JP5463715B2 - Manufacturing method of high strength welded steel pipe for automobile structural members - Google Patents

Manufacturing method of high strength welded steel pipe for automobile structural members Download PDF

Info

Publication number
JP5463715B2
JP5463715B2 JP2009092058A JP2009092058A JP5463715B2 JP 5463715 B2 JP5463715 B2 JP 5463715B2 JP 2009092058 A JP2009092058 A JP 2009092058A JP 2009092058 A JP2009092058 A JP 2009092058A JP 5463715 B2 JP5463715 B2 JP 5463715B2
Authority
JP
Japan
Prior art keywords
steel pipe
less
steel
strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009092058A
Other languages
Japanese (ja)
Other versions
JP2010242164A (en
Inventor
俊介 豊田
昌利 荒谷
能知 岡部
裕二 橋本
良和 河端
修 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009092058A priority Critical patent/JP5463715B2/en
Publication of JP2010242164A publication Critical patent/JP2010242164A/en
Application granted granted Critical
Publication of JP5463715B2 publication Critical patent/JP5463715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高強度で、優れた成形性と優れた耐疲労特性とが要求される、トーションビーム、アクスルビーム、トレーリングアーム、サスペンションアーム等の自動車構造部材用として好適な、高強度溶接鋼管に係り、とくにトーションビーム用として、成形性および断面成形後の耐ねじり疲労特性の改善に関する。   The present invention provides a high-strength welded steel pipe suitable for automobile structural members such as torsion beams, axle beams, trailing arms, and suspension arms, which are required to have high strength, excellent formability, and excellent fatigue resistance. In particular, for torsion beams, it relates to improvement of formability and torsional fatigue resistance after section forming.

近年の地球環境の保全という観点から、自動車の燃費向上が強く求められている。そのため、自動車等の車体の徹底した軽量化が指向されている。自動車等の構造部材についても例外ではなく、軽量化と安全性との両立を図るために、一部の構造部材では、高強度化された電縫鋼管が採用されつつある。従来では、素材(電縫鋼管)を所定の形状に成形した後、焼入れ処理等の調質処理を施して、部材の高強度化が図られていた。しかし、調質処理を採用することは工程が複雑になり、部材の製造期間が長期化するうえ、部材製造コストの高騰を招くという問題がある。   In recent years, there has been a strong demand for improving the fuel efficiency of automobiles from the viewpoint of protecting the global environment. Therefore, a thorough weight reduction of the body of an automobile or the like is aimed at. Structural members such as automobiles are no exception, and in order to achieve both weight reduction and safety, some structural members are adopting highly-strengthened ERW steel pipes. Conventionally, after forming a material (electrically welded steel pipe) into a predetermined shape, a tempering process such as a quenching process is performed to increase the strength of the member. However, adopting the tempering treatment has a problem in that the process becomes complicated, the manufacturing period of the member becomes longer, and the manufacturing cost of the member increases.

このような問題に対し、例えば特許文献1には、C、Si、Mn、P、S、Al、Nを適正量に調整したうえ、B:0.0003〜0.003%を含み、さらにMo、Ti、Nb、Vのうちの1種以上を含有する組成の鋼素材に、950℃以下Ar変態点以上で仕上圧延を終了し、250℃以下で巻取る熱間圧延を施し管用鋼帯とし、該管用鋼帯を造管して電縫鋼管としたのち、500〜650℃で時効処理を施す、電縫鋼管の製造方法が記載されている。この技術によれば、Bの変態組織強化とMo,Ti,Nb等の析出硬化により、調質処理を施すことなく、1000MPaを超える超高張力鋼管を得ることができるとしている。 For such a problem, for example, in Patent Document 1, C, Si, Mn, P, S, Al, and N are adjusted to appropriate amounts, and B: 0.0003 to 0.003% is included, and Mo, Ti, and Nb are further included. A steel material having a composition containing one or more of V is subjected to finish rolling at 950 ° C. or below at the Ar 3 transformation point and hot rolling at 250 ° C. or below to obtain a steel strip for pipes. A method for producing an electric resistance welded steel pipe is described in which a steel strip is formed into an electric resistance welded pipe and then subjected to an aging treatment at 500 to 650 ° C. According to this technology, it is said that an ultra-high strength steel pipe exceeding 1000 MPa can be obtained without tempering treatment by strengthening the transformation structure of B and precipitation hardening of Mo, Ti, Nb and the like.

また、特許文献2には、C:0.18〜0.28%、Si:0.10〜0.50%、Mn:0.60〜1.80%を含み、P、Sを適正範囲に調整したうえ、Ti:0.020〜0.050%、B:0.0005〜0.0050%を含有し、さらにCr、MoおよびNbのうちの1種以上を含有する組成の鋼板を用いて製造した電縫鋼管に850〜950℃でノルマ処理を施し、さらに、焼入れ処理を施す、電縫鋼管の製造方法が記載されている。この技術によれば、1470N/mm以上の高強度と、10〜18%程度の延性を有する電縫鋼管が得られ、自動車のドアインパクトビーム用及びスタビライザー用として好適であるとしている。 Patent Document 2 includes C: 0.18 to 0.28%, Si: 0.10 to 0.50%, Mn: 0.60 to 1.80%, and after adjusting P and S to an appropriate range, Ti: 0.020 to 0.050%, B : 0.0005% to 0.0050%, and further subjected to normalization treatment at 850 ° C to 950 ° C on the ERW steel pipe manufactured using a steel sheet having a composition containing at least one of Cr, Mo, and Nb, followed by quenching A method for manufacturing an electric resistance welded steel pipe is described. According to this technique, an electric resistance welded steel pipe having a high strength of 1470 N / mm 2 or more and a ductility of about 10 to 18% is obtained, which is said to be suitable for use in automobile door impact beams and stabilizers.

また、特許文献3には、C:0.08〜0.24%、Si:0.002〜0.35%、Mn:1.01〜1.70%、Al:0.01〜0.08%、Nb:0.017〜0.15%、Mo:0.045〜0.45%、を含有し、不純物であるP、S、N、を所定値以下に調整して含む鋼素材に、980〜760℃の範囲の温度で仕上圧延を終了する熱間圧延と、熱間圧延終了後、750〜650℃の温度範囲で2s以上の徐冷を行う徐冷処理とを施し、660〜510℃の巻取温度で巻取る熱延工程を施して得られる熱延鋼帯に、幅絞り率:10%以下のロール成形と電縫溶接を行う電縫造管工程を施して溶接鋼管とする、自動車構造部材用高張力溶接鋼管の製造方法が記載されている。この技術によれば、引張強さが660MPa以上の高強度で、成形性、低温靭性と、断面成形加工−応力除去焼鈍後の耐ねじり疲労特性に優れた溶接鋼管が得られるとしている。 Patent Document 3 includes C: 0.08 to 0.24%, Si: 0.002 to 0.35%, Mn: 1.01 to 1.70%, Al: 0.01 to 0.08%, Nb: 0.017 to 0.15%, Mo: 0.045 to 0.45%, A steel material that contains P, S, N, and O , which are impurities, adjusted to a predetermined value or less, and finishes hot rolling at a temperature in the range of 980 to 760 ° C, and ends hot rolling. After that, it is subjected to a slow cooling process in which a slow cooling of 2 s or more is performed in a temperature range of 750 to 650 ° C., and a hot rolling steel strip obtained by performing a hot rolling process of winding at a winding temperature of 660 to 510 ° C. A method for producing a high-strength welded steel pipe for automobile structural members is described in which a welded steel pipe is formed by carrying out an electric resistance forged pipe process in which roll forming and electric resistance welding with a drawing ratio of 10% or less are performed. According to this technique, it is said that a welded steel pipe having a high tensile strength of 660 MPa or more and excellent in formability, low temperature toughness, and torsional fatigue resistance after cross-section forming-stress relief annealing can be obtained.

また、特許文献4には、所定の化学成分を有し、ベイナイト相およびマルテンサイト相の体積率が70%以上である熱延鋼板に冷間圧延を施し、連続焼鈍を施された冷延鋼板を用いて高強度鋼管とする加工性に優れた高強度鋼管の製造方法が記載されている。   Patent Document 4 discloses a cold-rolled steel sheet that has a predetermined chemical component and is cold-rolled and continuously annealed to a hot-rolled steel sheet that has a volume fraction of bainite phase and martensite phase of 70% or more. Describes a method for producing a high-strength steel pipe excellent in workability to make a high-strength steel pipe by using.

特許第2588648号公報Japanese Patent No. 2588648 特許第2814882号公報Japanese Patent No. 2814882 特開2008−163409号公報JP 2008-163409 A 特開2004−225132号公報JP 2004-225132 A

しかしながら、特許文献1に記載された技術で製造された電縫鋼管は、伸びElが14%以下と低延性であるため成形性に劣り、プレス成形あるいはハイドロフォーム成形を伴うトーションビーム、アクスルビーム、トレーリングアーム、サスペンションアーム等の自動車構造部材用としては不適であるという問題があった。
一方、特許文献2に記載された技術で製造された電縫鋼管は、伸びElが高々18%であり、曲げ加工により成形されるスタビライザー用としては好適であるが、プレス成形あるいはハイドロフォーム成形を伴う部材用としては、延性が不足し、プレス成形あるいはハイドロフォーム成形を伴うトーションビーム、アクスルビーム等の自動車構造部材用としては不適であるという問題があった。また、特許文献2に記載された技術では、ノルマ処理および焼入れ処理を必要とし、工程が複雑であり、寸法精度、経済性という観点からも問題を残していた。
However, the ERW steel pipe manufactured by the technique described in Patent Document 1 is inferior in formability because of its low ductility, with an elongation El of 14% or less, and a torsion beam, axle beam, tray with press molding or hydroform molding. There is a problem that it is not suitable for automobile structural members such as ring arms and suspension arms.
On the other hand, the ERW steel pipe manufactured by the technique described in Patent Document 2 has an elongation El of at most 18% and is suitable for a stabilizer formed by bending. For the accompanying member, there is a problem that the ductility is insufficient and it is not suitable for an automobile structural member such as a torsion beam and an axle beam accompanied by press molding or hydroforming. Further, the technique described in Patent Document 2 requires a normalization process and a quenching process, has a complicated process, and has left a problem in terms of dimensional accuracy and economy.

また、特許文献3に記載された技術で製造された溶接鋼管は、熱延鋼帯を使用しているため肉厚が厚く、更なる部材の軽量化には対応できないという問題があった。さらに特許文献3に記載された技術では、さらに断面成形加工性に応力除去焼鈍を必要としており、経済性という観点から問題を残していた。
また、特許文献4に記載された技術で製造された溶接鋼管は、成形性に優れるものの、降伏比YRが70%未満と低く、所望の断面成形加工後の耐ねじり疲労特性が得られないという問題があった。
Moreover, since the welded steel pipe manufactured by the technique described in Patent Document 3 uses a hot-rolled steel strip, there is a problem that it is thick and cannot cope with further weight reduction of members. Furthermore, in the technique described in Patent Document 3, stress removal annealing is further required for cross-sectional formability, and a problem remains from the viewpoint of economy.
Moreover, although the welded steel pipe manufactured by the technique described in Patent Document 4 is excellent in formability, the yield ratio YR is as low as less than 70%, and the torsional fatigue resistance after the desired cross-section forming process cannot be obtained. There was a problem.

本発明は、上記した従来技術の問題を有利に解決し、調質処理を施すことのない非調質型で、更なる部材の軽量化に寄与でき、とくに、トーションビーム、アクスルビーム、トレーリングアーム、サスペンションアームなどの、自動車構造部材用として好適な、成形性と、断面成形加工後の耐ねじり疲労特性に優れた薄肉高強度溶接鋼管を得る、鋼管の製造方法を提供することを目的とする。   The present invention advantageously solves the above-described problems of the prior art and is non-tempered without any tempering treatment, and can contribute to further weight reduction of the member. In particular, the torsion beam, axle beam, and trailing arm An object of the present invention is to provide a method for manufacturing a steel pipe that obtains a thin-walled high-strength welded steel pipe excellent in formability and torsional fatigue resistance after cross-section forming processing, which is suitable for automobile structural members such as suspension arms. .

なお、ここでいう「高強度」とは、降伏強さ615MPa以上好ましくは1350MPa以下の高強度を有する場合をいうものとする。また、ここでいう「薄肉」とは、内厚29mm以下の場合をいうものとする。なお、本発明でいう、「成形性に優れた」とは、JIS Z 2201の規定に準拠したJIS 12号試験片を用い、JIS Z 2241の規定に準拠して行った引張試験での伸びElが12%以上(JIS 11号試験片では18%以上)を示す場合をいうものとする。また、本発明でいう「断面成形加工後の耐ねじり疲労特性に優れた」とは、図1(特開2001−321846号公報の図11)に示すように、鋼管の長手中央部分をV字形状に断面を成形加工したのち、両端部をチャッキングにより固定してねじり疲労試験を、1Hz、両振りの条件で行い5×10繰返し疲れ限度σを求め、得られた5×10繰返し疲れ限度σと鋼管引張強さTSとの比、(σ/TS)が0.60以上である場合をいうものとする。 Here, “high strength” refers to the case where the yield strength is 615 MPa or more, preferably 1350 MPa or less. Further, the “thin wall” here means a case where the inner thickness is 29 mm or less. In the present invention, “excellent formability” means an elongation El in a tensile test conducted in accordance with JIS Z 2241 using a JIS No. 12 test piece compliant with JIS Z 2201. Indicates 12% or more (18% or more for JIS No. 11 test piece). Further, in the present invention, “excellent torsional fatigue resistance after cross-section forming” means that the longitudinal center portion of the steel pipe is V-shaped as shown in FIG. 1 (FIG. 11 of JP-A-2001-331846). After forming the cross section into a shape, both ends are fixed by chucking, and a torsional fatigue test is performed under the conditions of 1 Hz and both swings to obtain 5 × 10 4 repeated fatigue limit σ B and 5 × 10 4 obtained. The ratio between the repeated fatigue limit σ B and the steel pipe tensile strength TS, (σ B / TS) is 0.60 or more.

本発明者らは、まず、部材の更なる軽量化のため、板厚の薄い冷延鋼板を鋼管素材として使用することを思い付いた。そして、強度、成形性、断面成形加工後の耐ねじり疲労特性といった相反する特性を高度なレベルで両立させるため、これら特性に影響する各種要因、とくに鋼管の組成、製造条件について系統的な検討を鋭意実施した。
その結果、使用する鋼素材をC、Si、Mn、Alを適正範囲内に調整して含有し、さらに不純物であるP、S、Nを所定値以下に低減した組成の鋼素材とすること、および、適正条件の熱間圧延と冷間圧延とを施された鋼板(冷延板)にさらに、二相温度域加熱と急冷を組み合わせた焼鈍処理を施しさらに焼戻処理を施して、微細な焼戻マルテンサイト相を主体とする組織を有する冷延鋼帯として、該冷延鋼帯を鋼管素材として電縫造管して溶接鋼管とすること、を組み合わせることにより、管内外面の表面の粗さが細かく、滑らかとなるため耐ねじり疲労特性に優れるとともに、成形性に優れ、降伏強さが615MPa以上である薄肉の高強度溶接鋼管とすることができることを見出した。
The present inventors first came up with the idea of using a cold-rolled steel sheet having a thin plate thickness as a steel pipe material in order to further reduce the weight of the member. And in order to make compatible properties such as strength, formability, and torsional fatigue resistance after cross-section forming work at a high level, systematically examine various factors affecting these properties, especially the composition and manufacturing conditions of steel pipes. Conducted earnestly.
As a result, the steel material to be used is adjusted to contain C, Si, Mn, and Al within an appropriate range, and the impurities P, S, and N are reduced to a predetermined value or less, and the steel material has a composition. In addition, a steel sheet (cold rolled sheet) that has been subjected to hot rolling and cold rolling under appropriate conditions is further subjected to an annealing treatment that combines two-phase temperature heating and rapid cooling, and further subjected to a tempering treatment. By combining the cold-rolled steel strip having a structure mainly composed of the tempered martensite phase with the cold-rolled steel strip as a steel pipe material to form a welded steel pipe, the surface of the inner and outer surfaces of the pipe is roughened. It has been found that a thin, high-strength welded steel pipe with excellent torsional fatigue resistance, excellent formability, and yield strength of 615 MPa or more can be obtained because it is thin and smooth.

本発明は、このような知見に基づき、さらに検討を加えて完成されたものであり、その要旨はつぎのとおりである。
(1)鋼素材に熱延工程、冷延工程および焼鈍工程を順次施して鋼管素材としたのち、該鋼管素材に、電縫造管工程を施して溶接鋼管とする鋼管の製造方法において、前記鋼素材が、質量%で、C:0.08〜0.24%、Si:0.001〜1.5%、Mn:0.8〜2.8%、Al:0.01〜0.08%、P:0.029%以下、S:0.020%以下、N:0.0100%以下、:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材であり、前記熱延工程が、前記鋼素材を1150〜1350℃に加熱した後、仕上圧延終了温度をAr3変態点以上とする熱間圧延を施し、ついで巻取温度:650〜500℃で巻取り熱延鋼帯とする工程であり、前記冷延工程が、前記熱延鋼帯に酸洗処理を施した後、圧下率:41〜76%の冷間圧延を施し冷延鋼帯とする工程であり、前記焼鈍工程が、前記冷延鋼帯を連続焼鈍炉で750〜950℃に加熱均熱したのち、平均冷却速度:81〜500℃/sでMs変態点以下の温度まで冷却する焼鈍処理を施し、ついで(Ms変態点−150℃)〜(Ms変態点−350℃)の範囲の温度で焼戻処理を施す工程であり、前記溶接鋼管が、降伏強さが615MPa以上で、成形性に優れ、かつ断面成形後の耐ねじり疲労特性に優れる薄肉高強度溶接鋼管であることを特徴とする鋼管の製造方法。
(2)(1)において、前記電縫造管工程が、次(1)式
幅絞り率(%)=[(鋼管素材の幅)−π{(製品外径)−(製品肉厚)}]/π{(製品外径)−(製品肉厚)}×100 ……(1)
で定義される幅絞り率を10%以下として、前記鋼管素材を連続的にロール成形し電縫溶接して製品である溶接鋼管とする工程であることを特徴とする鋼管の製造方法。
(3)(1)または(2)において、前記鋼素材が、前記組成に加えてさらに、質量%で、Nb:0.001〜0.08%、Ti:0.001〜0.12%、V:0.001〜0.08%、W:0.001〜0.08%、Mo:0.001〜0.49%、Cr:0.001〜0.49%、Cu:0.001〜0.19%、Ni:0.001〜0.45%、B:0.0001〜0.0030%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有する組成とすることを特徴とする鋼管の製造方法。
(4)質量%で、C:0.08〜0.24%、Si:0.001〜1.5%、Mn:0.8〜2.8%、Al:0.01〜0.08%、P:0.029%以下、S:0.020%以下、N:0.0100%以下、:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成と、円周方向断面のマルテンサイト平均粒径が2〜14μmである焼戻マルテンサイト相を面積率で21〜100%含み、残部がフェライト相(面積率で0%である場合を含む)からなる組織と、を有し、かつ管内外面の表面粗さが算術平均粗さRaで1.0μm以下、最大高さ粗さRzで15μm以下、十点平均粗さRzJISで10μm以下であり、降伏強さが615MPa以上で、成形性に優れ、かつ断面成形後の耐ねじり疲労特性に優れることを特徴とする薄肉高強度溶接鋼管。
(5)(4)において、前記組成に加えてさらに、質量%で、Nb:0.001〜0.08%、Ti:0.001〜0.12%、V:0.001〜0.08%、W:0.001〜0.08%、Mo:0.001〜0.49%、Cr:0.001〜0.49%、Cu:0.001〜0.19%、Ni:0.001〜0.45%、B:0.0001〜0.0030%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有する組成とすることを特徴とする薄肉高強度溶接鋼管。
The present invention has been completed by further studies based on such knowledge, and the gist thereof is as follows.
(1) In the method of manufacturing a steel pipe, after subjecting a steel material to a steel pipe material by sequentially performing a hot rolling process, a cold rolling process, and an annealing process, the steel pipe material is subjected to an electric sewing pipe process to obtain a welded steel pipe. Steel material is mass%, C: 0.08-0.24%, Si: 0.001-1.5%, Mn: 0.8-2.8%, Al: 0.01-0.08%, P: 0.029% or less, S: 0.020% or less, N: 0.0100% or less, O : 0.005% or less, a steel material having a composition consisting of the balance Fe and inevitable impurities, and after the hot rolling process heats the steel material to 1150 to 1350 ° C., finish rolling is finished the temperature subjected to hot rolling to a r3 transformation point or higher, then the coiling temperature: 650 to 500 is a step of a winding hot rolled strip at ° C., the cold rolling step, acid to the hot-rolled steel strip After performing the washing treatment, it is a step of cold rolling with a rolling reduction of 41 to 76% to form a cold rolled steel strip, and the annealing step is a continuous firing of the cold rolled steel strip. After soaking in a blunt furnace to 750 to 950 ° C., an annealing treatment is performed by cooling to a temperature below the Ms transformation point at an average cooling rate of 81 to 500 ° C./s, and then (Ms transformation point −150 ° C.) to ( (Ms transformation point-350 ° C) This is a process of tempering, and the welded steel pipe has a yield strength of 615 MPa or more, excellent formability, and excellent torsional fatigue resistance after cross-section forming. A method of manufacturing a steel pipe, which is a thin-walled high-strength welded steel pipe.
(2) In (1), the electric forging pipe step is the following equation (1): width drawing ratio (%) = [(width of steel pipe material) −π {(product outer diameter) − (product thickness)} ] / Π {(outer diameter of product) − (thickness of product)} × 100 (1)
A method of manufacturing a steel pipe, characterized in that the width drawing ratio defined in (1) is 10% or less and the steel pipe material is continuously roll-formed and electro-welded to form a welded steel pipe as a product.
(3) In (1) or (2), in addition to the composition, the steel material is further in mass%, Nb: 0.001 to 0.08%, Ti: 0.001 to 0.12%, V: 0.001 to 0.08%, W : 0.001 to 0.08%, Mo: 0.001 to 0.49%, Cr: 0.001 to 0.49%, Cu: 0.001 to 0.19%, Ni: 0.001 to 0.45%, B: 0.0001 to 0.0030% The manufacturing method of the steel pipe characterized by setting it as the composition containing more than seed | species and / or Ca: 0.0001-0.005%.
(4) By mass%, C: 0.08 to 0.24%, Si: 0.001 to 1.5%, Mn: 0.8 to 2.8%, Al: 0.01 to 0.08%, P: 0.029% or less, S: 0.020% or less, N: 0.0100 %, O 2 : 0.005% or less, and a composition comprising the balance Fe and inevitable impurities, and a tempered martensite phase with a mean martensite grain size in the circumferential cross section of 2 to 14 μm in an area ratio of 21 to 100 And the balance is a ferrite phase (including a case where the area ratio is 0%), and the surface roughness of the inner and outer surfaces of the pipe is 1.0 μm or less in terms of arithmetic average roughness Ra, and the maximum height roughness Thin wall, characterized by a thickness Rz of 15 μm or less, a 10-point average roughness Rz JIS of 10 μm or less, a yield strength of 615 MPa or more, excellent formability, and excellent torsional fatigue resistance after cross-section forming Strength welded steel pipe.
(5) In (4), in addition to the above composition, in terms of mass%, Nb: 0.001 to 0.08%, Ti: 0.001 to 0.12%, V: 0.001 to 0.08%, W: 0.001 to 0.08%, Mo: 0.001 Or 0.49%, Cr: 0.001 to 0.49%, Cu: 0.001 to 0.19%, Ni: 0.001 to 0.45%, B: 0.0001 to 0.0030%, and / or Ca: A thin-walled high-strength welded steel pipe characterized by having a composition containing 0.0001 to 0.005%.

本発明によれば、615MPa以上好ましくは1350MPa以下の降伏強さを有し、優れた成形性と優れた断面成形加工後の耐ねじり疲労特性とを兼備する薄肉高強度溶接鋼管を容易に、しかも調質処理を施すことなく安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、自動車構造部材の更なる軽量化や、更なる特性向上に顕著に寄与できるという効果もある。   According to the present invention, a thin-walled high-strength welded steel pipe having a yield strength of 615 MPa or more, preferably 1350 MPa or less, having both excellent formability and excellent torsional fatigue resistance after cross-section forming processing is easily obtained. It can be manufactured at low cost without any tempering treatment, and has a remarkable industrial effect. Moreover, according to this invention, there exists an effect that it can contribute notably to the further weight reduction of a motor vehicle structural member, and the further characteristic improvement.

断面成形加工後のねじり疲労試験に用いる試験材の断面成形加工状態を模式的に示す説明図である。It is explanatory drawing which shows typically the cross-section shaping | molding processing state of the test material used for the torsional fatigue test after a cross-section shaping | molding process. 断面成形加工後の5×104繰返し疲れ限度σBと鋼管引張強さTSとの比(σB/TS)と、鋼管内外面の表面粗さRzJISと、の関係を示すグラフである。The ratio of 5 × 10 4 repeated fatigue limit sigma B and steel tensile strength TS after section molding (σ B / TS), is a graph showing the surface roughness Rz JIS of the steel pipe in the outer surface, the relationship. 断面成形加工後の5×104繰返し疲れ限度σBと鋼管引張強さTSとの比(σB/TS)と焼戻処理温度との関係を示すグラフである。It is a graph which shows the relationship between the ratio ((sigma) B / TS) of 5 * 10 < 4 > repeated fatigue limit (sigma) B and steel pipe tensile strength TS after cross-section shaping | molding processing, and tempering temperature.

本発明は、鋼素材に熱延工程、冷延工程および焼鈍工程を順次施して鋼管素材としたのち、該鋼管素材に、電縫造管工程を施して高強度溶接鋼管とする鋼管の製造方法である。まず、本発明で使用する鋼素材の組成限定理由について説明する。なお、以下、とくに断わらないかぎり、組成における質量%は単に%で示す。
C:0.08〜0.24%
Cは、鋼の強度を増加させる元素であり、所望の鋼管強度を確保し、所望の耐ねじり疲労特性を向上させるうえで必須の元素であり、本発明では、0.08%以上の含有を必要とする。Cが0.08%未満の含有では、所望の静的強度、耐ねじり疲労特性の向上が得られない。一方、0.24%を超える含有は、鋼管の延性を低下させるとともに、低温靭性が低下する。このため、Cは0.08〜0.24%の範囲に限定した。なお、好ましくは0.09〜0.20%である。
The present invention provides a steel pipe manufacturing method in which a steel material is subjected to a hot rolling process, a cold rolling process, and an annealing process in order to obtain a steel pipe material, and then the steel pipe material is subjected to an electro-sewing pipe process to obtain a high-strength welded steel pipe. It is. First, the reasons for limiting the composition of the steel material used in the present invention will be described. Hereinafter, unless otherwise specified, the mass% in the composition is simply represented by%.
C: 0.08 ~ 0.24%
C is an element that increases the strength of steel, and is an essential element for securing desired steel pipe strength and improving desired torsional fatigue resistance. In the present invention, it is necessary to contain 0.08% or more. To do. If the C content is less than 0.08%, the desired static strength and torsional fatigue resistance cannot be improved. On the other hand, the content exceeding 0.24% lowers the ductility of the steel pipe and lowers the low temperature toughness. For this reason, C was limited to 0.08 to 0.24% of range. In addition, Preferably it is 0.09 to 0.20%.

Si:0.001〜1.5%
Siは、所望の組織と優れた成形性を確保するために必須の元素であり、本発明では、0.001%以上の含有を必要とする。Siが0.001%未満の含有では所望の成形性を確保できない。一方、1.5%を超える多量の含有は、鋼板の表面性状、電縫溶接性を低下させる。このため、Siは0.001〜1.5%の範囲に限定した。なお、好ましくは0.15〜1.4%である。
Si: 0.001 to 1.5%
Si is an essential element for ensuring a desired structure and excellent moldability. In the present invention, Si is required to be contained in an amount of 0.001% or more. If the Si content is less than 0.001%, the desired formability cannot be ensured. On the other hand, a large content exceeding 1.5% lowers the surface properties and electric resistance weldability of the steel sheet. For this reason, Si was limited to the range of 0.001 to 1.5%. In addition, Preferably it is 0.15-1.4%.

Mn:0.8〜2.8%
Mnは、鋼の強度増加に寄与するとともに、耐ねじり疲労特性を向上させる効果を増大させる働きを有する元素である。このような効果を得るためには0.8%以上の含有を必要とする。一方、2.8%を超える含有は、鋼板の表面性状、電縫溶接性を低下させる。このため、Mnは0.8〜2.8%の範囲に限定した。なお、好ましくは1.20〜1.95%である。
Mn: 0.8-2.8%
Mn is an element that contributes to increasing the strength of steel and increases the effect of improving torsional fatigue resistance. In order to obtain such an effect, the content of 0.8% or more is required. On the other hand, if the content exceeds 2.8%, the surface properties and ERW weldability of the steel sheet are lowered. For this reason, Mn was limited to the range of 0.8 to 2.8%. In addition, Preferably it is 1.20 to 1.95%.

Al:0.01〜0.08%
Alは、製鋼時の脱酸剤として作用するとともに、Nと結合し熱延工程でのオーステナイト粒の成長を抑制し、結晶粒を微細化する作用を有する元素である。所望のマルテンサイト平均粒径(2〜14μm)を確保するためには、0.01%以上のAl含有を必要とする。0.01%未満の含有ではこれらの効果が得られず、マルテンサイト粒が粗大化する。一方、0.08%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できなくなるうえ、酸化物系介在物の増加により耐疲労特性が低下する。このためにAlは0.01〜0.08%の範囲に限定した。なお、好ましくは0.02〜0.06%である。
Al: 0.01-0.08%
Al is an element that acts as a deoxidizing agent during steel making, and has the effect of combining with N to suppress the growth of austenite grains in the hot rolling process and to refine crystal grains. In order to secure a desired martensite average particle diameter (2 to 14 μm), it is necessary to contain 0.01% or more of Al. If the content is less than 0.01%, these effects cannot be obtained, and the martensite grains become coarse. On the other hand, even if the content exceeds 0.08%, the effect is saturated and an effect commensurate with the content cannot be expected, and the fatigue resistance is lowered due to an increase in oxide inclusions. For this reason, Al was limited to the range of 0.01 to 0.08%. In addition, Preferably it is 0.02 to 0.06%.

P:0.029%以下
Pは、Mnとの凝固共偏析を介し、成形性、低温靭性を低下させるとともに、電縫溶接性を低下させる悪影響を有する元素であり、本発明ではできるだけ低減することが好ましい。0.029%を超えて含有すると、上記した悪影響が顕著となるため、Pは0.029%以下に限定した。
P: 0.029% or less P is an element having an adverse effect of lowering formability and low temperature toughness and lowering electro-weldability through solidification co-segregation with Mn. In the present invention, P is preferably reduced as much as possible. . If the content exceeds 0.029%, the above-described adverse effects become remarkable, so P is limited to 0.029% or less.

S:0.020%以下
Sは、鋼中ではMnS等の硫化物系介在物として存在し、成形時の微細割れ、疲労亀裂起点として作用し、成形性、耐疲労特性を低下させる悪影響を有する元素であり、本発明ではできるだけ低減することが好ましい。0.020%を超えて含有すると、上記した悪影響が顕著となるため、Sは0.020%以下に限定した。なお、好ましくは0.010%以下である。
S: 0.020% or less S is an element that exists as sulfide inclusions such as MnS in steel and acts as a fine crack and fatigue crack starting point during forming, and has an adverse effect on formability and fatigue resistance. In the present invention, it is preferable to reduce as much as possible. When the content exceeds 0.020%, the above-described adverse effects become remarkable, so S is limited to 0.020% or less. In addition, Preferably it is 0.010% or less.

N:0.0100%以下
Nは、鋼中に固溶Nとして残存すると、鋼管の成形性、低温靭性を低下させる悪影響を有する元素であり、本発明ではできるだけ低減することが好ましい。0.0100%を超えて含有すると、上記した悪影響が顕著となるため、Nは0.0100%以下に限定した。なお、好ましくは0.0049%以下である。
N: 0.0100% or less N is an element having an adverse effect of lowering the formability and low temperature toughness of a steel pipe when it remains as solid solution N in the steel, and it is preferably reduced as much as possible in the present invention. If the content exceeds 0.0100%, the above-mentioned adverse effects become remarkable, so N is limited to 0.0100% or less. In addition, Preferably it is 0.0049% or less.

:0.005%以下
Oは、鋼中では酸化物系介在物として存在し、鋼の耐疲労特性、低温靭性を低下させる悪影響を有する元素であり、本発明ではできるだけ低減することが好ましい。0.005%を超えて含有すると、上記した悪影響が顕著となるため、Oは0.005%以下に限定した。なお、好ましくは0.003%以下である。
O : 0.005% or less O is an element that exists as an oxide inclusion in steel and has an adverse effect on lowering the fatigue resistance and low temperature toughness of the steel. In the present invention, O is preferably reduced as much as possible. When the content exceeds 0.005%, the above-mentioned adverse effects become remarkable, so O is limited to 0.005% or less. In addition, Preferably it is 0.003% or less.

上記した成分が基本の成分であるが、基本の組成に加えてさらに、選択元素として、Nb:0.001〜0.08%、Ti:0.001〜0.12%、V:0.001〜0.08%、W:0.001〜0.08%、Mo:0.001〜0.49%、Cr:0.001〜0.49%、Cu:0.001〜0.19%、Ni:0.001〜0.45%、B:0.0001〜0.0030%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有する組成としてもよい。   The above components are basic components. In addition to the basic composition, Nb: 0.001 to 0.08%, Ti: 0.001 to 0.12%, V: 0.001 to 0.08%, W: 0.001 to 0.08% , Mo: 0.001 to 0.49%, Cr: 0.001 to 0.49%, Cu: 0.001 to 0.19%, Ni: 0.001 to 0.45%, B: 0.0001 to 0.0030%, and / or Or it is good also as a composition containing Ca: 0.0001-0.005%.

Nb:0.001〜0.08%、Ti:0.001〜0.12%、V:0.001〜0.08%、W:0.001〜0.08%、Mo:0.001〜0.49%、Cr:0.001〜0.49%、Cu:0.001〜0.19%、Ni:0.001〜0.45%、B:0.0001〜0.0030%のうちから選ばれた1種または2種以上
Nb、Ti、V、W、Mo、Cr、Cu、Ni、Bはいずれも、強度を増加させる作用を有するとともに、Mnの耐疲労特性を向上させる作用を補完する働きを有する元素であり、必要に応じて選択して1種または2種以上含有できる。
Nb: 0.001 to 0.08%, Ti: 0.001 to 0.12%, V: 0.001 to 0.08%, W: 0.001 to 0.08%, Mo: 0.001 to 0.49%, Cr: 0.001 to 0.49%, Cu: 0.001 to 0.19%, Ni : One or more selected from 0.001 to 0.45%, B: 0.0001 to 0.0030%
Nb, Ti, V, W, Mo, Cr, Cu, Ni, and B are all elements that have the effect of increasing the strength and supplementing the effect of improving the fatigue resistance of Mn. Depending on the type, one or more may be contained.

Nbは、鋼中ではCと結合し、炭化物として析出し強度を増加させる作用を有する元素であり、所望の表面近傍の硬さを確保して、Mnの耐疲労特性を向上させる作用を補完する働きを有する。またさらに、析出したNb炭化物が、熱延工程、冷延工程での回復・再結晶の粒成長を抑制し、所望の平均粒径(2〜14μm)を有する微細マルテンサイト相の確保に寄与する。このような効果を得るためには、0.001%以上の含有を必要とする。一方、0.08%を超える含有は、析出炭化物量が増加し過ぎて、強度が著しく上昇し、延性が著しく低下する。このため含有する場合には、Nbは0.001〜0.08%の範囲に限定することが好ましい。なお、より好ましくは0.010〜0.049%である。   Nb is an element that combines with C in steel and precipitates as carbide to increase the strength, and ensures the hardness near the desired surface and complements the effect of improving the fatigue resistance of Mn. Has a function. Further, the precipitated Nb carbide suppresses recovery / recrystallization grain growth in the hot rolling process and the cold rolling process, and contributes to securing a fine martensite phase having a desired average particle diameter (2 to 14 μm). . In order to obtain such an effect, a content of 0.001% or more is required. On the other hand, if the content exceeds 0.08%, the amount of precipitated carbide is excessively increased, the strength is remarkably increased, and the ductility is remarkably decreased. For this reason, when it contains, it is preferable to limit Nb to 0.001 to 0.08% of range. In addition, More preferably, it is 0.010 to 0.049%.

Tiは、鋼中ではNと結合し固溶Nを低減し、成形性の向上に寄与するとともに、余剰のTiが炭化物として析出し、鋼の強度を増加させて、所望の表面近傍の硬さを確保して、Mnの耐疲労特性を向上させる作用を補完する働きを有する。またさらに、析出したTi炭化物が、熱延工程、冷延工程での回復・再結晶の粒成長を抑制し、所望の平均粒径(2〜14μm)を有する微細マルテンサイト相の確保に寄与する。このような効果を得るためには、0.001%以上の含有を必要とする。一方、0.12%を超える含有は、析出炭化物量が増加し過ぎて、強度が著しく上昇し、延性が著しく低下する。このため含有する場合には、Tiは0.001〜0.12%の範囲に限定することが好ましい。なお、より好ましくは0.0010〜0.080%である。   Ti combines with N in steel to reduce solute N and contribute to the improvement of formability, and excess Ti precipitates as carbides, increasing the strength of the steel and increasing the hardness near the desired surface. And has the function of complementing the effect of improving the fatigue resistance of Mn. Further, the precipitated Ti carbide suppresses recovery / recrystallization grain growth in the hot rolling process and the cold rolling process, and contributes to securing a fine martensite phase having a desired average particle diameter (2 to 14 μm). . In order to obtain such an effect, a content of 0.001% or more is required. On the other hand, if the content exceeds 0.12%, the amount of precipitated carbide is excessively increased, the strength is remarkably increased, and the ductility is remarkably decreased. For this reason, when it contains, it is preferable to limit Ti to 0.001 to 0.12% of range. In addition, More preferably, it is 0.0010 to 0.080%.

Vは、鋼中ではCと結合し、炭化物として析出し鋼の強度を増加させて、所望の表面近傍の硬さを確保し、Mnの耐疲労特性を向上させる作用を補完する働きがある。このような効果を得るためには、0.001%以上の含有を必要とする。一方、0.08%を超える含有は、成形性や低温靭性を低下させる。このため、含有する場合には、Vは0.001〜0.08%の範囲に限定することが好ましい。なお、より好ましくは0.06%以下である。   V combines with C in the steel, precipitates as carbide, increases the strength of the steel, secures the hardness near the desired surface, and complements the action of improving the fatigue resistance of Mn. In order to obtain such an effect, a content of 0.001% or more is required. On the other hand, if the content exceeds 0.08%, moldability and low temperature toughness are lowered. For this reason, when it contains, it is preferable to limit V to 0.001 to 0.08% of range. More preferably, it is 0.06% or less.

Wは、Vと同様に、鋼中ではCと結合し、炭化物として析出し鋼の強度を増加させて、所望の表面近傍の硬さを確保し、Mnの耐疲労特性を向上させる作用を補完する働きがある。このような効果を得るためには、0.001%以上含有することが望ましい。一方、0.08%を超える含有は、成形性や低温靭性を低下させる。このため、含有する場合には、Wは0.001〜0.08%の範囲に限定することが好ましい。なお、より好ましくは0.06%以下である。   W, like V, combines with C in steel, precipitates as carbides, increases the strength of the steel, secures the hardness near the desired surface, and complements the action of improving the fatigue resistance of Mn. There is work to do. In order to acquire such an effect, it is desirable to contain 0.001% or more. On the other hand, if the content exceeds 0.08%, moldability and low temperature toughness are lowered. For this reason, when it contains, it is preferable to limit W to 0.001 to 0.08% of range. More preferably, it is 0.06% or less.

Moは、Nbと同様、鋼中では炭化物として析出して、鋼の強度を増加させる作用を有し、Mnの耐疲労特性を向上させる効果を補完する働きを有する。このような効果を得るためには、0.001%以上含有することが望ましいが、0.49%を超える含有は、成形性を低下させる。このため、含有する場合には、Moは0.001〜0.49%の範囲に限定することが好ましい。なお、より好ましくは0.010〜0.044%である。   Mo, like Nb, precipitates as carbides in the steel, has the effect of increasing the strength of the steel, and has the function of complementing the effect of improving the fatigue resistance of Mn. In order to acquire such an effect, it is desirable to contain 0.001% or more, but inclusion exceeding 0.49% reduces moldability. For this reason, when it contains, it is preferable to limit Mo to 0.001 to 0.49% of range. In addition, More preferably, it is 0.010 to 0.044%.

Crは、上記したようなMnの耐疲労特性を向上させる効果を補完する働きを有する。また、Crは、表層近傍の析出物粗大化の抑制や、微細マルテンサイト相の確保に寄与する。このような効果を得るためには、0.001%以上含有することが望ましいが、0.49%を超える含有は、成形性を低下させる。このため、含有する場合には、Crは0.001〜0.49%の範囲に限定することが好ましい。なお、より好ましくは0.010〜0.044%である。   Cr has a function of complementing the effect of improving the fatigue resistance of Mn as described above. Cr contributes to suppression of coarsening of precipitates in the vicinity of the surface layer and securing of a fine martensite phase. In order to acquire such an effect, it is desirable to contain 0.001% or more, but inclusion exceeding 0.49% reduces moldability. For this reason, when it contains, it is preferable to limit Cr to 0.001 to 0.49% of range. In addition, More preferably, it is 0.010 to 0.044%.

Cuは、上記したようなMnの耐疲労特性を向上させる効果を補完する働きを有する。また、Cuは、鋼の耐食性を向上させる作用を有する。このような効果を得るためには、0.001%以上含有することが望ましいが、0.19%を超える含有は、成形性を低下させ、熱間割れを助長する。このため、含有する場合には、Cuは0.001〜0.19%の範囲に限定することが好ましい。なお、より好ましくは0.05〜0.17%である。   Cu has a function of complementing the effect of improving the fatigue resistance of Mn as described above. Moreover, Cu has the effect | action which improves the corrosion resistance of steel. In order to acquire such an effect, it is desirable to contain 0.001% or more. However, if it exceeds 0.19%, the moldability is lowered and hot cracking is promoted. For this reason, when it contains, it is preferable to limit Cu to 0.001 to 0.19% of range. In addition, More preferably, it is 0.05 to 0.17%.

Niは、Cuと同様に、Mnの耐疲労特性を向上させる効果を補完する働きを有する。また、Niは、鋼の耐食性を向上させる作用を有する。このような効果を得るためには、0.001%以上含有することが望ましいが、0.45%を超える含有は、成形性を低下させる。このため、含有する場合には、Niは0.001〜0.45%の範囲に限定することが好ましい。なお、より好ましくは0.05〜0.20%である。   Ni, like Cu, has a function of complementing the effect of improving the fatigue resistance of Mn. Moreover, Ni has the effect | action which improves the corrosion resistance of steel. In order to acquire such an effect, it is desirable to contain 0.001% or more, but inclusion exceeding 0.45% reduces moldability. For this reason, when it contains, it is preferable to limit Ni to 0.001 to 0.45% of range. In addition, More preferably, it is 0.05 to 0.20%.

Bは、少量の含有で鋼の焼入れ性向上に寄与する元素であり、焼入れ性向上を介して強度を増加させ、Mnの耐疲労特性を向上させる効果を補完する働きを有する。このような効果を得るためには、0.0001%以上含有することが望ましいが、0.0030%を超える含有は、成形性を低下させる。このため、含有する場合には、Bは0.0001〜0.0030%の範囲に限定することが好ましい。なお、より好ましくは0.0003〜0.0020%である。   B is an element that contributes to improving the hardenability of steel when contained in a small amount, and has a function of complementing the effect of increasing the strength through improving the hardenability and improving the fatigue resistance of Mn. In order to acquire such an effect, it is desirable to contain 0.0001% or more, but inclusion exceeding 0.0030% reduces moldability. For this reason, when it contains, it is preferable to limit B to 0.0001 to 0.0030% of range. In addition, More preferably, it is 0.0003 to 0.0020%.

Ca:0.0001〜0.005%
Caは、展伸した介在物(MnS)を粒状の介在物(Ca(Al)S(O))とする、いわゆる介在物の形態を制御する作用を有し、この介在物の形態制御を介して、成形時の微細割れや疲労亀裂の発生を抑制し、成形性、耐疲労特性を向上させる効果を有する元素であり、必要に応じて含有できる。このような効果は、0.0001%以上の含有で顕著となるが、0.005%を超える含有は、非金属介在物が増加しかえって耐疲労特性が低下する。このため、含有する場合には、Caは0.0001〜0.005%の範囲に限定することが好ましい。
Ca: 0.0001 to 0.005%
Ca has an action of controlling the form of inclusions, in which the expanded inclusions (MnS) are granular inclusions (Ca (Al) S (O)). Thus, it is an element that has the effect of suppressing the occurrence of fine cracks and fatigue cracks during molding and improving moldability and fatigue resistance, and can be contained as required. Such an effect becomes remarkable when the content is 0.0001% or more. However, when the content exceeds 0.005%, the non-metallic inclusions are increased, and the fatigue resistance is deteriorated. For this reason, when it contains, it is preferable to limit Ca to 0.0001 to 0.005% of range.

上記した成分以外の残部は、Feおよび不可避的不純物である。
本発明では、まず、上記した組成を有する鋼素材に熱延工程、冷延工程および焼鈍工程を順次施して鋼管素材(冷延鋼帯)とする。
鋼素材の製造方法はとくに限定されない。通常公知の鋼素材の製造方法がいずれも適用可能であるが、上記した組成の溶鋼を、転炉等の公知の溶製方法で溶製し、連続鋳造法等の公知の鋳造方法でスラブ等の鋼素材とすることが好ましい。
The balance other than the above components is Fe and inevitable impurities.
In the present invention, first, a steel material having the above composition is subjected to a hot rolling process, a cold rolling process, and an annealing process in order to obtain a steel pipe material (cold rolled steel strip).
The manufacturing method of the steel material is not particularly limited. Normally, any known steel material manufacturing method can be applied, but the molten steel having the above composition is melted by a known melting method such as a converter, and a slab or the like by a known casting method such as a continuous casting method. It is preferable to use a steel material.

本発明における熱延工程は、上記した組成の鋼素材を1150〜1350℃に加熱した後、仕上圧延終了温度をAr3変態点以上とする熱間圧延を施し、ついで巻取温度:650〜500℃で巻取り熱延鋼帯とする工程とする。
鋼素材の加熱温度:1150〜1350℃
鋼素材の加熱温度は、オーステナイト粒径を介して、製品(溶接鋼管)のマルテンサイト平均粒径に影響を及ぼす。ここでいう「マルテンサイト平均粒径」とは、同一結晶方位を有するマルテンサイトパケットの平均寸法をいい、相対傾角が15°以上である場合をパケット境界とする。
Hot rolling step in the present invention, after heating the steel material having the composition described above in 1,150-1,350 ° C., a finish rolling end temperature subjected to hot rolling to A r3 transformation point or higher, then coiling temperature: 650 to 500 It is set as the process made into a hot-rolling steel strip wound up at ℃.
Heating temperature of steel material: 1150 ~ 1350 ℃
The heating temperature of the steel material affects the average martensite particle size of the product (welded steel pipe) via the austenite particle size. The “martensite average particle size” here refers to the average size of martensite packets having the same crystal orientation, and the case where the relative tilt angle is 15 ° or more is defined as the packet boundary.

鋼素材の加熱温度が1150℃未満では、加熱温度が低すぎて、マルテンサイト平均粒径が2μm未満と小さくなりすぎて、伸びが低下し、また、所望の耐疲労特性を確保できなくなる。一方、加熱温度が1350℃を超える高温では、マルテンサイト平均粒径が14μmを超えて粗大化し、所望の耐疲労特性を確保できなくなる。このようなことから、鋼素材の加熱温度は1150〜1350℃に限定した。なお、好ましくは1200〜1300℃である。   If the heating temperature of the steel material is less than 1150 ° C., the heating temperature is too low, the martensite average particle size becomes too small, less than 2 μm, the elongation decreases, and the desired fatigue resistance characteristics cannot be ensured. On the other hand, when the heating temperature is higher than 1350 ° C., the average martensite particle size exceeds 14 μm, and the desired fatigue resistance cannot be ensured. For this reason, the heating temperature of the steel material was limited to 1150-1350 ° C. In addition, Preferably it is 1200-1300 degreeC.

上記した範囲の温度に加熱された鋼素材は、ついで熱間圧延を施される。熱間圧延は、通常の粗圧延、仕上圧延からなる圧延とする。粗圧延の条件は、所定寸法のシートバーとすることができればよく、とくに限定されない。仕上圧延は、圧延終了温度(仕上圧延終了温度)がAr3変態点以上となる圧延とする。
仕上圧延終了温度:Ar3変態点以上
仕上圧延終了温度がAr3変態点未満では、熱間変形抵抗が急激に増加するため、鋼板の表面性状が低下し、所望の耐疲労特性を確保できなくなる。
The steel material heated to a temperature in the above range is then subjected to hot rolling. The hot rolling is rolling consisting of normal rough rolling and finish rolling. The rough rolling conditions are not particularly limited as long as the sheet bar can have a predetermined size. Finish rolling is rolling in which the rolling end temperature (finish rolling end temperature) is equal to or higher than the Ar3 transformation point.
Finishing rolling end temperature: Ar3 transformation point or higher If the finishing rolling end temperature is less than the Ar3 transformation point, the hot deformation resistance increases rapidly, so that the surface properties of the steel sheet deteriorate and the desired fatigue resistance cannot be ensured. .

なお、Ar3変態点は、本発明範囲内の組成であれば概ね800℃程度であるが、詳しくは表面に展伸した粗大な組織が形成されない場合をAr3変態点以上とする。
巻取温度:650〜500℃
熱間圧延後の巻取温度は、冷延工程、焼鈍工程後の焼戻マルテンサイト相の粒径、鋼管素材の表面性状を決定する重要なパラメータである。巻取温度が500℃未満では、焼戻マルテンサイト相の平均粒径が2μm未満と小さくなりすぎて、疲労亀裂が平面的に進展し、閉口効果による亀裂伝播抵抗が低下して疲労強度(耐疲労特性)が低下する。一方、650℃を超えて高温となると、焼戻マルテンサイト相の平均粒径が14μmを超えて粗大化し、鋼管素材の表面粗さが、算術平均粗さRaで1.0μmを超え、最大高さ粗さRzで15μmを超え、十点平均粗さRzJISで10μmを超えて、粗くなり、所望の耐疲労特性を確保できなくなる。このため、熱間圧延後の巻取温度は、650〜500℃の範囲に限定した。
The Ar 3 transformation point is about 800 ° C. if the composition is within the range of the present invention, but more specifically, the case where a coarse structure stretched on the surface is not formed is defined as the Ar 3 transformation point or higher.
Winding temperature: 650-500 ° C
The coiling temperature after hot rolling is an important parameter that determines the grain size of the tempered martensite phase after the cold rolling process and the annealing process and the surface properties of the steel pipe material. When the coiling temperature is less than 500 ° C., the average grain size of the tempered martensite phase becomes too small, less than 2 μm, the fatigue cracks progress in a plane, the crack propagation resistance due to the closing effect decreases, and the fatigue strength ( Fatigue characteristics). On the other hand, when the temperature exceeds 650 ° C, the average particle size of the tempered martensite phase becomes coarser than 14 µm, and the surface roughness of the steel pipe material exceeds 1.0 µm in terms of arithmetic average roughness Ra. When the roughness Rz exceeds 15 μm and the ten-point average roughness Rz JIS exceeds 10 μm, it becomes rough, and desired fatigue resistance characteristics cannot be ensured. For this reason, the coiling temperature after hot rolling was limited to a range of 650 to 500 ° C.

また、冷延工程は、上記した熱延工程で得られた熱延鋼帯に、酸洗処理を施した後、圧下率:41〜76%の冷間圧延を施し冷延鋼帯とする工程とする。
冷延圧下率:41〜76%
冷間圧延の圧下率(冷延圧下率)は、焼鈍工程後の焼戻マルテンサイト相の粒径を決定する重要な製造パラメータである。冷延圧下率が41%未満では、焼戻マルテンサイト相の平均粒径が14μmを超えて粗大化し、一方、冷延圧下率が76%超えると、焼戻マルテンサイト相の平均粒径が2μm未満と小さくなりすぎて、いずれも所望の耐疲労特性を確保できなくなる。このため、冷延圧下率は41〜76%の範囲に限定した。なお、好ましくは43〜59%である。
In the cold rolling process, the hot-rolled steel strip obtained in the hot-rolling process is subjected to pickling treatment, and then subjected to cold rolling at a rolling reduction of 41 to 76% to obtain a cold-rolled steel strip. And
Cold rolling reduction ratio: 41-76%
The cold rolling reduction ratio (cold rolling reduction ratio) is an important production parameter that determines the grain size of the tempered martensite phase after the annealing step. When the cold rolling reduction ratio is less than 41%, the average grain size of the tempered martensite phase becomes larger than 14 μm, while when the cold rolling reduction ratio exceeds 76%, the average grain size of the tempered martensite phase is 2 μm. If it is less than this, the desired fatigue resistance characteristics cannot be ensured. For this reason, the cold rolling reduction ratio was limited to the range of 41 to 76%. In addition, Preferably it is 43 to 59%.

また、焼鈍工程は、上記した冷延工程で得られた冷延鋼帯を連続焼鈍炉で750〜950℃に加熱均熱したのち、表面温度制御で、平均冷却速度:81〜500℃/sで、冷却停止温度:Ms変態点以下の温度まで冷却する焼鈍処理を施し、ついで(Ms変態点−150℃)〜(Ms変態点−350℃)の範囲の温度で好ましくは2s以上保持する焼戻処理を施す工程とする。   In the annealing step, the cold-rolled steel strip obtained in the cold rolling step is heated and soaked at 750 to 950 ° C. in a continuous annealing furnace, and then the average cooling rate is 81 to 500 ° C./s by controlling the surface temperature. Cooling stop temperature: An annealing treatment for cooling to a temperature below the Ms transformation point is performed, and then the annealing is preferably performed at a temperature in the range of (Ms transformation point -150 ° C) to (Ms transformation point -350 ° C) for 2 seconds or more. It is assumed that the return process is performed.

焼鈍処理の加熱温度:750〜950℃
焼鈍処理の加熱温度は、焼戻マルテンサイト相の組織分率、平均粒径を決定する重要な製造パラメータである。加熱温度が750℃未満では、焼戻マルテンサイト相の組織分率が面積率で20%未満となり、一方、950℃を超えると、焼戻マルテンサイト相の平均粒径が14μmを超え、いずれも所望の耐疲労特性を確保できなくなる。このため、焼鈍処理の加熱温度は750〜950℃の範囲の温度に限定した。なお、該加熱温度での保持時間は、セメンタイトのオーステナイトへの再固溶を十分に行わせるため、10s以上とすることが好ましい。
Heating temperature for annealing treatment: 750-950 ° C
The heating temperature of the annealing treatment is an important production parameter that determines the structure fraction and average particle size of the tempered martensite phase. When the heating temperature is less than 750 ° C, the tempered martensite phase has a structure fraction of less than 20% in area ratio, while when it exceeds 950 ° C, the average particle size of the tempered martensite phase exceeds 14 µm. The desired fatigue resistance characteristics cannot be ensured. For this reason, the heating temperature of annealing treatment was limited to the temperature of the range of 750-950 degreeC. The holding time at the heating temperature is preferably 10 s or longer so that the cementite is sufficiently re-dissolved in austenite.

平均冷却速度:81〜500℃/s
焼鈍処理の加熱温度からの冷却が、平均冷却速度で81℃/s未満では、焼戻マルテンサイト相の組織分率が面積率で20%未満となり、所望の鋼管強度、所望の耐疲労特性を確保できなくなる。一方、加熱温度からの冷却が、平均冷却速度で500℃/sを超えると、焼入れ歪により。鋼管素材(鋼帯)の形状が不安定となり、鋼管素材(鋼帯)の表面粗さが、算術平均粗さRaで1.0μmを超え、最大高さ粗さRzで15μmを超え、十点平均粗さRzJISで10μmを超えて、粗くなり、所望の耐疲労特性を確保できなくなる。このため、焼鈍処理の加熱温度からの冷却を、平均冷却速度:81〜500℃/sの冷却とした。ここでいう「平均冷却速度」は、表面温度で、(加熱温度−100℃)〜(Ms−150℃)間の平均の冷却速度とする。なお、Ms変態点は下記式を用いて算出される値を用いるものとする。
Average cooling rate: 81-500 ° C / s
When cooling from the heating temperature of the annealing treatment is less than 81 ° C / s at the average cooling rate, the structure fraction of the tempered martensite phase is less than 20% in area ratio, and the desired steel pipe strength and desired fatigue resistance characteristics are obtained. Cannot be secured. On the other hand, when cooling from the heating temperature exceeds 500 ° C./s at the average cooling rate, due to quenching strain. The shape of the steel pipe material (steel strip) becomes unstable, and the surface roughness of the steel pipe material (steel strip) exceeds 1.0 μm in arithmetic average roughness Ra, exceeds 15 μm in maximum height roughness Rz, and has an average of 10 points. Roughness Rz JIS exceeds 10 μm, and it becomes rough and the desired fatigue resistance characteristics cannot be secured. For this reason, the cooling from the heating temperature of annealing treatment was made into cooling with an average cooling rate: 81-500 degrees C / s. The “average cooling rate” referred to here is the surface temperature and the average cooling rate between (heating temperature−100 ° C.) and (Ms−150 ° C.). The Ms transformation point is a value calculated using the following formula.

Ms(℃)=561−474C−33Mn−17Ni−17Cr−21Mo
(ここで、C、Mn、Ni、Cr、Mo:各元素の含有量(質量%))
冷却停止温度:Ms変態点以下
上記した冷却は、Ms変態点以下の温度まで行う。冷却がMs変態点超の温度で停止されると、所望の焼戻マルテンサイト相の組織分率を確保することができなくなり、所望の鋼管強度、および耐疲労特性を得ることができなくなる。
Ms (° C) = 561-474C-33Mn-17Ni-17Cr-21Mo
(Here, C, Mn, Ni, Cr, Mo: content of each element (mass%))
Cooling stop temperature: Ms transformation point or less The above-described cooling is performed to a temperature below the Ms transformation point. If the cooling is stopped at a temperature exceeding the Ms transformation point, it becomes impossible to secure the desired structural fraction of the tempered martensite phase, and the desired steel pipe strength and fatigue resistance characteristics cannot be obtained.

本発明では、上記した焼鈍処理後、さらに焼戻処理を施す。
焼戻処理温度:(Ms変態点−150℃)〜(Ms変態点−350℃)
焼戻処理温度は、耐疲労特性に影響する、焼戻マルテンサイト中の微細セメンタイトの析出状態を決定する重要な製造パラメータである。焼戻処理温度が(Ms変態点−150℃)を超えて高くなると、セメンタイトが粗大化し所望の強度を確保できなくなる。一方、(Ms変態点−350℃)未満では、マルテンサイト変態に伴う内部応力が残存し、耐疲労特性が低下する。
In the present invention, a tempering process is further performed after the above-described annealing process.
Tempering temperature: (Ms transformation point −150 ° C.) to (Ms transformation point −350 ° C.)
The tempering temperature is an important production parameter that determines the precipitation state of fine cementite in tempered martensite, which affects fatigue resistance. When the tempering temperature is higher than (Ms transformation point−150 ° C.), the cementite is coarsened and a desired strength cannot be secured. On the other hand, if it is less than (Ms transformation point−350 ° C.), the internal stress accompanying the martensitic transformation remains, and the fatigue resistance is lowered.

V字状に断面成形加工後の5×10繰返し疲れ限度σBと鋼管引張強さTSとの比(σB/TS)と焼戻処理温度との関係を図3に示す。なお、断面成形加工後の耐疲労特性は、図1(特開2001−321846号公報の図11)に示すように、鋼管の長手中央部分をV字形状に断面を成形加工したのち、両端部をチャッキングにより固定してねじり疲労試験を、1Hz、両振りの条件で行い5×10繰返し疲れ限度σを求め、得られた5×10繰返し疲れ限度σと鋼管引張強さTSとの比、(σ/TS)により評価するものとする。 FIG. 3 shows the relationship between the ratio (σ B / TS) of the 5 × 10 4 repeated fatigue limit σ B and the steel pipe tensile strength TS after cross-section forming into a V shape and the tempering temperature. As shown in FIG. 1 (FIG. 11 of Japanese Patent Laid-Open No. 2001-331846), the fatigue resistance after the cross-section forming process is shown in FIG. the torsional fatigue test was fixed by chucking a, 1 Hz, seek performs 5 × 10 4 repeated fatigue limit sigma B of both swing conditions resulting 5 × 10 4 repeated fatigue limit sigma B and steel tensile strength TS The ratio is evaluated by (σ B / TS).

図3から、焼戻処理温度が(Ms変態点−150℃)〜(Ms変態点−350℃)の範囲で、σB/TSが0.60以上となり、断面成形加工後の優れた耐疲労特性を保持できることがわかる。
このようなことから、焼戻処理温度は(Ms変態点−150℃)〜(Ms変態点−350℃)の範囲の温度に限定した。なお、好ましくは(Ms変態点−220℃)〜(Ms変態点−320℃)である。焼戻処理温度における保持時間は、セメンタイトの十分な析出時間を確保する観点から、2s以上とすることが好ましい。
From Fig. 3, when the tempering temperature is in the range of (Ms transformation point -150 ° C) to (Ms transformation point -350 ° C), σ B / TS is 0.60 or more, and excellent fatigue resistance after cross-section forming processing. It can be seen that it can be retained.
For this reason, the tempering temperature was limited to a temperature in the range of (Ms transformation point−150 ° C.) to (Ms transformation point−350 ° C.). In addition, (Ms transformation point−220 ° C.) to (Ms transformation point−320 ° C.) is preferable. The holding time at the tempering treatment temperature is preferably 2 s or longer from the viewpoint of securing a sufficient cementite precipitation time.

なお、焼戻処理は、焼鈍処理の冷却時に、Ms変態点以下の温度に到達したのち、室温まで放冷される間に、上記した焼戻処理温度、保持時間を満足することができれば、自己焼戻が可能となる。このような場合には、独立した焼戻処理を行う必要はなくなる。
本発明では、上記した製造工程で得られた鋼管素材にさらに、電縫造管工程を施して溶接鋼管とする。鋼管素材は、上記した製造工程のままとしてもよいが、塗膜密着性の観点から、亜鉛めっき、アルミめっき、ニッケルめっき、有機皮膜処理等の表面処理を施すこともできる。次に、好ましい電縫造管工程について説明する。
In the tempering process, if the temperature of the Ms transformation point or less is reached during cooling of the annealing process and then the temperature is allowed to cool to room temperature, the above tempering process temperature and holding time can be satisfied. Tempering is possible. In such a case, it is not necessary to perform an independent tempering process.
In the present invention, the steel pipe material obtained in the above manufacturing process is further subjected to an electric sewing pipe process to obtain a welded steel pipe. The steel pipe material may be left in the above manufacturing process, but from the viewpoint of coating film adhesion, surface treatment such as galvanization, aluminum plating, nickel plating, organic film treatment, etc. can be performed. Next, a preferable electric sewing pipe process will be described.

電縫造管工程は、上記した鋼管素材を連続的にロール成形し電縫溶接して溶接鋼管とする工程とする。電縫造管工程では、幅絞り率:10%以下(0%を含む)の電縫造管を施すことが好ましい。幅絞り率は所望の成形性を確保するための重要な要因であり、幅絞り率が10%を超えると造管に伴う成形性の低下が顕著となり、所望の成形性が確保できなくなる。このため、幅絞り率は10%以下(0%を含む)とすることが好ましい。なお、より好ましくは1%以上である。なお、幅絞り率(%)は、次(1)式
幅絞り率(%)=[(鋼管素材の幅)−π{(製品鋼管外径)−(製品鋼管肉厚)}]/π{(製品鋼管外径)−(製品鋼管肉厚)}×(100%)………(1)
で定義される値とする。
The electric sewing pipe process is a process in which the above-described steel pipe material is continuously roll-formed and electro-welded to form a welded steel pipe. In the electric sewing tube process, it is preferable to apply an electric sewing tube having a width drawing ratio of 10% or less (including 0%). The width drawing ratio is an important factor for ensuring the desired formability. When the width drawing ratio exceeds 10%, the formability deteriorates due to pipe making, and the desired formability cannot be ensured. For this reason, it is preferable that the width drawing ratio is 10% or less (including 0%). More preferably, it is 1% or more. The width drawing ratio (%) is expressed by the following equation (1): width drawing ratio (%) = [(width of steel pipe material) −π {(outer diameter of product steel pipe) − (thickness of product steel pipe)}] / π { (Product steel pipe outer diameter)-(Product steel pipe wall thickness)} x (100%) ......... (1)
The value defined in.

なお、電縫造管工程に代えて、ロールフオーミング、切板のプレス閉断面化、造管後の冷間・温間・熱間での縮径圧延および熱処理等を組み合わせた造管工程としてもよい、さらに電縫溶接に代えて、レーザー溶接、アーク潜接、プラズマ溶接などを用いても何ら問題はない。
つぎに、上記した製造方法で得られる、本発明鋼管の組織について説明する。ミクロ組織は、所望の高い静的強度と、優れた成形性、断面成形加工後の優れた耐ねじり疲労特性を碓保する上で重要な要因である。
In place of the electric sewing pipe process, the pipe forming process combines roll forming, press-cut section of the cut plate, cold / warm / hot diameter reduction rolling and heat treatment after pipe forming. Furthermore, there is no problem even if laser welding, arc latent welding, plasma welding, or the like is used instead of ERW welding.
Next, the structure of the steel pipe of the present invention obtained by the above manufacturing method will be described. The microstructure is an important factor in maintaining the desired high static strength, excellent formability, and excellent torsional fatigue resistance after cross-section forming.

本発明鋼管は、上記した組成を有し、円周方向断面のマルテンサイト平均粒径が2〜14μmである焼戻マルテンサイト相を面積率で21〜100%含み、残部がフェライト相(面積率で0%である場合を含む)からなる組織を有する。
焼戻マルテンサイト相が、面積率で21%未満では、降伏強さ615MPa以上の高い静的強度を確保できない。ここでいう「焼戻マルテンサイト相」とは、Ms変態点以下の温度でオーステナイトから剪断的に変態した体心立法母相中に微細なセメンタイトが析出した相をいう。また「フェライト相」とは、Ms変態点を超える温度で変態した相をいう。なお、フェライト相には、ポリゴナルフェライト、アシキュラーフェライトを含むものとする。
The steel pipe of the present invention includes the above-described composition, and includes a tempered martensite phase with a martensite average particle size of 2 to 14 μm in the circumferential cross section in an area ratio of 21 to 100%, with the balance being a ferrite phase (area ratio). Including a case of 0%).
If the tempered martensite phase is less than 21% in area ratio, a high static strength with a yield strength of 615 MPa or more cannot be secured. The term “tempered martensite phase” as used herein refers to a phase in which fine cementite is precipitated in a body-centered cubic matrix that is shear-transformed from austenite at a temperature below the Ms transformation point. The “ferrite phase” refers to a phase transformed at a temperature exceeding the Ms transformation point. The ferrite phase includes polygonal ferrite and acicular ferrite.

また、焼戻マルテンサイト相の平均粒径(マルテンサイト平均粒径)が2μm未満では、疲労亀裂が平面的に進展し、閉口効果による亀裂伝播抵抗が低下して疲労強度(耐疲労特性)が低下する。一方、焼戻マルテンサイト相の平均粒径が14μmを超えて大きくなると、疲労亀裂発生時の粒界への応力集中度が高くなり、初期疲労亀裂が発生しやすく疲労強度が低下する。   In addition, when the average particle size of the tempered martensite phase (martensite average particle size) is less than 2 μm, fatigue cracks progress in a plane, crack propagation resistance due to the closure effect decreases, and fatigue strength (fatigue resistance) is reduced. descend. On the other hand, when the average grain size of the tempered martensite phase exceeds 14 μm, the degree of stress concentration at the grain boundary at the time of fatigue crack generation increases, and initial fatigue cracks tend to occur and the fatigue strength decreases.

ここでいう「マルテンサイト平均粒径」とは、同一結晶方位を有するマルテンサイトパケットの平均寸法をいう。なお、相対傾角が15°以上である場合をパケット境界とする。すなわち、「マルテンサイト平均粒径」とは、相対傾角が15°未満であるマルテンサイトパケットの領域の平均大きさを言うものとする。「マルテンサイト平均粒径」は、相対傾角が15°未満であるマルテンサイトパケットの領域の面積を測定し、該面積から円相当直径として算出した値とする。   As used herein, “martensite average particle size” refers to the average size of martensite packets having the same crystal orientation. The case where the relative tilt angle is 15 ° or more is defined as a packet boundary. That is, the “martensite average particle diameter” refers to the average size of a martensite packet region having a relative tilt angle of less than 15 °. The “martensite average particle diameter” is a value obtained by measuring the area of a martensite packet region having a relative tilt angle of less than 15 ° and calculating the equivalent circle diameter from the area.

本発明鋼管は、上記した組成、および組織を有し、さらに管内外面が、JIS B 0601−2001の規定に準拠して、算術平均粗さRaで1.0μm以下、最大高さ粗さRzで15μm以下、十点平均粗さRzJISで10μm以下となる、表面粗さを有する鋼管である。
鋼管内外面の表面粗さは、表面における微視的な応力集中に影響するため、疲労強度(耐疲労特性)に大きな影響を及ぼす。表面粗さとして十点平均粗さRzJISを用いて、V字状に断面成形加工後の5×10繰返し疲れ限度σBと鋼管引張強さTSとの比(σB/TS)と表面粗さとの関係を図2に示す。なお、断面成形加工後の耐疲労特性は、図1(特開2001−321846号公報の図11)に示すように、鋼管の長手中央部分をV字形状に断面を成形加工したのち、両端部をチャッキングにより固定して捻り疲労試験を、1Hz、両振りの条件で行い5×10繰返し疲れ限度σを求め、得られた5×10繰返し疲れ限度σと鋼管引張強さTSとの比、(σ/TS)により評価した。
The steel pipe of the present invention has the composition and structure described above, and the inner and outer surfaces of the pipe have an arithmetic average roughness Ra of 1.0 μm or less and a maximum height roughness Rz of 15 μm in accordance with the provisions of JIS B 0601-2001. The following is a steel pipe having a surface roughness of 10 μm or less according to the ten-point average roughness Rz JIS .
Since the surface roughness of the inner and outer surfaces of the steel pipe affects the microscopic stress concentration on the surface, it greatly affects the fatigue strength (fatigue resistance). Using the 10-point average roughness Rz JIS as the surface roughness, the ratio (σ B / TS) between the 5 × 10 4 repeated fatigue limit σ B and the steel pipe tensile strength TS after V-shaped cross-section forming processing and the surface The relationship with roughness is shown in FIG. As shown in FIG. 1 (FIG. 11 of Japanese Patent Laid-Open No. 2001-331846), the fatigue resistance after the cross-section forming process is shown in FIG. the torsional fatigue test was fixed by chucking a, 1 Hz, seek performs 5 × 10 4 repeated fatigue limit sigma B of both swing conditions resulting 5 × 10 4 repeated fatigue limit sigma B and steel tensile strength TS The ratio was evaluated by (σ B / TS).

図2から、RzJISが10μm以下の場合に、σB/TSが0.60以上となり、断面成形加工後の優れた耐疲労特性を保持できることがわかる。なお、耐疲労特性向上の観点からは、管内外面の表面粗さは、十点平均粗さRzJISで10μm以下で、かつ算術平均粗さRaで1.0μm以下、最大高さ粗さRzで15μm以下を満足することが必要となる。管内外面が、上記した表面粗さを外れる鋼管では、成形性が低下するとともに、断面成形加工等の加工時に応力集中部が生じ、その後の耐ねじり疲労特性が低下する。 FIG. 2 shows that when Rz JIS is 10 μm or less, σ B / TS is 0.60 or more, and excellent fatigue resistance after cross-section forming can be maintained. From the viewpoint of improving fatigue resistance, the surface roughness of the inner and outer surfaces of the pipe is 10 μm or less with a 10-point average roughness Rz JIS , 1.0 μm or less with an arithmetic average roughness Ra, and 15 μm with a maximum height roughness Rz. It is necessary to satisfy the following. In a steel pipe whose pipe inner and outer surfaces deviate from the surface roughness described above, formability is reduced, stress concentration portions are generated during processing such as cross-section forming processing, and subsequent torsional fatigue resistance properties are reduced.

また、本発明鋼管は、部材成形ままで、降伏強さ615MPa以上の高強度と、優れた耐疲労特性を有するが、さらに部材成形後に、残留応力除去焼鈍等の熱処理、あるいはショットピーニング等の表面高強度化、圧縮残留応力付与のための処理を施してもなんら問題はない。   In addition, the steel pipe of the present invention has a high strength of yield strength of 615 MPa or more and an excellent fatigue resistance as it is formed into a member, but also after heat treatment such as residual stress removal annealing or surface such as shot peening after forming the member. There is no problem even if the treatment for increasing the strength and applying the compressive residual stress is performed.

(実施例1)
表1に示す組成の溶鋼を溶製し、連続鋳造法で鋼素材(スラブ:肉厚250mm)とした。これら鋼素材を、表2に示す条件で熱間圧延を行い熱延鋼帯(板厚:5.0mm)する熱延工程と、該熱延鋼帯に酸洗処理を施したのち、表2に示す条件で冷間圧延を行い冷延鋼帯とする冷延工程と、該冷延鋼帯に表2に示す条件で連続焼鈍炉を用いた焼鈍処理とついで焼戻処理を行う焼鈍工程とを施し、鋼管素材(冷延鋼帯)とした。
Example 1
Molten steel having the composition shown in Table 1 was melted and made into a steel material (slab: thickness 250 mm) by a continuous casting method. These steel materials are hot-rolled under the conditions shown in Table 2 to perform a hot-rolling steel strip (sheet thickness: 5.0 mm), and after pickling the hot-rolled steel strip, Table 2 shows A cold rolling process in which cold rolling is performed under the conditions shown to form a cold rolled steel strip, an annealing process using a continuous annealing furnace under the conditions shown in Table 2 on the cold rolled steel strip, and then an annealing process in which tempering is performed. The steel pipe material (cold rolled steel strip) was used.

得られた鋼管素材を、所定寸法にスリット加工し、ロールにより連続成形してオープン管とし、該オープン管を高周波抵抗溶接により電縫溶接する電縫溶接工程を施して、表2に示す寸法の溶接鋼管とした。なお、電縫造管工程では、(1)式で定義される幅絞り率を表2に示す値とした。
これら溶接鋼管から、試験片を採取し、組織観察試験、引張試験、表面粗さ試験、およびねじり疲労試験を実施した。試験方法はつぎの通りとした。
(1)組織観察試験
得られた溶接鋼管から、円周方向断面が観察面となるように、組織観察用試験片を採取して、研磨し、ナイタール腐食して、走査型電子顕微鏡(3000倍)で組織を観察し、撮像して、画像解析装置を用いて、焼戻マルテンサイト相、フェライト相の組織分率(面積率)、焼戻マルテンサイト相の平均粒径(マルテンサイト平均粒径)を測定した。マルテンサイト平均粒径は、まず、相対傾角が15°以上となるマルテンサイトパケット粒界を決定したのち、相対傾角が15°未満であるマルテンサイトパケットの領域の面積を測定し、該面積から円相当直径として算出した。マルテンサイトパケット粒界の決定は、結晶方位解析(EBSP)を用いて行った。
(2)引張試験
得られた溶接鋼管から、L方向が引張方向となるように、JIS Z 2201の規定に準拠してJIS 12号試験片を切出し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(引張強さTS、降伏強さYS、El)を求め、強度と成形性を評価した。
(3)表面粗さ試験
得られた溶接鋼管の内外表面の表面粗さを、触針式粗度計を用いて、JIS B 0601−2001の規定に準拠して、粗さ曲線を測定し、粗さパラメータとして、算術平均粗さRa、最大高さ粗さRz、十点平均粗さRzJISを求めた。なお、粗さ曲線の測定方向は、管の円周方向(C方向)とし、低域カットオフ値0.8mm、評価長さ4mmとした。測定位置は、内表面および外表面について、それぞれ溶接部より90°、180°、270°の各位置の総計6箇所とし、それらの平均値を代表値として採用した。
(4)ねじり疲労試験
得られた溶接鋼管から、試験材(長さ:1500mm)を採取し、該試験材の中央部約1000mmLに、図1(特開2001−321846号公報の図11)に示すように、鋼管の長手中央部分をV字形状に断面を成形加工し、両端部をチャッキングにより固定して、ねじり疲労試験を実施した。
The obtained steel pipe material is slit to a predetermined dimension, continuously formed by a roll to form an open pipe, and subjected to an electric resistance welding process in which the open pipe is subjected to electric resistance welding by high frequency resistance welding. A welded steel pipe was used. In the electric sewing tube process, the width drawing ratio defined by the equation (1) was set to the values shown in Table 2.
Specimens were collected from these welded steel pipes and subjected to a structure observation test, a tensile test, a surface roughness test, and a torsional fatigue test. The test method was as follows.
(1) Microstructure observation test From the obtained welded steel pipe, a specimen for microstructural observation was collected so that the circumferential cross-section became the observation surface, polished, and subjected to nital corrosion, and a scanning electron microscope (3000 times) ) Observe and image the structure with an image analysis device, and use an image analysis device to obtain the tempered martensite phase, the ferrite phase structure fraction (area ratio), the tempered martensite phase average particle size (martensite average particle size) ) Was measured. The average martensite particle size is determined by first determining the martensite packet grain boundary where the relative tilt angle is 15 ° or more, and then measuring the area of the martensite packet region where the relative tilt angle is less than 15 °. The equivalent diameter was calculated. Martensite packet grain boundaries were determined using crystal orientation analysis (EBSP).
(2) Tensile test From the obtained welded steel pipe, a JIS No. 12 test piece is cut out in accordance with the provisions of JIS Z 2201 so that the L direction is the tensile direction, and the tensile test is conducted in accordance with the provisions of JIS Z 2241. The tensile properties (tensile strength TS, yield strength YS, El) were determined, and the strength and formability were evaluated.
(3) Surface roughness test The surface roughness of the inner and outer surfaces of the obtained welded steel pipe was measured using a stylus type roughness meter in accordance with the provisions of JIS B 0601-2001, As the roughness parameters, arithmetic average roughness Ra, maximum height roughness Rz, and ten-point average roughness Rz JIS were determined. The measurement direction of the roughness curve was the circumferential direction (C direction) of the tube, the low-frequency cut-off value was 0.8 mm, and the evaluation length was 4 mm. The measurement positions for the inner surface and the outer surface were a total of six positions at 90 °, 180 °, and 270 ° from the welded portions, respectively, and the average value was adopted as a representative value.
(4) Torsional fatigue test From the obtained welded steel pipe, a test material (length: 1500 mm) was sampled and placed in the central part of the test material at about 1000 mmL in FIG. 1 (FIG. 11 of JP-A-2001-331846). As shown, a torsional fatigue test was conducted by forming a cross section of the longitudinal central portion of the steel pipe into a V shape and fixing both ends by chucking.

ねじり疲労試験は、1Hz、両振りの条件で行い、応力水準を種々変化させ、負荷応力Sにおける破断までの繰返し回数Nを求めた。得られたS‐N線図より5×10繰返し疲れ限度σ(MPa)を求め、σ/TS、(ここでTSは鋼管の引張強さMPa)で耐ねじり疲労特性を評価した。なお、負荷応力は最初にダミー片でねじり試験を行い、疲労亀裂位置を確認し、その位置に3軸歪ゲージを貼付けて実測した。 The torsional fatigue test was conducted under the conditions of 1 Hz and double swing. Various stress levels were changed, and the number of repetitions N until the fracture at the load stress S was obtained. The 5 × 10 4 repeated fatigue limit σ B (MPa) was determined from the obtained SN diagram, and torsional fatigue resistance was evaluated using σ B / TS (where TS is the tensile strength of the steel pipe MPa). The load stress was measured by first conducting a torsion test with a dummy piece, confirming the fatigue crack position, and attaching a triaxial strain gauge at that position.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005463715
Figure 0005463715

Figure 0005463715
Figure 0005463715

Figure 0005463715
Figure 0005463715

本発明例(鋼管No.1〜No.10)はいずれも、焼戻マルテンサイト相分率が21面積%以上で、マルテンサイト平均粒径が2〜14μmである組織を有し、降伏強さ:615MPa以上で、JIS 12号試験片での伸びElが12%以上を満足し、成形性に優れた溶接鋼管となっている。また、本発明例はいずれも、上記した組織を有しさらに管内外面で、算術平均粗さRaで1.0μm以下、最大高さ粗さRzで15μm以下、十点平均粗さRzJISで10μm以下となる、表面粗さを有し、断面成形加工後の、ねじり疲労試験での5×10繰返し疲れ限度σBと鋼管引張強さTSとの比、σB/TSが0.60以上と、優れた耐ねじり疲労特性を有する溶接鋼管となっている。 Each of the inventive examples (steel pipes No. 1 to No. 10) has a structure in which the tempered martensite phase fraction is 21 area% or more, and the martensite average particle diameter is 2 to 14 μm, and the yield strength. : It is 615MPa or more, the elongation El of JIS No. 12 test piece satisfies 12% or more, and it is a welded steel pipe with excellent formability. In addition, each of the inventive examples has the above-described structure, and the inner and outer surfaces of the pipe have an arithmetic average roughness Ra of 1.0 μm or less, a maximum height roughness Rz of 15 μm or less, and a ten-point average roughness Rz JIS of 10 μm or less. The ratio between the 5 × 10 4 cyclic fatigue limit σ B in the torsional fatigue test and the tensile strength TS of the steel pipe after the cross-section forming process, σ B / TS is 0.60 or more, It is a welded steel pipe with torsional fatigue resistance.

一方、鋼組成が本発明の範囲を外れる比較例(鋼管No.11〜32)は、組織が本発明範囲を外れ、強度または伸びが低下し、さらには管内外面の表面粗さが本発明範囲を外れ、断面成形加工後の耐ねじり疲労特性が低下している。
(実施例2)
表1の鋼A、B、Jの組成を有する鋼素材(スラブ)に、表4に示す条件の熱延工程、冷延工程、焼鈍工程を施し、鋼管素材(冷延鋼帯)とした。これらの鋼管素材を、所定の幅寸法にスリット加工したのち、連続的にロール成形してオープン管とし、該オープン管を高周波抵抗溶接により電縫溶接する電縫造管工程により表4に示す寸法の溶接鋼管とした。なお、電縫造管工程では、(1)式で定義される幅絞り率を、表4に示す値とした。
On the other hand, in the comparative examples (steel pipe Nos. 11 to 32) in which the steel composition deviates from the scope of the present invention, the structure deviates from the scope of the present invention, the strength or elongation decreases, and the surface roughness of the inner and outer surfaces of the pipe is within the scope of the present invention. The torsional fatigue resistance after cross-section forming processing is reduced.
(Example 2)
A steel material (slab) having the composition of steels A, B, and J in Table 1 was subjected to a hot rolling process, a cold rolling process, and an annealing process under the conditions shown in Table 4 to obtain a steel pipe material (cold rolled steel strip). After slitting these steel pipe materials to a predetermined width, the rolls are continuously roll-formed into open pipes, and the dimensions shown in Table 4 are obtained by an electro-sewing pipe process in which the open pipes are electro-welded by high-frequency resistance welding. Welded steel pipe. In the electric sewing tube process, the width drawing ratio defined by the equation (1) was set to the values shown in Table 4.

得られた溶接鋼管から、実施例1と同様に試験片を採取し、実施例1と同様に組織観察試験、引張試験、表面粗さ試験、ねじり疲労試験を実施した。
得られた結果を表5に示す。
A test piece was collected from the obtained welded steel pipe in the same manner as in Example 1, and a structure observation test, a tensile test, a surface roughness test, and a torsional fatigue test were performed in the same manner as in Example 1.
The results obtained are shown in Table 5.

Figure 0005463715
Figure 0005463715

Figure 0005463715
Figure 0005463715

本発明例(鋼管No.34、No.37、No.39、No.42、No.45、No.48、No.51、No.53)はいずれも、焼戻マルテンサイト相の組織分率が21面積%以上で、マルテンサイト相の平均粒径が2〜14μmである組織を有し、降伏強さが615MPa以上で、JIS 12号試験片での伸びElが12%以上を満足する高強度で、成形性に優れた溶接鋼管となっている。さらに、本発明例はいずれも、上記した組織を有しさらに、管内外面で、算術平均粗さRaで1.0μm以下、最大高さ粗さRzで15μm以下、十点平均粗さRzJISで10μm以下となる、表面粗さを有し、断面成形加工後の、ねじり疲労試験での5×10繰返し疲れ限度σBと鋼管引張強さTSとの比、σB/TSが0.60以上と、優れた耐ねじり疲労特性を有する溶接鋼管となっている。 In all of the inventive examples (steel pipes No. 34, No. 37, No. 39, No. 42, No. 45, No. 48, No. 51, No. 53), the structural fraction of the tempered martensite phase Has a structure in which the average grain size of the martensite phase is 2 to 14 μm, the yield strength is 615 MPa or more, and the elongation El in the JIS No. 12 test piece satisfies 12% or more. It is a welded steel pipe that is strong and has excellent formability. In addition, each of the inventive examples has the above-described structure, and further has an arithmetic average roughness Ra of 1.0 μm or less, a maximum height roughness Rz of 15 μm or less, and a 10-point average roughness Rz JIS of 10 μm on the inner and outer surfaces of the tube. The ratio between the 5 × 10 4 repeated fatigue limit σ B in the torsional fatigue test and the tensile strength TS of the steel pipe after the cross-section forming process, which has the following surface roughness, σ B / TS is 0.60 or more, The welded steel pipe has excellent torsional fatigue resistance.

一方、鋼素材の熱延工程の条件、あるいは鋼管の電縫造管工程の条件が、本発明の範囲を外れる比較例(鋼管No.33、No.35、No.36、No.38、No.40、No.41、No.43、No.44、No.46、No.47、No.49、No.50、No.52、No.53)は、少なくとも組成、組織、表面粗さのいずれかが本発明範囲を外れ、強度、伸び、耐ねじり疲労特性のいずれかが低下している。   On the other hand, comparative examples (steel pipe No. 33, No. 35, No. 36, No. 38, No. .40, No. 41, No. 43, No. 44, No. 46, No. 47, No. 49, No. 50, No. 52, No. 53) have at least composition, structure, and surface roughness. Any of these is out of the scope of the present invention, and any of strength, elongation, and torsional fatigue resistance is reduced.

Claims (5)

鋼素材に熱延工程、冷延工程および焼鈍工程を順次施して鋼管素材としたのち、該鋼管素材に、電縫造管工程を施して溶接鋼管とする鋼管の製造方法において、
前記鋼素材が、質量%で、
C:0.08〜0.24%、 Si:0.001〜1.5%、
Mn:0.8〜2.8%、 Al:0.01〜0.08%、
P:0.029%以下、 S:0.020%以下、
N:0.0100%以下、 :0.005%以下
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材であり、
前記熱延工程が、前記鋼素材を1150〜1350℃に加熱した後、仕上圧延終了温度をAr3変態点以上とする熱間圧延を施し、ついで巻取温度:650〜500℃で巻取り熱延鋼帯とする工程であり、
前記冷延工程が、前記熱延鋼帯に酸洗処理を施した後、圧下率:41〜76%の冷間圧延を施し冷延鋼帯とする工程であり、
前記焼鈍工程が、前記冷延鋼帯を連続焼鈍炉で750〜950℃に加熱均熱したのち、平均冷却速度:81〜500℃/sでMs変態点以下の温度まで冷却する焼鈍処理を施し、ついで(Ms変態点−150℃)〜(Ms変態点−350℃)の範囲の温度で焼戻処理を施す工程であり、
前記溶接鋼管が、降伏強さが615MPa以上で、成形性に優れ、かつ断面成形後の耐ねじり疲労特性に優れる薄肉高強度溶接鋼管であることを特徴とする鋼管の製造方法。
In the method of manufacturing a steel pipe, after subjecting the steel material to a steel pipe material by sequentially performing a hot rolling process, a cold rolling process and an annealing process,
The steel material is mass%,
C: 0.08 to 0.24%, Si: 0.001 to 1.5%,
Mn: 0.8-2.8%, Al: 0.01-0.08%,
P: 0.029% or less, S: 0.020% or less,
N: 0.0100% or less, O : 0.005% or less, a steel material having a composition comprising the balance Fe and inevitable impurities,
The hot-rolled process, after heating the steel material to 1150-1,350 ° C., a finish rolling end temperature subjected to hot rolling to A r3 transformation point or higher, then the coiling temperature: 650-500 coiling heat ° C. It is a process to make a steel strip,
The cold rolling step is a step of subjecting the hot-rolled steel strip to pickling treatment, and then performing cold rolling at a rolling reduction of 41 to 76% to obtain a cold-rolled steel strip,
In the annealing step, the cold-rolled steel strip is heated and soaked at 750 to 950 ° C. in a continuous annealing furnace, and then subjected to an annealing treatment for cooling to a temperature below the Ms transformation point at an average cooling rate of 81 to 500 ° C./s. Then, a step of performing a tempering treatment at a temperature in the range of (Ms transformation point−150 ° C.) to (Ms transformation point−350 ° C.)
A method for producing a steel pipe, wherein the welded steel pipe is a thin-walled high-strength welded steel pipe having a yield strength of 615 MPa or more, excellent formability, and excellent torsional fatigue resistance after cross-section forming.
前記電縫造管工程が、下記(1)式で定義される幅絞り率を10%以下として、前記鋼管素材を連続的にロール成形し電縫溶接して製品である溶接鋼管とする工程であることを特徴とする請求項1に記載の鋼管の製造方法。

幅絞り率(%)=[(鋼管素材の幅)−π{(製品外径)−(製品肉厚)}]/π{(製品外径)−(製品肉厚)}×100 ……(1)
The electric sewing pipe process is a process in which a width drawing ratio defined by the following formula (1) is set to 10% or less, and the steel pipe material is continuously roll-formed and electro-welded to form a welded steel pipe as a product. The method for manufacturing a steel pipe according to claim 1, wherein:
Width drawing ratio (%) = [(width of steel pipe material) −π {(product outer diameter) − (product thickness)}] / π {(product outer diameter) − (product thickness)} × 100 (1)
前記鋼素材が、前記組成に加えてさらに、質量%で、Nb:0.001〜0.08%、Ti:0.001〜0.12%、V:0.001〜0.08%、W:0.001〜0.08%、Mo:0.001〜0.49%、Cr:0.001〜0.49%、Cu:0.001〜0.19%、Ni:0.001〜0.45%、B:0.0001〜0.0030%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有することを特徴とする請求項1または2に記載の鋼管の製造方法。   In addition to the above composition, the steel material further includes, in mass%, Nb: 0.001 to 0.08%, Ti: 0.001 to 0.12%, V: 0.001 to 0.08%, W: 0.001 to 0.08%, Mo: 0.001 to 0.49% , Cr: 0.001 to 0.49%, Cu: 0.001 to 0.19%, Ni: 0.001 to 0.45%, B: 0.0001 to 0.0030%, and / or Ca: 0.0001 to 0.005 %., The manufacturing method of the steel pipe of Claim 1 or 2 characterized by the above-mentioned. 質量%で、
C:0.08〜0.24%、 Si:0.001〜1.5%、
Mn:0.8〜2.8%、 Al:0.01〜0.08%、
P:0.029%以下、 S:0.020%以下、
N:0.0100%以下、 :0.005%以下
を含み、残部Feおよび不可避的不純物からなる組成と、円周方向断面のマルテンサイト平均粒径が2〜14μmである焼戻マルテンサイト相を面積率で21〜100%含み、残部がフェライト相(面積率で0%である場合を含む)からなる組織と、を有し、かつ管内外面の表面粗さが算術平均粗さRaで1.0μm以下、最大高さ粗さRzで15μm以下、十点平均粗さRzJISで10μm以下であり、降伏強さが615MPa以上で、成形性に優れ、かつ断面成形後の耐ねじり疲労特性に優れることを特徴とする薄肉高強度溶接鋼管。
% By mass
C: 0.08 to 0.24%, Si: 0.001 to 1.5%,
Mn: 0.8-2.8%, Al: 0.01-0.08%,
P: 0.029% or less, S: 0.020% or less,
N: 0.0100% or less, O : 0.005% or less, the composition composed of the balance Fe and unavoidable impurities, and the tempered martensite phase with a martensite average particle size of 2 to 14 μm in the circumferential direction in terms of area ratio 21 to 100%, and the balance is composed of a ferrite phase (including a case where the area ratio is 0%), and the surface roughness of the inner and outer surfaces of the pipe is 1.0 μm or less in terms of arithmetic average roughness Ra, maximum It is characterized by a height roughness Rz of 15 μm or less, a 10-point average roughness Rz JIS of 10 μm or less, a yield strength of 615 MPa or more, excellent formability, and excellent torsional fatigue resistance after cross-section forming. Thin wall high strength welded steel pipe.
前記組成に加えてさらに、質量%で、Nb:0.001〜0.08%、Ti:0.001〜0.12%、V:0.001〜0.08%、W:0.001〜0.08%、Mo:0.001〜0.49%、Cr:0.001〜0.49%、Cu:0.001〜0.19%、Ni:0.001〜0.45%、B:0.0001〜0.0030%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有する組成とすることを特徴とする請求項4に記載の薄肉高強度溶接鋼管。   In addition to the above composition, Nb: 0.001 to 0.08%, Ti: 0.001 to 0.12%, V: 0.001 to 0.08%, W: 0.001 to 0.08%, Mo: 0.001 to 0.49%, Cr: 0.001 to 0.49%, Cu: 0.001 to 0.19%, Ni: 0.001 to 0.45%, B: One or more selected from 0.0001 to 0.0030%, and / or Ca: 0.0001 to 0.005% The thin-walled high-strength welded steel pipe according to claim 4, characterized in that it has a composition.
JP2009092058A 2009-04-06 2009-04-06 Manufacturing method of high strength welded steel pipe for automobile structural members Active JP5463715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009092058A JP5463715B2 (en) 2009-04-06 2009-04-06 Manufacturing method of high strength welded steel pipe for automobile structural members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009092058A JP5463715B2 (en) 2009-04-06 2009-04-06 Manufacturing method of high strength welded steel pipe for automobile structural members

Publications (2)

Publication Number Publication Date
JP2010242164A JP2010242164A (en) 2010-10-28
JP5463715B2 true JP5463715B2 (en) 2014-04-09

Family

ID=43095495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009092058A Active JP5463715B2 (en) 2009-04-06 2009-04-06 Manufacturing method of high strength welded steel pipe for automobile structural members

Country Status (1)

Country Link
JP (1) JP5463715B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3486346A4 (en) * 2016-09-28 2019-07-03 JFE Steel Corporation Steel sheet and production method therefor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006781A (en) 2009-05-25 2011-01-13 Nippon Steel Corp Automobile undercarriage component having excellent low cycle fatigue property and method for producing the same
JP6373549B2 (en) * 2011-03-31 2018-08-15 Jfeスチール株式会社 Gas shield arc welding method
CN103648807B (en) * 2011-09-14 2017-03-29 株式会社威泰克 The manufacture method of hollow component and hollow component
JP5776472B2 (en) * 2011-09-28 2015-09-09 Jfeスチール株式会社 Hollow member for vehicle reinforcement
KR101412400B1 (en) 2012-05-30 2014-06-25 현대제철 주식회사 Hot-rolled steel sheet, method of manufacturing the hot-rolled steel sheet and method of manufacturing oil tubular country goods using the hot-rolled steel sheet
CN102776447A (en) * 2012-07-12 2012-11-14 江苏省常熟环通实业有限公司 Steel strip for anti-collision beam of automobile
JP6017341B2 (en) * 2013-02-19 2016-10-26 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent bendability
ES2744909T3 (en) 2013-06-07 2020-02-26 Nippon Steel Corp Heat treated steel material and method of manufacture thereof
RU2686713C1 (en) 2015-04-08 2019-04-30 Ниппон Стил Энд Сумитомо Метал Корпорейшн Element of heat-treated steel sheet and method of its production
RU2686715C1 (en) 2015-04-08 2019-04-30 Ниппон Стил Энд Сумитомо Метал Корпорейшн Element of heat-treated steel sheet and method of its production
EP3282029B1 (en) 2015-04-08 2020-02-12 Nippon Steel Corporation Steel sheet for heat treatment
WO2018186102A1 (en) * 2017-04-05 2018-10-11 新日鐵住金株式会社 Device and method for manufacturing vehicle underbody component material, quenching steel material for manufacturing vehicle underbody component material, and vehicle underbody component material
JP6879148B2 (en) * 2017-09-26 2021-06-02 日本製鉄株式会社 Manufacturing method of steel pipe for torsion beam and steel pipe for torsion beam
CN109794729A (en) * 2017-11-16 2019-05-24 上海汇众汽车制造有限公司 The production method of 800MPa high intensity torsion beam crossbeam
CN108396242A (en) * 2018-01-10 2018-08-14 唐山钢铁集团有限责任公司 A kind of low cost welded tube superhigh intensity cold rolling continuous annealing strip and its production method
CN112534077B (en) * 2018-07-31 2022-06-14 杰富意钢铁株式会社 High-strength hot-rolled steel sheet and method for producing same
CN112673121B (en) * 2018-10-12 2022-02-11 日本制铁株式会社 Resistance welding steel pipe for torsion beam
KR20220112299A (en) * 2020-01-31 2022-08-10 제이에프이 스틸 가부시키가이샤 Steel plate, member and manufacturing method thereof
CN112981252A (en) * 2021-02-06 2021-06-18 邯郸钢铁集团有限责任公司 1500 MPa-grade steel plate for automobile and production method thereof
CN113528977A (en) * 2021-06-29 2021-10-22 莱芜钢铁集团银山型钢有限公司 High-strength steel with low compression ratio, high homogeneity, low yield ratio and 500MPa grade and manufacturing method thereof
CN114086071B (en) * 2021-11-19 2022-10-18 本钢板材股份有限公司 Low-cost 1200 Mpa-grade cold-rolled high-strength martensitic steel and manufacturing method thereof
CN114406006B (en) * 2022-04-01 2022-06-03 承德建龙特殊钢有限公司 Seamless steel pipe tracking production system one by one

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2751760B2 (en) * 1992-10-12 1998-05-18 日本鋼管株式会社 Ultra-high-strength thin steel sheet excellent in hydrogen delayed cracking resistance and method for producing the same
JPH0790488A (en) * 1993-09-27 1995-04-04 Kobe Steel Ltd Ultrahigh strength cold rolled steel sheet excellent in hydrogen brittlement resistance and its production
JP4362319B2 (en) * 2003-06-02 2009-11-11 新日本製鐵株式会社 High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP4635708B2 (en) * 2005-05-09 2011-02-23 Jfeスチール株式会社 Non-tempered high-tensile welded steel pipe for automotive structural members with excellent formability and low-temperature toughness and excellent torsional fatigue resistance after cross-section forming processing
JP4910694B2 (en) * 2006-12-28 2012-04-04 Jfeスチール株式会社 High tensile welded steel pipe for automobile structural members and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3486346A4 (en) * 2016-09-28 2019-07-03 JFE Steel Corporation Steel sheet and production method therefor
US11268164B2 (en) 2016-09-28 2022-03-08 Jfe Steel Corporation Steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2010242164A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5463715B2 (en) Manufacturing method of high strength welded steel pipe for automobile structural members
JP4466619B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP4443910B2 (en) Steel materials for automobile structural members and manufacturing method thereof
EP2857537B1 (en) Hollow stabilizer, and steel pipe for hollow stabilizers and method for production thereof
JP4735315B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP6465249B2 (en) ERW steel pipe for high-strength thin-walled hollow stabilizer and method for manufacturing the same
JP6306711B2 (en) Martensitic steel with delayed fracture resistance and manufacturing method
JP5187003B2 (en) High strength steel material excellent in formability and fatigue resistance and method for producing the same
JP5040475B2 (en) Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP4910694B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP4635708B2 (en) Non-tempered high-tensile welded steel pipe for automotive structural members with excellent formability and low-temperature toughness and excellent torsional fatigue resistance after cross-section forming processing
JP5499559B2 (en) High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same
EP2578714B1 (en) Hot-rolled high-strength steel sheet and process for production thereof
JP5188239B2 (en) High strength steel pipe and manufacturing method thereof
JP5125601B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP4859618B2 (en) Manufacturing method of hollow stabilizer with excellent delayed fracture resistance
JP5499560B2 (en) High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same
CN113631735B (en) Electric welded steel pipe for hollow stabilizer, and method for producing same
JP5282449B2 (en) High strength steel material excellent in formability and fatigue resistance and method for producing the same
JP5460099B2 (en) High strength steel pipe excellent in corrosion resistance and impact bending toughness and method for producing the same
EP3730634B1 (en) Hot-rolled steel sheet having excellent durability and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5463715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250