JP5460099B2 - High strength steel pipe excellent in corrosion resistance and impact bending toughness and method for producing the same - Google Patents

High strength steel pipe excellent in corrosion resistance and impact bending toughness and method for producing the same Download PDF

Info

Publication number
JP5460099B2
JP5460099B2 JP2009081745A JP2009081745A JP5460099B2 JP 5460099 B2 JP5460099 B2 JP 5460099B2 JP 2009081745 A JP2009081745 A JP 2009081745A JP 2009081745 A JP2009081745 A JP 2009081745A JP 5460099 B2 JP5460099 B2 JP 5460099B2
Authority
JP
Japan
Prior art keywords
less
ferrite
steel pipe
rolling
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009081745A
Other languages
Japanese (ja)
Other versions
JP2010235964A (en
Inventor
真一 児玉
進 藤原
敏洋 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2009081745A priority Critical patent/JP5460099B2/en
Publication of JP2010235964A publication Critical patent/JP2010235964A/en
Application granted granted Critical
Publication of JP5460099B2 publication Critical patent/JP5460099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、耐食性と衝撃曲げ靭性に優れた高強度鋼管およびその製造方法に関する。   The present invention relates to a high-strength steel pipe excellent in corrosion resistance and impact bending toughness, and a method for producing the same.

自動車、自転車等の構造部材に使用する鋼管には高強度と高疲労特性が要求される。最近では構造部材に対する軽量化の要求が高くなり、構造用鋼管には薄肉化に伴う更なる高強度化が求められる状況にある。ただし、高強度化に必要なコスト上昇をできるだけ抑えることが強く望まれるところである。   Steel pipes used for structural members such as automobiles and bicycles are required to have high strength and high fatigue characteristics. Recently, there is an increasing demand for weight reduction of structural members, and structural steel pipes are required to have further increased strength accompanying thinning. However, it is strongly desired to suppress as much as possible the cost increase necessary for increasing the strength.

鋼材の強化手法としては、固溶強化、変態組織強化、加工強化が挙げられる。このうち固溶強化および変態組織強化の場合には、それらの機構を効果的に生じさせるために特殊な合金成分を含有する鋼を採用することが必要となり、必然的に素材コストの上昇を伴う。この点、加工強化によれば、特殊な元素を添加することなく高強度化が可能であり、コスト上昇を抑える上で有利となる。特許文献1、2には、加工強化された素材鋼板を使用することによって電縫鋼管の高強度化を図る手法が開示されている。   Examples of methods for strengthening steel materials include solid solution strengthening, transformation structure strengthening, and process strengthening. Among these, in the case of solid solution strengthening and transformation structure strengthening, it is necessary to adopt steel containing special alloy components in order to effectively generate these mechanisms, which inevitably increases the material cost. . In this respect, according to the processing strengthening, it is possible to increase the strength without adding a special element, which is advantageous in suppressing an increase in cost. Patent Documents 1 and 2 disclose a technique for increasing the strength of an electric resistance welded steel pipe by using a work-strengthened material steel sheet.

一方、構造部材に使用する鋼管は、長期の使用に耐えるために、良好な耐食性を有していることが望まれる。特許文献3には、電縫鋼管の裸での耐食性を改善する手法としてPとCuを複合添加する手法が開示されている。   On the other hand, the steel pipe used for the structural member is desired to have good corrosion resistance in order to withstand long-term use. Patent Document 3 discloses a technique in which P and Cu are added in combination as a technique for improving the corrosion resistance of an ERW steel pipe in the bare state.

特開2002−327245号公報JP 2002-327245 A 特開2005−29882号公報JP 2005-29882 A 特開2004−225137号公報JP 2004-225137 A

自動車等の乗り物に使用する構造用鋼管では、高強度特性と耐食性が重要であるとともに、衝突時の衝撃を受けた際に、湾曲部に裂け疵が発生しにくい性質、すなわち「衝撃曲げ靭性」に優れることが望まれる。しかし従来の高強度鋼管においては、衝撃曲げ靭性を向上させることまでは十分考慮されていない。発明者らの調査によれば、耐食性を良好に維持しながら衝撃曲げ靭性を改善することは容易でないことがわかった。特に、鋼管の引張強さを例えば980N/mm2以上という高レベルに維持しながら、耐食性と衝撃曲げ靭性を同時に改善することは、従来の知見において一層難しいのが現状である。 In structural steel pipes used in vehicles such as automobiles, high strength characteristics and corrosion resistance are important, and the property that cracks do not easily occur when subjected to impact during collision, that is, `` impact bending toughness '' It is desirable to be excellent. However, in conventional high-strength steel pipes, sufficient consideration is not given to improving impact bending toughness. According to the inventors' investigation, it has been found that it is not easy to improve the impact bending toughness while maintaining good corrosion resistance. In particular, it is currently difficult to improve the corrosion resistance and the impact bending toughness simultaneously while maintaining the tensile strength of the steel pipe at a high level of, for example, 980 N / mm 2 or more.

本発明はこのような現状に鑑み、耐食性と衝撃曲げ靭性を同時に改善した溶接鋼管を安価な手法により提供することを目的とする。特に、耐食性と衝撃曲げ靭性を同時に改善し、かつ高い強度レベルを具備した溶接鋼管を提供することを目的とする。   In view of such a current situation, an object of the present invention is to provide a welded steel pipe with improved corrosion resistance and impact bending toughness by an inexpensive method. In particular, it is an object of the present invention to provide a welded steel pipe that simultaneously improves corrosion resistance and impact bending toughness and has a high strength level.

上記目的を達成するために、本発明では、質量%で、C:0.01〜0.2%、Si:1.5%以下、Mn:2.5%以下、P:0.005〜0.03%、S:0.005%以下、Cu:0.05〜0.5%、酸可溶Al:0.005〜0.1%であり、必要に応じてさらにTi:0.15%以下、Nb:0.15%以下の1種以上を含有し、残部Feおよび不可避的不純物からなる化学組成を有し、マトリクスがフェライト単相である金属組織、またはマトリクスがフェライト相+50体積%以下の第2相からなり、前記第2相はマルテンサイト、ベイナイト、パーライトを意味し、マトリクス中のパーライトの存在量が10体積%以下である金属組織を有し、かつ下記(1)式により定まるフェライト結晶粒展伸度EFが5.0以上である未焼鈍冷延鋼板を圧延方向が長手方向となるように溶接造管してなる耐食性と衝撃曲げ靭性に優れた高強度鋼管が提供される。
F=N1/N2 …(1)
ここで、
F:圧延板のフェライト結晶粒展伸度。
1:圧延方向および板厚方向に平行な断面(L断面)の顕微鏡視野において板厚方向の一定長さXの線分によって切断される結晶粒の数。ただし顕微鏡視野および線分の長さXはN1が10以上となるように設定する。
2:前記視野において圧延方向の前記長さXの線分によって切断される結晶粒の数。
In order to achieve the above object, in the present invention, in mass%, C: 0.01 to 0.2%, Si: 1.5% or less, Mn: 2.5% or less, P: 0.005 to 0 0.03%, S: 0.005% or less, Cu: 0.05-0.5%, acid-soluble Al: 0.005-0.1%, and Ti: 0.15% as necessary Hereinafter, Nb: containing at least one kind of 0.15% or less, having a chemical composition composed of the balance Fe and inevitable impurities, and the matrix is a ferrite single phase, or the matrix is ferrite phase + 50% by volume or less The second phase means martensite, bainite, and pearlite, has a metal structure in which the amount of pearlite in the matrix is 10% by volume or less, and is determined by the following formula (1). pressure the unannealed cold-rolled steel sheet ferrite grain elongation rate E F is 5.0 or more Provided is a high-strength steel pipe excellent in corrosion resistance and impact bending toughness, which is formed by welding so that the extending direction becomes the longitudinal direction.
E F = N 1 / N 2 (1)
here,
E F : Extension degree of ferrite crystal grains of the rolled plate.
N 1 : Number of crystal grains cut by a line segment of a certain length X in the plate thickness direction in a microscopic field of a cross section (L cross section) parallel to the rolling direction and the plate thickness direction. However, the microscope field of view and the length X of the line segment are set so that N 1 is 10 or more.
N 2 : Number of crystal grains cut by the line segment of the length X in the rolling direction in the visual field.

上記のN1およびN2は、JIS G0551:2005の附属書2(旧JIS G0552)の切断法に規定される測定方法に従って求めることができる。ただし、1本の線分で切断されるフェライト結晶粒の数を10個以上とする点については、N1の測定にのみ適用する。「未焼鈍冷延鋼板」は、冷間圧延後に焼鈍を受けていない状態の鋼板である。 The above N 1 and N 2 can be determined according to the measurement method defined in the cutting method of Annex 2 of JIS G0551: 2005 (former JIS G0552). However, the point that the number of ferrite crystal grains cut by one line segment is 10 or more applies only to the measurement of N 1 . An “unannealed cold rolled steel sheet” is a steel sheet that has not been annealed after cold rolling.

この高強度鋼管は、例えば管の肉厚が0.6〜2.4mm、外径が22〜70mmである。   This high-strength steel pipe has, for example, a pipe thickness of 0.6 to 2.4 mm and an outer diameter of 22 to 70 mm.

また、上記において特に引張強さ980N/mm2以上の高強度を有する鋼管として、下記[1]または[2]の化学組成を有するものが提供される。
[1]質量%で、C:0.1〜0.2%、Si:1.5%以下、Mn:1.5超え〜2.5%、P:0.005〜0.03%、S:0.005%以下、Cu:0.05〜0.5%、酸可溶Al:0.005〜0.1%、残部Feおよび不可避的不純物からなる化学組成。
[2]質量%で、C:0.03〜0.2%、Si:1.5%以下、Mn:1.5超え〜2.5%、P:0.005〜0.03%、S:0.005%以下、Cu:0.05〜0.5%、酸可溶Al:0.005〜0.1%であり、Ti:0.15%以下、Nb:0.15%以下の1種以上を含有し、残部Feおよび不可避的不純物からなり、TiとNbの合計含有量が0.03%以上である化学組成。
Further, as a steel pipe having a particular tensile strength 980 N / mm 2 or more high strength above, is provided having a chemical composition of the following [1] or [2].
[1] By mass%, C: 0.1 to 0.2%, Si: 1.5% or less, Mn: more than 1.5 to 2.5%, P: 0.005 to 0.03%, S : Chemical composition consisting of 0.005% or less, Cu: 0.05-0.5%, acid-soluble Al: 0.005-0.1%, balance Fe and inevitable impurities.
[2] By mass%, C: 0.03 to 0.2%, Si: 1.5% or less, Mn: more than 1.5 to 2.5%, P: 0.005 to 0.03%, S : 0.005% or less, Cu: 0.05 to 0.5%, acid-soluble Al: 0.005 to 0.1%, Ti: 0.15% or less, Nb: 0.15% or less A chemical composition containing at least one kind, the balance being Fe and inevitable impurities, and the total content of Ti and Nb being 0.03% or more.

任意選択元素としてさらにNi:1%以下、Cr:1%以下、Mo:0.3%以下、V:0.3%以下、Zr:0.3%以下の1種以上を含有する化学組成を採用することができる。   A chemical composition further containing at least one of Ni: 1% or less, Cr: 1% or less, Mo: 0.3% or less, V: 0.3% or less, Zr: 0.3% or less as an optional element. Can be adopted.

上記の高強度鋼管の製造方法として、熱間圧延、スケール除去処理、冷間圧延、溶接造管の工程により鋼管を製造するに際し、熱間圧延において熱延仕上温度を(Ar3点−20℃)以上、仕上圧延最終パス終了後、巻取までの平均冷却速度を20〜100℃/秒、巻取温度を450〜650℃として上記(1)式により定まるフェライト結晶粒展伸度EFが2.0以上の熱延鋼板を作り、冷間圧延において圧延率を40〜80%として同フェライト結晶粒展伸度EFが5.0以上の冷延鋼板を作り、溶接造管において未焼鈍のままの冷延鋼板をその圧延方向が管の長手方向となるように造管する手法が提供される。 As a manufacturing method of the high-strength steel pipe, when manufacturing a steel pipe by the steps of hot rolling, descaling treatment, cold rolling, and welded pipe making, the hot rolling finishing temperature is set to (Ar 3 point-20 ° C in hot rolling). ) or more, after the finish rolling final pass finish, the average cooling rate to the winding 20 to 100 ° C. / sec, the coiling temperature of 450 to 650 ° C. (1) is ferrite grain elongation rate E F determined by the equation It makes 2.0 or more hot-rolled steel sheet, the ferrite grain elongation rate E F a reduction ratio as 40% to 80% in the cold rolling to make a 5.0 or more cold-rolled steel sheet, an unannealed in welding pipe There is provided a method of making a cold-rolled steel sheet as it is so that its rolling direction is the longitudinal direction of the pipe.

本発明によれば、耐食性と衝撃曲げ靭性を顕著に向上させた溶接鋼管を、安価な手法で安定して提供することが可能になった。これらにおいて特に引張強さ980N/mm2以上の高強度を具備するものが提供できる。本発明の鋼管は、変態組織強化のDP鋼やTRIP鋼を素材とした電縫鋼管と比較して衝撃曲げ靭性に優れ、衝突時の衝撃を受けた際に湾曲部の側面に裂け疵が極めて発生しにくい。また、耐食性も改善されている。したがって、本発明の鋼管は、特に自動車や自転車などの乗り物に使用する構造部材に好適である。 According to the present invention, it has become possible to stably provide a welded steel pipe with significantly improved corrosion resistance and impact bending toughness by an inexpensive method. In particular, those having a high strength with a tensile strength of 980 N / mm 2 or more can be provided. The steel pipe of the present invention is superior in impact bending toughness compared to ERW steel pipe made of transformation-strengthened DP steel or TRIP steel, and the side surface of the curved portion is extremely cracked when subjected to impact at the time of collision. Hard to occur. Corrosion resistance is also improved. Therefore, the steel pipe of the present invention is particularly suitable for structural members used for vehicles such as automobiles and bicycles.

発明者らは検討の結果、フェライト結晶粒を十分に展伸させ繊維状の組織状態とした加工硬化鋼板を溶接造管して得られる高強度鋼管において、衝撃曲げ靭性が顕著に改善されることを見出した。しかしながら、その手法を例えば特許文献3に開示されているようなPとCuを複合添加して耐食性を改善した鋼に適用しても、安定して衝撃曲げ靭性を改善することが困難であった。そこで詳細に検討を行った結果、以下の知見を得た。
(i)衝撃曲げ靭性の向上にはPを低減することが極めて有効である。
(ii)Pを低減した場合であっても、P含有量を0.005〜0.03質量%の狭い含有量範囲に厳密にコントロールすることにより、Cu添加による耐食性向上効果を十分に得ることが可能である。
As a result of investigations, the impact bending toughness is remarkably improved in a high-strength steel pipe obtained by welding and pipe-forming a work-hardened steel sheet that has been sufficiently stretched with ferrite crystal grains to have a fibrous structure. I found. However, even if the method is applied to steel with improved corrosion resistance by adding P and Cu as disclosed in, for example, Patent Document 3, it is difficult to stably improve impact bending toughness. . As a result of detailed studies, the following findings were obtained.
(I) Reducing P is extremely effective for improving impact bending toughness.
(Ii) Even when P is reduced, by sufficiently controlling the P content to a narrow content range of 0.005 to 0.03 mass%, the effect of improving corrosion resistance by adding Cu can be sufficiently obtained. Is possible.

ただし、Pは高強度化を担う元素でもある。Pの低減は強度レベルの高い鋼管を得る上では非常に不利となる。そこで更に検討を進めたところ、P低減鋼で極めて高い強度レベルを得るためにはMn含有量の増量が有効であることがわかり、以下の知見を得た。
(iii)Mn含有量を1.5質量%を超える量としたうえで、C含有量を0.1%以上と高めに規定することが好ましい
(iv)あるいは、C含有量の下限を0.03質量%まで緩和させる場合は、Mn含有量を1.5質量%を超える量としたうえで、Ti、Nbの1種以上を適量含有させることが望ましい。
本発明はこのような新たな知見に基づいて完成したものである。
以下、本発明を特定するための事項について説明する。
However, P is also an element responsible for increasing the strength. P reduction of a very disadvantageous in obtaining a high strength level steel pipe. As a result of further investigations, it was found that increasing the Mn content is effective for obtaining an extremely high strength level with P-reduced steel, and the following knowledge was obtained.
(Iii) It is preferable to define the C content as high as 0.1% or more after the Mn content exceeds 1.5% by mass.
(Iv) Alternatively, when the lower limit of the C content is relaxed to 0.03 mass%, the Mn content is set to an amount exceeding 1.5 mass%, and an appropriate amount of at least one of Ti and Nb is contained. It is desirable.
The present invention has been completed based on such new findings.
Hereinafter, matters for specifying the present invention will be described.

〔化学組成〕
化学組成における「%」は特に断らない限り「質量%」を意味する。
[Chemical composition]
“%” In the chemical composition means “% by mass” unless otherwise specified.

Cは、鋼の高強度化に有効な元素である。0.01%未満ではその作用を十分に得ることが難しい。ただし、P低減鋼で極めて高い強度レベルを得るためには、Mnの増量およびTi、Nbの1種以上の含有と相俟って、0.03%以上のC含有量を確保することが望まれる。また、Ti、Nbを含有させない場合は、Mnの増量とともに0.1%以上のC含有量とすることが好ましい。一方、多量のC含有は延性および溶接部の靭性を低下させる。種々検討の結果、C含有量は0.01〜0.2%の範囲で設定する必要がある。   C is an element effective for increasing the strength of steel. If it is less than 0.01%, it is difficult to obtain the effect sufficiently. However, in order to obtain an extremely high strength level with P-reduced steel, it is desirable to ensure a C content of 0.03% or more in combination with the increase of Mn and the content of one or more of Ti and Nb. It is. Moreover, when not containing Ti and Nb, it is preferable to set it as 0.1% or more of C content with the increase in Mn. On the other hand, a large amount of C content decreases ductility and weld toughness. As a result of various studies, it is necessary to set the C content within a range of 0.01 to 0.2%.

Siは、鋼の強度上昇に有効な元素である。また、Cuを含有するP低減鋼において極低Sとしたときに、Siは裸での耐食性改善にも有効に作用する。すなわちSiとCuの複合添加による耐食性の向上作用が発揮される。この作用を十分に得るためには0.05%以上のSi含有量を確保することがより効果的である。ただし、1.5%を超えて多量にSiを含有させると、強度は上昇するが、冷間加工性および表面性状が劣化する。したがってSi含有量は1.5%以下とする必要があり、1.0%以下とすることがより好ましい。上記の耐食性改善作用は0.5%のSi含有量でほぼ飽和するので、Si含有量の上限を0.5%に管理しても構わない。   Si is an element effective for increasing the strength of steel. Further, when the P-reduced steel containing Cu has an extremely low S, Si also effectively works to improve the corrosion resistance in the bare state. That is, the effect of improving the corrosion resistance by the combined addition of Si and Cu is exhibited. In order to obtain this function sufficiently, it is more effective to secure a Si content of 0.05% or more. However, if Si is contained in a large amount exceeding 1.5%, the strength increases, but the cold workability and the surface properties deteriorate. Accordingly, the Si content needs to be 1.5% or less, and more preferably 1.0% or less. Since the above-mentioned corrosion resistance improving action is almost saturated at a Si content of 0.5%, the upper limit of the Si content may be managed at 0.5%.

Mnは、鋼の強度上昇に有効な元素である。その作用を発揮させるためには0.1%以上のMn含有量を確保することがより効果的である。本発明ではP含有量を0.03%以下に低減していることから、極めて高い強度レベルを安定して得るためには1.5%を超えるMn含有量とすることが重要であり、1.55%以上とすることがより好ましい。しかし、Mn含有量が2.5%を超えると、含有量増大に伴い強度は上昇するものの、溶接性が著しく劣化する。また、Mnが多量に含まれると溶接部で焼入れ硬化が生じやすくなり、溶接部の加工性を劣化させ割れの原因にもなる。したがってMn含有量は2.5%以下とする必要があり、2%以下の範囲に管理しても構わない。   Mn is an element effective for increasing the strength of steel. In order to exhibit the effect, it is more effective to secure a Mn content of 0.1% or more. In the present invention, since the P content is reduced to 0.03% or less, in order to stably obtain an extremely high strength level, it is important to set the Mn content exceeding 1.5%. More preferably, it is made .55% or more. However, if the Mn content exceeds 2.5%, the weldability is remarkably deteriorated although the strength increases as the content increases. In addition, if Mn is contained in a large amount, quench hardening is likely to occur in the welded portion, which deteriorates the workability of the welded portion and causes cracking. Therefore, the Mn content needs to be 2.5% or less, and may be controlled within a range of 2% or less.

Pは、Cuとの複合添加により鋼管の裸での耐食性を向上させる作用を有する。また、鋼管の高強度化にも寄与する元素である。しかしながら、Pは衝撃曲げ靭性を阻害する要因を有することが明らかになった。発明者らの検討によれば、P含有量を0.03%以下に抑えることによって衝撃曲げ靭性への悪影響を回避することが可能になる。一方、耐食性については、従来Cuとの複合添加による耐食性向上作用を十分に得るためにはP含有量を0.05%以上とする必要があると考えられていた(特許文献3参照)。ところが、詳細に検討したところ、より低いP含有量においても他の成分元素の含有量を適正化することによって耐食性向上作用が得られることが明らかになった。具体的には、後述のように極低Sとした場合において、P含有量を0.005%以上とすることによりCu添加による耐食性改善作用を引き出すことができるのである。Siを前述のように0.05%以上としたものにおいては、より顕著な効果が得られやすい。また、Pを低減することに伴う強度の低下は、C含有量、Mn含有量、Ti、Nbの含有などによって補うことができ、Pを低減した場合でも引張強さ980N/mm2以上の高強度鋼管の製造が可能であることが確認された。このようなことから、本発明ではP含有量を0.005〜0.03%の範囲に厳密にコントロールすることによって、耐食性と衝撃曲げ靭性の両立を図ることとした。 P has the effect of improving the bare steel corrosion resistance by the combined addition with Cu. It is also an element that contributes to increasing the strength of steel pipes. However, it has become clear that P has a factor that impairs impact bending toughness. According to the study by the inventors, it is possible to avoid an adverse effect on impact bending toughness by suppressing the P content to 0.03% or less. On the other hand, with respect to corrosion resistance, it has been conventionally considered that the P content needs to be 0.05% or more in order to sufficiently obtain the effect of improving corrosion resistance by the combined addition with Cu (see Patent Document 3). However, a detailed study has revealed that an effect of improving corrosion resistance can be obtained by optimizing the content of other component elements even at a lower P content. Specifically, when the P content is 0.005% or more in the case of extremely low S as described later, the effect of improving the corrosion resistance by adding Cu can be brought out. When Si is set to 0.05% or more as described above, a more remarkable effect can be easily obtained. In addition, the decrease in strength accompanying the reduction of P can be compensated by the C content, Mn content, Ti, Nb content, etc. Even when P is reduced, the tensile strength is not less than 980 N / mm 2 or more. It was confirmed that it was possible to manufacture a strength steel pipe. For this reason, in the present invention, the corrosion resistance and the impact bending toughness are both achieved by strictly controlling the P content in the range of 0.005 to 0.03%.

Sは、鋼管の裸での耐食性を劣化させる要因を有する元素である。Pを低減した本発明の鋼管において、耐食性を十分に確保するためにはS含有量はできるだけ低いことが望ましい。種々検討の結果、S含有量は0.005%以下に制限される。   S is an element having a factor that degrades the corrosion resistance of the steel pipe in the bare state. In the steel pipe of the present invention with reduced P, it is desirable that the S content be as low as possible in order to ensure sufficient corrosion resistance. As a result of various studies, the S content is limited to 0.005% or less.

Cuは、鋼管の裸での耐食性を向上させるために有効な元素であり、通常はPとの複合添加によってその作用が引き出される。本発明ではP含有量を低減しているが、極低S化、あるいはさらに0.05%以上のSi含有との相乗効果によって、Cuは顕著な耐食性向上作用を発揮する。そのためには少なくとも0.05%以上のCu含有量が必要となる。ただし、Cuを0.5%を超えて多量に含有させても耐食性改善効果は飽和し、不経済となる。このためCu含有量は0.05〜0.5%とする。   Cu is an element effective for improving the corrosion resistance of steel pipes barely, and its action is usually brought out by the combined addition with P. In the present invention, although the P content is reduced, Cu exhibits a remarkable corrosion resistance improving action due to a synergistic effect with extremely low S or further containing Si of 0.05% or more. For this purpose, a Cu content of at least 0.05% is required. However, even if Cu is contained in a large amount exceeding 0.5%, the effect of improving the corrosion resistance is saturated and uneconomical. Therefore, the Cu content is set to 0.05 to 0.5%.

Alは、脱酸剤として添加される元素であり、十分な脱酸効果を得るためには酸可溶Alとして0.005%以上の添加が必要である。Al脱酸の効果は0.1%程度で飽和しそれ以上の添加は鋼材のコストの上昇を招く。したがって本発明では酸可溶Alの含有量を0.005〜0.1%の範囲とする。   Al is an element added as a deoxidizer, and 0.005% or more of acid-soluble Al is required to obtain a sufficient deoxidation effect. The effect of Al deoxidation is saturated at about 0.1%, and addition beyond that causes an increase in the cost of the steel material. Therefore, in the present invention, the content of acid-soluble Al is set in the range of 0.005 to 0.1%.

Tiは、C、S、Nと析出物を形成し、析出強化により鋼材の高強度化に寄与する元素である。また、これらの析出物により溶接熱影響部の加工歪の回復が抑制されるとともに溶接加熱時の固溶、再析出により熱影響部の軟化が防止できる。このため必要に応じてTiを添加することができる。Ti添加量は0.005%以上とすることがより効果的である。ただし0.15%を超えて添加しても上記効果が飽和するとともに製造コストの上昇を招く。したがってTiを添加する場合は0.15%以下の範囲で行う。   Ti is an element that forms precipitates with C, S, and N and contributes to increasing the strength of steel by precipitation strengthening. In addition, recovery of processing strain in the weld heat affected zone is suppressed by these precipitates, and softening of the heat affected zone can be prevented by solid solution and reprecipitation during welding heating. For this reason, Ti can be added as needed. It is more effective that the amount of Ti added is 0.005% or more. However, even if added over 0.15%, the above effect is saturated and the manufacturing cost is increased. Therefore, when adding Ti, it is performed within a range of 0.15% or less.

Nbは、Tiと同様に炭化物を形成し、析出強化により鋼材の高強度化に寄与する。また、鋼板の金属組織を微細化して強度を向上させる。さらに溶接部においてはTiの効果と同様に析出物により溶接熱影響部の加工歪の回復が抑制されるとともに固溶、再析出により熱影響部の軟化が防止できる。このため必要に応じてNbを添加することができる。Nb添加量は0.005%以上とすることがより効果的である。ただし0.15%を超えて添加しても上記効果が飽和するとともに製造コストの上昇を招く。したがってNbを添加する場合は0.15%以下の範囲で行う。   Nb forms carbides like Ti, and contributes to increasing the strength of steel by precipitation strengthening. Moreover, the metal structure of the steel sheet is refined to improve the strength. Further, in the welded portion, similarly to the effect of Ti, recovery of work strain of the weld heat affected zone is suppressed by the precipitate, and softening of the heat affected zone can be prevented by solid solution and reprecipitation. For this reason, Nb can be added as needed. It is more effective to add Nb to 0.005% or more. However, even if added over 0.15%, the above effect is saturated and the manufacturing cost is increased. Therefore, when adding Nb, it is performed within a range of 0.15% or less.

前述のように、引張強さ980N/mm2以上の高強度鋼管を得る場合には、Cを0.03%以上とし、かつMnを1.5%を超える含有量とした上で、Ti、Nbの1種以上を含有させる手法を採用することができる。その場合、TiとNbの合計含有量を0.03%以上とすること(Ti、Nbのいずれか1種を単独で添加する場合は、当該添加元素の含有量を0.03%以上とすること)が極めて効果的である。 As described above, when obtaining a high-strength steel pipe having a tensile strength of 980 N / mm 2 or more, after setting C to 0.03% or more and Mn to a content exceeding 1.5%, Ti, A technique of containing one or more of Nb can be employed. In that case, the total content of Ti and Nb should be 0.03% or more (when any one of Ti and Nb is added alone, the content of the additive element should be 0.03% or more. Is very effective.

Niは、高強度化と溶接部の靭性向上に有効な元素であり、必要に応じて添加することができる。その効果を十分に得るためには0.05%以上のNi含有量を確保することがより好ましい。ただし、ただし1%を超えて添加しても上記効果が飽和するとともに製造コストの上昇を招く。したがってNiを添加する場合は1%以下の範囲で行う。   Ni is an element effective for increasing the strength and improving the toughness of the welded portion, and can be added as necessary. In order to sufficiently obtain the effect, it is more preferable to secure a Ni content of 0.05% or more. However, even if added in excess of 1%, the above effect is saturated and the manufacturing cost is increased. Therefore, when adding Ni, it is performed within a range of 1% or less.

Mo、Vは、TiやNbと同様に炭化物を形成し、析出強化により鋼材の高強度化に有効な元素である。さらに溶接部においてはTi、Nbの効果と同様に熱影響部の軟化防止に有効である。このためMo、Vの一方または双方を必要に応じて添加することができる。Mo、Vとも、それぞれ0.01%以上の含有量を確保することがより効果的である。ただし、過剰に添加しても上記効果が飽和するとともに製造コストの上昇を招く。またCrの多量添加は焼入れ性を高めて溶接部の加工性を劣化させる要因となる。種々検討の結果、Mo、Vを添加する場合はそれぞれ0.3%以下の範囲で行う。   Mo and V are elements that form carbides similarly to Ti and Nb and are effective in increasing the strength of steel by precipitation strengthening. Further, in the welded portion, it is effective for preventing the heat affected zone from being softened in the same manner as the effects of Ti and Nb. For this reason, one or both of Mo and V can be added as needed. It is more effective to secure a content of 0.01% or more for both Mo and V. However, even if it adds excessively, the said effect will be saturated and the raise of manufacturing cost will be caused. Addition of a large amount of Cr increases the hardenability and deteriorates the workability of the weld. As a result of various investigations, when adding Mo and V, each is performed within a range of 0.3% or less.

Cr、Zrは、高強度化と溶接部の靭性向上に有効な元素である。このためCr、Zrの一方または双方を必要に応じて添加することができる。Crの場合は0.05%以上、Zrの場合は0.01%以上の含有量を確保することがより効果的である。ただし、過剰に添加しても上記効果が飽和するとともに製造コストの上昇を招く。またCrの多量添加は焼入れ性を高めて溶接部の加工性を劣化させる要因となる。種々検討の結果、Crを添加する場合は1%以下の範囲で行い、Zrを添加する場合は0.3%以下の範囲で行う。   Cr and Zr are effective elements for increasing the strength and improving the toughness of the welded portion. Therefore, one or both of Cr and Zr can be added as necessary. It is more effective to secure a content of 0.05% or more in the case of Cr and 0.01% or more in the case of Zr. However, even if it adds excessively, the said effect will be saturated and the raise of manufacturing cost will be caused. Addition of a large amount of Cr increases the hardenability and deteriorates the workability of the weld. As a result of various studies, when Cr is added, it is performed within a range of 1% or less, and when Zr is added, it is performed within a range of 0.3% or less.

〔金属組織〕
本発明の鋼管は、加工硬化した組織を有し、かつフェライト結晶粒が長手方向に伸びた繊維状組織を呈するものである。具体的には、前記(1)式により定まるフェライト結晶粒展伸度EFが5.0以上の未焼鈍冷延鋼板を造管用の素材として用いたものである。発明者らの検討によれば、前述の化学組成を有するとともに、このような繊維状組織を長手方向に持つ鋼管において、衝撃曲げ靭性が顕著に改善されることがわかった。なお、造管に供する未焼鈍冷延鋼板は、マトリクスがフェライト単相であるか、またはフェライト相+50体積%以下の第2相からなるものである。第2相の量が多くなりすぎるとフェライト結晶粒展伸度を5.0以上とすることによる衝撃曲げ靱性の改善効果が十分に発揮できない場合がある。第2相は、マルテンサイト、ベイナイト、パーライト等であるが、パーライトが多量に生成すると強度および衝撃曲げ靭性の低下を招くので、マトリクス中のパーライトの存在量は10体積%以下に抑えられていることが望ましい。
[Metal structure]
The steel pipe of the present invention has a work-hardened structure and exhibits a fibrous structure in which ferrite crystal grains extend in the longitudinal direction. Specifically, one in which the (1) ferrite grain elongation rate E F determined by the equation with 5.0 or more unannealed cold-rolled steel sheet as a material for pipe production. According to the study by the inventors, it has been found that impact bending toughness is remarkably improved in a steel pipe having the above-described chemical composition and having such a fibrous structure in the longitudinal direction. In addition, the unannealed cold-rolled steel sheet used for pipe making has a matrix of a ferrite single phase or a second phase of ferrite phase + 50% by volume or less. If the amount of the second phase is too large, the effect of improving the impact bending toughness by setting the ferrite crystal grain extension to 5.0 or more may not be sufficiently exhibited. The second phase is martensite, bainite, pearlite, etc., but if a large amount of pearlite is generated, the strength and impact bending toughness are reduced, so the amount of pearlite in the matrix is suppressed to 10% by volume or less. It is desirable.

〔強度レベル〕
本発明に従えば、鋼管としての長手方向の引張強さが980N/mm2以上という高強度を有するものを得ることが可能である。これはいわゆる100キロ級の高強度鋼管であり、自動車をはじめとする各種機械構造物において特に高強度を必要とする部材に適したものである。
[Strength level]
According to the present invention, it is possible to obtain a steel pipe having a high tensile strength of 980 N / mm 2 or more in the longitudinal direction. This is a so-called 100 kg-class high-strength steel pipe, which is particularly suitable for members that require high strength in various mechanical structures including automobiles.

〔製造工程〕
本発明の高強度鋼管は、上記のように成分組成が調整された鋼を溶製し、熱間圧延、スケール除去処理(例えば酸洗)、冷間圧延、溶接造管の工程により製造することができる。
〔Manufacturing process〕
The high-strength steel pipe of the present invention is manufactured by melting the steel whose component composition has been adjusted as described above, and performing the steps of hot rolling, descaling (for example, pickling), cold rolling, and welded pipe making. Can do.

〔熱間圧延〕
熱間圧延工程では、熱延仕上温度を(Ar3点−20℃)以上とする。Ar3点より低温になるとフェライト+オーステナイトの2相混合組織となる。このような混合組織で圧延すると、変形抵抗が板の内部で不均一となって熱延鋼帯の板厚精度が低下しやすいが、(Ar3点−20℃)以上であればフェライト相の量が比較的少ないため、板厚精度を一般的な許容範囲に収めることが可能である。しかし、熱延仕上温度が(Ar3点−20℃)を下回ると圧延方向の板厚変動が大きく変動するいわゆるゲージハンチングが生じやすくなる。このため熱延仕上温度はAr3点以上とすることがより好ましい。熱延仕上温度があまり高いと動的再結晶が起こりやすくなり、過度に動的再結晶が起こると熱延板でのフェライト結晶粒の展伸度を安定して2.0以上とすることが難しくなる。検討の結果、熱延仕上温度を(Ar3点+50℃)以下の範囲とすることがより効果的である。
(Hot rolling)
In the hot rolling process, the hot rolling finishing temperature is set to (Ar 3 point−20 ° C.) or higher. When the temperature is lower than the Ar 3 point, a two-phase mixed structure of ferrite and austenite is obtained. When rolling with such a mixed structure, the deformation resistance becomes non-uniform inside the plate and the thickness accuracy of the hot-rolled steel strip tends to decrease. However, if it is (Ar 3 point-20 ° C) or more, the ferrite phase Since the amount is relatively small, it is possible to keep the plate thickness accuracy within a general allowable range. However, when the hot rolling finishing temperature is lower than (Ar 3 point−20 ° C.), so-called gauge hunting in which the plate thickness fluctuation in the rolling direction fluctuates easily occurs. For this reason, it is more preferable that the hot rolling finishing temperature is Ar 3 or higher. If the hot-rolling finishing temperature is too high, dynamic recrystallization tends to occur, and if dynamic recrystallization occurs excessively, the elongation of ferrite crystal grains in the hot-rolled sheet may be stabilized to 2.0 or more. It becomes difficult. As a result of the examination, it is more effective to set the hot rolling finishing temperature to a range of (Ar 3 point + 50 ° C.) or lower.

仕上圧延最終パス終了後、巻取までの平均冷却速度を20〜100℃/秒とする。平均冷却速度が20℃/秒未満ではパーライトが生成しやすくなり、目的とする強度および衝撃曲げ靭性を得ることが難しくなる。一方、100℃/秒を超えるとベイナイトの生成量が増大してフェライト相が少なくなり、フェライト結晶粒の展伸による本発明の効果が享受できないばかりか高強度となり冷延が困難となる。   After the final pass of finish rolling, the average cooling rate until winding is 20 to 100 ° C./second. When the average cooling rate is less than 20 ° C./second, pearlite is easily generated, and it becomes difficult to obtain the intended strength and impact bending toughness. On the other hand, when the temperature exceeds 100 ° C./second, the amount of bainite generated increases and the ferrite phase decreases, and the effect of the present invention due to the expansion of ferrite crystal grains cannot be enjoyed.

巻取温度を450〜650℃とする。巻取温度が高くなるほどパーライトの生成が多くなり、鋼材の強度レベルが低下する。また所定の展伸度が得られなくなって衝撃曲げ靭性が低下しやすくなる。検討の結果、巻取温度は650℃以下とする。特に高強度を要する部材用途では巻取温度を600℃以下に管理することがより好ましい。一方、巻取温度が450℃を下回ると変態組織強化により強度は著しく上昇するが、次工程の冷間圧延において冷間圧延率、板厚、強度のバランス調整が難しくなる。   The coiling temperature is 450 to 650 ° C. The higher the coiling temperature, the more pearlite is generated and the strength level of the steel material is lowered. In addition, the predetermined degree of spread cannot be obtained, and the impact bending toughness tends to be lowered. As a result of the examination, the coiling temperature is set to 650 ° C. or lower. It is more preferable to manage the coiling temperature at 600 ° C. or lower particularly for member applications requiring high strength. On the other hand, when the coiling temperature is lower than 450 ° C., the strength is remarkably increased due to the transformation structure strengthening.

以上の熱延条件の範囲で、前記(1)式により定まるフェライト結晶粒展伸度EFが2.0以上の熱延鋼板を作る。この段階で展伸度を2.0以上としておかないと、冷間圧延後に展伸度5.0以上を得るためには高い冷間圧延率を余儀なくされ、所望の製品板厚において展伸度5.0以上に調整することが難しくなりやすい。 Within the range of the above hot rolling conditions, a hot rolled steel sheet having a ferrite grain extension E F determined by the above formula (1) of 2.0 or more is made. If the elongation is not set to 2.0 or more at this stage, a high cold rolling rate is required to obtain a degree of elongation of 5.0 or more after cold rolling, and the extension is achieved at a desired product thickness. It tends to be difficult to adjust to 5.0 or higher.

〔冷間圧延〕
冷間圧延工程では、冷間圧延率を40〜80%とする。冷延率40%未満では鋼管にしたときの前記(1)式により定まるフェライト結晶粒展伸度EFを安定して5.0以上とすることが難しくなる。また、引張強さ980N/mm2以上を狙う場合には強度不足となりやすい。一方、冷延率が80%を超える場合は、冷延パス回数が著しく増加し、製造コストの大幅な増大を招く場合がある。
(Cold rolling)
In the cold rolling step, the cold rolling rate is 40 to 80%. Cold rolling ratio said to be a stable 5.0 or more ferrite grain elongation rate E F determined by (1) becomes difficult when the steel pipe is less than 40%. Further, when aiming for a tensile strength of 980 N / mm 2 or more, the strength tends to be insufficient. On the other hand, if the cold rolling rate exceeds 80%, the number of cold rolling passes may increase significantly, resulting in a significant increase in manufacturing cost.

上記冷間圧延率の範囲で前記(1)式により定まるフェライト結晶粒展伸度EFが5.0以上の冷延鋼板を得る。すなわち、予め判っている製品板厚に応じて、冷間圧延率40〜80の範囲でフェライト結晶粒展伸度が5.0以上が得られるように、前記熱間圧延条件と冷間圧延率の組み合わせを設定することが重要である。この条件の組み合わせは、化学組成に応じて予め予備実験を行うことなどによって定めることができる。 The range of the cold-rolling reduction (1) ferrite grain elongation rate E F determined by the equation to obtain 5.0 or more cold-rolled steel sheet. That is, the hot rolling conditions and the cold rolling rate so that a ferrite grain extension of 5.0 or more can be obtained in the range of the cold rolling rate of 40 to 80, depending on the product plate thickness that is known in advance. It is important to set a combination. This combination of conditions can be determined by conducting a preliminary experiment in advance according to the chemical composition.

〔造管〕
フェライト結晶粒展伸度が5.0以上の冷延鋼板をそのまま未焼鈍の状態で溶接造管に供する。その際、圧延方向すなわちフェライト結晶粒が伸びている方向が管の長手方向となるように造管する。造管は、所定幅の鋼帯をロールフォーミングによって円筒状に成形していき、鋼帯の両エッジ部同士を付き合わせて溶接する一般的な溶接造管方法が適用できる。溶接は高周波溶接、プラズマ溶接、TIG溶接などが挙げられるが、高周波溶接による電縫鋼管とすることが好ましい。このようにして得られた鋼管は、優れた衝突曲げ靱性を呈する。
[Pipe making]
A cold-rolled steel sheet having a ferrite grain extension degree of 5.0 or more is used as it is in an unannealed state for welding. At that time, the pipe is formed such that the rolling direction, that is, the direction in which the ferrite crystal grains are extended becomes the longitudinal direction of the pipe. For pipe making, a general welding pipe making method in which a steel strip having a predetermined width is formed into a cylindrical shape by roll forming, and both edge portions of the steel strip are attached to each other and welded can be applied. Examples of the welding include high-frequency welding, plasma welding, TIG welding, and the like, but it is preferable to use an ERW steel pipe by high-frequency welding. The steel pipe obtained in this way exhibits excellent impact bending toughness.

表1に示す組成の鋼スラブを1250℃に加熱したのち抽出して熱間圧延した。熱延条件は表2に示すとおりとした。表2中には各鋼のAr3点も示してある。次いで酸洗によりスケールを除去した後、表2に示す冷間圧延率にて冷間圧延を行った。冷延鋼板を未焼鈍の鋼帯の状態で造管ラインに通板し、高周波溶接にて造管して肉厚1.0mm、外径31.8mmの電縫鋼管を得た。なお、仕上圧延最終パス終了後、巻取までの平均冷却速度は、表2に示した本発明例のものはいずれも20〜100℃/秒の範囲に収まっている。 A steel slab having the composition shown in Table 1 was heated to 1250 ° C., extracted and hot-rolled. The hot rolling conditions were as shown in Table 2. Table 2 also shows the Ar 3 point of each steel. Subsequently, after removing the scale by pickling, cold rolling was performed at the cold rolling rate shown in Table 2. The cold-rolled steel sheet was passed through a pipe making line in the state of an unannealed steel strip, and piped by high frequency welding to obtain an electric resistance steel pipe having a wall thickness of 1.0 mm and an outer diameter of 31.8 mm. In addition, the average cooling rate until the winding after the finish rolling final pass is within the range of 20 to 100 ° C./second for all of the examples of the present invention shown in Table 2.

Figure 0005460099
Figure 0005460099

酸洗後の熱延鋼板および冷延鋼板からサンプルを採取し、L断面について顕微鏡観察を行い、前述の方法で熱延鋼板および冷延鋼板のフェライト結晶粒展伸度を調べた。その際、圧延材のL断面を研磨およびエッチングし、板厚中心部近傍を観察した。
なお、本発明例のものはいずれも熱延鋼板における結晶粒展伸度EFが2.0以上であった。また、本発明例のものはいずれもマトリクスはフェライト相が70体積%以上を占めており、第2相はベイナイトまたはマルテンサイトからなり、パーライトの量は10体積%以下であった。
Samples were taken from the hot-rolled steel sheet and cold-rolled steel sheet after pickling, the L section was observed with a microscope, and the ferrite crystal grain elongation of the hot-rolled steel sheet and the cold-rolled steel sheet was examined by the method described above. At that time, the L cross section of the rolled material was polished and etched, and the vicinity of the center of the plate thickness was observed.
Incidentally, those of the invention examples were grain elongation rate E F is 2.0 or more at the hot-rolled steel sheet either. In all of the examples of the present invention, the matrix comprised 70% by volume or more of the ferrite phase, the second phase consisted of bainite or martensite, and the amount of pearlite was 10% by volume or less.

得られた鋼管からJIS Z2201の11号引張試験片を作製し、引張試験を行い、降伏応力YSおよび引張強さTSを測定した。また、得られた鋼管について、以下の方法で低温落重試験および耐食性試験を実施した。   A No. 11 tensile test piece of JIS Z2201 was produced from the obtained steel pipe, a tensile test was performed, and a yield stress YS and a tensile strength TS were measured. The obtained steel pipe was subjected to a low temperature drop test and a corrosion resistance test by the following methods.

〔低温落重試験〕
鋼管から長さ900mmの試料を採取し、これを−30℃に冷却した後、直ちに、300mmの間隔で固定された2箇所の支持治具の上に水平に置き、114kgの重錘を落下距離300mmにて試料鋼管の支持治具間の中央位置に落下・衝突させた。支持治具はR=30mmの逆U字型断面を有し、重錘は衝突部に先端R=25mmのポンチを有している。溶接ビード位置は上端から0°の位置になるようにした。試験後、湾曲した試験片の側面に裂け疵が発生しておらず、かつ溶接部に割れが認められないものを○(衝突曲げ靭性;良好)、それ以外のものを×(衝突曲げ靭性;不良)と評価した。
[Low temperature drop test]
A sample with a length of 900 mm was taken from the steel pipe, cooled to −30 ° C., and immediately placed horizontally on two supporting jigs fixed at intervals of 300 mm, and a weight of 114 kg was dropped. It was dropped and collided at a central position between the support jigs of the sample steel pipe at 300 mm. The support jig has an inverted U-shaped cross section with R = 30 mm, and the weight has a punch with a tip R = 25 mm at the collision part. The weld bead position was 0 ° from the upper end. After the test, no cracks occurred on the side surface of the curved specimen, and no cracks were observed in the welded portion, ○ (impact bending toughness; good), and other specimens × (impact bending toughness; Bad).

〔耐食性試験〕
鋼管から長さ150mmの試料を切り出し、切断端面および鋼管内面側に塗装を施してシールした後、溶接ビード部を上面にして75°に立掛けた状態で促進腐食試験に供した。腐食試験の条件は、「塩水噴霧:4h→乾燥:8h」の12hを1サイクルとする条件とし50サイクルまで実施した。腐食試験後にシールを除去し、鋼管外面の最大侵食深さを測定した。なお、塩水噴霧は、35℃、0.5%の濃度のNaCl水溶液を用いた。また、乾燥は湿度60%で、20℃に調整した外気を導入して行った。試験後の試料を光学顕微鏡で観察し、最大侵食深さが0.2mm以下のものを○(耐食性良好)、0.2mmを超えるものを×(耐食性不良)と評価した。
これらの結果を表2に示す。
[Corrosion resistance test]
A sample having a length of 150 mm was cut out from the steel pipe, and the cut end face and the inner face of the steel pipe were coated and sealed, and then subjected to an accelerated corrosion test in a state where the weld bead portion faced up to 75 °. The corrosion test was performed up to 50 cycles, with 12 hours of “salt spray: 4 h → drying: 8 h” being 1 cycle. After the corrosion test, the seal was removed and the maximum erosion depth of the outer surface of the steel pipe was measured. The salt water spray used an aqueous NaCl solution having a concentration of 0.5% at 35 ° C. Drying was performed by introducing outside air adjusted to 20 ° C. at a humidity of 60%. Samples after the test were observed with an optical microscope, and those having a maximum erosion depth of 0.2 mm or less were evaluated as ○ (good corrosion resistance), and those exceeding 0.2 mm were evaluated as × (poor corrosion resistance).
These results are shown in Table 2.

Figure 0005460099
Figure 0005460099

表2からわかるように、本発明例の鋼管はフェライト結晶粒展伸度が5.0以上である冷延鋼板を素材に用いたことにより低温落重試験において優れた衝突曲げ靭性を有し、かつ所定の化学組成を有することにより良好な耐食性を有することが確認された。また、化学組成の調整により、引張強さ980N/mm2以上の高強度を兼備するものが得られることが確認された。 As can be seen from Table 2, the steel pipe of the example of the present invention has excellent impact bending toughness in a low temperature drop test by using a cold rolled steel sheet having a ferrite grain elongation of 5.0 or more as a material. And it was confirmed that having a predetermined chemical composition has good corrosion resistance. Moreover, it was confirmed that what has high intensity | strength more than tensile strength 980N / mm < 2 > is obtained by adjustment of a chemical composition.

これに対し、比較例No.31〜33は、いずれも冷延率が低すぎたことにより、冷延鋼板のフェライト結晶粒展伸度EFが5.0に達しなかった。その結果、低温落重試験において湾曲部に割れ疵が発生し、衝撃曲げ靭性に劣る。No.34はC含有量が高く、No.35はP含有量が高いため、いずれも衝撃曲げ靭性が劣っている。No.36はCu含有量が少なく、No.37、38はS含有量が多いため、これらはいずれも耐食性に劣り、このうちNo.38はMn含有量が多いため衝撃曲げ靭性にも劣る。 In contrast, Comparative Example No.31~33, by either cold rolling reduction is too low, ferrite grain elongation rate E F of cold-rolled steel sheet did not reach 5.0. As a result, cracks are generated in the curved portion in the low temperature drop test, and the impact bending toughness is poor. Since No. 34 has a high C content and No. 35 has a high P content, they all have poor impact bending toughness. No. 36 has a low Cu content, and Nos. 37 and 38 have a high S content, so these are all inferior in corrosion resistance, and among these, No. 38 has a high Mn content and inferior in impact bending toughness.

Claims (6)

質量%で、C:0.01〜0.2%、Si:1.5%以下、Mn:2.5%以下、P:0.005〜0.03%、S:0.005%以下、Cu:0.05〜0.5%、酸可溶Al:0.005〜0.1%、残部Feおよび不可避的不純物からなる化学組成を有し、マトリクスがフェライト単相である金属組織、またはマトリクスがフェライト相+50体積%以下の第2相からなり、前記第2相はマルテンサイト、ベイナイト、パーライトを意味し、マトリクス中のパーライトの存在量が10体積%以下である金属組織を有し、かつ下記(1)式により定まるフェライト結晶粒展伸度EFが5.0以上である未焼鈍冷延鋼板を圧延方向が長手方向となるように溶接造管してなる耐食性と衝撃曲げ靭性に優れた高強度鋼管。
F=N1/N2 …(1)
ここで、
F:圧延板のフェライト結晶粒展伸度。
1:圧延方向および板厚方向に平行な断面(L断面)の顕微鏡視野において板厚方向の一定長さXの線分によって切断される結晶粒の数。ただし顕微鏡視野および線分の長さXはN1が10以上となるように設定する。
2:前記視野において圧延方向の前記長さXの線分によって切断される結晶粒の数。
In mass%, C: 0.01-0.2%, Si: 1.5% or less, Mn: 2.5% or less, P: 0.005-0.03%, S: 0.005% or less, Cu: 0.05-0.5%, acid-soluble Al: 0.005-0.1%, a metal composition having a chemical composition comprising the balance Fe and inevitable impurities, and the matrix is a single phase of ferrite, or The matrix is composed of a ferrite phase + 50 volume% or less of the second phase, the second phase means martensite, bainite, pearlite, and has a metal structure in which the amount of pearlite in the matrix is 10 volume% or less, and corrosion resistance and impact flexural toughness below (1) unannealed cold-rolled steel sheet rolling direction determined ferrite grain elongation rate E F is 5.0 or more by equation formed by welding pipe such that the longitudinal direction Excellent high strength steel pipe.
E F = N 1 / N 2 (1)
here,
E F : Extension degree of ferrite crystal grains of the rolled plate.
N 1 : Number of crystal grains cut by a line segment of a certain length X in the plate thickness direction in a microscopic field of a cross section (L cross section) parallel to the rolling direction and the plate thickness direction. However, the microscope field of view and the length X of the line segment are set so that N 1 is 10 or more.
N 2 : Number of crystal grains cut by the line segment of the length X in the rolling direction in the visual field.
さらにTi:0.15%以下、Nb:0.15%以下の1種以上を含有する請求項1に記載の高強度鋼管。   The high-strength steel pipe according to claim 1, further comprising at least one of Ti: 0.15% or less and Nb: 0.15% or less. 質量%で、C:0.1〜0.2%、Si:1.5%以下、Mn:1.5超え〜2.5%、P:0.005〜0.03%、S:0.005%以下、Cu:0.05〜0.5%、酸可溶Al:0.005〜0.1%、残部Feおよび不可避的不純物からなる化学組成を有し、マトリクスがフェライト単相である金属組織、またはマトリクスがフェライト相+50体積%以下の第2相からなり、前記第2相はマルテンサイト、ベイナイト、パーライトを意味し、マトリクス中のパーライトの存在量が10体積%以下である金属組織を有し、かつ下記(1)式により定まるフェライト結晶粒展伸度EFが5.0以上である未焼鈍冷延鋼板を圧延方向が長手方向となるように溶接造管してなる耐食性と衝撃曲げ靭性に優れた引張強さ980N/mm2以上の高強度鋼管。
F=N1/N2 …(1)
ここで、
F:圧延板のフェライト結晶粒展伸度。
1:圧延方向および板厚方向に平行な断面(L断面)の顕微鏡視野において板厚方向の一定長さXの線分によって切断される結晶粒の数。ただし顕微鏡視野および線分の長さXはN1が10以上となるように設定する。
2:前記視野において圧延方向の前記長さXの線分によって切断される結晶粒の数。
By mass%, C: 0.1 to 0.2%, Si: 1.5% or less, Mn: more than 1.5 to 2.5%, P: 0.005 to 0.03%, S: 0.0. 005% or less, Cu: 0.05 to 0.5%, acid-soluble Al: 0.005 to 0.1%, balance Fe and chemical composition consisting of inevitable impurities, and matrix is a single phase of ferrite Metal structure or a matrix composed of a ferrite phase and a second phase of 50% by volume or less, wherein the second phase means martensite, bainite and pearlite, and the amount of pearlite in the matrix is 10% by volume or less has, and the corrosion resistance of the following (1) unannealed cold-rolled steel sheet rolling direction determined ferrite grain elongation rate E F is 5.0 or more by equation formed by welding pipe such that the longitudinal direction High-strength steel pipe with a tensile strength of 980 N / mm 2 or more with excellent impact bending toughness.
E F = N 1 / N 2 (1)
here,
E F : Extension degree of ferrite crystal grains of the rolled plate.
N 1 : Number of crystal grains cut by a line segment of a certain length X in the plate thickness direction in a microscopic field of a cross section (L cross section) parallel to the rolling direction and the plate thickness direction. However, the microscope field of view and the length X of the line segment are set so that N 1 is 10 or more.
N 2 : Number of crystal grains cut by the line segment of the length X in the rolling direction in the visual field.
化学組成が、質量%で、C:0.03〜0.2%、Si:1.5%以下、Mn:1.5超え〜2.5%、P:0.005〜0.03%、S:0.005%以下、Cu:0.05〜0.5%、酸可溶Al:0.005〜0.1%であり、Ti:0.15%以下、Nb:0.15%以下の1種以上を含有し、残部Feおよび不可避的不純物からなり、TiとNbの合計含有量が0.03%以上である請求項3に記載の高強度鋼管。   Chemical composition is mass%, C: 0.03-0.2%, Si: 1.5% or less, Mn: more than 1.5-2.5%, P: 0.005-0.03%, S: 0.005% or less, Cu: 0.05-0.5%, acid-soluble Al: 0.005-0.1%, Ti: 0.15% or less, Nb: 0.15% or less 4. The high-strength steel pipe according to claim 3, wherein the high-strength steel pipe comprises at least one of the following: the balance Fe and inevitable impurities, and the total content of Ti and Nb is 0.03% or more. さらにNi:1%以下、Cr:1%以下、Mo:0.3%以下、V:0.3%以下、Zr:0.3%以下の1種以上を含有する化学組成を有する請求項1〜4のいずれかに記載の高強度鋼管。   Furthermore, it has a chemical composition containing one or more of Ni: 1% or less, Cr: 1% or less, Mo: 0.3% or less, V: 0.3% or less, Zr: 0.3% or less. The high-strength steel pipe in any one of -4. 請求項1〜5のいずれかに記載の化学組成を有するスラブを熱間圧延したのち、スケール除去処理、冷間圧延、溶接造管の工程により鋼管を製造するに際し、熱間圧延において熱延仕上温度を(Ar3点−20℃)以上、仕上圧延最終パス終了後、巻取までの平均冷却速度を20〜100℃/秒、巻取温度を450〜650℃として下記(1)式により定まるフェライト結晶粒展伸度EFが2.0以上の熱延鋼板を作り、冷間圧延において圧延率を40〜80%として、マトリクスがフェライト単相である金属組織、またはマトリクスがフェライト相+50体積%以下の第2相からなり、前記第2相はマルテンサイト、ベイナイト、パーライトを意味し、マトリクス中のパーライトの存在量が10体積%以下である金属組織を有し、かつ同フェライト結晶粒展伸度EFが5.0以上の冷延鋼板を作り、溶接造管において未焼鈍のままの冷延鋼板をその圧延方向が管の長手方向となるように造管する高強度鋼管の製造方法。
F=N1/N2 …(1)
ここで、
F:圧延板のフェライト結晶粒展伸度。
1:圧延方向および板厚方向に平行な断面(L断面)の顕微鏡視野において板厚方向の一定長さXの線分によって切断される結晶粒の数。ただし顕微鏡視野および線分の長さXはN1が10以上となるように設定する。
2:前記視野において圧延方向の前記長さXの線分によって切断される結晶粒の数。
After hot rolling the slab having the chemical composition according to any one of claims 1 to 5, when producing a steel pipe by the steps of scale removal treatment, cold rolling, and welded pipe forming, hot rolling finish in hot rolling The temperature is (Ar 3 point−20 ° C.) or more, and after the final pass of finish rolling, the average cooling rate until winding is 20 to 100 ° C./second and the winding temperature is 450 to 650 ° C. ferrite grain elongation rate E F is made a 2.0 or more hot-rolled steel sheet, as 40% to 80% of rolling reduction in cold rolling, the metal structure, or matrix ferrite phase +50 volume matrix is ferrite single phase % consists of the following second phase, the second phase means martensite, bainite, pearlite, abundance of pearlite in the matrix has a metal structure is 10 vol% or less, and the Fe High strength Ito grain elongation rate E F is made 5.0 or more cold-rolled steel sheet, a cold rolled steel sheet remains unannealed its rolling direction to pipe-making so that the longitudinal direction of the pipe in welding pipe Steel pipe manufacturing method.
E F = N 1 / N 2 (1)
here,
E F : Extension degree of ferrite crystal grains of the rolled plate.
N 1 : Number of crystal grains cut by a line segment of a certain length X in the plate thickness direction in a microscopic field of a cross section (L cross section) parallel to the rolling direction and the plate thickness direction. However, the microscope field of view and the length X of the line segment are set so that N 1 is 10 or more.
N 2 : Number of crystal grains cut by the line segment of the length X in the rolling direction in the visual field.
JP2009081745A 2009-03-30 2009-03-30 High strength steel pipe excellent in corrosion resistance and impact bending toughness and method for producing the same Active JP5460099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081745A JP5460099B2 (en) 2009-03-30 2009-03-30 High strength steel pipe excellent in corrosion resistance and impact bending toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081745A JP5460099B2 (en) 2009-03-30 2009-03-30 High strength steel pipe excellent in corrosion resistance and impact bending toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010235964A JP2010235964A (en) 2010-10-21
JP5460099B2 true JP5460099B2 (en) 2014-04-02

Family

ID=43090570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081745A Active JP5460099B2 (en) 2009-03-30 2009-03-30 High strength steel pipe excellent in corrosion resistance and impact bending toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP5460099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451315B (en) * 2020-06-01 2021-04-09 江苏银环精密钢管有限公司 Processing technology of U-shaped seamless stainless steel pipe and stainless steel pipe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060574A (en) * 1996-08-19 1998-03-03 Nkk Corp Ultrahigh tensile strength steel strip and steel tube excellent in durability, and production thereof
JPH11256229A (en) * 1998-03-13 1999-09-21 Nkk Corp Steel excellent in brittle fracture propagation stopping characteristic and its production
JP2004027368A (en) * 2000-09-20 2004-01-29 Sumitomo Metal Ind Ltd Electric resistance welded tube and its production method
JP4093177B2 (en) * 2003-11-19 2008-06-04 住友金属工業株式会社 Steel material for hydrofoam, electric sewing tube for hydrofoam, and manufacturing method thereof
JP5188239B2 (en) * 2008-03-31 2013-04-24 日新製鋼株式会社 High strength steel pipe and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010235964A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5463715B2 (en) Manufacturing method of high strength welded steel pipe for automobile structural members
JP5303842B2 (en) Manufacturing method of ERW welded steel pipe for heat treatment with excellent flatness
EP3409803B1 (en) High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor
EP1717331B1 (en) Steel sheet or steel pipe being reduced in expression of bauschinger effect, and method for production thereof
KR101706839B1 (en) Hollow stabilizer, and steel pipe for hollow stabilizers and method for production thereof
KR101321681B1 (en) Hollow member and method for manufacturing same
JP4466619B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
EP3276026B1 (en) Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
JP5040475B2 (en) Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
WO2010128545A1 (en) High‑strength stainless steel pipe
US20140352852A1 (en) Hot rolled high tensile strength steel sheet and method for manufacturing same
JP4824143B2 (en) High strength steel pipe, steel plate for high strength steel pipe, and manufacturing method thereof
JP4910694B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP5188239B2 (en) High strength steel pipe and manufacturing method thereof
JP2009091633A (en) High strength steel excellent in deformable performance, and its producing method
JP2019116658A (en) Electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP5499559B2 (en) High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same
JP4859240B2 (en) Manufacturing method of ERW steel pipe for hollow stabilizer
JP2006312773A (en) Non-heat-treated, high tensile strength welded steel tube for automobile structure member, which is excellent in formability and low-temperature toughness and superior in torsional fatigue resistance after cross section forming processing, and method for manufacturing the same
JP4859618B2 (en) Manufacturing method of hollow stabilizer with excellent delayed fracture resistance
JP2002038242A (en) Stainless steel tube for structural member of automobile excellent in secondary working property
JP5224780B2 (en) High strength stainless steel pipe
JP2009203492A (en) High-tensile welded steel pipe for automobile structural member, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5460099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350