JP4193308B2 - Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking - Google Patents

Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking Download PDF

Info

Publication number
JP4193308B2
JP4193308B2 JP32352299A JP32352299A JP4193308B2 JP 4193308 B2 JP4193308 B2 JP 4193308B2 JP 32352299 A JP32352299 A JP 32352299A JP 32352299 A JP32352299 A JP 32352299A JP 4193308 B2 JP4193308 B2 JP 4193308B2
Authority
JP
Japan
Prior art keywords
ferrite
steel
less
stainless steel
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32352299A
Other languages
Japanese (ja)
Other versions
JP2001140040A (en
Inventor
朋彦 大村
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32352299A priority Critical patent/JP4193308B2/en
Publication of JP2001140040A publication Critical patent/JP2001140040A/en
Application granted granted Critical
Publication of JP4193308B2 publication Critical patent/JP4193308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ラインパイプ、油井管または化学プラント用配管に好適な、耐硫化物応力割れ性に優れた低炭素フェライト−マルテンサイト二相ステンレス溶接鋼管に関する。
【0002】
【従来の技術】
低炭素マルテンサイト系ステンレス鋼は、油井用材料として近年開発が進められている鋼種である。この鋼種は、二相ステンレス鋼よりもCr等の高価な元素の含有量が少ないため安価であり、炭酸ガスのみかまたは炭酸ガスと微量硫化水素ガスの混合ガスを含む湿潤環境中で良好な耐食性を示す。
【0003】
低炭素マルテンサイト系ステンレス鋼からなる鋼管は、一般には継目無鋼管として製造されることが多い。継目無鋼管は、信頼性に関して高く評価されているが、いくつかの問題点がある。一つは製管法の原理上、肉厚10mm以下の薄肉管の製造が困難なことである。ラインパイプの溶接施工に際しては、強度の許す範囲でなるべく薄肉である方が、溶接時の積層数を減らし施工コストを下げる観点から望ましいことは言うまでもない。また、金属組織中にフェライト相が析出すると熱間加工性が著しく低下し、中かぶれ等の傷が発生するため、極力マルテンサイト単相の組織としなくてはならない。
【0004】
これらの理由から、近年は溶接による高耐食性ステンレス鋼管の製造方法が開発されてきた。低炭素マルテンサイト系ステンレス鋼は、低炭素であることから溶接性が良く、ガスタングステンアーク溶接法(以下GTAW法と記す)やガスメタルアーク溶接法(以下GMAW法と記す)による周溶接継ぎ手を前提とするラインパイプに好適である。
【0005】
例えば特開平4−191319号公報および特開平4−191320号公報には、低炭素マルテンサイト系ステンレス鋼の素材帯鋼を管状に成形して、突き合わせ部を電縫溶接法(以下、ERW法と記す)によって造管溶接する製法が開示されている。また、小径管ではGTAW法あるいはプラズマ溶接法(以下、PAW法という)による突き合わせ造管溶接も検討されている。
【0006】
近年高出力のレーザ溶接機を用いた突き合わせ造管溶接法も開発されており、特開平9−164425号公報には突き合わせレーザ溶接で製管し、その後溶接部近傍に適正な後熱処理を施すことにより耐食性を改善する方法が開示されている。
【0007】
また、継目無鋼管よりさらに大径の管の需要も高まりつつある。大径管に関しては、厚鋼板を素材として用いて、サブマージドアーク溶接(以下、SAW法と記す)による造管溶接も検討されつつある。
【0008】
低炭素マルテンサイト系ステンレス鋼からなる溶接鋼管は、マルテンサイト単相の組織であるため、圧延ままでは高強度かつ粗粒組織であり、靭性や、耐硫化物応力割れ(以後SSCと言う)性等の耐食性が低下してしまう。このため、マルテンサイト単相鋼では一般に、熱延後に細粒化目的で焼入れ、焼戻し熱処理や、軟化目的で長時間の焼鈍熱処理を施して靭性や耐食性を確保しなくてはならない。
【0009】
また、熱間圧延ままではラインパイプとしての必要強度である、API規格(アメリカ石油協会規格)5LCにおいて、X56級〜X80級(降伏応力が386〜655MPa)よりも高強度となることが多い。このためにも、溶接製管前または溶接製管後に軟化目的の熱処理が必須となる。
【0010】
例えば特開平4−191319号公報には、熱延後の巻き取り温度を600℃以上とすること、およびERW製管後に焼入れ、焼戻しの熱処理を施す必要のあることが示されている。しかし、このように熱処理工程を加えることは生産コスト高となる。
【0011】
【発明が解決しようとする課題】
本発明の課題は、素材の熱延鋼板や溶接製管後の鋼管に、焼入れ、焼戻し熱処理や長時間の焼鈍熱処理を施さなくとも油井環境において優れた耐SSC性と靱性を発揮する溶接鋼管を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは上記課題を解決するため、鋭意実験、検討した結果、熱間圧延ままでも製品にすることが前提であれば、母相であるマルテンサイト相中にフェライト相を所定の割合で析出させたフェライト相とマルテンサイト相の二相の金属組織とすれば、熱間圧延ままでも高強度化の抑制ができ、しかも良好な耐SSC性が得られるとの知見を得た。本発明はこのような知見に基づいてなされたもので、その要旨は下記のとおりである。
【0013】
(1)質量%で、C:0.02%以下、P:0.04%以下、S:0.01%以下、Ni:2〜8%、Cr:11.5〜15%、Mo:1.5〜4%、Si:0.2〜1%、Mn:0.2〜1%、sol.Al:0.02〜0.1%、Cu:0〜1.2%、Ti:0.016〜0.2%、N:0.02%以下、V:0.1%以下を含有し、残部はFeおよび不純物からなり、金属組織中のフェライト量が体積%で15〜40%であることを特徴とする耐硫化物応力割れ性に優れた低炭素フェライト−マルテンサイト二相ステンレス溶接鋼管。
