface. The structure fraction of the ferrite phase in the thickness direction up to 50 μm is 60 volume% or more, the average crystal grain size of the ferrite phase is 2 to 14 μm, and the average grain size of Nb carbide in the ferrite phase is 1.5 to 60 nm. It is a welded steel pipe with excellent formability that has a structure of ## EQU1 ## and has a tensile strength of 590 MPa or more and an elongation El of JIS12 test piece of 15% or more. Further, in all of the examples of the present invention, the average hardness HV 50-200 in the region of 50 to 200 μm in the thickness direction from the outermost surface of the tube and the innermost surface of the tube and the thickness direction from the outermost surface of the tube and the innermost surface of the tube The difference ΔHV (= HV 50-200 -HV 0-50 ) from the average hardness HV 0-50 in the region up to 50 μm is 40 points or less, from the outermost surface of the tube and the innermost surface of the tube to the thickness direction of 50 μm The standard deviation σ 0-50 of the hardness of the steel region is 20 points or less, and the ratio of the 5 × 10 5 cyclic fatigue limit σ B to the steel pipe strength TS (σ B / TS in the torsional fatigue test after cross-section forming processing) ) Is O.40 or more, and the welded steel pipe has excellent torsional fatigue resistance. In addition, all of the inventive examples show excellent low-temperature toughness with fracture surface transition temperatures vTrs of −40 ° C. or lower in the Charpy impact test after cross-section forming.
一方、鋼素材の熱延工程条件、あるいは鋼管素材の電縫造管工程の条件が本発明の範囲を外れる比較例(鋼管No.34、 No.36、 No.37、 No.41、 No.42、 No.44、 No.45、 No.47、 No.51、 No.59)は、成形性、疲労強度、低温靭性のいずれかが低下している。
熱延工程における鋼素材加熱温度、仕上圧延圧下率のいずれかが本発明範囲を外れる比較例(鋼管No.34、 No.36、 No.37、 No.41)では、(σB/TS) が0.40未満と耐ねじり疲労特性が低下している。また、鋼素材の熱延工程における仕上圧延終了温度、徐冷処理時間、巻取り温度、鋼管の電縫造管工程における幅絞り率のいずれかが本発明範囲を外れる比較例(鋼管No.42、 No.44、 No.45、 No.47、 No.51、 No.59)はいずれも、Elが15%未満と低く、延性が不足し、かつ(σB/TS) が0.40未満と低く、耐ねじり疲労特性が低下している。
(実施例3)
表1に示す鋼No.Dを基本組成とし、S含有量のみを変化し、介在物量を変えた溶鋼を溶製し、連続鋳造法でスラブに鋳造し、鋼素材とした。これら鋼素材に、約1250℃に加熱し、仕上圧延圧下率:93%、仕上圧延終了温度:約860℃とする熱間圧延を施し、熱間圧延終了後、750℃〜650℃の温度範囲で5s間徐冷する徐冷処理を施したのち、巻取り温度:590℃で巻き取る熱延工程を施し、熱延鋼帯(板厚:約3mm)とした。
On the other hand, comparative examples (steel pipe No. 34, No. 36, No. 37, No. 41, No. 1) where the hot rolling process conditions of the steel material or the electric welding pipe process conditions of the steel pipe material are out of the scope of the present invention. No. 42, No. 44, No. 45, No. 47, No. 51, No. 59) have deteriorated any of moldability, fatigue strength, and low temperature toughness.
In comparative examples (steel pipe No. 34, No. 36, No. 37, No. 41) where either the steel material heating temperature or the finish rolling reduction ratio in the hot rolling process is out of the scope of the present invention, (σ B / TS) Is less than 0.40, the torsional fatigue resistance is reduced. Further, a comparative example (steel pipe No. 42) in which any one of the finish rolling finish temperature in the hot rolling process of the steel material, the slow cooling treatment time, the coiling temperature, and the width drawing ratio in the electric sewing pipe process of the steel pipe is out of the scope of the present invention. , No. 44, No. 45, No. 47, No. 51, No. 59), El is less than 15%, ductility is insufficient, and (σ B / TS) is less than 0.40. The torsional fatigue resistance is reduced.
Example 3
Steel No. D shown in Table 1 was used as the basic composition, only the S content was changed, molten steel with different inclusion amounts was melted, and cast into a slab by a continuous casting method to obtain a steel material. These steel materials are heated to about 1250 ° C, hot-rolled at a finish rolling reduction ratio of 93%, and finished at a finish rolling temperature of about 860 ° C. After the hot rolling is completed, a temperature range of 750 ° C to 650 ° C. Then, the steel sheet was subjected to a slow cooling treatment in which it was gradually cooled for 5 seconds, and then a hot rolling step of winding at a winding temperature of 590 ° C. was performed to obtain a hot rolled steel strip (plate thickness: about 3 mm).
ついで、これら熱延鋼帯を鋼管素材として、酸洗を施し、所定の幅寸法にスリット加工したのち、連続的にロール成形してオ一プン管とし、該オープン管を高周波抵抗溶接により電縫溶接する電縫造管工程により溶接鋼管(外径φ89.1mm×肉厚約3mm)とした。なお、電縫造管工程では、(1)式で定義される幅絞り率を4%とした。
得られた溶接鋼管から、試験材(長さ:1500mm)を採取し、該試験材の中央部約1000mmLに、図1(特開2001−321846号公報の図11)に示すように、鋼管の長手中央部分をV字形状に断面を成形加工したのち、両端部をチャッキングにより固定して、ねじり疲労試験を実施した。ねじり疲労試験条件は実施例1と同様とした。
Next, these hot-rolled steel strips are used as steel pipe materials, pickled and slitted to a predetermined width, then continuously rolled into open pipes, and the open pipes are electro-sealed by high-frequency resistance welding. A welded steel pipe (outer diameter φ89.1 mm x wall thickness about 3 mm) was made by the electro-welded pipe process for welding. In the electric sewing tube process, the width drawing ratio defined by the equation (1) was set to 4%.
From the obtained welded steel pipe, a test material (length: 1500 mm) is sampled, and about 1000 mmL at the center of the test material, as shown in FIG. 1 (FIG. 11 of JP-A-2001-331846), After the cross section was formed into a V-shaped section at the longitudinal center, both ends were fixed by chucking and a torsional fatigue test was performed. The torsional fatigue test conditions were the same as in Example 1.
また、得られた溶接鋼管から管軸方向断面が観察面となるように試験片を採取し、研磨後、ノーエッチで管最外表面および管最内表面から肉厚方向に50μmまでの領域について、実施例1と同様に、JIS G 0555-2003に記載の方法で介在物率を測定した。
得られた結果を、断面成形加工後のねじり疲労試験での5×105繰返し疲れ限度σBと鋼管強度TSとの比(σB/TS)と、管最外表面および管最内表面から肉厚方向に50μmまでの領域の介在物率との関係で、図4に示す。図4から、管最外表面および管最内表面から肉厚方向に50μmまでの領域の介在物率が低下するにしたがい、(σB/TS) が増加する傾向となることがわかるが、介在物率0.10%以下に低減すると、(σB/TS) が O.40以上となる。なお、観察された介在物は、多いものから硫化物、酸化物、窒化物の順であった。図4からは、介在物率が0.04%以下まで低減することにより、(σB/TS) が O.42以上となることがわかる。
In addition, the specimen was collected from the obtained welded steel pipe so that the cross section in the axial direction of the pipe became the observation surface, and after polishing, for the region up to 50 μm in the thickness direction from the outermost surface of the pipe and the innermost surface of the pipe, In the same manner as in Example 1, the inclusion ratio was measured by the method described in JIS G 0555-2003.
The obtained results are calculated from the ratio of 5 × 10 5 cyclic fatigue limit σ B and steel pipe strength TS (σ B / TS) in the torsional fatigue test after cross-section forming, and from the outermost surface of the tube and the innermost surface of the tube FIG. 4 shows the relationship with the inclusion rate in the region up to 50 μm in the thickness direction. FIG. 4 shows that (σ B / TS) tends to increase as the inclusion rate in the region from the outermost surface of the tube and the innermost surface of the tube to the thickness direction of 50 μm decreases. When the physical rate is reduced to 0.10% or less, (σ B / TS) becomes O.40 or more. In addition, the observed inclusions were in the order of sulfide, oxide, and nitride from the largest. FIG. 4 shows that (σ B / TS) becomes O.42 or more when the inclusion ratio is reduced to 0.04% or less .
Claims (6)
C:0.03〜0.24%、 Si:0.002〜0.95%、
Mn:1.01〜1.99%、 Al:0.01〜0.08%、
Nb:0.001〜0.15%
を含有し、不純物であるP、S、N、Oを、P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整して含み、残部Feおよび不可避的不純物からなる組成と、
管最外表面および管最内表面から肉厚方向に50μmまでの領域が、円周方向断面の平均結晶粒径が2.0〜14μmであるフェライト相と該フェライト相以外の第二相からなる組織とを有し、
前記フェライト相の組織分率が体積率で60%以上であり、該フェライト相中に1.5〜60nmのNb炭化物が析出してなり、
前記領域の平均硬さHV0−50と、管最外表面または管最内表面から肉厚方向に50〜200μmの範囲の領域の平均硬さHV50−200との差ΔHV(=HV50−200−HV0−50)がビッカース硬さで40ポイント以下、前記管最外表面または管最内表面から肉厚方向に50μmまでの領域の硬さの標準偏差σがビッカース硬さで20ポイント以下であり、低温靭性、成形性、および断面成形加工後の耐ねじり疲労特性に優れることを特徴とする自動車構造部材用高張力溶接鋼管。 % By mass
C: 0.03-0.24%, Si: 0.002-0.95%,
Mn: 1.01-1.99%, Al: 0.01-0.08%,
Nb: 0.001 to 0.15%
And P, S, N, and O, which are impurities, include P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, O: 0.003% or less, and the balance Fe and unavoidable A composition comprising impurities;
The region from the outermost surface of the tube and the innermost surface of the tube up to 50 μm in the thickness direction is composed of a ferrite phase having an average crystal grain size of 2.0 to 14 μm in the circumferential section and a second phase other than the ferrite phase. Have
The structure fraction of the ferrite phase is 60% or more by volume, and 1.5 to 60 nm of Nb carbide is precipitated in the ferrite phase,
Difference ΔHV (= HV 50−) between the average hardness HV 0-50 in the region and the average hardness HV 50-200 in the region in the thickness direction from the outermost surface of the tube or the innermost surface of the tube to the thickness direction 200 −HV 0-50 ) is 40 points or less in Vickers hardness, and the standard deviation σ of hardness in the region from the outermost surface of the tube or the innermost surface of the tube to 50 μm in the thickness direction is 20 points or less in Vickers hardness. A high-strength welded steel pipe for automobile structural members characterized by being excellent in low-temperature toughness, formability, and torsional fatigue resistance after cross-section forming.
記
αf=1+2√(d/ρ)‥‥(2)
ここで、d:表面凹凸の深さ(μm)、ρ:表面凹部先端の曲率半径(μm) The high-tensile steel pipe for automobile structural members according to any one of claims 1 to 3, wherein the stress concentration coefficient α f defined by the following equation (2) on the inner and outer surface of the pipe is 10 or less.
Record
α f = 1 + 2√ (d / ρ) (2)
Where, d: depth of surface irregularities (μm), ρ: radius of curvature of surface concave portions (μm)
前記鋼管素材が、質量%で、
C:0.03〜0.24%、 Si:0.002〜0.95%、
Mn:1.01〜1.99%、 Al:0.01〜0.08%、
Nb:0.001〜0.15%
を含有し、不純物であるP、S、N、Oを、P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整して含み、残部Feおよび不可避的不純物からなる組成の鋼素材に、1160〜1320℃に加熱した後、仕上圧延圧下率:80〜97%、仕上圧延終了温度:980〜760℃とする仕上圧延を行う熱間圧延と、該熱間圧延終了後、750〜650℃の温度範囲で2s以上の徐冷を行う徐冷処理とを施し、巻取り温度:660〜510℃で巻取る熱延工程を施してなる熱延鋼帯であり、
前記電縫造管工程が、前記鋼管素材を酸洗、スリッティングしたのち、該鋼管素材に下記(1)式で定義される幅絞り率を10%以下として、連続的にロール成形し電縫溶接して溶接鋼管とする工程であり、
前記溶接鋼管が、低温靭性、成形性、および断面成形加工後の耐ねじり疲労特性に優れること、
を特徴とする自動車構造部材用高張力鋼管の製造方法。
記
幅絞り率=[(素材鋼管の幅)−π{(製品外径)−(製品肉厚)}]/π{(製品外径)−(製品肉厚)}×(100%)‥‥(1) When the steel pipe material is subjected to the electric sewing pipe process to make a welded steel pipe,
The steel pipe material is mass%,
C: 0.03-0.24%, Si: 0.002-0.95%,
Mn: 1.01-1.99%, Al: 0.01-0.08%,
Nb: 0.001 to 0.15%
And P, S, N, and O, which are impurities, include P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, O: 0.003% or less, and the balance Fe and unavoidable A steel material having a composition comprising impurities is heated to 1160 to 1320 ° C., and then subjected to finish rolling with a finish rolling reduction ratio of 80 to 97% and a finish rolling finishing temperature of 980 to 760 ° C., and the heat A hot-rolled steel strip that has been subjected to a hot-rolling process of winding at a temperature of 660 to 510 ° C., followed by annealing at a temperature range of 750 to 650 ° C., followed by annealing at a temperature of 750 to 650 ° C. Yes,
After the steel pipe material is pickled and slitted in the electric sewing pipe process, the steel pipe material is continuously roll-formed and electro-sewn with a width drawing ratio defined by the following formula (1) set to 10% or less. It is a process of welding into a welded steel pipe,
The welded steel pipe is excellent in low temperature toughness, formability, and torsional fatigue resistance after cross-section forming processing;
The manufacturing method of the high-tensile steel pipe for automobile structural members characterized by these.
Width drawing ratio = [(Material steel tube width) -π {(Product outer diameter)-(Product thickness)}] / π {(Product outer diameter)-(Product thickness)} x (100%) (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008044266A JP5125601B2 (en) | 2008-02-26 | 2008-02-26 | High tensile welded steel pipe for automobile structural members and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008044266A JP5125601B2 (en) | 2008-02-26 | 2008-02-26 | High tensile welded steel pipe for automobile structural members and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009203492A JP2009203492A (en) | 2009-09-10 |
JP5125601B2 true JP5125601B2 (en) | 2013-01-23 |
Family
ID=41146053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008044266A Active JP5125601B2 (en) | 2008-02-26 | 2008-02-26 | High tensile welded steel pipe for automobile structural members and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5125601B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012188747A (en) | 2011-02-24 | 2012-10-04 | Kobe Steel Ltd | Forged steel material for nuclear power generation devices, and welded structure for nuclear power generation devices |
US11230744B2 (en) | 2016-03-31 | 2022-01-25 | Jfe Steel Corporation | Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet |
JP6796472B2 (en) * | 2016-12-09 | 2020-12-09 | 日本製鉄株式会社 | Hollow member and its manufacturing method |
KR102020417B1 (en) * | 2017-12-22 | 2019-09-10 | 주식회사 포스코 | Steel sheet having excellent toughness and it manufacturing method |
CN116018417A (en) * | 2020-10-22 | 2023-04-25 | 日本制铁株式会社 | Electric welded steel pipe for machine structural member and method for producing same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4735315B2 (en) * | 2006-02-15 | 2011-07-27 | Jfeスチール株式会社 | High tensile welded steel pipe for automobile structural members and method for manufacturing the same |
JP4466619B2 (en) * | 2006-07-05 | 2010-05-26 | Jfeスチール株式会社 | High tensile welded steel pipe for automobile structural members and method for manufacturing the same |
-
2008
- 2008-02-26 JP JP2008044266A patent/JP5125601B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009203492A (en) | 2009-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4466619B2 (en) | High tensile welded steel pipe for automobile structural members and method for manufacturing the same | |
JP5463715B2 (en) | Manufacturing method of high strength welded steel pipe for automobile structural members | |
JP4443910B2 (en) | Steel materials for automobile structural members and manufacturing method thereof | |
KR102232097B1 (en) | Electrically-sealed steel pipe for high-strength thin-walled hollow stabilizer and its manufacturing method | |
JP4735315B2 (en) | High tensile welded steel pipe for automobile structural members and method for manufacturing the same | |
CN113785079B (en) | High hardness steel product and method for manufacturing same | |
JP5040475B2 (en) | Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same | |
JP5187003B2 (en) | High strength steel material excellent in formability and fatigue resistance and method for producing the same | |
JP4910694B2 (en) | High tensile welded steel pipe for automobile structural members and method for manufacturing the same | |
JP5499559B2 (en) | High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same | |
JPWO2007023873A1 (en) | High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same | |
JP4635708B2 (en) | Non-tempered high-tensile welded steel pipe for automotive structural members with excellent formability and low-temperature toughness and excellent torsional fatigue resistance after cross-section forming processing | |
JP5125601B2 (en) | High tensile welded steel pipe for automobile structural members and method for manufacturing the same | |
KR100903546B1 (en) | High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming | |
US9540704B2 (en) | Method of making quenched and tempered steel pipe with high fatigue life | |
JP5499560B2 (en) | High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same | |
CN113631735B (en) | Electric welded steel pipe for hollow stabilizer, and method for producing same | |
JP7160235B1 (en) | Hot shrinking ERW pipe | |
WO2023190200A1 (en) | High-strength steel sheet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121002 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121015 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5125601 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151109 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |