JP4910694B2 - High tensile welded steel pipe for automobile structural members and method for manufacturing the same - Google Patents

High tensile welded steel pipe for automobile structural members and method for manufacturing the same Download PDF

Info

Publication number
JP4910694B2
JP4910694B2 JP2006355492A JP2006355492A JP4910694B2 JP 4910694 B2 JP4910694 B2 JP 4910694B2 JP 2006355492 A JP2006355492 A JP 2006355492A JP 2006355492 A JP2006355492 A JP 2006355492A JP 4910694 B2 JP4910694 B2 JP 4910694B2
Authority
JP
Japan
Prior art keywords
steel pipe
less
cross
ferrite phase
welded steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006355492A
Other languages
Japanese (ja)
Other versions
JP2008163409A (en
Inventor
俊介 豊田
良和 河端
裕二 橋本
孝司 鈴木
坂田  敬
牧男 郡司
昭夫 佐藤
哲郎 澤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006355492A priority Critical patent/JP4910694B2/en
Publication of JP2008163409A publication Critical patent/JP2008163409A/en
Application granted granted Critical
Publication of JP4910694B2 publication Critical patent/JP4910694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile strength welded steel pipe for an automobile structural member having excellent low temperature toughness, excellent formability and excellent twisting fatigue resistance after cross-sectional forming-stress relief annealing, and to provide a method for producing the same. <P>SOLUTION: A steel stock having a composition comprising C, Si and Al in proper ranges, comprising 1.01 to 1.70% Mn, 0.017 to 0.15% Nb and 0.045 to 0.45% Mo, and comprising P, S, N and O regulated to prescribed values is subjected to hot rolling in which heating temperature and finish rolling completing temperature are controlled to proper ranges, is annealed in the temperature range of 750 to 650&deg;C for &ge;2s after the completion of the hot rolling, and is coiled at a coiling temperature of 660 to 510&deg;C, so as to be a hot rolled steel strip having a structure where the ratio of a ferrite phase with the average grain size of 2 to 14 &mu;m is &ge;60 vol.%, and Nb carbides with the average grain size of 1.5 to 30 nm are precipitated into the ferrite phase. The hot rolled steel strip is subjected to an electric resistance welding process where a width contraction rate is &le;10%. In this way, the high tensile strength welded steel pipe having high strength satisfying the tensile strength of &ge;660 MPa, and having excellent low temperature toughness, formability and twisting fatigue resistance after cross-sectional forming-stress relief annealing treatment is obtained. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、トーションビーム、アクスルビーム、トレーリングアーム、サスペンションアーム等の自動車構造部材用として好適な、660MPa以上の引張強さを有する高張力溶接鋼管に係り、とくにトーションビーム用として、成形性および断面成形加工−応力除去焼鈍後の耐ねじり疲労特性の改善に関する。   The present invention relates to a high-tensile welded steel pipe having a tensile strength of 660 MPa or more suitable for automobile structural members such as a torsion beam, an axle beam, a trailing arm, and a suspension arm. It relates to the improvement of torsional fatigue resistance after processing-stress relief annealing.

近年の地球環境の保全という観点から、自動車の燃費向上が強く求められている。そのため、自動車等の車体の徹底した軽量化が指向されている。自動車等の構造部材についても例外ではなく、軽量化と安全性との両立を図るために、一部の構造部材では、高強度化された電縫鋼管が採用されつつある。従来では、素材(電縫鋼管)を所定の形状に成形した後、焼入れ処理等の調質処理を施して、部材の高強度化が図られていた。しかし、調質処理を採用することは工程が複雑になり、部材の製造期間が長期化するうえ、部材製造コストの高騰を招くという問題がある。   In recent years, there has been a strong demand for improving the fuel efficiency of automobiles from the viewpoint of protecting the global environment. Therefore, a thorough weight reduction of the body of an automobile or the like is aimed at. Structural members such as automobiles are no exception, and in order to achieve both weight reduction and safety, some structural members are adopting highly-strengthened ERW steel pipes. Conventionally, after forming a material (electrically welded steel pipe) into a predetermined shape, a tempering process such as a quenching process is performed to increase the strength of the member. However, adopting the tempering treatment has a problem in that the process becomes complicated, the manufacturing period of the member becomes longer, and the manufacturing cost of the member increases.

このような問題に対し、例えば特許文献1には、自動車等の構造部材用超高張力電縫鋼管の製造方法が記載されている。特許文献1に記載された技術では、C、Si、Mn、P、S、Al、Nを適正量に調整したうえ、B:0.0003〜0.003%を含み、さらにMo、Ti、Nb、Vのうちの1種以上を含有する組成の鋼素材に、950℃以下Ar3変態点以上で仕上圧延を終了し、250℃以下で巻取る熱間圧延を施し管用鋼帯とし、該管用鋼帯を造管して電縫鋼管としたのち、500〜650℃で時効処理を施す、電縫鋼管の製造方法である。この技術によれば、Bの変態組織強化とMo、Ti、Nb等の析出硬化により、調質処理を施すことなく、1000MPaを超える超高張力鋼管を得ることができるとしている。 For such a problem, for example, Patent Document 1 describes a method of manufacturing an ultra-high-strength ERW steel pipe for a structural member such as an automobile. In the technique described in Patent Document 1, C, Si, Mn, P, S, Al, and N are adjusted to appropriate amounts, and B: 0.0003 to 0.003% is included, and among Mo, Ti, Nb, and V Finishing and rolling the steel material with a composition containing at least one of the above at 950 ° C or less at the Ar 3 transformation point and hot rolling it at 250 ° C or less to form a steel strip for pipes. This is a method for producing an ERW steel pipe, which is made into an ERW steel pipe and then subjected to an aging treatment at 500 to 650 ° C. According to this technique, an ultrahigh-tensile steel pipe exceeding 1000 MPa can be obtained without tempering treatment by strengthening the transformation structure of B and precipitation hardening of Mo, Ti, Nb and the like.

また、特許文献2には、自動車のドアインパクトビーム用及びスタビライザー用として好適な、引張強さ:1470N/mm2以上の高強度とかつ高延性を有する電縫鋼管の製造方法が記載されている。特許文献2に記載された技術では、C:0.18〜0.28%、Si:0.10〜0.50%、Mn:0.60〜1.80%を含み、P、Sを適正範囲に調整したうえ、Ti:0.020〜0.050%、B:0.0005〜0.0050%を含有し、さらにCr、MoおよびNbのうちの1種以上を含有する組成の素材鋼からなる鋼板を用いて製造した電縫鋼管に850〜950℃でノルマ処理を施し、さらに、焼入れ処理を施す、電縫鋼管の製造方法である。この技術によれば、1470N/mm2以上の高強度と、10〜18%程度の延性を有する電縫鋼管が得られ、自動車のドアインパクトビーム用及びスタビライザー用として好適であるとしている。
特許第2588648号公報 特許第2814882号公報
Patent Document 2 describes a method for producing an electric resistance welded steel pipe having a high tensile strength: 1470 N / mm 2 or more and a high ductility, suitable for use in automobile door impact beams and stabilizers. . In the technique described in Patent Document 2, C: 0.18 to 0.28%, Si: 0.10 to 0.50%, Mn: 0.60 to 1.80% are included, and P and S are adjusted to an appropriate range, and Ti: 0.020 to 0.050% , B: 0.0005 to 0.0050% and further subjected to a normal treatment at 850 to 950 ° C. for an ERW steel pipe manufactured using a steel plate made of a material steel having a composition containing at least one of Cr, Mo and Nb This is a method for producing an electric resistance welded steel pipe, which is further subjected to quenching treatment. According to this technique, an electric resistance welded steel pipe having a high strength of 1470 N / mm 2 or more and a ductility of about 10 to 18% is obtained, which is said to be suitable for use in automobile door impact beams and stabilizers.
Japanese Patent No. 2588648 Japanese Patent No. 2814882

しかしながら、特許文献1に記載された技術で製造された電縫鋼管は、伸びElが14%以下と低延性であるため成形性に劣り、プレス成形あるいはハイドロフォーム成形を伴うトーションビーム、アクスルビーム、トレーリングアーム、サスペンションアーム等の自動車構造部材用としては不適であるという問題があった。
一方、特許文献2に記載された技術で製造された電縫鋼管は、伸びElが高々18%であり、曲げ加工により成形されるスタビライザー用としては好適であるが、プレス成形あるいはハイドロフォーム成形を伴う部材用としては、延性が不足し、プレス成形あるいはハイドロフォーム成形を伴うトーションビーム、アクスルビーム等の自動車構造部材用としては不適であるという問題があった。また、特許文献2に記載された技術では、ノルマ処理および焼入れ処理を必要とし、工程が複雑であり、寸法精度、経済性という観点からも問題を残していた。
However, the ERW steel pipe manufactured by the technique described in Patent Document 1 is inferior in formability because of its low ductility, with an elongation El of 14% or less, and a torsion beam, axle beam, tray with press molding or hydroform molding. There is a problem that it is not suitable for automobile structural members such as ring arms and suspension arms.
On the other hand, the ERW steel pipe manufactured by the technique described in Patent Document 2 has an elongation El of at most 18% and is suitable for a stabilizer formed by bending. For the accompanying member, there is a problem that the ductility is insufficient and it is not suitable for an automobile structural member such as a torsion beam and an axle beam accompanied by press molding or hydroforming. Further, the technique described in Patent Document 2 requires a normalization process and a quenching process, has a complicated process, and has left a problem in terms of dimensional accuracy and economy.

本発明は、上記した従来技術の問題を有利に解決し、とくに、トーションビーム、アクスルビーム、トレーリングアーム、サスペンションアームなどの、自動車構造部材用として好適な、焼入れ処理を施すことのない焼入れ省略型で、引張強さ660MPa以上を有し、低温靭性、成形性、および断面成形加工−応力除去焼鈍後の耐ねじり疲労特性に優れた高張力溶接鋼管およびその製造方法を提供することを目的とする。   The present invention advantageously solves the above-mentioned problems of the prior art, and is particularly suitable for automobile structural members such as torsion beams, axle beams, trailing arms, suspension arms, etc., and is a quenching omission type that is not subjected to quenching treatment. An object of the present invention is to provide a high-strength welded steel pipe having a tensile strength of 660 MPa or more and excellent in torsional fatigue resistance after low temperature toughness, formability, and cross-section forming-stress relief annealing, and a method for producing the same. .

なお、本発明でいう、「優れた成形性」とは、JIS Z 2201の規定に準拠したJIS 12号試験片を用い、JIS Z 2241の規定に準拠して行った引張試験での伸びElが16%以上(JIS 11号試験片では24%以上)を示す場合をいうものとする。
また、本発明でいう「断面成形加工−応力除去焼鈍後の優れた耐ねじり疲労特性」とは、図3(特開2001−321846号公報の図11)に示すように、鋼管の長手中央部分をV字形状に断面を成形加工し、さらに550℃×10minの応力除去焼鈍を施したのち、両端部をチャッキングにより固定してねじり疲労試験を、1Hz、両振りの条件で行い5×105繰返し疲れ限度σBを求め、得られた5×105繰返し疲れ限度σBと鋼管引張強さTSとの比、(σB/TS)が0.50以上である場合をいうものとする。なお、上記した「断面成形加工−応力除去焼鈍後の優れた耐ねじり疲労特性」は、上記した断面成形加工を施し、さらに550℃×10minの応力除去焼鈍処理を施した後の、断面硬度変化率が−15%以上、残留応力低下率が60%以上を満足する場合に確保できる。
In the present invention, “excellent formability” means that the elongation El in a tensile test conducted in accordance with the JIS Z 2241 standard using a JIS No. 12 test piece in accordance with the JIS Z 2201 standard. It shall indicate the case of 16% or more (24% or more for JIS 11 test piece).
In addition, the term “cross-section forming process—excellent torsional fatigue resistance after stress relief annealing” as used in the present invention refers to a longitudinal central portion of a steel pipe as shown in FIG. 3 (FIG. 11 of JP-A-2001-331846) After forming a V-shaped cross-section, and applying stress relief annealing at 550 ° C x 10 min, both ends are fixed by chucking and a torsional fatigue test is performed at 1 Hz for both swings. 5 x 10 The 5 cycle fatigue limit σ B is obtained, and the ratio of the obtained 5 × 10 5 cycle fatigue limit σ B to the steel pipe tensile strength TS (σ B / TS) is 0.50 or more. In addition, the above-mentioned “cross-section forming process—excellent torsional fatigue resistance after stress-relieving annealing” is the change in cross-sectional hardness after the above-described cross-section forming process and further subjected to a stress-relieving annealing process at 550 ° C. × 10 min. It can be ensured when the rate satisfies -15% or more and the residual stress reduction rate satisfies 60% or more.

また、本発明でいう「優れた低温靭性」とは、図3(特開2001‐321846号公報の図11)に示すように、試験材(鋼管)の長手中央部分をV字形状に断面を成形加工し、成形まま、あるいはさらに550℃×10minの応力除去焼鈍処理を施した後、試験材の平坦部分より、管円周方向(C方向)が試験片長さとなるように展開し、JIS Z 2242の規定に準拠してVノッチ試験片(1/4サイズ)を切出し、シャルピー衝撃試験を実施した場合の破面遷移温度vTrsが、いずれも−40℃以下である場合をいうものとする。   In addition, “excellent low temperature toughness” as used in the present invention means that the longitudinal center portion of the test material (steel pipe) has a V-shaped cross section as shown in FIG. 3 (FIG. 11 of JP-A-2001-331846). After forming and after forming, or after applying a stress-relieving annealing treatment at 550 ° C x 10 min, expand from the flat part of the test material so that the pipe circumferential direction (C direction) becomes the test piece length. When the V-notch specimen (1/4 size) is cut out in accordance with the provisions of 2242 and the Charpy impact test is performed, the fracture surface transition temperature vTrs is -40 ° C. or less.

本発明者らは、上記した課題を達成するため、強度、低温靭性、成形性、断面成形加工−応力除去焼鈍後の耐ねじり疲労特性といった相反する特性を高度なレベルで両立させるため、これら特性に影響する各種要因、とくに鋼管の組成、製造条件について系統的な検討を鋭意実施した。
その結果、C、Si、Mn、Alを適正範囲内に調整したうえで、MoとNbを必須含有する組成の鋼素材に、適正条件の熱間圧延を施して、円周方向断面の平均結晶粒径が2〜14μmのフェライト相が60体積%以上を占め、かつ該フェライト相中に平均粒径が1.5〜30nmのNb炭化物が析出した組織を有する鋼管素材(熱延鋼帯)としたのち、該鋼管素材に適正条件の電縫造管工程を施し溶接鋼管(電縫鋼管)することにより、660MPa以上の引張強さを有し、かつ優れた低温靭性、優れた成形性、および断面成形加工−応力除去焼鈍後の優れた耐ねじり疲労特性を兼備する高張力溶接鋼管とすることができることを見出した。
In order to achieve the above-described problems, the present inventors have made compatible these properties at a high level, such as strength, low temperature toughness, formability, and cross-section forming processing-torsional fatigue resistance after stress relief annealing. Systematic investigations on various factors affecting the quality of steel, especially the composition and production conditions of steel pipes.
As a result, after adjusting C, Si, Mn, and Al within the appropriate range, the steel material having a composition that essentially contains Mo and Nb is subjected to hot rolling under appropriate conditions to obtain an average crystal of the circumferential cross section. After forming a steel pipe material (hot rolled steel strip) having a structure in which a ferrite phase having a particle size of 2 to 14 μm occupies 60% by volume or more and Nb carbide having an average particle size of 1.5 to 30 nm is precipitated in the ferrite phase. The steel pipe material is welded steel pipe (electrically welded steel pipe) by subjecting the steel pipe material to appropriate conditions, and has a tensile strength of 660 MPa or more, excellent low temperature toughness, excellent formability, and cross-section molding. It has been found that a high-tensile welded steel pipe having excellent torsional fatigue resistance after work-stress relief annealing can be obtained.

本発明は、このような知見に基づき、さらに検討を加えて完成されたものであり、その要旨はつぎのとおりである。
(1)質量%で、C:0.08〜0.24%、Si:0.002〜0.35%、Mn:1.01〜1.70%、Al:0.01〜0.08%、Nb:0.017〜0.15%、Mo:0.045〜0.45%、を含有し、不純物であるP、S、N、Oを、P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整して含み、残部Feおよび不可避的不純物からなる組成と、さらに、円周方向断面の平均結晶粒径が2〜14μmであるフェライト相と該フェライト相以外の第二相とからなり、該フェライト相の組織分率が体積率で60%以上であり、該フェライト相中に平均粒径で1.5〜30nmのNb炭化物が析出してなる組織とを有し、成形性、低温靭性と、断面成形加工−応力除去焼鈍後の耐ねじり疲労特性に優れることを特徴とする自動車構造部材用高張力溶接鋼管。
The present invention has been completed by further studies based on such knowledge, and the gist thereof is as follows.
(1) By mass%, C: 0.08 to 0.24%, Si: 0.002 to 0.35%, Mn: 1.01 to 1.70%, Al: 0.01 to 0.08%, Nb: 0.017 to 0.15%, Mo: 0.045 to 0.45% Contains P, S, N, and O as impurities, P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, O: 0.003% or less, the balance Fe and unavoidable impurities And a ferrite phase having an average crystal grain diameter in the circumferential cross section of 2 to 14 μm and a second phase other than the ferrite phase, and the structure fraction of the ferrite phase is 60% by volume. It has the above structure and has a structure in which 1.5 to 30 nm of Nb carbide is precipitated in the ferrite phase, and has formability, low temperature toughness, and torsional fatigue resistance after cross-section forming-stress relief annealing A high-tensile welded steel pipe for automobile structural members characterized by being excellent in

(2)(1)において、前記組成に加えてさらに、質量%で、V:0.001〜0.150%、W:0.001〜0.150%、Ti:0.001〜0.040%、Cr:0.001〜0.45%、B:0.0001〜0.0009%、Cu:0.001〜0.45%、Ni:0.001〜0.45%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有することを特徴とする自動車構造部材用高張力溶接鋼管。   (2) In (1), in addition to the above composition, in terms of mass%, V: 0.001 to 0.150%, W: 0.001 to 0.150%, Ti: 0.001 to 0.040%, Cr: 0.001 to 0.45%, B: 0.0001 An automobile characterized by containing one or more selected from -0.0009%, Cu: 0.001-0.45%, Ni: 0.001-0.45%, and / or Ca: 0.0001-0.005% High-tensile welded steel pipe for structural members.

(3)(1)または(2)において、さらに、鋼管内外面の算術平均粗さRaが1.5μm以下、最大高さ粗さRzが20μm以下、十点平均粗さRz JISが13μm以下である中空管状体であることを特徴とする自動車構造部材用高張力溶接鋼管。
(4)鋼管素材に、電縫造管工程を施して溶接鋼管とするに当り、前記鋼管素材が、質量%で、C:0.08〜0.24%、Si:0.002〜0.35%、Mn:1.01〜1.70%、Al:0.01〜0.08%、Nb:0.017〜0.15%、Mo:0.045〜0.45%、を含有し、不純物であるP、S、N、Oを、P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下に調整して含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、1160〜1320℃に加熱した後、980〜760℃の範囲の温度で仕上圧延を終了する熱間圧延と、該熱間圧延終了後、750〜650℃の温度範囲で2s以上の徐冷を行う徐冷処理とを施し、660〜510℃の巻取り温度で巻取る熱延工程を施してなる熱延鋼帯であり、前記電縫造管工程が、次(1)式
幅絞り=[(鋼管素材の幅)−π{(製品外径)−(製品肉厚)}]/π{(製品外径)−(製肉厚)}×(100%) ……(1)
で定義される幅絞り率を10%以下として、前記鋼管素材を連続的にロール成形し電縫溶接して溶接鋼管とする造管工程であり、前記溶接鋼管が、円周方向断面の平均結晶粒径が2〜14μmであるフェライト相と該フェライト相以外の第二相とからなり、該フェライト相の組織分率が体積率で60%以上であり、該フェライト相中に1.5〜30nmのNb炭化物が析出してなる組織を有し、成形性、低温靭性と、断面成形加工−応力除去焼鈍後の耐ねじり疲労特性に優れることを特徴とする自動車構造部材用高張力溶接鋼管の製造方法。
(3) In (1) or (2), the arithmetic average roughness Ra of the inner and outer surfaces of the steel pipe is 1.5 μm or less, the maximum height roughness Rz is 20 μm or less, and the ten-point average roughness Rz JIS is 13 μm or less. A high-tensile welded steel pipe for automobile structural members, characterized by being a hollow tubular body.
(4) When a steel pipe material is subjected to an electric forging pipe process to obtain a welded steel pipe, the steel pipe material is in mass%, C: 0.08 to 0.24%, Si: 0.002 to 0.35%, Mn: 1.01 to 1.70. %, Al: 0.01 to 0.08%, Nb: 0.017 to 0.15%, Mo: 0.045 to 0.45%, and impurities P, S, N, and O, P: 0.019% or less, S: 0.010% or less , N: 0.008% or less, O: Adjusted to 0.003% or less, steel material having the composition consisting of the balance Fe and inevitable impurities, after heating to 1160-1320 ° C, temperature in the range of 980-760 ° C The hot rolling to finish the finish rolling in step 1 and the slow cooling treatment in which annealing is performed for 2 seconds or more in the temperature range of 750 to 650 ° C. after the hot rolling is completed, and the winding is performed at the winding temperature of 660 to 510 ° C. The hot-rolled steel strip is subjected to a hot-rolling process, and the electric forging pipe process is performed by the following formula (1): width drawing = [(steel pipe material width) −π {(product outer diameter) − (product meat Thickness)}] / π {(outside product ) - (product thickness)} × (100%) ...... (1)
The steel pipe material is continuously roll-formed and electro-welded to form a welded steel pipe with a width drawing ratio defined by 10% or less, and the welded steel pipe has an average crystal in a circumferential section. It consists of a ferrite phase having a particle size of 2 to 14 μm and a second phase other than the ferrite phase, and the ferrite fraction has a volume fraction of 60% or more by volume, and Nb of 1.5 to 30 nm in the ferrite phase A method for producing a high-strength welded steel pipe for automotive structural members, characterized by having a structure in which carbides are precipitated and having excellent formability, low-temperature toughness, and torsional fatigue resistance after cross-section forming-stress relief annealing.

(5)(4)において、前記組成に加えてさらに、質量%で、V:0.001〜0.150%、W:0.001〜0.150%、Ti:0.001〜0.040%、Cr:0.001〜0.45%、B:0.0001〜0.0009%、Cu:0.001〜0.45%、Ni:0.001〜0.45%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有することを特徴とする自動車構造部材用高張力溶接鋼管の製造方法。   (5) In (4), in addition to the above composition, in terms of mass%, V: 0.001 to 0.150%, W: 0.001 to 0.150%, Ti: 0.001 to 0.040%, Cr: 0.001 to 0.45%, B: 0.0001 An automobile characterized by containing one or more selected from -0.0009%, Cu: 0.001-0.45%, Ni: 0.001-0.45%, and / or Ca: 0.0001-0.005% Manufacturing method of high-tensile welded steel pipe for structural members.

本発明によれば、660MPa以上の引張強さを有し、優れた低温靭性、優れた成形性と断面成形加工−応力除去焼鈍処理後の優れた耐ねじり疲労特性とを有する高張力溶接鋼管を容易に、しかも調質処理を施すことなく安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、自動車構造部材の特性向上に顕著に寄与するという効果もある。   According to the present invention, a high-tensile welded steel pipe having a tensile strength of 660 MPa or more and having excellent low-temperature toughness, excellent formability, and excellent torsional fatigue resistance after cross-section forming-stress relief annealing treatment. It can be manufactured easily and inexpensively without any tempering treatment, and has a remarkable industrial effect. Moreover, according to the present invention, there is an effect that it contributes remarkably to the improvement of the characteristics of the automobile structural member.

まず、本発明の高張力溶接鋼管(以下、本発明鋼管ともいう)の組成限定理由について説明する。なお、以下、組成における質量%は単に%で示す。
C:0.08〜0.24%
Cは、鋼の強度を増加させる元素であり、鋼管強度を確保するうえで必須の元素である。また、Cは、応力除去焼鈍時に拡散し、電縫造管工程及び断面成形加工時等に導入された転位との相互作用により転位の移動を妨げ、初期疲労亀裂の発生を抑制し、耐ねじり疲労特性を向上させる元素である。このような効果は、0.08%以上の含有で顕著となる。0.08%未満では、上記した転位との相互作用効果が発現せず、所望の耐ねじり疲労特性を確保することができない。一方、0.24%を超えて含有すると、鋼管組織をフェライト相が60体積%以上のフェライト相主体の組織とすることができず、所望の伸び値を確保することができなくなり、鋼管の成形性が低下するとともに、低温靭性も低下する。このため、Cは0.08〜0.24%の範囲に限定した。なお、好ましくは0.10〜0.20%である。
First, the reasons for limiting the composition of the high-tensile welded steel pipe of the present invention (hereinafter also referred to as the present invention steel pipe) will be described. Hereinafter, the mass% in the composition is simply indicated by%.
C: 0.08 ~ 0.24%
C is an element that increases the strength of the steel, and is an essential element for securing the strength of the steel pipe. Also, C diffuses during stress relief annealing, prevents dislocation movement by interaction with dislocations introduced during the electro-sewing tube process and cross-section forming processing, suppresses the occurrence of initial fatigue cracks, and prevents torsion resistance. It is an element that improves fatigue characteristics. Such an effect becomes remarkable when the content is 0.08% or more. If it is less than 0.08%, the above-described interaction effect with dislocations does not appear, and the desired torsional fatigue resistance characteristics cannot be ensured. On the other hand, if the content exceeds 0.24%, the steel pipe structure cannot be a ferrite phase-based structure whose ferrite phase is 60% by volume or more, and a desired elongation value cannot be secured, and the formability of the steel pipe is reduced. As it decreases, the low temperature toughness also decreases. For this reason, C was limited to 0.08 to 0.24% of range. In addition, Preferably it is 0.10 to 0.20%.

Si:0.002〜0.35%
Siは、熱延工程における、フェライト変態を促進する元素であり、本発明では、所望の組織と優れた成形性を確保するために、0.002%以上の含有を必要とする。一方、0.35%を超える含有は、断面成形加工後の応力除去焼鈍時の残留応力低下率が低下し、所望の耐ねじり疲労特性が確保できなくなるとともに、さらに表面性状や、電縫溶接性が低下する。このため、Siは0.002〜0.35%の範囲に限定した。なお、好ましくは0.10〜0.25%である。
Si: 0.002 to 0.35%
Si is an element that promotes ferrite transformation in the hot rolling process, and in the present invention, it is necessary to contain 0.002% or more in order to ensure a desired structure and excellent formability. On the other hand, if the content exceeds 0.35%, the residual stress reduction rate at the time of stress relief annealing after cross-section forming decreases, and it becomes impossible to secure the desired torsional fatigue resistance properties, and further the surface properties and electro-weldability deteriorate. To do. For this reason, Si was limited to the range of 0.002 to 0.35%. In addition, Preferably it is 0.10 to 0.25%.

Mn:1.01〜1.70%
Mnは、鋼の強度増加に寄与するとともに、Cと転位の相互作用に影響を及ぼし、転位の移動を妨げるとともに、断面成形加工後の応力除去焼鈍による強度低下を抑制し、初期疲労亀裂の発生を抑制して耐ねじり疲労特性を向上させる効果を増大させる働きを有する元素である。このような効果を得るためには1.01%以上の含有を必要とする。一方、1.70%を超える含有は、フェライト変態が抑制され、所望の組織と優れた成形性が確保できなくなる。このため、Mnは1.01〜1.70%の範囲に限定した。なお、好ましくは1.20〜1.60%である。
Mn: 1.01-1.70%
Mn contributes to increasing the strength of steel, affects the interaction between C and dislocations, prevents dislocation movement, suppresses strength reduction due to stress relief annealing after cross-section forming, and generates initial fatigue cracks It is an element having a function of increasing the effect of suppressing torsional fatigue resistance and improving torsional fatigue resistance. In order to obtain such an effect, a content of 1.01% or more is required. On the other hand, if the content exceeds 1.70%, ferrite transformation is suppressed, and a desired structure and excellent formability cannot be secured. For this reason, Mn was limited to the range of 1.01-1.70%. In addition, Preferably it is 1.20 to 1.60%.

Al:0.01〜0.08%
Alは、製鋼時の脱酸剤として作用するとともに、Nと結合し熱延工程でのオーステナイト粒の成長を抑制し、結晶粒を微細化する作用を有する元素である。所望のフェライト粒径(2〜14μm)を確保するためには、0.01%以上のMnの含有を必要とする。0.01%未満ではこれらの効果が得られず、フェライト粒が粗大化する。一方、0.08%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できなくなるうえ、酸化物系介在物の増加により耐疲労特性が低下する。このため、Alは0.01〜0.08%の範囲に限定した。なお、好ましくは0.02〜0.06%である。
Al: 0.01-0.08%
Al is an element that acts as a deoxidizing agent during steel making, and has the effect of combining with N to suppress the growth of austenite grains in the hot rolling process and to refine crystal grains. In order to ensure a desired ferrite particle size (2 to 14 μm), it is necessary to contain 0.01% or more of Mn. If it is less than 0.01%, these effects cannot be obtained, and ferrite grains become coarse. On the other hand, even if the content exceeds 0.08%, the effect is saturated and an effect commensurate with the content cannot be expected, and the fatigue resistance is lowered due to an increase in oxide inclusions. For this reason, Al was limited to the range of 0.01 to 0.08%. In addition, Preferably it is 0.02 to 0.06%.

Nb:0.017〜0.15%
Nbは、鋼中ではCと結合し、炭化物として析出し、熱延工程での回復・再結晶の粒成長を抑制し、所望の粒径(2〜14μm)を有するフェライト相とする作用がある。さらに、Nbは断面成形加工後の応力除去焼鈍による強度低下を抑制し、耐ねじり疲労特性を向上させる。このような効果を得るためには、0.017%以上の含有を必要とする。一方、0.15%を超える含有は、析出炭化物による強度上昇、延性低下が顕著となる。このため、Nbは0.017〜0.15%の範囲に限定した。なお、好ましくは0.022〜0.049%である。
Nb: 0.017 to 0.15%
Nb combines with C in steel, precipitates as carbide, suppresses recovery / recrystallization grain growth in the hot rolling process, and acts as a ferrite phase having a desired grain size (2 to 14 μm). . Furthermore, Nb suppresses strength reduction due to stress relief annealing after cross-section forming and improves torsional fatigue resistance. In order to obtain such an effect, a content of 0.017% or more is required. On the other hand, when the content exceeds 0.15%, the strength increase and the ductility decrease due to the precipitated carbide become remarkable. For this reason, Nb was limited to the range of 0.017 to 0.15%. In addition, Preferably it is 0.022 to 0.049%.

Mo:0.045〜0.45%
Moは、Nbと同様、鋼中では炭化物として析出し、断面成形加工後の応力除去焼鈍による強度低下を抑制して、初期疲労亀裂の発生を抑制して、耐ねじり疲労特性を向上させる働きを有する。このような効果は、0.045%以上の含有で発現するが、0.45%を超える含有は、成形性を低下させる。このため、Moは0.045〜0.45%の範囲に限定した。なお、好ましくは0.12〜0.35%である。
Mo: 0.045-0.45%
Mo, like Nb, precipitates as carbides in steel, suppresses strength reduction due to stress relief annealing after cross-section forming, suppresses the occurrence of initial fatigue cracks, and improves torsional fatigue resistance. Have. Such an effect is manifested at a content of 0.045% or more, but a content exceeding 0.45% reduces moldability. For this reason, Mo was limited to 0.045 to 0.45%. In addition, Preferably it is 0.12-0.35%.

本発明では、不純物であるP、S、N、Oを、P:0.019%以下、S:0.010%以下、N:0.008%以下、O:0.003%以下となるように調整する。
P:0.019%以下
Pは、Mnとの凝固共偏析を介し、断面成形加工−応力除去焼鈍後の低温靭性を低下させるとともに、電縫溶接性を低下させる悪影響を有する元素であり、できるだけ低減することが好ましい。0.019%を超えて含有すると、上記した悪影響が顕著となるため、Pは0.019%以下に限定した。
In the present invention, impurities P, S, N, and O are adjusted so that P: 0.019% or less, S: 0.010% or less, N: 0.008% or less, and O: 0.003% or less.
P: 0.019% or less P is an element having an adverse effect of reducing low temperature toughness after cross-section forming-stress relief annealing and reducing electroweldability through solidification co-segregation with Mn, and reduces as much as possible. It is preferable. If the content exceeds 0.019%, the above-described adverse effects become remarkable, so P is limited to 0.019% or less.

S:0.010%以下
Sは、鋼中ではMnS等の介在物として存在し、鋼の電縫溶接性、耐ねじり疲労特性、成形性、低温靭性を低下させる悪影響を有する元素であり、できるだけ低減することが好ましい。0.010%を超えて含有すると、上記した悪影響が顕著となるため、Sは0.010%を上限とした。なお、好ましくは0.005%以下である。
S: 0.010% or less S is an element that exists as an inclusion such as MnS in steel, and has an adverse effect on reducing the electric resistance weldability, torsional fatigue resistance, formability, and low-temperature toughness of steel, and is reduced as much as possible. It is preferable. If the content exceeds 0.010%, the above-described adverse effects become remarkable, so S is made 0.010% as the upper limit. In addition, Preferably it is 0.005% or less.

N:0.008%以下
Nは、鋼中に固溶Nとして残存すると、鋼管の成形性、低温靭性を低下させる悪影響を有する元素であり、本発明ではできるだけ低減することが好ましい。0.008%を超えて含有すると、上記した悪影響が顕著となるため、Nは0.008%を上限とした。なお、好ましくは0.0049%以下である。
N: 0.008% or less When N remains in the steel as solid solution N, N is an element having an adverse effect of lowering the formability and low temperature toughness of the steel pipe. In the present invention, N is preferably reduced as much as possible. If the content exceeds 0.008%, the above-described adverse effects become remarkable, so N is made 0.008% as the upper limit. In addition, Preferably it is 0.0049% or less.

O:0.003%以下
Oは、鋼中では酸化物系介在物として存在し、鋼の耐疲労特性、低温靭性を低下させる悪影響を有する元素であり、本発明ではできるだけ低減することが好ましい。0.003%を超えて含有すると、上記した悪影響が顕著となるため、Oは0.003%を上限とした。なお、好ましくは0.002%以下である。
O: 0.003% or less O is an element that exists as an oxide inclusion in steel and has an adverse effect of lowering the fatigue resistance and low temperature toughness of the steel, and is preferably reduced as much as possible in the present invention. When the content exceeds 0.003%, the above-mentioned adverse effects become remarkable, so O was made 0.003% as the upper limit. In addition, Preferably it is 0.002% or less.

上記した成分が基本成分であるが、本発明では上記した基本成分に加えてさらに、V:0.001〜0.150%、W:0.001〜0.150%、Ti:0.001〜0.040%、Cr:0.001〜0.45%、B:0.0001〜0.0009%、Cu:0.001〜0.45%、Ni:0.001〜0.45%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有することができる。
V、W、Ti、Cr、B、Cu、Niはいずれも、Mn、Nb、Moの、断面成形加工−応力除去焼鈍後の強度低下を抑制し、初期疲労亀裂の発生を抑制し、耐ねじり疲労特性を向上させる作用を補完する働きがある元素であり、必要に応じて選択して1種または2種以上含有することができる。
The above-described components are basic components. In the present invention, in addition to the basic components described above, V: 0.001 to 0.150%, W: 0.001 to 0.150%, Ti: 0.001 to 0.040%, Cr: 0.001 to 0.45%, B: 0.0001 to 0.0009%, Cu: 0.001 to 0.45%, Ni: one or more selected from 0.001 to 0.45%, and / or Ca: 0.0001 to 0.005% .
V, W, Ti, Cr, B, Cu, and Ni all suppress the decrease in strength after cross-section forming-stress relief annealing of Mn, Nb, Mo, suppress the occurrence of initial fatigue cracks, and torsion resistance It is an element that has a function of complementing the action of improving fatigue characteristics, and can be selected as necessary and contained in one or more kinds.

V:0.001〜0.150%
Vは、上記した作用に加えてさらに、炭化物として析出し、Nbの熱延工程での回復・再結晶の粒成長を抑制し、フェライト相を所望の微細結晶粒とする作用を補完する働きを有する。このような効果は、0.001%以上の含有で発現するが、0.15%を超える含有は成形性、低温靭性を低下させる。このため、含有する場合には、Vは0.001〜0.150%の範囲に限定することが好ましい。
V: 0.001 to 0.150%
In addition to the above-described action, V further precipitates as carbides, suppresses recovery / recrystallization grain growth in the hot rolling process of Nb, and supplements the action of making the ferrite phase a desired fine crystal grain. Have. Such an effect is manifested at a content of 0.001% or more, but a content exceeding 0.15% degrades moldability and low-temperature toughness. For this reason, when it contains, it is preferable to limit V to 0.001 to 0.150% of range.

W:0.001〜0.150%
Wは、上記した作用に加えてさらに、炭化物として析出し、Nbの熱延工程での回復・再結晶の粒成長を抑制し、フェライト相を所望の微細結晶粒とする作用を補完する働きを有する。このような効果は、0.001%以上の含有で発現するが、0.150%を超える含有は成形性、低温靭性を低下させる。このため、含有する場合には、Wは0.001〜0.150%の範囲に限定することが好ましい。
W: 0.001 to 0.150%
In addition to the above-described functions, W further precipitates as carbides, suppresses recovery / recrystallization grain growth in the hot rolling process of Nb, and supplements the function of making the ferrite phase a desired fine crystal grain. Have. Such an effect is manifested with a content of 0.001% or more. However, when the content exceeds 0.150%, the moldability and the low temperature toughness are lowered. For this reason, when it contains, it is preferable to limit W to 0.001 to 0.150% of range.

Ti:0.001〜0.040%
Tiは、上記した作用に加えてさらに、Nと結合し固溶N量を低減することにより、鋼管の成形性向上に寄与する。またさらに、余剰Tiは炭化物として析出し、Nbの熱間圧延工程での回復・再結晶の粒成長を抑制し、フェライト相を所望の微細結晶粒とする作用を補完する働きを有する。このような効果は、0.001%以上の含有で発現するが、0.040%を超える含有は、析出炭化物による強度上昇、延性低下、低温靭性低下が顕著となる。このため、含有する場合には、Tiは0.001〜0.040%の範囲に限定することが好ましい。
Ti: 0.001 to 0.040%
In addition to the above-described action, Ti further contributes to improving the formability of the steel pipe by combining with N and reducing the amount of solute N. Furthermore, surplus Ti precipitates as carbides, suppresses recovery / recrystallization grain growth in the hot rolling process of Nb, and has a function of complementing the action of making the ferrite phase a desired fine crystal grain. Such an effect is manifested with a content of 0.001% or more. However, when the content exceeds 0.040%, an increase in strength, a decrease in ductility, and a decrease in low-temperature toughness due to precipitated carbides become significant. For this reason, when it contains, it is preferable to limit Ti to the range of 0.001 to 0.040%.

Cr:0.001〜0.45%
Crは、上記したように、Mnの、断面成形加工−応力除去焼鈍後の強度低下を抑制し、初期疲労亀裂の発生を抑制し、耐ねじり疲労特性を向上させる効果を補完する働きを有する。このような効果を得るためには、0.001%以上含有することが望ましいが、0.45%を超える含有は、成形性を低下させる。このため、含有する場合には、Crは0.001〜0.45%の範囲に限定することが好ましい。なお、さらに好ましくは0.29%以下である。
Cr: 0.001 to 0.45%
As described above, Cr has the function of suppressing the decrease in strength after cross-section forming-stress relief annealing of Mn, suppressing the occurrence of initial fatigue cracks, and complementing the effect of improving torsional fatigue resistance. In order to acquire such an effect, it is desirable to contain 0.001% or more, but inclusion exceeding 0.45% reduces moldability. For this reason, when it contains, it is preferable to limit Cr to 0.001 to 0.45% of range. Further, it is more preferably 0.29% or less.

B:0.0001〜0.0009%
Bは、Crと同様に、Mnの、断面成形加工後の応力除去焼鈍による強度低下を抑制し、初期疲労亀裂の発生を抑制し、耐ねじり疲労特性を向上させる効果を補完する働きを有する。このような効果を得るためには、0.0001%以上含有することが望ましいが、0.0009%を超える含有は、成形性を低下させる。このため、含有する場合には、Bは0.0001〜0.0009%の範囲に限定することが好ましい。
B: 0.0001-0.0009%
B, like Cr, has the function of suppressing the decrease in strength due to stress relief annealing after cross-section forming processing, suppressing the occurrence of initial fatigue cracks, and complementing the effect of improving torsional fatigue resistance. In order to acquire such an effect, it is desirable to contain 0.0001% or more, but inclusion exceeding 0.0009% reduces moldability. For this reason, when it contains, it is preferable to limit B to 0.0001 to 0.0009% of range.

Cu:0.001〜0.45%
Cuは、Mnの断面成形加工−応力除去焼鈍後の強度低下を抑制し、初期疲労亀裂の発生を抑制し、耐ねじり疲労特性を向上させる効果を補完する働きを有するとともに、さらに耐食性を向上させる働きを有する。このような効果を得るためには、0.001%以上含有することが望ましいが、0.45%を超える含有は、成形性を低下させる。このため、含有する場合には、Cuは0.001〜0.45%の範囲に限定することが好ましい。なお、より好ましくは0.2%以下である。
Cu: 0.001 to 0.45%
Cu has the function of suppressing the decrease in strength after cross-sectional forming of Mn-stress relief annealing, suppressing the occurrence of initial fatigue cracks, complementing the effect of improving torsional fatigue resistance, and further improving the corrosion resistance Has a function. In order to acquire such an effect, it is desirable to contain 0.001% or more, but inclusion exceeding 0.45% reduces moldability. For this reason, when it contains, it is preferable to limit Cu to 0.001 to 0.45% of range. In addition, More preferably, it is 0.2% or less.

Ni:0.001〜0.45%
Niは、Cuと同様に、Mnの断面成形加工−応力除去焼鈍後の強度低下を抑制し、初期疲労亀裂の発生を抑制し、耐ねじり疲労特性を向上させる効果を補完する働きを有するとともに、さらに耐食性を向上させる働きを有する。このような効果を得るためには、0.001%以上含有することが望ましいが、0.45%を超える含有は、成形性を低下させる。このため、含有する場合には、Niは0.001〜0.45%の範囲に限定することが好ましい。なお、より好ましくは0.2%以下である。
Ni: 0.001 to 0.45%
Ni, like Cu, has the function of suppressing the decrease in strength after cross-sectional forming of Mn-stress relief annealing, suppressing the occurrence of initial fatigue cracks, and complementing the effect of improving torsional fatigue resistance, Furthermore, it has a function of improving corrosion resistance. In order to acquire such an effect, it is desirable to contain 0.001% or more, but inclusion exceeding 0.45% reduces moldability. For this reason, when it contains, it is preferable to limit Ni to 0.001 to 0.45% of range. In addition, More preferably, it is 0.2% or less.

Ca:0.0001〜0.005%
Caは、展伸した介在物(MnS)を粒状の介在物(Ca(Al)S(O))とする、いわゆる介在物の形態を制御する作用を有し、この介在物の形態制御を介して、成形性、耐ねじり疲労特性、低温靭性を向上させる効果を有する元素であり、必要に応じて含有できる。このような効果は、0.0001%以上の含有で顕著となるが、0.005%を超える含有は、非金属介在物が増加しかえって耐ねじり疲労特性が低下する。このため、含有する場合には、Caは0.0001〜0.005%の範囲に限定することが好ましい。
Ca: 0.0001 to 0.005%
Ca has an action of controlling the form of inclusions, in which the expanded inclusions (MnS) are granular inclusions (Ca (Al) S (O)). Thus, it is an element having the effect of improving formability, torsional fatigue resistance, and low temperature toughness, and can be contained as required. Such an effect becomes remarkable when the content is 0.0001% or more. However, when the content exceeds 0.005%, the non-metallic inclusions are increased, and the torsional fatigue resistance is lowered. For this reason, when it contains, it is preferable to limit Ca to 0.0001 to 0.005% of range.

上記した成分以外の残部は、Feおよび不可避的不純物である。
つぎに、本発明高張力溶接鋼管の組織限定理由について説明する。
本発明鋼管においては、ミクロ組織は、優れた成形性、断面成形加工−応力除去焼鈍後の優れた耐ねじり疲労特性を碓保するうえで重要な素材要因である。
本発明鋼管は、フェライト相とフェライト相以外の第二相とからなる組織を有する。
なお、ここでいう「フェライト相」は、ポリゴナルフェライト、アシキュラーフェライト、ウィッドマンステッテンフェライト、ベイニティックフェライトを含むものとする。また、第二相としては、フェライト相以外の、カーバイド、パーライト、ベイナイト、マルテンサイトのいずれか、あるいはそれらの混合相であることが好ましい。
The balance other than the above components is Fe and inevitable impurities.
Next, the reason for limiting the structure of the high-strength welded steel pipe of the present invention will be described.
In the steel pipe of the present invention, the microstructure is an important material factor for ensuring excellent formability and excellent torsional fatigue resistance after cross-section forming-stress relief annealing.
The steel pipe of the present invention has a structure composed of a ferrite phase and a second phase other than the ferrite phase.
Here, the “ferrite phase” includes polygonal ferrite, acicular ferrite, Widmanstatten ferrite, and bainitic ferrite. The second phase is preferably any one of carbide, pearlite, bainite, martensite, or a mixed phase thereof other than the ferrite phase.

本発明鋼管では、フェライト相は、円周方向断面(管長手方向と直交する断面)での平均結晶粒径(平均粒径)が2〜14μm、組織分率が60体積%以上であり、該フェライト相は、平均粒径1.5〜30nmのNb炭化物が析出してなるフェライト相とする。
フェライト相の組織分率:60体積%以上
フェライト相の組織分率が60体積%未満では、所望の成形性が確保できないうえ、成形時に発生する局所的な減肉、表面肌荒れ等が応力集中部となり、断面成形加工−応力除去焼鈍後の耐ねじり疲労特性が大きく低下する。このため、本発明鋼管では、フェライト相の組織分率を60体積%以上に限定した。なお、好ましくは75体積%以上である。
In the steel pipe of the present invention, the ferrite phase has an average crystal grain size (average grain size) of 2 to 14 μm in the circumferential cross section (cross section orthogonal to the longitudinal direction of the pipe) and a structure fraction of 60% by volume or more, The ferrite phase is a ferrite phase formed by precipitation of Nb carbide having an average particle size of 1.5 to 30 nm.
Ferrite phase structure fraction: 60 volume% or more If the ferrite phase structure fraction is less than 60 volume%, the desired formability cannot be ensured, and local thinning and rough surface of the surface occur during stress concentration. Thus, the torsional fatigue resistance after cross-section forming and stress relief annealing is greatly reduced. For this reason, in the steel pipe of the present invention, the structure fraction of the ferrite phase is limited to 60% by volume or more. In addition, Preferably it is 75 volume% or more.

フェライト相の平均粒径:2〜14μm
フェライト相の平均粒径が2μm未満では、所望の成形性が確保できないうえ、成形時に発生する局所的な減肉、表面肌荒れ等が応力集中部となり、断面成形加工−応力除去焼鈍後の耐ねじり疲労特性が大きく低下する。一方、フェライト相の平均粒径が14μmを超えて粗大化すると、断面成形加工−応力除去焼鈍後の低温靭性及び耐ねじり疲労特性が低下する。このため、本発明では、フェライト相の平均粒径を2μm以上14μm以下に限定した。なお、好ましくは8μm以下である。
Average particle size of ferrite phase: 2-14μm
If the average grain size of the ferrite phase is less than 2 μm, the desired formability cannot be ensured, and local thinning and surface roughness that occur during molding become stress-concentrated parts, and the torsion resistance after cross-section forming processing-stress relief annealing Fatigue properties are greatly reduced. On the other hand, if the average grain size of the ferrite phase exceeds 14 μm, the low temperature toughness and torsional fatigue resistance after cross-section forming-stress relief annealing deteriorate. For this reason, in this invention, the average particle diameter of the ferrite phase was limited to 2 micrometers or more and 14 micrometers or less. In addition, Preferably it is 8 micrometers or less.

フェライト相中のNb炭化物の平均粒径:1.5nm〜30nm
フェライト相中のNb炭化物は、断面成形加工−応力除去焼鈍後の断面硬度変化率と残留応力低下率をバランスさせ、高いねじり疲労強度を確保し、かつ所望の成形性を確保するために、重要な組織要因である。フェライト相中のNb炭化物の平均粒径と断面成形加工−応力除去焼鈍(SR焼鈍)後の断面硬度変化率、残留応力低下率との関係を図1に、フェライト相中のNb炭化物の平均粒径と5×105繰返し疲れ限度と鋼管強度TSとの比(σB/TS)、断面成形加工前の鋼管の伸びEl(JIS 12号試験片)との関係を図2に、それぞれ示す。
Average particle size of Nb carbide in ferrite phase: 1.5nm-30nm
Nb carbide in the ferrite phase is important for balancing the cross-section hardness change rate and residual stress reduction rate after cross-section forming-stress relief annealing, ensuring high torsional fatigue strength, and ensuring the desired formability. Organization factors. Fig. 1 shows the relationship between the average grain size of Nb carbide in the ferrite phase and the cross-section hardness-change rate and residual stress reduction rate after cross-section forming-stress relief annealing (SR annealing). The average grain size of Nb carbide in the ferrite phase FIG. 2 shows the relationship between the diameter, the ratio between the 5 × 10 5 repeated fatigue limit and the steel pipe strength TS (σ B / TS), and the elongation El (JIS No. 12 specimen) of the steel pipe before cross-section forming.

なお、断面成形加工後の応力除去焼鈍(SR)による断面硬度変化率(%)は、次式
断面硬度変化率={(SR後の断面硬度)−(SR前の断面硬度)}/(SR前の断面硬度)×(100%)
で定義される値を用いるものとする。また、断面成形加工後の応力除去焼鈍(SR)による残留応力低下率(%)は次式
残留応力低下率={(SR前の残留応力)−(SR後の残留応力)}/(SR前の残留応力)×(100%)
で定義される値を用いるものとする。
Note that the rate of change in cross-sectional hardness (%) due to stress relief annealing (SR) after cross-section forming processing is the following formula: cross-sectional hardness change rate = {(cross-sectional hardness after SR) − (cross-sectional hardness before SR)} / (SR Previous cross section hardness) x (100%)
The value defined in is used. The residual stress reduction rate (%) due to stress relief annealing (SR) after cross-section forming processing is the following formula: residual stress reduction rate = {(residual stress before SR)-(residual stress after SR)} / (before SR Residual stress) x (100%)
The value defined in is used.

なお、断面成形加工−応力除去焼鈍後の耐ねじり疲労特性は、図3(特開2001−321846号公報の図11)に示すように、鋼管の長手中央部分をV字形状に断面を成形加工し、さらに550℃×10minの応力除去焼鈍を施したのち、両端部をチャッキングにより固定してねじり疲労試験を、1Hz、両振りの条件で行い5×105繰返し疲れ限度σを求め、得られた5×105繰返し疲れ限度σBと鋼管引張強さTSとの比、(σB/TS)により評価した。 In addition, as shown in FIG. 3 (FIG. 11 of Japanese Patent Laid-Open No. 2001-331846), the cross-section forming process is performed by forming the cross section into a V-shape as shown in FIG. Furthermore, after stress-relieving annealing at 550 ° C. × 10 min, both ends are fixed by chucking and a torsional fatigue test is performed under the conditions of 1 Hz and double swing to obtain a 5 × 10 5 repeated fatigue limit σ B , The ratio between the obtained 5 × 10 5 repeated fatigue limit σ B and the steel pipe tensile strength TS, (σ B / TS), was evaluated.

Nb炭化物の平均粒径が1.5nm未満では、図1に示すように、断面成形加工後の応力除去焼鈍による断面硬度変化率が所定値(−15%)を下回り、残留応力低下率が所定値(60%)を下回る。また、Nb炭化物の平均粒径が1.5nm未満では、図2に示すように、鋼管の伸びElが16%未満となり成形性が低下するとともに、5×105繰返し疲れ限度σBと鋼管引張強さTSとの比、(σB/TS)が0.50を下回る。 When the average particle size of Nb carbide is less than 1.5 nm, as shown in FIG. 1, the rate of change in cross-sectional hardness due to stress relief annealing after cross-section forming processing is below a predetermined value (−15%), and the rate of decrease in residual stress is a predetermined value. (60%) below. In addition, when the average particle size of Nb carbide is less than 1.5 nm, as shown in FIG. 2, the elongation El of the steel pipe is less than 16% and the formability deteriorates, and the 5 × 10 5 repeated fatigue limit σ B and the steel pipe tensile strength The ratio with TS, (σ B / TS) is less than 0.50.

一方、Nb炭化物の平均粒径が30nmを超えて粗大化すると、図1に示すように、断面成形加工後の応力除去焼鈍による断面硬度変化率が所定値(−15%)を下回り、図2に示すように、5×105繰返し疲れ限度σBと鋼管引張強さTSとの比、(σB/TS)が0.50を下回る。
このように、フェライト相中のNb炭化物の平均粒径が、1.5nm〜30nmの範囲を外れると、優れた成形性と優れた断面成形加工−応力除去焼鈍後の耐ねじり疲労特性を兼備することができなくなる。このため、フェライト相中のNb炭化物の平均粒径を1.5nm〜30nmの範囲に限定した。なお、好ましくは、2nm〜25nmである。
On the other hand, when the average particle size of Nb carbide exceeds 30 nm and becomes coarse, as shown in FIG. 1, the rate of change in cross-sectional hardness due to stress relief annealing after cross-section forming processing falls below a predetermined value (−15%). As shown in FIG. 5, the ratio of 5 × 10 5 repeated fatigue limit σ B to steel pipe tensile strength TS, (σ B / TS) is less than 0.50.
Thus, when the average particle size of the Nb carbide in the ferrite phase is out of the range of 1.5 nm to 30 nm, it has excellent formability and excellent torsional fatigue resistance after cross-section processing-stress relief annealing. Can not be. For this reason, the average particle diameter of the Nb carbide in the ferrite phase is limited to a range of 1.5 nm to 30 nm. In addition, Preferably, they are 2 nm-25 nm.

なお、本発明においては、フェライト相中のNb炭化物の平均粒径は、次のようにして求めるものとする。鋼管から抽出レプリカ法を用いて、組織観察用試料を採取し、透過型電子顕微鏡(TEM)を用いて、10万倍で5視野観察し、EDS分析によりNbを含まないセメンタイト、TiNなどを同定、除外し、Nbを含有する炭化物(Nb炭化物)について、画像解析装置により、Nb炭化物の面積を測定し、その面積から円相当直径を算出し、それらの算術平均値をNb炭化物の平均粒径とした。なお、Mo、Ti等を含むNb複合炭化物なども、Nb炭化物としてカウントした。   In the present invention, the average particle size of Nb carbide in the ferrite phase is determined as follows. Samples for tissue observation are collected from steel pipes using the extraction replica method, and observed using a transmission electron microscope (TEM) at five fields of view at 100,000 times, and EDS analysis identifies cementite and TiN that do not contain Nb. For carbides containing Nb (Nb carbides), the area of Nb carbides is measured by an image analyzer, the equivalent circle diameter is calculated from the area, and the arithmetic average value of these is the average particle diameter of Nb carbides. It was. Note that Nb composite carbides including Mo, Ti, etc. were also counted as Nb carbides.

また、本発明鋼管では、鋼管内外面の表面粗さが、JIS B 0601−2001の規定に準拠して、算術平均粗さRa:1.5μm以下、最大高さ粗さRzが20μm以下、十点平均粗さRz JISが13μm以下となる、表面性状を有することが好ましい。上記した表面粗さを外れる鋼管の表面性状では、成形性が低下するとともに、断面成形加工等の加工時に応力集中部が生じ、その後の耐ねじり疲労特性が低下する。 In the steel pipe of the present invention, the surface roughness of the inner and outer surfaces of the steel pipe is in accordance with the provisions of JIS B 0601-2001, arithmetic average roughness Ra: 1.5 μm or less, maximum height roughness Rz is 20 μm or less, ten points It is preferable to have a surface texture with an average roughness Rz JIS of 13 μm or less. With the surface properties of the steel pipe that deviate from the surface roughness described above, the formability deteriorates, and a stress concentration portion is generated during processing such as cross-section forming processing, and the subsequent torsional fatigue resistance properties are reduced.

つぎに、上記した本発明鋼管の好ましい製造方法について説明する。
まず、上記した組成の溶鋼を、転炉等の公知の溶製方法で溶製し、連続鋳造法等の公知の鋳造方法で鋼素材とすることが好ましい。ついで、これら鋼素材に、熱延工程を施し、熱延鋼帯等の鋼管素材とすることが好ましい。
熱延工程は、鋼素材に、1160〜1320℃に加熱したのち、粗圧延を経て、980〜760℃の範囲の温度で仕上圧延を終了する熱間圧延と、該熱間圧延終了後、750〜650℃の温度範囲で2s以上の徐冷を行なう徐冷処理とを施し、660〜510℃の巻取り温度で巻取り、熱延鋼帯とする工程とすることが好ましい。
Next, a preferred method for producing the above-described steel pipe of the present invention will be described.
First, it is preferable to melt the molten steel having the above-described composition by a known melting method such as a converter and to obtain a steel material by a known casting method such as a continuous casting method. Subsequently, it is preferable to subject these steel materials to a hot-rolling step to obtain a steel pipe material such as a hot-rolled steel strip.
In the hot rolling process, the steel material is heated to 1160 to 1320 ° C., then subjected to rough rolling, hot rolling for finishing finish rolling at a temperature in the range of 980 to 760 ° C., and after completion of the hot rolling, 750 It is preferable to perform a slow cooling process in which annealing is performed for 2 seconds or more in a temperature range of ˜650 ° C., and winding at a winding temperature of 660 ° C. to 510 ° C. to form a hot rolled steel strip.

鋼素材の加熱温度:1160〜1320℃
鋼素材の加熱温度は、鋼中のNbの再固溶、析出状況を通じて、応力除去焼鈍後の断面硬度変化率に影響を及ぼし、軟化を抑制するために重要な要因である。加熱温度が1160℃未満では、連続鋳造時に析出した粗大なNb炭窒化物が未固溶の炭窒化物として残存するため、フェライト相中のNb炭化物が粗大化(平均粒径で30nmを超え)し、断面成形加工後の応力除去焼鈍による断面硬度変化率が−15%を下回り、所望の耐ねじり疲労特性が確保できなくなる。一方、加熱温度が1320℃を超えて高温となると、結晶粒が粗大化するため、その後の熱延工程で得られるフェライト相が粗大化(円周方向断面での平均粒径が14μmを超え)し、成形性と断面成形加工−応力除去焼鈍後の低温靭性及び耐ねじり疲労特性が低下する。このため、鋼素材の加熱温度は1160〜1320℃の範囲に限定することが好ましい。なお、より好ましくは1200〜1300℃である。また、Nbの固溶状態の均一性と十分な固溶時間の確保という観点から、鋼素材の加熱時の均熱時間は10min以上とすることが好ましい。
Heating temperature of steel material: 1160-1320 ℃
The heating temperature of the steel material affects the rate of change in cross-sectional hardness after stress relief annealing through the re-solution and precipitation of Nb in the steel, and is an important factor for suppressing softening. When the heating temperature is less than 1160 ° C, the coarse Nb carbonitrides precipitated during continuous casting remain as undissolved carbonitrides, resulting in coarsening of the Nb carbides in the ferrite phase (average particle size exceeding 30 nm) However, the rate of change in cross-sectional hardness due to stress-relieving annealing after cross-section forming is less than −15%, and the desired torsional fatigue resistance characteristics cannot be ensured. On the other hand, when the heating temperature exceeds 1320 ° C, the crystal grains become coarser, so the ferrite phase obtained in the subsequent hot rolling process becomes coarser (the average grain diameter in the circumferential cross section exceeds 14 µm). However, the formability and the cross-section forming process-low temperature toughness and torsional fatigue resistance after stress-relieving annealing are deteriorated. For this reason, it is preferable to limit the heating temperature of a steel raw material to the range of 1160-1320 degreeC. The temperature is more preferably 1200 to 1300 ° C. Further, from the viewpoint of ensuring the uniformity of the solid solution state of Nb and securing a sufficient solid solution time, the soaking time during heating of the steel material is preferably 10 min or more.

仕上圧延終了温度:980〜760℃
熱延工程における仕上げ圧延終了温度は、鋼管素材におけるフェライト相の組織分率、フェライト相の平均粒径を所定範囲に調整して、良好な鋼管成形性を確保するために重要な要因である。仕上圧延終了温度が980℃を超えると、得られる鋼管素材のフェライト相の平均粒径が14μmを超え、またフェライト相の組織分率が60体積%未満となり、鋼管の成形性が低下するとともに、鋼管内外面の算術平均粗さRaが1.5μmを超え、最大高さ粗さRzが20μmを超え、十点平均粗さRz JISが13μmを超えて、表面性状が低下し、耐疲労特性が低下する。一方、仕上圧延終了温度が760℃を下回ると、得られる鋼管素材のフェライト相の平均粒径が2μmを下回り、成形性が低下するとともに、歪誘起析出により、Nb炭化物の平均粒径が30nmを超え、断面成形加工後の応力除去焼鈍による断面硬度変化率が−15%を下回り、所望の耐ねじり疲労特性が確保できなくなる。このため、仕上圧延終了温度は980〜760℃の範囲とすることが好ましい。なお、より好ましくは880〜820℃である。また、良好な鋼管表面性状を確保するという観点から、仕上圧延前に11.8MPa(120kg/cm2)以上の高圧水によるデスケーリングを行なうことが好ましい。
Finishing rolling finish temperature: 980-760 ° C
The finish rolling finishing temperature in the hot rolling process is an important factor for ensuring good steel pipe formability by adjusting the structure fraction of the ferrite phase and the average grain diameter of the ferrite phase in a predetermined range. When the finish rolling finish temperature exceeds 980 ° C, the average particle diameter of the ferrite phase of the obtained steel pipe material exceeds 14 μm, and the structure fraction of the ferrite phase becomes less than 60% by volume, and the formability of the steel pipe decreases. Arithmetic average roughness Ra on the inner and outer surfaces of steel pipe exceeds 1.5μm, maximum height roughness Rz exceeds 20μm, 10-point average roughness Rz JIS exceeds 13μm, surface properties decrease, fatigue resistance decreases To do. On the other hand, when the finish rolling finish temperature is lower than 760 ° C, the average particle diameter of the ferrite phase of the obtained steel pipe material is less than 2 µm, the formability is lowered, and the average particle diameter of Nb carbide is reduced to 30 nm by strain-induced precipitation. Exceedingly, the rate of change in cross-sectional hardness due to stress-relieving annealing after cross-section forming processing is less than −15%, and the desired torsional fatigue resistance characteristics cannot be ensured. For this reason, it is preferable that finishing rolling completion temperature shall be the range of 980-760 degreeC. In addition, More preferably, it is 880-820 degreeC. Further, from the viewpoint of ensuring good surface properties of the steel pipe, it is preferable to perform descaling with high-pressure water of 11.8 MPa (120 kg / cm 2 ) or more before finish rolling.

徐冷処理:750〜650℃の温度範囲で2s以上の徐冷
本発明では、熱間圧延の仕上圧延終了後、直ちに巻き取るのではなく、巻取りまでの間に750〜650℃の温度範囲で徐冷を行なう徐冷処理を施す。ここで、徐冷とは、冷却速度20℃/s以下の冷却をいうものとする。上記した温度範囲における徐冷の時間は、2s以上とすることが好ましい。2s未満では、所望の組織を確保することができなくなる。なお、より好ましくは4s以上である。この徐冷処理により、フェライト相の組織分率を60体積%以上とすることができ、鋼管の伸びElがJIS 12号試験片で16%以上となり、所望の成形性が確保できる。
Slow cooling treatment: Slow cooling for 2 s or more in the temperature range of 750 to 650 ° C. In the present invention, the temperature range of 750 to 650 ° C. is not taken up immediately after the finish rolling of hot rolling but before winding. A slow cooling process is performed in which slow cooling is performed. Here, slow cooling refers to cooling at a cooling rate of 20 ° C./s or less. The slow cooling time in the above temperature range is preferably 2 s or more. If it is less than 2 s, a desired tissue cannot be secured. In addition, More preferably, it is 4 s or more. By this slow cooling treatment, the structure fraction of the ferrite phase can be made 60% by volume or more, and the elongation El of the steel pipe becomes 16% or more by the JIS No. 12 test piece, and the desired formability can be secured.

巻取り温度:660〜510℃
徐冷処理を施された熱延鋼帯は、ついで、コイル状に、巻き取られる。巻取り温度は660〜510℃の温度範囲とすることが好ましい。巻取り温度は、熱延鋼帯の組織分率と析出物の析出状態を決定する重要な要因である。巻取り温度が510℃未満では、所望のフヱライト相の組織分率が確保できず、所望の成形性が確保できないうえ、Nb炭化物の平均粒径が1.5nm未満となり、応力除去焼鈍時の強度低下が大きくなり、所望の耐ねじり疲労特性が確保できなくなる。一方、巻取り温度が660℃を超えると、フヱライト相の平均粒径が14μmを超え、成形性が低下するとともに、巻取り後のスケール形成が著しくなり、鋼帯の表面性状が低下し、鋼管内外面の算術平均粗さRaが1.5μmを超え、最大高さ粗さRzが20μmを超え、十点平均粗さRz JISが13μmを超えて、鋼管の表面性状が低下して、鋼管の耐ねじり疲労特性が低下する。さらにまた、Nb炭化物のオストワルド成長によりNb炭化物が粗大化し、平均粒径で30nmを超え、断面成形加工後の応力除去焼鈍による断面硬度変化率が−15%を下回り、所望の耐ねじり疲労特性が確保できなくなる。このため、巻取り温度は660〜510℃の範囲とすることが好ましい。なお、より好ましくは620〜560℃である。
Winding temperature: 660-510 ° C
The hot-rolled steel strip subjected to the slow cooling treatment is then wound into a coil shape. The winding temperature is preferably in the temperature range of 660 to 510 ° C. The coiling temperature is an important factor that determines the structure fraction of the hot-rolled steel strip and the precipitation state of the precipitates. If the coiling temperature is less than 510 ° C, the desired fraction of the microstructure of the ferrite phase cannot be ensured, the desired formability cannot be ensured, and the average particle size of Nb carbide is less than 1.5 nm, resulting in reduced strength during stress relief annealing. And the desired torsional fatigue resistance characteristics cannot be ensured. On the other hand, when the coiling temperature exceeds 660 ° C, the average particle size of the ferrite phase exceeds 14 µm, the formability deteriorates, the scale formation after winding becomes remarkable, the surface property of the steel strip decreases, and the steel pipe The arithmetic average roughness Ra of the inner and outer surfaces exceeds 1.5μm, the maximum height roughness Rz exceeds 20μm, the ten-point average roughness Rz JIS exceeds 13μm, the surface properties of the steel pipe deteriorate, and the resistance of the steel pipe Torsional fatigue properties are reduced. Furthermore, the Nb carbide coarsens due to the Ostwald growth of the Nb carbide, the average particle diameter exceeds 30 nm, the rate of change in cross-sectional hardness by stress relief annealing after cross-section forming processing is less than -15%, and the desired torsional fatigue resistance characteristics It cannot be secured. For this reason, the winding temperature is preferably in the range of 660 to 510 ° C. In addition, More preferably, it is 620-560 degreeC.

上記した組成の鋼素材に、上記した条件で熱延工程を施すことにより、ミクロ組織、析出物状態が最適化され、さらに表面性状にも優れ、優れた成形性を有し、しかも鋼管に造管した後にも、成形性、低温靭性に優れ、さらに断面成形加工−応力除去焼鈍(550℃×10min)後の断面硬度変化率が少なく、所望の優れた耐ねじり疲労特性を確保することができる鋼管素材(熱延鋼帯)とすることができる。なお、鋼管素材(熱延鋼帯)の優れた表面性状は、優れた耐ねじり疲労特性の確保に大きく寄与している。   By subjecting the steel material having the above composition to the hot rolling process under the above-described conditions, the microstructure and the precipitate state are optimized, the surface property is excellent, the moldability is excellent, and the steel pipe is manufactured. Even after it is piped, it has excellent formability and low temperature toughness, and further has a low rate of change in cross-sectional hardness after cross-section forming-stress relief annealing (550 ° C x 10 min), ensuring the desired excellent torsional fatigue resistance. It can be a steel pipe material (hot rolled steel strip). In addition, the excellent surface properties of the steel pipe material (hot rolled steel strip) greatly contributes to ensuring excellent torsional fatigue resistance.

本発明では、上記した鋼管素材(熱延鋼帯)に、さらに電縫造管工程を施して溶接鋼管とする。つぎに、好ましい電縫造管工程について説明する。
鋼管素材は、熱延ままとしてもよいが、鋼管素材に、表面の黒皮除去のために酸洗処理、ショットブラスト等を施すことが好ましい。また、さらに、耐食性、塗膜密着性の観点から、鋼管素材に亜鉛メッキ、アルミメッキ、ニッケルメッキ、有機皮膜処理などの表面処理を施すこともできる。
In the present invention, the above-described steel pipe material (hot-rolled steel strip) is further subjected to an electric sewing pipe process to obtain a welded steel pipe. Next, a preferred electric sewing tube process will be described.
The steel pipe material may be hot-rolled, but it is preferable to subject the steel pipe material to pickling treatment, shot blasting, or the like in order to remove the black skin on the surface. Furthermore, from the viewpoint of corrosion resistance and coating film adhesion, the steel pipe material can be subjected to surface treatment such as galvanization, aluminum plating, nickel plating, and organic film treatment.

酸洗まま、あるいは表面処理を施された鋼管素材に、電縫造管工程を施す。
電縫造管工程は、鋼管素材を連続的にロール成形し電縫溶接して溶接鋼管とする工程である。電縫造管工程では、幅絞り率:10%以下(0%を含む)の電縫造管を施すことが好ましい。幅絞り率は所望の成形性を確保するための重要な要因であり、幅絞り率が10%を超えると造管に伴う成形性の低下が顕著となり、所望の成形性が確保できなくなる。このため、幅絞り率は10%以下(0%を含む)とすることが好ましい。なお、より好ましくは1%以上である。幅絞り率(%)は、次(1)式
幅絞り率(%)=[(鋼管素材の幅)−π{(製品鋼管外径)−(製品鋼管肉厚)}]/π{(製品鋼管外径)−(製品鋼管肉厚)}×(100%)………(1)
で定義される値とする。
An electric sewing pipe process is performed on the steel pipe material that has been pickled or surface-treated.
The electric sewing pipe process is a process in which a steel pipe material is continuously roll-formed and electro-welded to form a welded steel pipe. In the electric sewing tube process, it is preferable to apply an electric sewing tube having a width drawing ratio of 10% or less (including 0%). The width drawing ratio is an important factor for ensuring the desired formability. When the width drawing ratio exceeds 10%, the formability deteriorates due to pipe making, and the desired formability cannot be ensured. For this reason, it is preferable that the width drawing ratio is 10% or less (including 0%). More preferably, it is 1% or more. The width drawing ratio (%) is expressed by the following formula (1): width drawing ratio (%) = [(width of steel pipe material) −π {(outer diameter of product steel pipe) − (product steel pipe wall thickness)}] / π {(product Steel pipe outer diameter)-(product steel pipe wall thickness)} x (100%) ......... (1)
The value defined in.

なお、本発明では、鋼管素材は熱延鋼帯に限定されることはない。上記した組成、組織を有する素材であれば、上記したような熱延鋼帯に代えて、冷間圧延−焼鈍を施した冷延焼鈍鋼帯、あるいはさらに各種表面処理を施した表面処理鋼帯を用いても何ら問題はない。また、電縫造管工程に代えて、ロールフォーミング、切板のプレス閉断面化、造管後の冷間・温間・熱間での縮径圧延および熱処理等を組み合わせた造管工程としてもよい、さらに電縫溶接に代えて、レーザー溶接、アーク潜接、プラズマ溶接などを用いても何ら問題はない。   In the present invention, the steel pipe material is not limited to the hot-rolled steel strip. If it is a raw material having the composition and structure described above, instead of the hot-rolled steel strip as described above, a cold-rolled annealed steel strip subjected to cold rolling-annealing, or a surface-treated steel strip further subjected to various surface treatments There is no problem with using. Also, instead of the electric sewing tube process, it can also be a tube forming process that combines roll forming, press-cut section of the cut plate, cold / warm / hot diameter reduction rolling and heat treatment after pipe forming. In addition, there is no problem even if laser welding, arc latent welding, plasma welding, or the like is used in place of ERW welding.

また、本発明の高張力溶接鋼管は、種々の成形加工を施され、必要に応じてさらに、応力除去焼鈍を施されて、トーションビーム等の自動車構造部材とされる。本発明の高張力溶接鋼管では、成形加工後の応力除去焼鈍の条件は、とくに限定する必要はない。なお、Cの拡散による転位移動を妨げる効果が発現し始める約100℃以上、応力除去焼鈍による硬度低下が顕箸となる約650℃未満の範囲で、応力除去焼鈍による疲労寿命向上効果が顕著となる。このため、150〜200℃程度の塗装焼付け工程を応力除去焼鈍工程として代用することも可能である。とくに、疲労寿命向上効果は、460℃以上630℃以下の温度範囲で大きくなる。また、応力除去焼鈍における均熱時間は、1s〜5hの範囲とすることが好ましい。なお、より好ましくは2min〜1hである。   In addition, the high-tensile welded steel pipe of the present invention is subjected to various forming processes, and further subjected to stress relief annealing as necessary to form an automobile structural member such as a torsion beam. In the high-tensile welded steel pipe of the present invention, the conditions for stress relief annealing after the forming process need not be particularly limited. In addition, the fatigue life improvement effect by stress removal annealing is remarkable in the range of about 100 ° C. or higher where the effect of preventing dislocation movement due to C diffusion starts to be less than about 650 ° C., where the hardness reduction by stress removal annealing is less than 650 ° C. Become. For this reason, it is also possible to substitute the coating baking process of about 150-200 degreeC as a stress removal annealing process. In particular, the fatigue life improving effect is increased in the temperature range of 460 ° C. or more and 630 ° C. or less. Further, the soaking time in the stress relief annealing is preferably in the range of 1 s to 5 h. More preferably, it is 2 min to 1 h.

(実施例1)
表1に示す組成の溶鋼を溶製し、連続鋳造法で鋼素材(スラブ)とした。これら鋼素材を、約1250℃に加熱し、仕上げ圧延終了温度:約860℃とする熱間圧延を施し、熱間圧延終了後、750〜650℃の温度範囲で5s間徐冷する徐冷処理を施したのち、巻取り温度:590℃で巻取る熱延工程を施し、熱延鋼帯(板厚:約3mm)とした。
Example 1
Molten steel having the composition shown in Table 1 was melted and made into a steel material (slab) by a continuous casting method. These steel materials are heated to about 1250 ° C and subjected to hot rolling at a finish rolling finish temperature of about 860 ° C. After the hot rolling is completed, the steel is gradually cooled for 5 seconds at a temperature range of 750 to 650 ° C. Then, a hot rolling step of winding at a winding temperature of 590 ° C. was performed to obtain a hot rolled steel strip (plate thickness: about 3 mm).

ついで、これら熱延鋼帯を鋼管素材として、酸洗を施し、所定の幅寸法にスリット加工したのち、連続的にロール成形してオープン管とし、該オープン管を高周波抵抗溶接により電縫溶接する電縫造管工程により溶接鋼管(外径φ89.1mm×肉厚約3mm)とした。なお、電縫造管工程では、(1)式で定義される幅絞り率を4%とした。
これら溶接鋼管から、試験片を採取し、組織観察試験、析出物観察試験、引張試験、表面粗さ試験、ねじり疲労試験、低温靭性試験、応力除去焼鈍後の断面硬さ測定試験、応力除去焼鈍後の残留応力測定試験を実施した。試験方法はつぎの通りとした。
Next, these hot-rolled steel strips are used as a steel pipe material, pickled, slitted to a predetermined width, continuously rolled into an open pipe, and the open pipe is electro-welded by high-frequency resistance welding. A welded steel pipe (outer diameter φ89.1 mm × wall thickness of about 3 mm) was made by the electric sewing pipe process. In the electric sewing tube process, the width drawing ratio defined by the equation (1) was set to 4%.
Test specimens are collected from these welded steel pipes, microstructure observation test, precipitate observation test, tensile test, surface roughness test, torsional fatigue test, low temperature toughness test, cross section hardness measurement test after stress relief annealing, stress relief annealing. A later residual stress measurement test was conducted. The test method was as follows.

(1)組織観察試験
得られた溶接鋼管から、円周方向断面が観察面となるように、組織観察用試験片を採取して、研磨し、ナイタール腐食して、走査型電子顕微鏡(3000倍)で組織を観察し、撮像して、画像解析装置を用いて、フェライト相の組織分率(体積%)、フェライト相の平均結晶粒径(円相当径)を測定した。
(1) Microstructure observation test From the obtained welded steel pipe, a specimen for microstructural observation was collected so that the circumferential cross-section became the observation surface, polished, and subjected to nital corrosion, and a scanning electron microscope (3000 times) ) Were observed and imaged, and using an image analyzer, the structure fraction (volume%) of the ferrite phase and the average crystal grain size (equivalent circle diameter) of the ferrite phase were measured.

(2)析出物観察試験
得られた溶接鋼管から、円周方向断面が観察面となるように、析出物観察試験片を採取して、抽出レプリカ法を用いて組織観察用試料を作製し、透過型電子顕微鏡(TEM)を用いて、10万倍で5視野観察し、EDS分析によりNbを含まないセメンタイト、TiNなどを同定・除外し、Nbを含有する炭化物(Nb炭化物)について、画像解析により、各Nb炭化物の面積を測定しその面積から円相当直径を算出し、それらの算術平均値をNb炭化物の平均粒径とした。なお、Nbに加えて、Ti、Mo等を含む複合炭化物なども、Nb炭化物としてカウントした。
(2) Precipitate observation test From the obtained welded steel pipe, a precipitate observation test piece is collected so that the circumferential cross section becomes the observation plane, and a sample for structure observation is prepared using the extraction replica method. Using a transmission electron microscope (TEM), observe five fields at a magnification of 100,000, identify and exclude Nb-free cementite, TiN, etc. by EDS analysis, and analyze Nb-containing carbides (Nb carbides) Thus, the area of each Nb carbide was measured, the equivalent circle diameter was calculated from the area, and the arithmetic average value thereof was defined as the average particle diameter of the Nb carbide. In addition to Nb, composite carbides containing Ti, Mo and the like were also counted as Nb carbides.

(3)引張試験
得られた溶接鋼管から、L方向が引張方向となるように、JIS Z 2201の規定に準拠してJIS 12号試験片を切出し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(引張強さTS、降伏強さYS、El)を求め、強度と成形性を評価した。
(4)表面粗さ試験
得られた溶接鋼管の内外表面の表面粗さを、触針式粗度計を用いて、JIS B 0601−2001の規定に準拠して、粗さ曲線を測定し、粗さパラメータとして、算術平均粗さRa、最大高さ粗さRz、十点平均粗さRzJISを求めた。なお、粗さ曲線の測定方向は、管の円周方向(C方向)とし、低域カットオフ値0.8mm、評価長さ4mmとした。代表値としては、内表面又は外表面のうち、値の大きい方を採用した。
(3) Tensile test JIS No. 12 test piece was cut out from the obtained welded steel pipe in accordance with the provisions of JIS Z 2201 so that the L direction is the tensile direction, and the tensile test was conducted in accordance with the provisions of JIS Z 2241. The tensile properties (tensile strength TS, yield strength YS, El) were determined, and the strength and formability were evaluated.
(4) Surface roughness test The surface roughness of the inner and outer surfaces of the obtained welded steel pipe was measured using a stylus type roughness meter in accordance with the provisions of JIS B 0601-2001, As the roughness parameters, arithmetic average roughness Ra, maximum height roughness Rz, and ten-point average roughness Rz JIS were determined. The measurement direction of the roughness curve was the circumferential direction (C direction) of the tube, the low-frequency cut-off value was 0.8 mm, and the evaluation length was 4 mm. As the representative value, the larger one of the inner surface and the outer surface was adopted.

(5)ねじり疲労試験
得られた溶接鋼管から、試験材(長さ:1500mm)を採取し、該試験材の中央部約1000mmLに、図3(特開2001−321846号公報の図11)に示すように、鋼管の長手中央部分をV字形状に断面を成形加工し、さらに550℃×10minの応力除去焼鈍を施したのち、両端部をチャッキングにより固定して、ねじり疲労試験を実施した。
(5) Torsional fatigue test From the obtained welded steel pipe, a test material (length: 1500 mm) was sampled, and the center part of the test material was about 1000 mmL, as shown in FIG. 3 (FIG. 11 of JP-A-2001-331846). As shown in the figure, the cross-section of the steel pipe was formed into a V-shaped cross section, and after stress-relieving annealing at 550 ° C. × 10 min, both ends were fixed by chucking, and a torsional fatigue test was performed. .

ねじり疲労試験は、1Hz、両振りの条件で行い、応力水準を種々変化させ、負荷応力Sにおける破断までの繰返し回数Nを求めた。得られたS‐N線図より5×105繰返し疲れ限度σB(MPa)を求め、σB/TS、(ここでTSは鋼管の引張強さMPa)で耐ねじり疲労特性を評価した。なお、負荷応力は最初にダミー片でねじり試験を行い、疲労亀裂位置を確認し、その位置に3軸歪ゲージを貼付けて実測した。 The torsional fatigue test was performed under the conditions of 1 Hz and double swing, various stress levels were changed, and the number of repetitions N until the fracture at the load stress S was obtained. The 5 × 10 5 repeated fatigue limit σ B (MPa) was obtained from the obtained SN diagram, and torsional fatigue resistance was evaluated by σ B / TS (where TS is the tensile strength of the steel pipe MPa). The load stress was measured by first conducting a torsion test with a dummy piece, confirming the fatigue crack position, and attaching a triaxial strain gauge at that position.

(6)低温靭性試験
得られた溶接鋼管から、試験材(長さ:1500mm)を採取し、ねじり疲労試験材と同一条件で断面成形加工、応力除去焼鈍を行ない、断面成形加工ままおよび断面成形加工−応力除去焼鈍後の試験材平坦部分より、管円周方向(C方向)が試験片長さとなるように展開し、JIS Z 2242の規定に準拠してVノッチ試験片(1/4サイズ)を切出し、シャルピー衝撃試験を実施し、破面遷移温度vTrsを求め、低温靭性を評価した。
(6) Low temperature toughness test From the obtained welded steel pipe, a test material (length: 1500mm) is sampled and subjected to cross-section forming and stress relief annealing under the same conditions as the torsional fatigue test material. From the flat part of the test material after processing-stress relief annealing, expand the pipe circumferential direction (C direction) to be the test piece length, and V-notch test piece (1/4 size) in accordance with the provisions of JIS Z 2242 The Charpy impact test was conducted, the fracture surface transition temperature vTrs was determined, and the low temperature toughness was evaluated.

(7)応力除去焼鈍後の断面硬度測定試験
ねじり疲労試験用試験材と同一条件で断面成形加工を行ない、試験材の疲労亀裂相当位置より、応力除去焼鈍SR(550℃×10min)前後で、断面硬度測定用試験片を採取し、ビッカース硬度計(試験力:98N(10kgf))でビッカース硬さHVを測定した。硬さの測定位置は、肉厚の1/4、1/2、3/4の3点とし、その平均値をその試験片の応力除去焼鈍(SR)前後の断面硬さとした。この硬さ測定結果より、次式
断面硬度変化率={(SR後の断面硬さ)−(SR前の断面硬さ)}/(SR前の断面硬さ)×(100%)
により、断面成形加工−応力除去焼鈍(SR)後の断面硬度変化率(%)を求め、断面成形加工−応力除去焼鈍時の軟化抵抗のパラメータとした。
(7) Cross-sectional hardness measurement test after stress-relieving annealing Perform cross-section molding under the same conditions as the torsional fatigue test material. From the position corresponding to the fatigue crack of the test material, before and after stress-relief annealing SR (550 ° C x 10 min), A test piece for measuring the cross-sectional hardness was taken, and the Vickers hardness HV was measured with a Vickers hardness tester (test force: 98 N (10 kgf)). Hardness was measured at three points of 1/4, 1/2, and 3/4 of the wall thickness, and the average value was the cross-sectional hardness before and after stress removal annealing (SR) of the test piece. From this hardness measurement result, the following formula cross-sectional hardness change rate = {(cross-sectional hardness after SR) − (cross-sectional hardness before SR)} / (cross-sectional hardness before SR) × (100%)
Thus, the rate of change in cross-sectional hardness (%) after the cross-section forming process-stress removal annealing (SR) was obtained and used as a parameter of the softening resistance during the cross-section forming process-stress removal annealing.

(8)応力除去焼鈍後の残留応力測定試験
ねじり疲労試験用試験材と同一条件で断面成形加工を行ない、試験材の疲労亀裂相当位置で残留応力を、応力除去焼鈍SR(550℃×10min)前後でそれぞれ、3軸ゲージを用いた歪ゲージ切出し法により測定した。この測定結果より、次式
残留応力低下率={(SR前の残留応力)−(SR後の残留応力)}/(SR前の残留応力)×(100%)
により断面成形加工−応力除去焼鈍時の残留応力低下率(%)を求めた。
(8) Residual stress measurement test after stress-relieving annealing Cross-section molding is performed under the same conditions as the torsional fatigue test material, and residual stress is measured at the stress crack equivalent position of the test material, stress-relieving annealing SR (550 ° C x 10 min) The measurement was performed by a strain gauge cutting method using a triaxial gauge before and after. From this measurement result, the following formula residual stress reduction rate = {(residual stress before SR) − (residual stress after SR)} / (residual stress before SR) × (100%)
The residual stress reduction rate (%) at the time of cross-section forming processing-stress removal annealing was determined.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

Figure 0004910694
Figure 0004910694

Figure 0004910694
Figure 0004910694

Figure 0004910694
Figure 0004910694

本発明例(鋼管No.1〜10)はいずれも、フェライト相の組織分率が60体積%以上で、フェライト相の平均結晶粒径が2〜14μmであり、Nb炭化物の平均粒径が30nm〜1.5nmである組織を有し、引張強さが660MPa以上で、JIS 12号試験片での伸びElが16%以上を満足する高強度で、成形性に優れた溶接鋼管となっている。また、本発明例はいずれも、断面成形加工−応力除去焼鈍後の、断面硬度変化率が−15%以上、残留応力低下率が60%以上であり、ねじり疲労試験での5×105繰返し疲れ限度σBと鋼管引張強さTSとの比、σB/TSが0.50以上と、優れた耐ねじり疲労特性を有する高張力溶接鋼管となっている。また、本発明例はいずれも、断面成形加工ままおよび断面成形加工−応力除去焼鈍後の、破面遷移温度vTrsが−40℃以下と優れた低温靭性を有する高張力溶接鋼管となっている。 In each of the inventive examples (steel pipe Nos. 1 to 10), the ferrite phase has a structure fraction of 60% by volume or more, the ferrite crystal has an average crystal grain size of 2 to 14 μm, and the Nb carbide has an average particle diameter of 30 nm. It is a welded steel pipe with a structure of ~ 1.5nm, tensile strength of 660MPa or more, high strength satisfying elongation El of JIS No. 12 test piece of 16% or more, and excellent formability. Moreover, both the inventive examples, cross molding - after stress relief annealing, is -15% or more cross-sectional hardness change ratio, residual stress reduction rate is 60% or more, 5 × 10 5 repeatedly in torsional fatigue test The ratio between fatigue limit σ B and steel pipe tensile strength TS, σ B / TS is 0.50 or more, and it is a high-tensile welded steel pipe with excellent torsional fatigue resistance. In addition, all of the examples of the present invention are high-tensile welded steel pipes having excellent low-temperature toughness with a fracture surface transition temperature vTrs of −40 ° C. or lower as it is after cross-section forming and after cross-section forming-stress relief annealing.

一方、鋼組成が本発明の範囲を外れる比較例(鋼管No.11〜31)は、組織等が本発明範囲を外れ、強度、成形性、断面成形加工−応力除去焼鈍後の耐ねじり疲労特性、断面成形加工ままの低温靭性、断面成形加工−応力除去焼鈍後の低温靭性のいずれかが低下している。
C、Si、Mn、Al、Nb、Mo、Ti、P、S、N、O、Vが本発明範囲を超える比較例(鋼管No.12、No.14、No.16、No.18、No.20、No.22〜28)はいずれも、伸びElが16%未満と低く延性が不足し、また、(σB/TS)が0.50未満と耐ねじり疲労特性が低下し、また破面遷移温度vTrsが−40℃を上回り、低温靭性が低下している。
On the other hand, the comparative examples (steel pipe Nos. 11 to 31) in which the steel composition is out of the scope of the present invention are out of the scope of the present invention in terms of the structure, etc., and the strength, formability, cross-section forming process-torsional fatigue resistance after stress relief annealing The low temperature toughness as it is in the cross-section forming process or the low-temperature toughness after the cross-section forming process-stress relief annealing is lowered.
Comparative examples (steel pipes No. 12, No. 14, No. 16, No. 18, No. 18, C, Si, Mn, Al, Nb, Mo, Ti, P, S, N, O, V exceeding the scope of the present invention) .20, No.22 to 28) are low in elongation El and less than 16%, lack ductility, and (σ B / TS) is less than 0.50, torsional fatigue resistance decreases, and fracture surface transition The temperature vTrs exceeds −40 ° C., and the low temperature toughness is reduced.

また、C、Si、Mn、Al、Nb、Moが本発明の範囲を低く外れる比較例(鋼管No.11、No.13、No.15、No.17、No.19、No.21)はいずれも、断面成形加工−応力除去焼鈍後の断面硬度変化率が−15%を下回り、(σB/TS)が0.50未満と耐ねじり疲労特性が低下している。
また、Cr、B、Cuが本発明範囲を超える比較例(鋼管No.29、No.30、No.31)はいずれも伸びElが16%未満と低く延性が不足している。また、断面成形加工−応力除去焼鈍後の残留応力低下率が60%未満で、また、(σB/TS)が0.50未満と、耐ねじり疲労特性が低下している。
In addition, comparative examples (steel pipe No. 11, No. 13, No. 15, No. 17, No. 19, No. 21) in which C, Si, Mn, Al, Nb, and Mo are out of the scope of the present invention are as follows. In both cases, the torsional fatigue resistance is reduced when the rate of change in cross-sectional hardness after cross-section forming-stress relief annealing is less than -15% and (σ B / TS) is less than 0.50.
Moreover, the comparative examples (steel pipe No. 29, No. 30, No. 31) in which Cr, B, and Cu exceed the scope of the present invention all have low elongation El of less than 16% and lack ductility. Also, the torsional fatigue resistance is reduced when the residual stress reduction rate after cross-section forming-stress relief annealing is less than 60% and (σ B / TS) is less than 0.50.

なお、鋼管(製品管)No.1〜31は、表面粗さが、算術平均粗さRa:0.6〜1.4μm、最大高さ粗さRz:18〜17μm、十点平均粗さRz JIS:6〜12μmの範囲にあり、鋼管内外面の表面性状は良好であった。
(実施例2)
表1の鋼A、Dの組成を有する鋼素材(スラブ)に、表3に示す条件の熱延工程を施し熱延鋼帯とした。ついで、これらの熱延鋼帯を鋼管素材として、酸洗を施し、所定の幅寸法にスリット加工したのち、連続的にロール成形してオープン管とし、該オープン管を高周波低抗溶接により電縫溶接する電縫造管工程により溶接鋼管(外径:70〜114.3mmφ×肉厚2.0〜6.0mm)とした。なお、電縫造管工程では、(1)式で定義される幅絞り率を、表3に示す値とした。
Steel pipes (product pipes) Nos. 1 to 31 have a surface roughness of arithmetic average roughness Ra: 0.6 to 1.4 μm, maximum height roughness Rz: 18 to 17 μm, ten-point average roughness Rz JIS : 6 The surface properties of the inner and outer surfaces of the steel pipe were good.
(Example 2)
The steel material (slab) having the composition of steels A and D shown in Table 1 was subjected to a hot rolling process under the conditions shown in Table 3 to obtain a hot rolled steel strip. Then, these hot-rolled steel strips are used as steel pipe materials, pickled, slitted to a predetermined width, then continuously rolled into open pipes, and the open pipes are electro-sealed by high-frequency low resistance welding. A welded steel pipe (outer diameter: 70 to 114.3 mmφ × wall thickness of 2.0 to 6.0 mm) was formed by the electric sewing pipe process for welding. In the electric sewing tube process, the width drawing ratio defined by the equation (1) was set to the values shown in Table 3.

得られた溶接鋼管から、実施例1と同様に試験片を採取し、実施例1と同様に組織観察試験、析出物観察試験、引張試験、表面粗さ試験、ねじり疲労試験、低温靭性試験、断面成形加工−応力除去焼鈍後の断面硬度測定試験、断面成形加工−応力除去焼鈍後の残留応力測定試験を実施した。
得られた結果を表4に示す。
A specimen was collected from the obtained welded steel pipe in the same manner as in Example 1, and in the same manner as in Example 1, the structure observation test, the precipitate observation test, the tensile test, the surface roughness test, the torsional fatigue test, the low temperature toughness test, Cross section hardness measurement test after cross section forming process-stress relief annealing and residual stress measurement test after cross section molding process-stress relief annealing were performed.
Table 4 shows the obtained results.

Figure 0004910694
Figure 0004910694

Figure 0004910694
Figure 0004910694

本発明例(鋼管No.33、No.36、No.39、No.41〜43、No.45〜51)はいずれも、フェライト相の組織分率が60体積%以上で、フェライト相の平均結晶粒径が2〜14μmであり、Nb炭化物の平均粒径が30nm〜1.5nmである組織を有し、引張強さが660MPa以上で、JIS 12号試験片での伸びElが16%以上を満足する高強度で、成形性に優れた溶接鋼管となっている。また、本発明例はいずれも、断面成形加工−応力除去焼鈍後の、断面硬度変化率が−15%以上、残留応力低下率が60%以上であり、ねじり疲労試験での5×105繰返し疲れ限度σBと鋼管引張強さTSとの比、σB/TSが0.50以上と、優れた耐ねじり疲労特性を有する高張力溶接鋼管となっている。また、本発明例はいずれも、断面成形加工ままおよび断面成形加工−応力除去焼鈍後の、破面遷移温度vTrsが−40℃以下と優れた低温靭性を有する高張力溶接鋼管となっている。 Examples of the present invention (steel pipes No. 33, No. 36, No. 39, Nos. 41 to 43, Nos. 45 to 51) all have a ferrite phase structure fraction of 60% by volume or more, and the average of the ferrite phase It has a structure in which the crystal grain size is 2 to 14 μm, the average grain size of Nb carbide is 30 nm to 1.5 nm, the tensile strength is 660 MPa or more, and the elongation El in the JIS 12 test piece is 16% or more. The welded steel pipe has high strength and excellent formability. Moreover, both the inventive examples, cross molding - after stress relief annealing, is -15% or more cross-sectional hardness change ratio, residual stress reduction rate is 60% or more, 5 × 10 5 repeatedly in torsional fatigue test The ratio between fatigue limit σ B and steel pipe tensile strength TS, σ B / TS is 0.50 or more, and it is a high-tensile welded steel pipe with excellent torsional fatigue resistance. In addition, all of the examples of the present invention are high-tensile welded steel pipes having excellent low-temperature toughness with a fracture surface transition temperature vTrs of −40 ° C. or lower as it is after cross-section forming and after cross-section forming-stress relief annealing.

一方、鋼素材の熱延工程の条件、あるいは鋼管の電縫造管工程の条件が、本発明の範囲を外れる比較例(鋼管No.32、No.34、No.35、No.37、No.38、No.40、No.44、No.52)は強度、成形性、耐ねじり疲労特性、断面成形加工ままの低温靭性、断面成形加工−応力除去焼鈍後の低温靭性のいずれかが低下している。
熱延工程における徐冷時間が本発明の範囲を低く外れる比較例(鋼管No.38)、熱延工程における巻取り温度が本発明の範囲を低く外れる比較例(鋼管No.44)では、強度が高く、Elが16%未満と延性が低下し、(σB/TS)が0.50未満と耐ねじり疲労特性が低下している。
On the other hand, comparative examples (steel pipes No. 32, No. 34, No. 35, No. 37, No. 37) where the conditions of the hot rolling process of the steel material or the conditions of the electric seam pipe process of the steel pipe are outside the scope of the present invention. .38, No.40, No.44, and No.52) decrease in strength, formability, torsional fatigue resistance, low-temperature toughness of cross-section forming, and low-temperature toughness after cross-section forming-stress relief annealing is doing.
In the comparative example (steel pipe No. 38) in which the slow cooling time in the hot rolling process falls outside the scope of the present invention, the comparative example (steel pipe No. 44) in which the coiling temperature in the hot rolling process falls outside the scope of the present invention, However, when El is less than 16%, ductility is lowered, and (σ B / TS) is less than 0.50, torsional fatigue resistance is lowered.

また、熱延工程における仕上圧延終了温度が本発明の範囲を高く外れる比較例(鋼管No.35)、熱延工程における巻取り温度が本発明の範囲を高く外れる比較例(鋼管No.40)では、Elが16%未満と延性が低下し、算術平均粗さRaが1.5μm以上、最大高さ粗さRzが20μm以上、十点平均粗さRz JISが13μm以上と表面性状が低下し、さらに(σB/TS)が0.50未満と耐ねじり疲労特性が低下している。 Moreover, the comparative example (steel pipe No. 35) in which the finishing rolling finish temperature in the hot rolling process deviates from the range of the present invention is high, and the comparative example (steel pipe No. 40) in which the coiling temperature in the hot rolling process deviates from the range of the present invention. In El, less than 16%, ductility is reduced, arithmetic average roughness Ra is 1.5 μm or more, maximum height roughness Rz is 20 μm or more, ten-point average roughness Rz JIS is 13 μm or more, and surface properties are reduced. Furthermore, when (σ B / TS) is less than 0.50, the torsional fatigue resistance is reduced.

また、熱延工程における鋼素材の加熱温度が本発明の範囲を高く外れる比較例(鋼管No.32)、鋼管の電縫造管工程における幅絞り率が本発明の範囲を高く外れる比較例(鋼管No.52)は、断面成形加工−応力除去焼鈍後の(σB/TS)が0.50未満と耐ねじり疲労特性が低下し、断面成形加工まま、および断面成形加工−応力除去焼鈍後の破面遷移温度vTrsが−40℃を上回り、低温靭性が低下している。 In addition, a comparative example (steel pipe No. 32) in which the heating temperature of the steel material in the hot rolling process deviates from the scope of the present invention is high, and a comparative example in which the width drawing ratio in the electro-sewing pipe process of the steel pipe deviates from the scope of the present invention ( Steel tube No.52) has a torsional fatigue resistance of (σ B / TS) after cross-section forming-stress relief annealing of less than 0.50, and the torsional fatigue resistance is reduced. The surface transition temperature vTrs exceeds −40 ° C., and the low temperature toughness is reduced.

また、熱延工程における鋼素材の加熱温度が本発明の範囲を低く外れる比較例(鋼管No.34)、熱延工程における仕上圧延終了温度が本発明の範囲を低く外れる比較例(鋼管No.37)は、(σB/TS)が0.50未満と耐ねじり疲労特性が低下している。 Moreover, the comparative example (steel pipe No. 34) in which the heating temperature of the steel material in the hot rolling process deviates from the scope of the present invention is low, and the comparative example (steel pipe No. 34) in which the finish rolling finish temperature in the hot rolling process deviates from the scope of the present invention. In 37), (σ B / TS) is less than 0.50, and the torsional fatigue resistance is reduced.

フェライト相中のNb炭化物の平均粒径と、断面成形加工−応力除去焼鈍SR後の断面硬度変化率、残留応力低下率と、の関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of Nb carbide | carbonized_material in a ferrite phase, the cross-sectional hardness change rate after cross-section shaping | molding-stress relief annealing SR, and a residual stress fall rate. フェライト相中のNb炭化物の平均粒径と、断面成形加工−応力除去焼鈍SR後の5×105繰返し疲れ限度と鋼管引張強さTSとの比(σB/TS)、鋼管のJIS 12号試験片での伸びElと、の関係を示すグラフである。The average grain size of Nb carbide in the ferrite phase and the ratio of the 5 × 10 5 cyclic fatigue limit to the steel pipe tensile strength TS after cross-section forming-stress relief annealing SR (σ B / TS), JIS No. 12 of steel pipe It is a graph which shows the relationship between the elongation El in a test piece. 断面成形加工‐応力除去焼鈍後のねじり疲労試験に用いる試験材の断面成形加工状態を模式的に示す説明図である。It is explanatory drawing which shows typically the cross-section shaping | molding processing state of the test material used for the torsional fatigue test after cross-section shaping | molding-stress removal annealing.

Claims (5)

質量%で、
C:0.08〜0.24%、 Si:0.002〜0.35%、
Mn:1.01〜1.70%、 Al:0.01〜0.08%、
Nb:0.017〜0.15%、 Mo:0.045〜0.45%、
を含有し、不純物であるP、S、N、Oを、
P:0.019%以下、 S:0.010%以下、
N:0.008%以下、 O:0.003%以下
に調整して含み、残部Feおよび不可避的不純物からなる組成と、さらに、円周方向断面の平均結晶粒径が2〜14μmであるフェライト相と該フェライト相以外の第二相とからなり、該フェライト相の組織分率が体積率で60%以上であり、該フェライト相中に1.5〜30nmのNb炭化物が析出してなる組織と、を有し、成形性、低温靭性と、断面成形加工−応力除去焼鈍後の耐ねじり疲労特性に優れることを特徴とする自動車構造部材用高張力溶接鋼管。
% By mass
C: 0.08 to 0.24%, Si: 0.002 to 0.35%,
Mn: 1.01-1.70%, Al: 0.01-0.08%,
Nb: 0.017 to 0.15%, Mo: 0.045 to 0.45%,
P, S, N, O which are impurities,
P: 0.019% or less, S: 0.010% or less,
N: 0.008% or less, O: Adjusted to 0.003% or less, a composition comprising the balance Fe and inevitable impurities, and a ferrite phase having an average crystal grain size in the circumferential cross section of 2 to 14 μm and the ferrite Comprising a second phase other than the phase, the structure fraction of the ferrite phase is 60% or more by volume, and a structure in which 1.5 to 30 nm of Nb carbide is precipitated in the ferrite phase, A high-tensile welded steel pipe for automobile structural members, which is excellent in formability, low-temperature toughness, and torsional fatigue resistance after cross-section forming-stress relief annealing.
前記組成に加えてさらに、質量%で、V:0.001〜0.150%、W:0.001〜0.150%、Ti:0.001〜0.040%、Cr:0.001〜0.45%、B:0.0001〜0.0009%、Cu:0.001〜0.45%、Ni:0.001〜0.45%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有することを特徴とする請求項1に記載の自動車構造部材用高張力溶接鋼管。   In addition to the above-described composition, V: 0.001 to 0.150%, W: 0.001 to 0.150%, Ti: 0.001 to 0.040%, Cr: 0.001 to 0.45%, B: 0.0001 to 0.0009%, Cu: 0.001 to The automotive structural member according to claim 1, comprising 0.45%, Ni: one or more selected from 0.001 to 0.45%, and / or Ca: 0.0001 to 0.005%. High tensile welded steel pipe. さらに、鋼管内外面の算術平均粗さRaが1.5μm以下、最大高さ粗さRzが20μm以下、十点平均粗さRz JISが13μm以下である中空管状体であることを特徴とする請求項1または2に記載の自動車構造部材用高張力溶接鋼管。 Further, the present invention is a hollow tubular body having an arithmetic average roughness Ra of the inner and outer surfaces of the steel pipe of 1.5 μm or less, a maximum height roughness Rz of 20 μm or less, and a ten-point average roughness Rz JIS of 13 μm or less. A high-tensile welded steel pipe for automobile structural members according to 1 or 2. 鋼管素材に、電縫造管工程を施して溶接鋼管とするに当り、
前記鋼管素材が、質量%で、
C:0.08〜0.24%、 Si:0.002〜0.35%、
Mn:1.01〜1.70%、 Al:0.01〜0.08%、
Nb:0.017〜0.15%、 Mo:0.045〜0.45%、
を含有し、不純物であるP、S、N、Oを、
P:0.019%以下、 S:0.010%以下、
N:0.008%以下、 O:0.003%以下
に調整して含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、1160〜1320℃に加熱した後、980〜760℃の範囲の温度で仕上圧延を終了する熱間圧延と、該熱間圧延終了後、750〜650℃の温度範囲で2s以上の徐冷を行う徐冷処理とを施し、660〜510℃の巻取り温度で巻取る熱延工程を施してなる熱延鋼帯であり、
前記電縫造管工程が、下記(1)式で定義される幅絞り率を10%以下として、前記鋼管素材を連続的にロール成形し電縫溶接して溶接鋼管とする造管工程であり、
前記溶接鋼管が、円周方向断面の平均結晶粒径が2〜14μmであるフェライト相と該フェライト相以外の第二相とからなり、該フェライト相の組織分率が体積率で60%以上であり、該フェライト相中に1.5〜30nmのNb炭化物が析出してなる組織を有し、成形性、低温靭性と、断面成形加工−応力除去焼鈍後の耐ねじり疲労特性に優れることを特徴とする自動車構造部材用高張力溶接鋼管の製造方法。

幅絞り=[(鋼管素材の幅)−π{(製品外径)−(製品肉厚)}]/π{(製品外径)−(製肉厚)}×(100%) ……(1)
The steel pipe material is subjected to the electric forging pipe process to make a welded steel pipe.
The steel pipe material is mass%,
C: 0.08 to 0.24%, Si: 0.002 to 0.35%,
Mn: 1.01-1.70%, Al: 0.01-0.08%,
Nb: 0.017 to 0.15%, Mo: 0.045 to 0.45%,
P, S, N, O which are impurities,
P: 0.019% or less, S: 0.010% or less,
N: 0.008% or less, O: Adjusted to 0.003% or less, a steel material having a composition comprising the balance Fe and inevitable impurities, heated to 1160-1320 ° C, and then at a temperature in the range of 980-760 ° C Hot rolling to finish the finish rolling, and after the hot rolling, annealing is performed at a temperature range of 750 to 650 ° C. for 2 seconds or more, and winding is performed at a winding temperature of 660 to 510 ° C. It is a hot-rolled steel strip that has been subjected to a hot-rolling process,
The electric forging pipe process is a pipe making process in which a width drawing ratio defined by the following formula (1) is set to 10% or less, and the steel pipe material is continuously roll-formed and electro-welded to form a welded steel pipe. ,
The welded steel pipe is composed of a ferrite phase having an average crystal grain size of 2 to 14 μm in the circumferential cross section and a second phase other than the ferrite phase, and the structure fraction of the ferrite phase is 60% or more by volume. It has a structure in which 1.5 to 30 nm of Nb carbide precipitates in the ferrite phase, and is characterized by excellent formability, low temperature toughness, and torsional fatigue resistance after cross-section forming-stress relief annealing Manufacturing method of high-tensile welded steel pipe for automobile structural members.
Serial width aperture = [(width of steel tube material) - [pi] {(product OD) - (product thickness)}] / [pi {(product OD) - (product thickness)} × (100%) ...... (1)
前記組成に加えてさらに、質量%で、V:0.001〜0.150%、W:0.001〜0.150%、Ti:0.001〜0.040%、Cr:0.001〜0.45%、B:0.0001〜0.0009%、Cu:0.001〜0.45%、Ni:0.001〜0.45%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.005%、を含有することを特徴とする請求項4に記載の自動車構造部材用高張力溶接鋼管の製造方法。
In addition to the above-described composition, V: 0.001 to 0.150%, W: 0.001 to 0.150%, Ti: 0.001 to 0.040%, Cr: 0.001 to 0.45%, B: 0.0001 to 0.0009%, Cu: 0.001 to The automobile structural member according to claim 4, comprising 0.45%, Ni: one or more selected from 0.001 to 0.45%, and / or Ca: 0.0001 to 0.005%. Of manufacturing high-strength welded steel pipes.
JP2006355492A 2006-12-28 2006-12-28 High tensile welded steel pipe for automobile structural members and method for manufacturing the same Active JP4910694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006355492A JP4910694B2 (en) 2006-12-28 2006-12-28 High tensile welded steel pipe for automobile structural members and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355492A JP4910694B2 (en) 2006-12-28 2006-12-28 High tensile welded steel pipe for automobile structural members and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2008163409A JP2008163409A (en) 2008-07-17
JP4910694B2 true JP4910694B2 (en) 2012-04-04

Family

ID=39693262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355492A Active JP4910694B2 (en) 2006-12-28 2006-12-28 High tensile welded steel pipe for automobile structural members and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4910694B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463715B2 (en) * 2009-04-06 2014-04-09 Jfeスチール株式会社 Manufacturing method of high strength welded steel pipe for automobile structural members
JP5499560B2 (en) * 2009-08-12 2014-05-21 Jfeスチール株式会社 High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same
JP5884148B2 (en) * 2010-04-16 2016-03-15 Jfeスチール株式会社 Thick steel plate excellent in coating film peeling resistance and method for producing the same
JP6782060B2 (en) * 2015-01-22 2020-11-11 臼井国際産業株式会社 How to manufacture fuel rails
JP6789611B2 (en) 2015-01-22 2020-11-25 臼井国際産業株式会社 Manufacturing method of fuel rail for gasoline direct injection
CN105506503A (en) * 2015-12-15 2016-04-20 苏州爱盟机械有限公司 Front axle I beam for vehicle
CN109797340A (en) * 2017-11-16 2019-05-24 上海汇众汽车制造有限公司 The production method of the torsion beam crossbeam of excelling in fatigue property
CN109794729A (en) * 2017-11-16 2019-05-24 上海汇众汽车制造有限公司 The production method of 800MPa high intensity torsion beam crossbeam
CN113502435B (en) * 2021-06-30 2022-09-02 本钢板材股份有限公司 Oil casing pipe steel for improving low-temperature impact toughness and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4443910B2 (en) * 2003-12-12 2010-03-31 Jfeスチール株式会社 Steel materials for automobile structural members and manufacturing method thereof
JP4466619B2 (en) * 2006-07-05 2010-05-26 Jfeスチール株式会社 High tensile welded steel pipe for automobile structural members and method for manufacturing the same

Also Published As

Publication number Publication date
JP2008163409A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP4466619B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP5463715B2 (en) Manufacturing method of high strength welded steel pipe for automobile structural members
JP4735315B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP4443910B2 (en) Steel materials for automobile structural members and manufacturing method thereof
JP4772927B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet having excellent fatigue characteristics and elongation and impact characteristics, and methods for producing them
JP4910694B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
EP2857537B1 (en) Hollow stabilizer, and steel pipe for hollow stabilizers and method for production thereof
JP5187003B2 (en) High strength steel material excellent in formability and fatigue resistance and method for producing the same
JP5499559B2 (en) High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same
JP4635708B2 (en) Non-tempered high-tensile welded steel pipe for automotive structural members with excellent formability and low-temperature toughness and excellent torsional fatigue resistance after cross-section forming processing
JP2019116658A (en) Electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP5125601B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP4859618B2 (en) Manufacturing method of hollow stabilizer with excellent delayed fracture resistance
JP5499560B2 (en) High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same
CN113631735B (en) Electric welded steel pipe for hollow stabilizer, and method for producing same
JP5282449B2 (en) High strength steel material excellent in formability and fatigue resistance and method for producing the same
JP2010235964A (en) High strength steel pipe excellent in corrosion resistance and shock bending toughness and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4910694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250