【0014】
一般には、マルテンサイト系ステンレス鋼にフェライト相が析出すると、靭性や耐食性等の性能が劣化すると言われている。例えば、靭性に関してはフェライト系ステンレス鋼が靱性が不芳であることから、マルテンサイ系トステンレス鋼にフェライト相が析出すれば靱性が劣化することは容易に推定される。また耐食性に関しては、フェライト相が析出することにより、耐食皮膜の保護に有効な元素であるCrやMoを母相のマルテンサイトから吸収してしまい、母相の耐食性が十分に確保できなくなることも予想されることである。したがって、油井環境で用いられる鋼管でフェライト相の析出を活用した例は従来なかったが、本発明者らは、フェライト相はマルテンサイト相に比べれば軟化相であることに着目して、以下のような試験をおこなった。
【0015】
質量%で、C:0.012%、Si:0.43%、Mn:0.51%、Mo:2.53%、sol.Al:0.033%、Ti:0.034%、Ni:3.55%、V:0.02%を基本成分とし、Cr含有量を10〜17%、NI含有量を0〜10%およびMo含有量を0〜5%の範囲で種々変化させた低炭素マルテンサイトステンレス鋼を溶製し、分解圧延してスラブとし、加熱温度を1100〜1250℃に種々変化させて熱間圧延した。この熱延したままの鋼板を用いて、引張試験、シャルピ衝撃試験および耐SSC性試験を実施した。
【0016】
図1は、引張試験結果から得られたフェライト量と降伏応力の関係を示す図である。マルテンサイト中のフェライト量が増加するにしたがって強度が低下している。
【0017】
図2は、シャルピー衝撃試験結果から得られたフェライト量(体積%)と破面遷移温度との関係を示す図である。フェライト量が15%以上で、遷移温度は−20℃以下となっている。金属組織を調べた結果、圧延ままでもあってもフェライト量が15〜80%の場合極めて細粒な組織となっていた。
【0018】
図3は、耐SSC性試験試験で得られたフェライト量(体積%)と硫化水素分圧の関係を示す図である。靭性と同様にフェライト量15%以上で微細組織となるため、良好な耐SSC性を示している。ただし耐食皮膜の保護性の観点からは、フェライト相はCrやMoを母相のマルテンサイト相から吸収してしまい、マルテンサイト相の耐食性を間接的に低下させてしまうので、フェライト量が40%を超えると耐SSC性がかえって低下してしまうことが分った。
【0019】
【発明の実施の形態】
以下、本発明で規定する化学組成と金属組織について詳しく説明する。化学成分の含有量の%は全て質量%、金属組織の量の表示は体積%である。
【0020】
C:0.02%以下
Cは、溶接性を確保する観点から低ければ低いほど望ましい。ただしC量をむやみに減らすことはコスト上昇を伴うため、経済性の観点から0.002%以上とするのが望ましい。0.02%を超えると、マルテンサイト相の強度が高くなり過ぎ、また溶接時に熱影響部(以下、HAZと記す)において著しい硬化を起こして耐SSC性を低下させるので、その上限を0.02%とした。
【0021】
P:0.04%以下
Pは、不純物として鋼中に不可避的に存在し、粒界に偏析して耐SSC性を劣化させる。特に、その含有量が0.04%を超えると耐SSC性の劣化が著しくなるため、含有量は0.04%以下にする必要がある。なお、耐SSC性を高めるためにPの含有量はできるだけ低くすることが望ましい。
【0022】
S:0.01%以下
Sは、Pと同様に不純物として鋼中に不可避的に存在するが、粒界に偏析することと、硫化物系の介在物を多量に生成することによって耐SSC性を低下させる。その含有量が、0.01%を超えると耐SSC性の低下が著しくなため含有量は0.01%以下にする必要がある。なお、耐SSC性を高めるためにSの含有量はできるだけ低くすることが望ましい。
【0023】
Ni:2〜8%以下
Niは、Mnと同様にマルテンサイト量を増加させる効果があり、この観点からは2%以上含有させる必要がある。一方、過剰に含有させると高価な鋼となり経済性が損なわれ、また固溶強化によりマルテンサイト相の強度上昇を招いて、耐SSC性を低下させる。この観点から上限は8%とした。
【0024】
Cr:11.5〜15%
Crは、耐食皮膜を保護し耐SSC性を高める元素である。この効果を得るためには11.5%以上含有させる必要がある。一方、Crはフェライト安定化元素であるので、15%を超えて過剰に含有させると、マルテンサイト安定化元素である高価なNi等の合金元素を増量する必要が生じ、経済性が損なわれる。この観点から上限は15%とした。
【0025】
Mo:1.5〜4%以下
Moは、耐食皮膜を保護し耐SSC性を高める元素である。この効果を得るためには、1.55以上とするのが好ましい。また、Crと同様にフェライト安定化元素であるので、過度に含有させるとマルテンサイト安定化元素である高価なNi等の合金元素を増量する必要が生じ、経済性が損なわれる。この観点から上限を4%とした。
【0026】
Si:0.2〜1%
Siは、特に添加しなくてもよいが、添加すれば溶鋼の脱酸に有効である。その効果を得るには0.2%以上とするしかしその含有量が1%を超えると粒界強度を低め耐SSC性を低下させるので、その上限は1%である。
【0027】
Mn:0.2〜1%
Mnは、添加しなくてもよいが、添加すればマルテンサイトの占める割合を高める効果がある。添加する場合は0.2%以上含有させるしかし1%を超えて含有させると粒界強度を弱めたり、硫化水素中で活性溶解したりすることにより耐SSC性を低下させる。したがって、上限を1%とした。望ましいMn量は0.05%以下である。
【0028】
sol.Al:0.02〜0.1%
Alは、添加しなくてもよいが、添加すれば溶鋼の脱酸に有効である。その効果を得るには、0.02%以上とするしかし0.1%を超えて含有させると粗大なAl系介在物が多くなって耐SSC性が低下する。したがってその上限を0.1%とした。
【0029】
Ti:0.016〜0.2%
Tiは必要により含有させるが、含有させれば鋼中の不純物であるNをTiNとして固定する効果がある。また、N固定に必要とするよりも過剰なTiは、炭化物となってCをトラップし、周溶接部のHAZにおける硬化を抑制する。その効果を得るには、0.016%以上とする。好ましい下限は0.1%である。しかし0.2%を超えて含有させると加工性を低下させたり、炭窒化物自身がSSCの起点となったりするため、その上限は0.2%とした。
【0030】
V:0.1%以下
Vは、溶解減量から不純物として不可避的に混入する元素であ。特に0.1%を超えると微細なVCが析出するので高強度となりすぎ、耐SSC性が低下するので上限を0.1%とした。望ましいV量は0.05%以下である。
【0031】
N:0.02%以下
Nは、不純物として鋼中に存在し、その含有量が0.02%を超えると、熱間加工性が損なわれ製造が困難となり、かつマルテンサイト相の強度上昇を招いて耐SSC性が低下する。望ましいN量は0.01%以下である。
【0032】
Cu:0〜1.2%
Cuは必要により含有させるが、含有させれば耐SSC性を高める効果がある。その効果を得るためには0.1%以上とするのが好ましい。一方、1.2%を超えると耐食性への効果が飽和し、かつマルテンサイト相の強度上昇により耐SSC性をかえって低下させる。この観点から、上限は1.2%とした。
【0033】
金属組織:
金属組織をマルテンサイト一相にすれば、熱間圧延後または溶接製管後に強度調整のための熱処理が必要となるため、フェライト相とマルテンサイト相の二相組織とする。
【0034】
二相組織にすれば、それぞれの相の粒成長が抑制され、圧延ままでも極めて細粒組織となり、靭性や耐SSC性が改善される。
【0035】
圧延ままで降伏強度655MPa以下とし、かつ良好な靭性を得るには、15%以上のフェライト相を析出させる必要がある。一方、耐SSC性の観点からは、フェライト相が40%を超えると、母相のマルテンサイト相からCrやMoを吸収して間接的に耐SSC性を低下させる。この観点から、フェライト相の体積分率は15〜40%とした。
【0036】
なお、フェライト量の調整は、CrおよびMoの含有量と熱間圧延のための加熱温度との組み合わせによりおこなうことができる。例えば、フェライトの残存量を多くする場合は、フェライトフォーマのCr、Mo含有量を多く、し、加熱温度を高くするとよい。
【0037】
次に、溶接鋼管の製造方法について以下に説明する。
【0038】
溶接鋼管の素材鋼板には、通常の分塊圧延および熱間圧延により製造した、熱延鋼板あるいは厚鋼板を用いる。熱延方法については、通常の加熱温度、例えば1100℃以上1250℃以下の範囲に加熱した後、通常の方法で圧延して仕上げればよい。ただし、上記のようにフェライト量を調節するために、化学組成を考慮して加熱温度をきめる必要がある。また、強度の微調整のため圧延後に短時間の焼戻しを実施してもよい。焼入れ、焼戻し熱処理や長時間の焼鈍熱処理は経済性の観点から望ましくなく、本発明の目的に合わない。
【0039】
熱延鋼板あるいは厚鋼板は、目標の鋼管外周長とほぼ同じ幅に切断して円筒状に成形して突き合わせた部分を溶接して溶接鋼管とする。溶接方法についても特に制限は無く、溶接部の性能の保証される溶接方法であればいかなる方法でもよい。薄肉管であれば、GTAW法やGMAW法、プラズマ溶接法等のアーク溶接法を用いてもよいし、製管コスト低減の観点からERW法を用いてもよい。また、溶接部の品質確保の観点から、電子ビーム溶接法やレーザ溶接法を用いてもよい。
【0040】
造管溶接には、熱延鋼板を成形ロール群等の加工装置にてオープンパイプ状に成形し、帯鋼両エッヂ相互をスクイズロール等の手段で突き合わせ、この突き合わせ部を接合して造管溶接する手法を採ればよい。製管速度向上のため、電縫溶接法で用いられている局部加熱可能な管状の誘導加熱コイルあるいはコンタクトチップを用いた高周波加熱手段により予熱してから造管溶接をおこなってもよい。また、溶接製管後に高周波加熱手段を用いて溶接部の組織回復を目的とした局部熱処理を施してもよい。
【0041】
厚肉鋼管の製造には、SAWによる製管が好ましい。厚鋼板を通常のCプレス、UプレスおよびOプレスにより段階的に管状に成形し、突き合わせ部をSAWにより溶接製管した後、溶接ままで製品とする等の手法を用いればよい。溶接条件や溶接金属の成分は、所望の性能を得られる手法であればよく、特に限定はされない。
【0042】
【実施例】
表1に示す16種の化学組成の鋼を溶製し、鋼塊を鍛造してスラブとした。同表の記号A〜Hは化学組成が本発明で規定する範囲内にあり、1〜8は規定範囲外である。各スラブを、1100℃〜1250℃の温度範囲で種々変化させて加熱した後、熱間圧延して熱延鋼板とした。なお、加熱温度を変化させたのはフェライト量を調節するためである。
【0043】
【表1】

Figure 0004193308
【0044】
各熱延したままの鋼板を素材として、レーザ溶接、SAW、ERW、PAWおよびGTAWにより溶接管を製造した。レーザ溶接、ERW、PAWは溶加材を用いずに造管溶接をおこなった。GTAW、SAWは、22Cr系または25Cr系のフェライトオーステナイト二相ステンレス鋼を溶加材として用い、造管溶接をおこなった。すべて、溶接後の後熱処理は実施しなかった。
【0045】
金属組織中のフェライト相の体積分率は、熱間圧延したままの鋼板断面の樹脂埋材をビレラ試薬で腐食させて組織観察をし、点算法にて測定した。各鋼板とも3箇所の断面を測定し、その平均値を算出して体積分率とした。
【0046】
熱延鋼板から、その幅方向に素材鋼板の肉厚に応じた種種の寸法の丸棒引張試験片を採取し、常温で引張り試験を実施し降伏強度(YS)を測定した。
【0047】
また、熱延鋼板の幅方向に素材鋼板の肉厚に応じたシャルピー衝撃試験片を採取し、種種の温度で衝撃試験を実施した後、破面観察をして破面遷移温度(vTs)を測定した。
【0048】
さらに、SSC試験は、厚さ2mm、幅10mm、長さ75mmの応力腐食試験片を溶接管の母材部および溶接部から幅方向方向に採取し、四点曲げ定歪み法により素材鋼のYSの100%の応力を負荷して試験液中に336時間浸漬しSSCの発生の有無を調べた。試験液には0.001〜0.01MPa,H2S(CO2バランス)を飽和させた、酢酸−酢酸ナトリウムを所定量添加してpHを3.5に調整した5%NaCl水溶液を用いた。
【0049】
これら試験結果を表2および表3に示す。
【0050】
【表2】
Figure 0004193308
【0051】
【表3】
Figure 0004193308
【0052】
表2、表3中の耐SSC欄の評価基準は、SSCの発生が認められなかったものを良好「○」、SSCの発生したものを不芳「×」とした。
【0053】
表2より明らかなように、本発明で規定する範囲内の化学組成および金属組織を備えた鋼では、YSが648MPa以下で、靭性と耐食性にすぐれている。
【0054】
一方、表3に示されているように、試験番号21〜32の化学組成が本発明で規定する範囲内にあっても、フェライト量が規定範囲外であれば靱性、強度および耐SSC性の1つ以上の特性がわるく実用に耐えない。また、化学組成が本発明で規定する範囲外の試験番号33〜40については、耐SSC性に劣り、靱性、降伏応力の特性がわるい。
【0055】
【発明の効果】
素材の熱延鋼板や溶接製管後の鋼管に、焼入れ、焼戻し熱処理や長時間の焼鈍熱処理を施さなく、油井環境において優れた耐SSC性と靱性を発揮する溶接鋼管を安価に提供することができ、その工業的価値は大である。
【図面の簡単な説明】
【図1】フェライト量と降伏応力の関係を示す図である。
【図2】フェライト量と破面遷移温度との関係を示す図である。
【図3】フェライト量と硫化水素分圧の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-carbon ferrite-martensitic duplex stainless steel welded steel pipe excellent in sulfide stress cracking resistance, suitable for line pipes, oil well pipes or chemical plant pipes.
[0002]
[Prior art]
Low carbon martensitic stainless steel is a steel type that has been developed recently as a material for oil wells. This type of steel is less expensive than duplex stainless steel because it contains less expensive elements such as Cr, and has better corrosion resistance in a humid environment containing only carbon dioxide or a mixed gas of carbon dioxide and trace hydrogen sulfide gas. Indicates.
[0003]
Generally, a steel pipe made of low carbon martensitic stainless steel is often manufactured as a seamless steel pipe. Seamless steel pipes are highly valued for their reliability, but have several problems. One is that it is difficult to manufacture a thin tube having a thickness of 10 mm or less due to the principle of the pipe manufacturing method. Needless to say, when welding the line pipe, it is desirable that the thickness is as thin as possible within the range permitted by the strength, from the viewpoint of reducing the number of layers during welding and reducing the construction cost. Further, when the ferrite phase is precipitated in the metal structure, the hot workability is remarkably lowered, and scratches such as medium rash are generated. Therefore, the structure should be made as a martensite single phase as much as possible.
[0004]
For these reasons, in recent years, methods for producing high corrosion resistance stainless steel pipes by welding have been developed. Low-carbon martensitic stainless steel has good weldability due to its low carbon content, and can be used for circumferential welding joints by gas tungsten arc welding (hereinafter referred to as GTAW) or gas metal arc welding (hereinafter referred to as GMAW). Suitable for the assumed line pipe.
[0005]
For example, in Japanese Patent Laid-Open Nos. 4-191319 and 4-191320, a low-carbon martensitic stainless steel strip is formed into a tubular shape, and the butt portion is electro-welded (hereinafter referred to as ERW method). The manufacturing method for pipe making and welding is disclosed. For small diameter pipes, butt pipe welding by GTAW method or plasma welding method (hereinafter referred to as PAW method) is also being studied.
[0006]
In recent years, a butt tube welding method using a high-power laser welding machine has also been developed. In JP 9-164425, pipes are produced by butt laser welding, and then an appropriate post-heat treatment is performed in the vicinity of the weld. Discloses a method for improving the corrosion resistance.
[0007]
In addition, there is a growing demand for pipes with a larger diameter than seamless steel pipes. For large-diameter pipes, pipe-forming welding by submerged arc welding (hereinafter referred to as SAW method) using a thick steel plate as a raw material is also being studied.
[0008]
A welded steel pipe made of low-carbon martensitic stainless steel has a martensite single-phase structure, so it is a high-strength and coarse-grained structure as it is rolled, and has toughness and resistance to sulfide stress cracking (hereinafter referred to as SSC). Corrosion resistance such as is reduced. For this reason, in general, martensitic single phase steel must be subjected to quenching and tempering heat treatment for the purpose of grain refinement after hot rolling and long-time annealing heat treatment for softening purposes to ensure toughness and corrosion resistance.
[0009]
Further, in the API standard (American Petroleum Institute standard) 5LC, which is a necessary strength as a line pipe if it is hot-rolled, the strength is often higher than X56 class to X80 class (yield stress is 386 to 655 MPa). For this reason, heat treatment for the purpose of softening is essential before welding pipe making or after welding pipe making.
[0010]
For example, Japanese Patent Application Laid-Open No. 4-191319 discloses that the coiling temperature after hot rolling should be 600 ° C. or higher and that it is necessary to perform heat treatment such as quenching and tempering after ERW pipe making. However, adding the heat treatment step in this way increases the production cost.
[0011]
[Problems to be solved by the invention]
It is an object of the present invention to provide a welded steel pipe that exhibits excellent SSC resistance and toughness in an oil well environment without subjecting the raw hot-rolled steel sheet or the steel pipe after welded pipe forming to quenching, tempering heat treatment or long-time annealing heat treatment. It is to provide.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive experiments and studies. As a result, if it is premised to be a product even in hot rolling, the ferrite phase is contained in the martensite phase that is the parent phase at a predetermined ratio. The present inventors have found that if the two-phase metal structure of the precipitated ferrite phase and martensite phase is used, it is possible to suppress the increase in strength even in hot rolling, and that good SSC resistance can be obtained. The present invention has been made based on such findings, and the gist thereof is as follows.
[0013]
(1) By mass%, C: 0.02% or less, P: 0.04% or less, S: 0.01% or less, Ni: 2-8%, Cr: 11.5-15%, Mo: 1 5 to 4%, Si: 0.2 to 1%, Mn: 0.2 to 1%, sol. Al: 0.02 to 0.1%, Cu: 0 to 1.2%, Ti: 0.0. 016 to 0.2%, N: 0.02% or less, V: 0.1% or less, the balance is made of Fe and impurities, and the ferrite content in the metal structure is 15 to 40% by volume. A low-carbon ferrite-martensitic duplex stainless steel welded steel pipe excellent in sulfide stress cracking resistance.
[0014]
In general, it is said that when a ferrite phase precipitates in martensitic stainless steel, performance such as toughness and corrosion resistance deteriorates. For example, regarding toughness, ferritic stainless steel is poor in toughness, and therefore it is easily estimated that if a ferrite phase precipitates in martensitic stainless steel, the toughness deteriorates. As for corrosion resistance, the precipitation of the ferrite phase may cause Cr and Mo, which are effective elements for protecting the corrosion-resistant film, to be absorbed from the martensite of the matrix, and the corrosion resistance of the matrix cannot be sufficiently secured. It is to be expected. Therefore, there has been no example of utilizing precipitation of ferrite phase in steel pipes used in oil well environments, but the present inventors have focused on the fact that the ferrite phase is a softened phase compared to the martensite phase, and the following Such a test was conducted.
[0015]
In mass%, C: 0.012%, Si: 0.43%, Mn: 0.51%, Mo: 2.53%, sol.Al: 0.033%, Ti: 0.034%, Ni: 3.55%, V: 0.02% as a basic component, Cr content 10 to 17%, NI content 0 to 10% and Mo content variously changed in the range of 0 to 5% Carbon martensitic stainless steel was melted, decomposed and rolled into slabs, and hot-rolled at various heating temperatures ranging from 1100 to 1250 ° C. Using this hot-rolled steel sheet, a tensile test, a Charpy impact test, and an SSC resistance test were performed.
[0016]
FIG. 1 is a diagram showing the relationship between the ferrite content and the yield stress obtained from the tensile test results. The strength decreases as the ferrite content in the martensite increases.
[0017]
FIG. 2 is a graph showing the relationship between the ferrite content (volume%) obtained from the Charpy impact test result and the fracture surface transition temperature. The ferrite content is 15% or more, and the transition temperature is −20 ° C. or less. As a result of investigating the metal structure, it was found to be a very fine structure when the ferrite content was 15 to 80%, even if it was rolled.
[0018]
FIG. 3 is a graph showing the relationship between the ferrite content (volume%) and the hydrogen sulfide partial pressure obtained in the SSC resistance test. Similar to toughness, it has a fine structure with a ferrite content of 15% or more, and therefore exhibits good SSC resistance. However, from the viewpoint of the protection of the corrosion-resistant film, the ferrite phase absorbs Cr and Mo from the martensite phase of the parent phase and indirectly reduces the corrosion resistance of the martensite phase, so the ferrite content is 40%. It has been found that the SSC resistance deteriorates when the amount exceeds.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the chemical composition and metal structure defined in the present invention will be described in detail. All the percentages of the chemical component content are mass%, and the amount of metal structure is indicated by volume%.
[0020]
C: 0.02% or less C is preferably as low as possible from the viewpoint of securing weldability. However, since reducing the amount of C unnecessarily involves an increase in cost, it is desirable to make it 0.002% or more from the viewpoint of economy. If it exceeds 0.02%, the strength of the martensite phase becomes excessively high, and the SSC resistance is lowered due to significant hardening in the heat-affected zone (hereinafter referred to as HAZ) during welding. 02%.
[0021]
P: 0.04% or less P is unavoidably present in the steel as an impurity and segregates at the grain boundary to deteriorate the SSC resistance. In particular, when the content exceeds 0.04%, the SSC resistance deteriorates remarkably, so the content needs to be 0.04% or less. In order to improve the SSC resistance, it is desirable that the P content be as low as possible.
[0022]
S: 0.01% or less S is unavoidably present in the steel as an impurity as in the case of P. However, S is resistant to SSC by segregating at grain boundaries and producing a large amount of sulfide-based inclusions. Reduce. When the content exceeds 0.01%, the SSC resistance is remarkably lowered, so the content needs to be 0.01% or less. In addition, in order to improve SSC resistance, it is desirable to make S content as low as possible.
[0023]
Ni: 2 to 8% or less Ni has an effect of increasing the amount of martensite in the same manner as Mn. From this viewpoint, it is necessary to contain 2% or more. On the other hand, if it is contained excessively, it becomes expensive steel and the economic efficiency is impaired, and the strength of the martensite phase is increased by solid solution strengthening, and the SSC resistance is lowered. From this viewpoint, the upper limit was made 8%.
[0024]
Cr: 11.5-15%
Cr is an element that protects the corrosion-resistant film and increases the SSC resistance. In order to acquire this effect, it is necessary to make it contain 11.5% or more. On the other hand, since Cr is a ferrite stabilizing element, if it is contained excessively in excess of 15%, it is necessary to increase the amount of an expensive alloy element such as Ni that is a martensite stabilizing element, which impairs economic efficiency. From this viewpoint, the upper limit was made 15%.
[0025]
Mo: 1.5 to 4% or less Mo is an element that protects the corrosion-resistant film and enhances the SSC resistance. In order to acquire this effect, it is preferable to set it as 1.55 or more. Moreover, since it is a ferrite stabilizing element like Cr, when it contains excessively, it will be necessary to increase the amount of expensive alloy elements, such as Ni which is a martensite stabilizing element, and economical efficiency will be impaired. From this viewpoint, the upper limit was made 4%.
[0026]
Si: 0.2 to 1%
Although Si does not need to be added, it is effective for deoxidation of molten steel. In order to obtain the effect, the content is made 0.2% or more . However, if the content exceeds 1%, the grain boundary strength is lowered and the SSC resistance is lowered, so the upper limit is 1%.
[0027]
Mn: 0.2 to 1%
Mn may not be added, but if added, it has the effect of increasing the proportion of martensite. When adding, it is made to contain 0.2% or more . However, if the content exceeds 1%, the grain boundary strength is weakened or the SSC resistance is lowered by active dissolution in hydrogen sulfide. Therefore, the upper limit was made 1%. A desirable amount of Mn is 0.05% or less.
[0028]
sol.Al: 0.02 to 0.1%
Al need not be added, but if added, it is effective for deoxidizing molten steel. In order to acquire the effect, it is 0.02% or more . However, if the content exceeds 0.1%, coarse Al-based inclusions increase and the SSC resistance decreases. Therefore, the upper limit was made 0.1%.
[0029]
Ti: 0.016 to 0.2%
Ti is contained if necessary, but if contained, there is an effect of fixing N, which is an impurity in steel, as TiN. Moreover, Ti more than necessary for N fixation becomes a carbide and traps C, and suppresses hardening in the HAZ of the peripheral weld. In order to acquire the effect, it is 0.016% or more. A preferred lower limit is 0.1%. However, if the content exceeds 0.2%, the workability deteriorates or the carbonitride itself becomes the starting point of SSC, so the upper limit was made 0.2%.
[0030]
V: 0.1% or less V is an element that is inevitably mixed as an impurity due to dissolution loss. In particular, if it exceeds 0.1%, fine VC precipitates, so that the strength becomes too high and the SSC resistance is lowered, so the upper limit was made 0.1%. A desirable V amount is 0.05% or less.
[0031]
N: 0.02% or less N is present in steel as an impurity, and if its content exceeds 0.02%, hot workability is impaired and production becomes difficult, and the strength of the martensite phase increases. Inviting, the SSC resistance decreases. A desirable N amount is 0.01% or less.
[0032]
Cu: 0 to 1.2%
Cu is contained if necessary, but if contained, it has the effect of increasing the SSC resistance. In order to acquire the effect, it is preferable to set it as 0.1% or more. On the other hand, if it exceeds 1.2%, the effect on the corrosion resistance is saturated, and the SSC resistance is reduced by increasing the strength of the martensite phase. From this viewpoint, the upper limit was made 1.2%.
[0033]
Metal structure:
If the metal structure is a single martensite phase, a heat treatment for strength adjustment is required after hot rolling or after welded pipe making, so a two-phase structure of ferrite phase and martensite phase is obtained.
[0034]
If the two-phase structure is adopted, the grain growth of each phase is suppressed, and a very fine-grained structure is obtained even when rolled, and the toughness and SSC resistance are improved.
[0035]
In order to obtain a yield strength of 655 MPa or less while being rolled and to obtain good toughness, it is necessary to precipitate a ferrite phase of 15% or more. On the other hand, from the viewpoint of SSC resistance, when the ferrite phase exceeds 40%, Cr and Mo are absorbed from the martensite phase of the parent phase to indirectly reduce the SSC resistance. From this viewpoint, the volume fraction of the ferrite phase is set to 15 to 40%.
[0036]
The ferrite content can be adjusted by combining the Cr and Mo contents and the heating temperature for hot rolling. For example, when increasing the residual amount of ferrite, the Cr and Mo contents of the ferrite former are increased and the heating temperature is preferably increased.
[0037]
Next, a method for manufacturing a welded steel pipe will be described below.
[0038]
As the material steel plate of the welded steel pipe, a hot-rolled steel plate or a thick steel plate manufactured by normal partial rolling and hot rolling is used. About a hot rolling method, after heating to normal heating temperature, for example, the range of 1100 degreeC or more and 1250 degrees C or less, what is necessary is just to roll and finish by a normal method. However, in order to adjust the ferrite content as described above, it is necessary to determine the heating temperature in consideration of the chemical composition. Moreover, you may temper for a short time after rolling for fine adjustment of intensity | strength. Quenching, tempering heat treatment and long-time annealing heat treatment are not desirable from the viewpoint of economy and do not meet the object of the present invention.
[0039]
A hot-rolled steel plate or a thick steel plate is cut into a width substantially the same as the target outer peripheral length of the steel pipe, formed into a cylindrical shape, and welded to a welded steel pipe. The welding method is not particularly limited, and any method may be used as long as the performance of the welded portion is guaranteed. If it is a thin-walled tube, an arc welding method such as a GTAW method, a GMAW method, or a plasma welding method may be used, or an ERW method may be used from the viewpoint of reducing pipe manufacturing costs. Further, from the viewpoint of ensuring the quality of the welded portion, an electron beam welding method or a laser welding method may be used.
[0040]
For tube-forming welding, hot-rolled steel sheets are formed into an open pipe shape using a processing device such as a group of forming rolls, the steel strip edges are butt-matched by means such as squeeze rolls, and the butt joints are joined and pipe-forming welding is performed. It is sufficient to adopt a technique to do this. In order to improve the pipe making speed, pipe welding may be performed after preheating by a high-frequency heating means using a locally-heatable tubular induction heating coil or contact tip used in the electric resistance welding method. Moreover, you may perform the local heat processing aiming at the structure | tissue recovery of a welding part using a high frequency heating means after welding pipe making.
[0041]
For the production of thick steel pipes, pipe making by SAW is preferable. A thick steel plate may be formed into a tubular shape step by step with a normal C press, U press, and O press, and the butt portion may be welded and piped with SAW and then used as a product as it is welded. The welding conditions and weld metal components are not particularly limited as long as the desired performance can be obtained.
[0042]
【Example】
Steel having 16 kinds of chemical compositions shown in Table 1 was melted, and the steel ingot was forged into a slab. The symbols A to H in the table are within the range defined by the present invention for the chemical composition, and 1 to 8 are outside the specified range. Each slab was heated with various changes in the temperature range of 1100 ° C. to 1250 ° C., and then hot-rolled to obtain a hot-rolled steel sheet. The heating temperature was changed to adjust the amount of ferrite.
[0043]
[Table 1]
Figure 0004193308
[0044]
A welded tube was manufactured by laser welding, SAW, ERW, PAW, and GTAW using each hot-rolled steel sheet as a raw material. Laser welding, ERW, and PAW were pipe-formed without using a filler metal. For GTAW and SAW, pipe welding was performed using 22Cr or 25Cr ferritic austenitic duplex stainless steel as a filler material. All were not post-heat treated after welding.
[0045]
The volume fraction of the ferrite phase in the metal structure was measured by a point calculation method by observing the structure by corroding the resin filler of the cross-section of the steel sheet as hot-rolled with a billella reagent. For each steel plate, three cross-sections were measured, and the average value was calculated as the volume fraction.
[0046]
From the hot-rolled steel sheet, a round bar tensile test piece having various dimensions according to the thickness of the raw steel sheet was taken in the width direction, a tensile test was performed at room temperature, and the yield strength (YS) was measured.
[0047]
In addition, a Charpy impact test piece corresponding to the thickness of the raw steel plate is taken in the width direction of the hot-rolled steel plate, and after performing an impact test at various temperatures, the fracture surface is observed to determine the fracture surface transition temperature (vTs). It was measured.
[0048]
Further, in the SSC test, a stress corrosion test piece having a thickness of 2 mm, a width of 10 mm, and a length of 75 mm was sampled in the width direction from the base material part and the weld part of the welded pipe, and YS of the material steel was obtained by a four-point bending constant strain method. The sample was immersed in a test solution for 336 hours under a stress of 100% of the above, and the presence or absence of SSC was examined. As the test solution, a 5% NaCl aqueous solution saturated with 0.001 to 0.01 MPa, H 2 S (CO 2 balance) and adjusted to pH 3.5 by adding a predetermined amount of acetic acid-sodium acetate was used. .
[0049]
These test results are shown in Tables 2 and 3.
[0050]
[Table 2]
Figure 0004193308
[0051]
[Table 3]
Figure 0004193308
[0052]
As the evaluation criteria in the SSC resistance column in Tables 2 and 3, the case where the occurrence of SSC was not observed was evaluated as “good”, and the case where the SSC was generated was evaluated as “poor”.
[0053]
As is apparent from Table 2, the steel having a chemical composition and a metallographic structure within the range defined in the present invention has a YS of 648 MPa or less and excellent toughness and corrosion resistance.
[0054]
On the other hand, as shown in Table 3, even if the chemical compositions of the test numbers 21 to 32 are within the range specified in the present invention, the toughness, strength, and SSC resistance are not affected if the ferrite content is outside the specified range. One or more characteristics are unusable. Moreover, about the test numbers 33-40 outside the range which a chemical composition prescribes | regulates by this invention, it is inferior to SSC resistance, and the characteristic of toughness and a yield stress is bad.
[0055]
【The invention's effect】
To provide a welded steel pipe that exhibits excellent SSC resistance and toughness in an oil well environment at low cost without subjecting the hot-rolled steel sheet or the steel pipe after welding to steel to quenching, tempering heat treatment or long-time annealing heat treatment. Yes, its industrial value is great.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between ferrite content and yield stress.
FIG. 2 is a graph showing the relationship between ferrite content and fracture surface transition temperature.
FIG. 3 is a diagram showing the relationship between the amount of ferrite and the partial pressure of hydrogen sulfide.

Claims (1)

質量%で、C:0.02%以下、P:0.04%以下、S:0.01%以下、Ni:2〜8%、Cr:11.5〜15%、Mo:1.5〜4%、Si:0.2〜1%、Mn:0.2〜1%、sol.Al:0.02〜0.1%、Cu:0〜1.2%、Ti:0.016〜0.2%、N:0.02%以下、V:0.1%以下を含有し、残部はFeおよび不純物からなり、金属組織中のフェライト量が体積%で15〜40%であることを特徴とする耐硫化物応力割れ性に優れた低炭素フェライト−マルテンサイト二相ステンレス溶接鋼管。In mass%, C: 0.02% or less, P: 0.04% or less, S: 0.01% or less, Ni: 2-8%, Cr: 11.5-15%, Mo: 1.5- 4%, Si: 0.2 to 1%, Mn: 0.2 to 1%, sol. Al: 0.02 to 0.1%, Cu: 0 to 1.2%, Ti: 0.016 to 0 .2%, N: 0.02% or less, V: 0.1% or less, the balance being Fe and impurities, the ferrite content in the metal structure is 15% to 40% by volume A low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking.
JP32352299A 1999-11-15 1999-11-15 Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking Expired - Fee Related JP4193308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32352299A JP4193308B2 (en) 1999-11-15 1999-11-15 Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32352299A JP4193308B2 (en) 1999-11-15 1999-11-15 Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking

Publications (2)

Publication Number Publication Date
JP2001140040A JP2001140040A (en) 2001-05-22
JP4193308B2 true JP4193308B2 (en) 2008-12-10

Family

ID=18155640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32352299A Expired - Fee Related JP4193308B2 (en) 1999-11-15 1999-11-15 Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking

Country Status (1)

Country Link
JP (1) JP4193308B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60228395D1 (en) 2001-12-26 2008-10-02 Jfe Steel Corp Structural component of a vehicle made of martensitic stainless steel sheet
US7157672B2 (en) * 2003-05-20 2007-01-02 Gandy Technologies Corporation Method of manufacturing stainless steel pipe for use in piping systems
WO2005042793A1 (en) * 2003-10-31 2005-05-12 Jfe Steel Corporation High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP6139479B2 (en) 2013-09-04 2017-05-31 Jfeスチール株式会社 High strength stainless steel pipe manufacturing method and high strength stainless steel pipe
JP6372070B2 (en) * 2013-11-26 2018-08-15 新日鐵住金株式会社 Ferritic / martensitic duplex steel and oil well steel pipe
JP6819837B1 (en) * 2019-03-29 2021-01-27 Jfeスチール株式会社 Stainless steel seamless steel pipe
CN114535345A (en) * 2022-01-25 2022-05-27 南京沃尔德特钢有限公司 Method for manufacturing oxidation-resistant high-strength duplex stainless steel pipe

Also Published As

Publication number Publication date
JP2001140040A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
JP5048167B2 (en) Thick welded steel pipe excellent in low temperature toughness, manufacturing method of thick welded steel pipe excellent in low temperature toughness, steel sheet for manufacturing thick welded steel pipe
JP5200932B2 (en) Bend pipe and manufacturing method thereof
JP3427387B2 (en) High strength welded steel structure with excellent corrosion resistance
JP3116156B2 (en) Method for producing steel pipe with excellent corrosion resistance and weldability
US6220306B1 (en) Low carbon martensite stainless steel plate
JP4761993B2 (en) Manufacturing method of ferritic stainless steel welded pipe for spinning
JP4484123B2 (en) High strength and excellent base material for clad steel plate with excellent weld heat affected zone toughness
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
KR20010021263A (en) High strength low alloy heat resistant steel
JP3454354B2 (en) Austenitic / ferritic duplex stainless steel welding material and method for welding high Cr steel using the same
JP2001179485A (en) Martensitic welded stainless steel pipe and producing method therefor
EP1323841B1 (en) Structural vehicle component made of martensitic stainless steel sheet
JP2003003233A (en) High strength steel and production method therefor
JP2003301241A (en) Two-phase stainless steel for urea-producing plant, welding material, urea-producing plant and equipment therefor
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JP2008195991A (en) Steel sheet and steel pipe with excellent high temperature characteristics for steam transport piping, and their manufacturing methods
JP2004143500A (en) High-strength steel pipe excellent in buckling resistance and its production method
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP2000328202A (en) Low carbon martensitic stainless steel sheet excellent in formability, corrosion resistance and toughness, its production and welded steel pipe
JP2015062920A (en) Method for manufacturing high carbon electro-resistance-welded steel pipe excellent in reliability of electro-resistance-welded zone
JP3552517B2 (en) Method for welding high Cr ferritic heat resistant steel and method for manufacturing welded steel pipe
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP2005240112A (en) Ferritic stainless steel
JP3033483B2 (en) Method for producing martensitic stainless steel welded pipe with excellent carbon dioxide gas corrosion resistance
JP2005029882A (en) Method for manufacturing structural high-strength electric welded steel tube of excellent welding softening resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees