JP2001140040A - Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance - Google Patents

Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance

Info

Publication number
JP2001140040A
JP2001140040A JP32352299A JP32352299A JP2001140040A JP 2001140040 A JP2001140040 A JP 2001140040A JP 32352299 A JP32352299 A JP 32352299A JP 32352299 A JP32352299 A JP 32352299A JP 2001140040 A JP2001140040 A JP 2001140040A
Authority
JP
Japan
Prior art keywords
ferrite
steel pipe
pipe
welding
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32352299A
Other languages
Japanese (ja)
Other versions
JP4193308B2 (en
Inventor
Tomohiko Omura
朋彦 大村
Takahiro Kushida
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32352299A priority Critical patent/JP4193308B2/en
Publication of JP2001140040A publication Critical patent/JP2001140040A/en
Application granted granted Critical
Publication of JP4193308B2 publication Critical patent/JP4193308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a ferrite-martensite duplex stainless welded steel pipe exhibiting excellent SSC resistance and toughness in in oil well environment even without executing quenching and tempering heat treatment and annealing heat treatment for a long time to a hot rolled steel sheet as the stock and a steel pipe after pipe making by welding. SOLUTION: This ferrite-martensite duplex stainless welded steel pipe has a composition containing, by mass, <=0.02% C, <=0.04% P, <=0.01% S, 2 to 8% Ni, 11.5 to 15% Cr, 1.5 to 4% Mo, 0 to 1% Si, 0 to 1 % Mn, 0 to 0.1% sol.Al, 0 to 1.2% Cu, 0 to 0.2% Ti, <=0.02% N, 0.1% V, and the balance Fe with impurities, and in which the content of ferrite in the metallic structure is 15 to 40 volume %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ラインパイプ、油
井管または化学プラント用配管に好適な、耐硫化物応力
割れ性に優れた低炭素フェライト−マルテンサイト二相
ステンレス溶接鋼管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low carbon ferrite-martensite duplex stainless steel welded steel pipe excellent in sulfide stress cracking resistance and suitable for pipes of line pipes, oil country tubular goods or chemical plants.

【0002】[0002]

【従来の技術】低炭素マルテンサイト系ステンレス鋼
は、油井用材料として近年開発が進められている鋼種で
ある。この鋼種は、二相ステンレス鋼よりもCr等の高
価な元素の含有量が少ないため安価であり、炭酸ガスの
みかまたは炭酸ガスと微量硫化水素ガスの混合ガスを含
む湿潤環境中で良好な耐食性を示す。
2. Description of the Related Art Low carbon martensitic stainless steel is a type of steel that has been recently developed as a material for oil wells. This type of steel is inexpensive because it contains less expensive elements such as Cr than duplex stainless steel, and has good corrosion resistance in a humid environment containing only carbon dioxide or a mixture of carbon dioxide and a trace amount of hydrogen sulfide. Is shown.

【0003】低炭素マルテンサイト系ステンレス鋼から
なる鋼管は、一般には継目無鋼管として製造されること
が多い。継目無鋼管は、信頼性に関して高く評価されて
いるが、いくつかの問題点がある。一つは製管法の原理
上、肉厚10mm以下の薄肉管の製造が困難なことであ
る。ラインパイプの溶接施工に際しては、強度の許す範
囲でなるべく薄肉である方が、溶接時の積層数を減らし
施工コストを下げる観点から望ましいことは言うまでも
ない。また、金属組織中にフェライト相が析出すると熱
間加工性が著しく低下し、中かぶれ等の傷が発生するた
め、極力マルテンサイト単相の組織としなくてはならな
い。
[0003] Steel pipes made of low-carbon martensitic stainless steel are generally often manufactured as seamless steel pipes. Seamless steel pipes are highly valued for reliability, but have some problems. One is that it is difficult to manufacture a thin-walled pipe having a thickness of 10 mm or less due to the principle of the pipe-making method. When welding the line pipe, it is needless to say that it is desirable that the wall thickness be as thin as possible within the range of the strength, from the viewpoint of reducing the number of laminations during welding and reducing the construction cost. Further, when a ferrite phase is precipitated in a metal structure, hot workability is significantly reduced, and scratches such as rash are generated. Therefore, the structure must be a martensite single phase as much as possible.

【0004】これらの理由から、近年は溶接による高耐
食性ステンレス鋼管の製造方法が開発されてきた。低炭
素マルテンサイト系ステンレス鋼は、低炭素であること
から溶接性が良く、ガスタングステンアーク溶接法(以
下GTAW法と記す)やガスメタルアーク溶接法(以下
GMAW法と記す)による周溶接継ぎ手を前提とするラ
インパイプに好適である。
[0004] For these reasons, in recent years, a method for producing a high corrosion resistant stainless steel pipe by welding has been developed. Low carbon martensitic stainless steel has good weldability due to its low carbon content, and a girth weld joint by gas tungsten arc welding (hereinafter referred to as GTAW) or gas metal arc welding (hereinafter referred to as GMAW). It is suitable for a prerequisite line pipe.

【0005】例えば特開平4−191319号公報およ
び特開平4−191320号公報には、低炭素マルテン
サイト系ステンレス鋼の素材帯鋼を管状に成形して、突
き合わせ部を電縫溶接法(以下、ERW法と記す)によ
って造管溶接する製法が開示されている。また、小径管
ではGTAW法あるいはプラズマ溶接法(以下、PAW
法という)による突き合わせ造管溶接も検討されてい
る。
For example, Japanese Patent Application Laid-Open Nos. 4-191319 and 4-191320 disclose that a low carbon martensitic stainless steel material strip is formed into a tubular shape, and a butt portion is formed by an electric resistance welding method (hereinafter, referred to as "welding"). A method for pipe welding by the ERW method is disclosed. For small diameter pipes, GTAW method or plasma welding method (hereinafter, PAW method)
Butt-pipe welding by the method).

【0006】近年高出力のレーザ溶接機を用いた突き合
わせ造管溶接法も開発されており、特開平9−1644
25号公報には突き合わせレーザ溶接で製管し、その後
溶接部近傍に適正な後熱処理を施すことにより耐食性を
改善する方法が開示されている。
In recent years, a butt pipe welding method using a high-power laser welding machine has also been developed.
No. 25 discloses a method for improving the corrosion resistance by producing a pipe by butt laser welding and then performing an appropriate post heat treatment in the vicinity of the welded portion.

【0007】また、継目無鋼管よりさらに大径の管の需
要も高まりつつある。大径管に関しては、厚鋼板を素材
として用いて、サブマージドアーク溶接(以下、SAW
法と記す)による造管溶接も検討されつつある。
[0007] Also, demand for pipes having a larger diameter than seamless steel pipes is increasing. For large-diameter pipes, a steel plate is used as a material and submerged arc welding (hereinafter referred to as SAW).
Pipe-forming welding).

【0008】低炭素マルテンサイト系ステンレス鋼から
なる溶接鋼管は、マルテンサイト単相の組織であるた
め、圧延ままでは高強度かつ粗粒組織であり、靭性や、
耐硫化物応力割れ(以後SSCと言う)性等の耐食性が
低下してしまう。このため、マルテンサイト単相鋼では
一般に、熱延後に細粒化目的で焼入れ、焼戻し熱処理
や、軟化目的で長時間の焼鈍熱処理を施して靭性や耐食
性を確保しなくてはならない。
[0008] Since the welded steel pipe made of low carbon martensitic stainless steel has a single-phase structure of martensite, it has a high-strength and coarse-grained structure as rolled, and has toughness,
Corrosion resistance such as resistance to sulfide stress cracking (hereinafter referred to as SSC) is reduced. For this reason, in the case of martensitic single-phase steels, it is generally necessary to secure the toughness and corrosion resistance by performing quenching and tempering heat treatment for the purpose of grain refinement after hot rolling and long-time annealing heat treatment for the purpose of softening.

【0009】また、熱間圧延ままではラインパイプとし
ての必要強度である、API規格(アメリカ石油協会規
格)5LCにおいて、X56級〜X80級(降伏応力が
386〜655MPa)よりも高強度となることが多
い。このためにも、溶接製管前または溶接製管後に軟化
目的の熱処理が必須となる。
[0009] Further, according to API standard (American Petroleum Institute standard) 5LC, which is required strength as a line pipe when hot rolled as it is, the strength becomes higher than X56 class to X80 class (yield stress is 386 to 655 MPa). There are many. For this reason, a heat treatment for softening is required before or after welding.

【0010】例えば特開平4−191319号公報に
は、熱延後の巻き取り温度を600℃以上とすること、
およびERW製管後に焼入れ、焼戻しの熱処理を施す必
要のあることが示されている。しかし、このように熱処
理工程を加えることは生産コスト高となる。
For example, Japanese Patent Application Laid-Open No. 4-191319 discloses that the winding temperature after hot rolling is set to 600 ° C. or higher,
It shows that it is necessary to perform quenching and tempering heat treatment after ERW pipe production. However, adding such a heat treatment step increases the production cost.

【0011】[0011]

【発明が解決しようとする課題】本発明の課題は、素材
の熱延鋼板や溶接製管後の鋼管に、焼入れ、焼戻し熱処
理や長時間の焼鈍熱処理を施さなくとも油井環境におい
て優れた耐SSC性と靱性を発揮する溶接鋼管を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hot rolled steel sheet and a steel pipe after welding and pipe forming which are excellent in SSC resistance in an oil well environment without being subjected to quenching, tempering heat treatment or long-time annealing heat treatment. It is an object of the present invention to provide a welded steel pipe exhibiting the properties and toughness.

【0012】[0012]

【課題を解決するための手段】本発明者らは上記課題を
解決するため、鋭意実験、検討した結果、熱間圧延まま
でも製品にすることが前提であれば、母相であるマルテ
ンサイト相中にフェライト相を所定の割合で析出させた
フェライト相とマルテンサイト相の二相の金属組織とす
れば、熱間圧延ままでも高強度化の抑制ができ、しかも
良好な耐SSC性が得られるとの知見を得た。本発明は
このような知見に基づいてなされたもので、その要旨は
下記のとおりである。
Means for Solving the Problems The inventors of the present invention have conducted intensive experiments and studies in order to solve the above-mentioned problems, and as a result, if it is assumed that a product is obtained as it is during hot rolling, the martensite phase which is a parent phase If the ferrite phase and the martensite phase have a two-phase metal structure in which a ferrite phase is precipitated at a predetermined ratio, high strength can be suppressed even during hot rolling, and good SSC resistance can be obtained. I got the knowledge. The present invention has been made based on such knowledge, and the gist is as follows.

【0013】(1)質量%で、C:0.02%以下、
P:0.04%以下、S:0.01%以下、Ni:2〜
8%、Cr:11.5〜15%、Mo:1.5〜4%、
Si:0〜1%、Mn:0〜1%、sol.Al:0〜0.
1%、Cu:0〜1.2%、Ti:0〜0.2%、N:
0.02%以下、V:0.1%以下を含有し、残部はF
eおよび不純物からなり、金属組織中のフェライト量が
体積%で15〜40%である耐硫化物応力割れ性に優れ
た低炭素フェライト−マルテンサイト二相ステンレス溶
接鋼管。
(1) In mass%, C: 0.02% or less,
P: 0.04% or less, S: 0.01% or less, Ni: 2 to 2
8%, Cr: 11.5 to 15%, Mo: 1.5 to 4%,
Si: 0 to 1%, Mn: 0 to 1%, sol.
1%, Cu: 0 to 1.2%, Ti: 0 to 0.2%, N:
0.02% or less, V: 0.1% or less, the balance being F
A low carbon ferrite-martensitic duplex stainless steel welded pipe comprising e and impurities and having an amount of ferrite in the metal structure of 15 to 40% by volume by volume and excellent in sulfide stress cracking resistance.

【0014】一般には、マルテンサイト系ステンレス鋼
にフェライト相が析出すると、靭性や耐食性等の性能が
劣化すると言われている。例えば、靭性に関してはフェ
ライト系ステンレス鋼が靱性が不芳であることから、マ
ルテンサイ系トステンレス鋼にフェライト相が析出すれ
ば靱性が劣化することは容易に推定される。また耐食性
に関しては、フェライト相が析出することにより、耐食
皮膜の保護に有効な元素であるCrやMoを母相のマル
テンサイトから吸収してしまい、母相の耐食性が十分に
確保できなくなることも予想されることである。したが
って、油井環境で用いられる鋼管でフェライト相の析出
を活用した例は従来なかったが、本発明者らは、フェラ
イト相はマルテンサイト相に比べれば軟化相であること
に着目して、以下のような試験をおこなった。
It is generally said that the precipitation of a ferrite phase in martensitic stainless steel deteriorates performance such as toughness and corrosion resistance. For example, with respect to toughness, ferritic stainless steel has poor toughness, and it is easily presumed that toughness will deteriorate if a ferrite phase precipitates in martensitic stainless steel. Regarding the corrosion resistance, the precipitation of the ferrite phase causes the elements Cr and Mo, which are effective in protecting the corrosion-resistant coating, to be absorbed from the martensite of the mother phase, so that the corrosion resistance of the mother phase cannot be sufficiently secured. That is to be expected. Therefore, there has been no conventional example of utilizing the precipitation of a ferrite phase in a steel pipe used in an oil well environment.However, the present inventors focused on the fact that the ferrite phase is a softened phase as compared with the martensite phase, and Such a test was performed.

【0015】質量%で、C:0.012%、Si:0.
43%、Mn:0.51%、Mo:2.53%、sol.A
l:0.033%、Ti:0.034%、Ni:3.5
5%、V:0.02%を基本成分とし、Cr含有量を1
0〜17%、NI含有量を0〜10%およびMo含有量
を0〜5%の範囲で種々変化させた低炭素マルテンサイ
トステンレス鋼を溶製し、分解圧延してスラブとし、加
熱温度を1100〜1250℃に種々変化させて熱間圧
延した。この熱延したままの鋼板を用いて、引張試験、
シャルピ衝撃試験および耐SSC性試験を実施した。
In mass%, C: 0.012%, Si: 0.1%.
43%, Mn: 0.51%, Mo: 2.53%, sol.A
l: 0.033%, Ti: 0.034%, Ni: 3.5
5%, V: 0.02% as a basic component and a Cr content of 1%
0-17%, NI content is 0-10%, and Mo content is variously changed in the range of 0-5%. Hot rolling was performed at various temperatures of 1100 to 1250 ° C. Using this hot-rolled steel sheet, a tensile test,
A Charpy impact test and an SSC resistance test were performed.

【0016】図1は、引張試験結果から得られたフェラ
イト量と降伏応力の関係を示す図である。マルテンサイ
ト中のフェライト量が増加するにしたがって強度が低下
している。
FIG. 1 is a diagram showing the relationship between the amount of ferrite and the yield stress obtained from the results of a tensile test. The strength decreases as the amount of ferrite in martensite increases.

【0017】図2は、シャルピー衝撃試験結果から得ら
れたフェライト量(体積%)と破面遷移温度との関係を
示す図である。フェライト量が15%以上で、遷移温度
は−20℃以下となっている。金属組織を調べた結果、
圧延ままでもあってもフェライト量が15〜80%の場
合極めて細粒な組織となっていた。
FIG. 2 is a diagram showing the relationship between the ferrite content (% by volume) obtained from the Charpy impact test results and the fracture surface transition temperature. When the amount of ferrite is 15% or more, the transition temperature is -20 ° C or less. As a result of examining the metal structure,
Even when rolled, the structure was extremely fine when the amount of ferrite was 15 to 80%.

【0018】図3は、耐SSC性試験試験で得られたフ
ェライト量(体積%)と硫化水素分圧の関係を示す図で
ある。靭性と同様にフェライト量15%以上で微細組織
となるため、良好な耐SSC性を示している。ただし耐
食皮膜の保護性の観点からは、フェライト相はCrやM
oを母相のマルテンサイト相から吸収してしまい、マル
テンサイト相の耐食性を間接的に低下させてしまうの
で、フェライト量が40%を超えると耐SSC性がかえ
って低下してしまうことが分った。
FIG. 3 is a graph showing the relationship between the amount of ferrite (% by volume) obtained in the SSC resistance test and the partial pressure of hydrogen sulfide. As in the case of the toughness, a fine structure is obtained when the amount of ferrite is 15% or more, so that good SSC resistance is exhibited. However, from the viewpoint of protection of the corrosion-resistant coating, the ferrite phase is Cr or M
Since o is absorbed from the martensite phase of the parent phase and indirectly lowers the corrosion resistance of the martensite phase, it can be seen that if the ferrite content exceeds 40%, the SSC resistance is rather lowered. Was.

【0019】[0019]

【発明の実施の形態】以下、本発明で規定する化学組成
と金属組織について詳しく説明する。化学成分の含有量
の%は全て質量%、金属組織の量の表示は体積%であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the chemical composition and metal structure specified in the present invention will be described in detail. All percentages of the content of the chemical components are mass%, and the indication of the amount of the metal structure is volume%.

【0020】C:0.02%以下 Cは、溶接性を確保する観点から低ければ低いほど望ま
しい。ただしC量をむやみに減らすことはコスト上昇を
伴うため、経済性の観点から0.002%以上とするの
が望ましい。0.02%を超えると、マルテンサイト相
の強度が高くなり過ぎ、また溶接時に熱影響部(以下、
HAZと記す)において著しい硬化を起こして耐SSC
性を低下させるので、その上限を0.02%とした。
C: 0.02% or less C is preferably as low as possible from the viewpoint of securing weldability. However, since excessive reduction of the C amount involves a cost increase, it is desirable to set the content to 0.002% or more from the viewpoint of economy. If it exceeds 0.02%, the strength of the martensite phase becomes too high, and the heat-affected zone during welding (hereinafter, referred to as
HAZ) causes significant hardening and SSC resistance
Therefore, the upper limit was set to 0.02%.

【0021】P:0.04%以下 Pは、不純物として鋼中に不可避的に存在し、粒界に偏
析して耐SSC性を劣化させる。特に、その含有量が
0.04%を超えると耐SSC性の劣化が著しくなるた
め、含有量は0.04%以下にする必要がある。なお、
耐SSC性を高めるためにPの含有量はできるだけ低く
することが望ましい。
P: 0.04% or less P is inevitably present in steel as an impurity and segregates at grain boundaries to deteriorate the SSC resistance. In particular, if the content exceeds 0.04%, the SSC resistance deteriorates significantly, so the content needs to be 0.04% or less. In addition,
It is desirable that the P content be as low as possible in order to increase the SSC resistance.

【0022】S:0.01%以下 Sは、Pと同様に不純物として鋼中に不可避的に存在す
るが、粒界に偏析することと、硫化物系の介在物を多量
に生成することによって耐SSC性を低下させる。その
含有量が、0.01%を超えると耐SSC性の低下が著
しくなため含有量は0.01%以下にする必要がある。
なお、耐SSC性を高めるためにSの含有量はできるだ
け低くすることが望ましい。
S: 0.01% or less S is inevitably present in steel as an impurity like P, but it is segregated at grain boundaries and forms a large amount of sulfide-based inclusions. Decreases SSC resistance. If the content exceeds 0.01%, the SSC resistance is significantly reduced, so the content needs to be 0.01% or less.
It is desirable that the content of S be as low as possible in order to increase the SSC resistance.

【0023】Ni:2〜8%以下 Niは、Mnと同様にマルテンサイト量を増加させる効
果があり、この観点からは2%以上含有させる必要があ
る。一方、過剰に含有させると高価な鋼となり経済性が
損なわれ、また固溶強化によりマルテンサイト相の強度
上昇を招いて、耐SSC性を低下させる。この観点から
上限は8%とした。
Ni: 2 to 8% or less Ni has the effect of increasing the amount of martensite similarly to Mn. From this viewpoint, it is necessary to contain 2% or more. On the other hand, if it is contained excessively, it becomes expensive steel and the economic efficiency is impaired, and the solid solution strengthening causes an increase in the strength of the martensite phase, thereby deteriorating the SSC resistance. From this viewpoint, the upper limit is set to 8%.

【0024】Cr:11.5〜15% Crは、耐食皮膜を保護し耐SSC性を高める元素であ
る。この効果を得るためには11.5%以上含有させる
必要がある。一方、Crはフェライト安定化元素である
ので、15%を超えて過剰に含有させると、マルテンサ
イト安定化元素である高価なNi等の合金元素を増量す
る必要が生じ、経済性が損なわれる。この観点から上限
は15%とした。
Cr: 11.5 to 15% Cr is an element that protects a corrosion-resistant film and enhances SSC resistance. In order to obtain this effect, the content needs to be 11.5% or more. On the other hand, since Cr is a ferrite stabilizing element, if it is contained in excess of more than 15%, it becomes necessary to increase the amount of expensive alloying elements such as Ni, which is a martensite stabilizing element, and economic efficiency is impaired. From this viewpoint, the upper limit is set to 15%.

【0025】Mo:1.5〜4%以下 Moは、耐食皮膜を保護し耐SSC性を高める元素であ
る。この効果を得るためには、1.55以上とするのが
好ましい。また、Crと同様にフェライト安定化元素で
あるので、過度に含有させるとマルテンサイト安定化元
素である高価なNi等の合金元素を増量する必要が生
じ、経済性が損なわれる。この観点から上限を4%とし
た。
Mo: 1.5 to 4% or less Mo is an element that protects a corrosion-resistant film and enhances SSC resistance. In order to obtain this effect, it is preferable to set it to 1.55 or more. Further, since it is a ferrite stabilizing element like Cr, if it is contained excessively, it becomes necessary to increase the amount of an expensive alloying element such as Ni, which is a martensite stabilizing element, which impairs economic efficiency. From this viewpoint, the upper limit is set to 4%.

【0026】Si:0〜1%以下 Siは、特に添加しなくてもよいが、添加すれば溶鋼の
脱酸に有効である。その効果を得るには0.2%以上と
するのが好ましい。しかしその含有量が1%を超えると
粒界強度を低め耐SSC性を低下させるので、その上限
は1%である。
Si: 0 to 1% or less Si need not be particularly added, but if added, it is effective for deoxidizing molten steel. In order to obtain the effect, the content is preferably set to 0.2% or more. However, if the content exceeds 1%, the grain boundary strength is reduced and the SSC resistance is reduced, so the upper limit is 1%.

【0027】Mn:0〜1%以下 Mnは、添加しなくてもよいが、添加すればマルテンサ
イトの占める割合を高める効果がある。添加する場合は
0.2%以上含有させるのが好ましい。しかし1%を超
えて含有させると粒界強度を弱めたり、硫化水素中で活
性溶解したりすることにより耐SSC性を低下させる。
したがって、上限を1%とした。望ましいMn量は0.
05%以下である。
Mn: 0 to 1% or less Mn may not be added, but if added, has the effect of increasing the proportion of martensite. When it is added, it is preferable to contain 0.2% or more. However, when the content exceeds 1%, the grain boundary strength is weakened, or active dissolution in hydrogen sulfide is performed, thereby lowering the SSC resistance.
Therefore, the upper limit is set to 1%. Desirable Mn content is 0.1.
Not more than 05%.

【0028】sol.Al:0.1%以下 Alは、添加しなくてもよいが、添加すれば溶鋼の脱酸
に有効である。その効果を得るには、0.02%以上と
するのが好ましい。しかし0.1%を超えて含有させる
と粗大なAl系介在物が多くなって耐SSC性が低下す
る。したがってその上限を0.1%とした。
Sol. Al: 0.1% or less Al need not be added, but if added, it is effective in deoxidizing molten steel. In order to obtain the effect, the content is preferably set to 0.02% or more. However, when the content exceeds 0.1%, coarse Al-based inclusions increase and the SSC resistance decreases. Therefore, the upper limit is set to 0.1%.

【0029】Ti:0〜0.2% Tiは必要により含有させるが、含有させれば鋼中の不
純物であるNをTiNとして固定する効果がある。ま
た、N固定に必要とするよりも過剰なTiは、炭化物と
なってCをトラップし、周溶接部のHAZにおける硬化
を抑制する。しかし0.2%を超えて含有させると加工
性を低下させたり、炭窒化物自身がSSCの起点となっ
たりするため、その上限は0.2%とした。好ましい下
限は0.1%である。
Ti: 0 to 0.2% Ti is contained as necessary, but if contained, it has an effect of fixing N, which is an impurity in steel, as TiN. In addition, excess Ti than required for fixing N becomes carbide and traps C, thereby suppressing hardening in the HAZ of the circumferential weld. However, when the content exceeds 0.2%, the workability is lowered and the carbonitride itself becomes the starting point of SSC. Therefore, the upper limit is set to 0.2%. A preferred lower limit is 0.1%.

【0030】V:0.1%以下 Vは、溶解減量から不純物として不可避的に混入する元
素であ。特に0.1%を超えると微細なVCが析出する
ので高強度となりすぎ、耐SSC性が低下するので上限
を0.1%とした。望ましいV量は0.05%以下であ
る。
V: 0.1% or less V is an element which is inevitably mixed as an impurity due to a loss in dissolution. In particular, if it exceeds 0.1%, fine VC is precipitated, so that the strength becomes too high, and the SSC resistance is lowered. Therefore, the upper limit is made 0.1%. Desirable V amount is 0.05% or less.

【0031】N:0.02%以下 Nは、不純物として鋼中に存在し、その含有量が0.0
2%を超えると、熱間加工性が損なわれ製造が困難とな
り、かつマルテンサイト相の強度上昇を招いて耐SSC
性が低下する。望ましいN量は0.01%以下である。
N: 0.02% or less N is present in steel as an impurity, and its content is 0.0% or less.
If it exceeds 2%, the hot workability is impaired, the production becomes difficult, and the strength of the martensite phase is increased, resulting in an SSC resistance.
Is reduced. Desirable N content is 0.01% or less.

【0032】Cu:0〜1.2% Cuは必要により含有させるが、含有させれば耐SSC
性を高める効果がある。その効果を得るためには0.1
%以上とするのが好ましい。一方、1.2%を超えると
耐食性への効果が飽和し、かつマルテンサイト相の強度
上昇により耐SSC性をかえって低下させる。この観点
から、上限は1.2%とした。
Cu: 0 to 1.2% Cu is contained as necessary, but if it is contained, it is resistant to SSC.
It has the effect of enhancing the nature. 0.1
% Or more is preferable. On the other hand, if it exceeds 1.2%, the effect on corrosion resistance is saturated, and the strength of the martensite phase is increased, thereby deteriorating the SSC resistance. From this viewpoint, the upper limit is set to 1.2%.

【0033】金属組織:金属組織をマルテンサイト一相
にすれば、熱間圧延後または溶接製管後に強度調整のた
めの熱処理が必要となるため、フェライト相とマルテン
サイト相の二相組織とする。
Metal structure: If the metal structure is made into a martensite single phase, a heat treatment for strength adjustment is required after hot rolling or welding and pipe making, so that it has a two phase structure of a ferrite phase and a martensite phase. .

【0034】二相組織にすれば、それぞれの相の粒成長
が抑制され、圧延ままでも極めて細粒組織となり、靭性
や耐SSC性が改善される。
With the two-phase structure, the grain growth of each phase is suppressed, the structure becomes extremely fine even as rolled, and the toughness and SSC resistance are improved.

【0035】圧延ままで降伏強度655MPa以下と
し、かつ良好な靭性を得るには、15%以上のフェライ
ト相を析出させる必要がある。一方、耐SSC性の観点
からは、フェライト相が40%を超えると、母相のマル
テンサイト相からCrやMoを吸収して間接的に耐SS
C性を低下させる。この観点から、フェライト相の体積
分率は15〜40%とした。
In order to obtain a yield strength of 655 MPa or less as-rolled and obtain good toughness, it is necessary to precipitate 15% or more of a ferrite phase. On the other hand, from the viewpoint of SSC resistance, when the ferrite phase exceeds 40%, Cr and Mo are absorbed from the martensite phase of the mother phase and the SS resistance is indirectly increased.
Decreases C property. From this viewpoint, the volume fraction of the ferrite phase is set to 15 to 40%.

【0036】なお、フェライト量の調整は、Crおよび
Moの含有量と熱間圧延のための加熱温度との組み合わ
せによりおこなうことができる。例えば、フェライトの
残存量を多くする場合は、フェライトフォーマのCr、
Mo含有量を多く、し、加熱温度を高くするとよい。
The amount of ferrite can be adjusted by a combination of the contents of Cr and Mo and the heating temperature for hot rolling. For example, when increasing the residual amount of ferrite, the ferrite former Cr,
It is preferable to increase the Mo content and increase the heating temperature.

【0037】次に、溶接鋼管の製造方法について以下に
説明する。
Next, a method for manufacturing a welded steel pipe will be described below.

【0038】溶接鋼管の素材鋼板には、通常の分塊圧延
および熱間圧延により製造した、熱延鋼板あるいは厚鋼
板を用いる。熱延方法については、通常の加熱温度、例
えば1100℃以上1250℃以下の範囲に加熱した
後、通常の方法で圧延して仕上げればよい。ただし、上
記のようにフェライト量を調節するために、化学組成を
考慮して加熱温度をきめる必要がある。また、強度の微
調整のため圧延後に短時間の焼戻しを実施してもよい。
焼入れ、焼戻し熱処理や長時間の焼鈍熱処理は経済性の
観点から望ましくなく、本発明の目的に合わない。
As the material steel plate of the welded steel pipe, a hot rolled steel plate or a thick steel plate manufactured by ordinary slab rolling and hot rolling is used. As for the hot rolling method, after heating to a normal heating temperature, for example, in a range of 1100 ° C. or more and 1250 ° C. or less, rolling and finishing may be performed by a normal method. However, in order to adjust the amount of ferrite as described above, it is necessary to determine the heating temperature in consideration of the chemical composition. In addition, tempering for a short time after rolling may be performed for fine adjustment of strength.
Quenching, tempering heat treatment and long-time annealing heat treatment are not desirable from the viewpoint of economy and do not meet the purpose of the present invention.

【0039】熱延鋼板あるいは厚鋼板は、目標の鋼管外
周長とほぼ同じ幅に切断して円筒状に成形して突き合わ
せた部分を溶接して溶接鋼管とする。溶接方法について
も特に制限は無く、溶接部の性能の保証される溶接方法
であればいかなる方法でもよい。薄肉管であれば、GT
AW法やGMAW法、プラズマ溶接法等のアーク溶接法
を用いてもよいし、製管コスト低減の観点からERW法
を用いてもよい。また、溶接部の品質確保の観点から、
電子ビーム溶接法やレーザ溶接法を用いてもよい。
A hot-rolled steel plate or a thick steel plate is cut into a width substantially equal to the outer peripheral length of a target steel pipe, formed into a cylindrical shape, and abutted portions are welded to form a welded steel pipe. There is no particular limitation on the welding method, and any method may be used as long as the performance of the welded portion is guaranteed. GT for thin tube
An arc welding method such as an AW method, a GMAW method, or a plasma welding method may be used, or an ERW method may be used from the viewpoint of reducing pipe production costs. In addition, from the viewpoint of ensuring the quality of the weld,
An electron beam welding method or a laser welding method may be used.

【0040】造管溶接には、熱延鋼板を成形ロール群等
の加工装置にてオープンパイプ状に成形し、帯鋼両エッ
ヂ相互をスクイズロール等の手段で突き合わせ、この突
き合わせ部を接合して造管溶接する手法を採ればよい。
製管速度向上のため、電縫溶接法で用いられている局部
加熱可能な管状の誘導加熱コイルあるいはコンタクトチ
ップを用いた高周波加熱手段により予熱してから造管溶
接をおこなってもよい。また、溶接製管後に高周波加熱
手段を用いて溶接部の組織回復を目的とした局部熱処理
を施してもよい。
In pipe forming welding, a hot-rolled steel sheet is formed into an open pipe shape by a processing device such as a forming roll group, and both edges of the steel strip are butted together by means such as a squeeze roll. A method of pipe-forming welding may be employed.
In order to improve the pipe-making speed, pipe-forming welding may be performed after preheating by a tubular induction heating coil capable of locally heating used in the electric resistance welding method or a high-frequency heating means using a contact tip. Further, after the pipe forming by welding, a local heat treatment for recovering the structure of the welded portion may be performed by using a high frequency heating means.

【0041】厚肉鋼管の製造には、SAWによる製管が
好ましい。厚鋼板を通常のCプレス、UプレスおよびO
プレスにより段階的に管状に成形し、突き合わせ部をS
AWにより溶接製管した後、溶接ままで製品とする等の
手法を用いればよい。溶接条件や溶接金属の成分は、所
望の性能を得られる手法であればよく、特に限定はされ
ない。
For the production of a thick steel pipe, pipe production by SAW is preferable. Thick steel plate can be used for normal C press, U press and O
It is formed into a tubular shape step by step with a press,
After welding and pipe-forming by AW, a method such as making a product as welded may be used. The welding conditions and the components of the weld metal are not particularly limited as long as the desired performance can be obtained.

【0042】[0042]

【実施例】表1に示す16種の化学組成の鋼を溶製し、
鋼塊を鍛造してスラブとした。同表の記号A〜Hは化学
組成が本発明で規定する範囲内にあり、1〜8は規定範
囲外である。各スラブを、1100℃〜1250℃の温
度範囲で種々変化させて加熱した後、熱間圧延して熱延
鋼板とした。なお、加熱温度を変化させたのはフェライ
ト量を調節するためである。
EXAMPLES Steels of 16 chemical compositions shown in Table 1 were melted,
The ingot was forged into a slab. Symbols A to H in the same table are within the range defined by the present invention for the chemical composition, and 1 to 8 are outside the specified range. Each slab was heated in various temperature ranges from 1100 ° C. to 1250 ° C., and then hot-rolled to obtain a hot-rolled steel sheet. The heating temperature was changed to adjust the amount of ferrite.

【0043】[0043]

【表1】 [Table 1]

【0044】各熱延したままの鋼板を素材として、レー
ザ溶接、SAW、ERW、PAWおよびGTAWにより
溶接管を製造した。レーザ溶接、ERW、PAWは溶加
材を用いずに造管溶接をおこなった。GTAW、SAW
は、22Cr系または25Cr系のフェライトオーステ
ナイト二相ステンレス鋼を溶加材として用い、造管溶接
をおこなった。すべて、溶接後の後熱処理は実施しなか
った。
Using each hot-rolled steel sheet as a raw material, welded tubes were produced by laser welding, SAW, ERW, PAW and GTAW. For laser welding, ERW, and PAW, pipe-forming welding was performed without using a filler metal. GTAW, SAW
Was welded using a 22Cr or 25Cr ferritic austenitic duplex stainless steel as a filler metal. In all cases, no post heat treatment was performed after welding.

【0045】金属組織中のフェライト相の体積分率は、
熱間圧延したままの鋼板断面の樹脂埋材をビレラ試薬で
腐食させて組織観察をし、点算法にて測定した。各鋼板
とも3箇所の断面を測定し、その平均値を算出して体積
分率とした。
The volume fraction of the ferrite phase in the metal structure is
The resin-filled material of the cross section of the steel sheet as hot rolled was corroded with a virella reagent, the structure was observed, and the measurement was performed by the point calculation method. For each steel plate, three cross sections were measured, and the average value was calculated as the volume fraction.

【0046】熱延鋼板から、その幅方向に素材鋼板の肉
厚に応じた種種の寸法の丸棒引張試験片を採取し、常温
で引張り試験を実施し降伏強度(YS)を測定した。
From the hot-rolled steel sheet, various types of round bar tensile test pieces corresponding to the thickness of the material steel sheet were sampled in the width direction, and a tensile test was performed at room temperature to measure the yield strength (YS).

【0047】また、熱延鋼板の幅方向に素材鋼板の肉厚
に応じたシャルピー衝撃試験片を採取し、種種の温度で
衝撃試験を実施した後、破面観察をして破面遷移温度
(vTs)を測定した。
Further, Charpy impact test specimens corresponding to the thickness of the base steel sheet were sampled in the width direction of the hot-rolled steel sheet, and subjected to an impact test at various temperatures. vTs) was measured.

【0048】さらに、SSC試験は、厚さ2mm、幅1
0mm、長さ75mmの応力腐食試験片を溶接管の母材
部および溶接部から幅方向方向に採取し、四点曲げ定歪
み法により素材鋼のYSの100%の応力を負荷して試
験液中に336時間浸漬しSSCの発生の有無を調べ
た。試験液には0.001〜0.01MPa,H2S(CO2
バランス)を飽和させた、酢酸−酢酸ナトリウムを所定
量添加してpHを3.5に調整した5%NaCl水溶液
を用いた。
Further, the SSC test showed that the thickness was 2 mm and the width was 1
A stress corrosion test specimen having a length of 0 mm and a length of 75 mm is sampled in the width direction from the base material and the welded portion of the welded pipe, and a 100% stress of YS of the material steel is applied by a four-point bending constant strain method. It was immersed for 336 hours and examined for the occurrence of SSC. The test solution contains 0.001 to 0.01 MPa, H 2 S (CO 2
A 5% aqueous solution of NaCl, which was adjusted to a pH of 3.5 by adding a predetermined amount of acetic acid-sodium acetate saturated with (balance), was used.

【0049】これら試験結果を表2および表3に示す。Tables 2 and 3 show the test results.

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】表2、表3中の耐SSC欄の評価基準は、
SSCの発生が認められなかったものを良好「○」、S
SCの発生したものを不芳「×」とした。
The evaluation criteria in the SSC resistance column in Tables 2 and 3 are as follows:
If no occurrence of SSC was observed, it was evaluated as “Good”, S
A sample in which SC occurred was evaluated as "bad".

【0053】表2より明らかなように、本発明で規定す
る範囲内の化学組成および金属組織を備えた鋼では、Y
Sが648MPa以下で、靭性と耐食性にすぐれてい
る。
As is evident from Table 2, in steel having a chemical composition and a metal structure within the range specified in the present invention, Y
S is 648 MPa or less, and has excellent toughness and corrosion resistance.

【0054】一方、表3に示されているように、試験番
号21〜32の化学組成が本発明で規定する範囲内にあ
っても、フェライト量が規定範囲外であれば靱性、強度
および耐SSC性の1つ以上の特性がわるく実用に耐え
ない。また、化学組成が本発明で規定する範囲外の試験
番号33〜40については、耐SSC性に劣り、靱性、
降伏応力の特性がわるい。
On the other hand, as shown in Table 3, even if the chemical compositions of Test Nos. 21 to 32 are within the range specified in the present invention, if the ferrite content is out of the specified range, the toughness, strength and resistance to resistance are reduced. One or more of the SSC properties are poorly practical. Test numbers 33 to 40 whose chemical composition is out of the range specified in the present invention are inferior in SSC resistance, toughness,
Poor yield stress characteristics.

【0055】[0055]

【発明の効果】素材の熱延鋼板や溶接製管後の鋼管に、
焼入れ、焼戻し熱処理や長時間の焼鈍熱処理を施さな
く、油井環境において優れた耐SSC性と靱性を発揮す
る溶接鋼管を安価に提供することができ、その工業的価
値は大である。
According to the present invention, a hot-rolled steel sheet of a material or a steel pipe after welding and pipe-forming is used.
A welded steel pipe exhibiting excellent SSC resistance and toughness in an oil well environment can be provided at low cost without performing quenching, tempering heat treatment or long-time annealing heat treatment, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フェライト量と降伏応力の関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the amount of ferrite and the yield stress.

【図2】フェライト量と破面遷移温度との関係を示す図
である。
FIG. 2 is a diagram showing the relationship between the amount of ferrite and the fracture surface transition temperature.

【図3】フェライト量と硫化水素分圧の関係を示す図で
ある。
FIG. 3 is a diagram showing the relationship between the amount of ferrite and the partial pressure of hydrogen sulfide.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】質量%で、C:0.02%以下、P:0.
04%以下、S:0.01%以下、Ni:2〜8%、C
r:11.5〜15%、Mo:1.5〜4%、Si:0
〜1%、Mn:0〜1%、sol.Al:0〜0.1%、C
u:0〜1.2%、Ti:0〜0.2%、N:0.02
%以下、V:0.1%以下を含有し、残部はFeおよび
不純物からなり、金属組織中のフェライト量が体積%で
15〜40%であることを特徴とする耐硫化物応力割れ
性に優れた低炭素フェライト−マルテンサイト二相ステ
ンレス溶接鋼管。
(1) C: 0.02% or less, P: 0.
04% or less, S: 0.01% or less, Ni: 2 to 8%, C
r: 11.5 to 15%, Mo: 1.5 to 4%, Si: 0
-1%, Mn: 0-1%, sol. Al: 0-0.1%, C
u: 0 to 1.2%, Ti: 0 to 0.2%, N: 0.02
%, V: 0.1% or less, with the balance being Fe and impurities, the ferrite content in the metal structure being 15 to 40% by volume in sulfide stress cracking resistance. Excellent low carbon ferrite-martensite duplex stainless steel welded pipe.
JP32352299A 1999-11-15 1999-11-15 Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking Expired - Fee Related JP4193308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32352299A JP4193308B2 (en) 1999-11-15 1999-11-15 Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32352299A JP4193308B2 (en) 1999-11-15 1999-11-15 Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking

Publications (2)

Publication Number Publication Date
JP2001140040A true JP2001140040A (en) 2001-05-22
JP4193308B2 JP4193308B2 (en) 2008-12-10

Family

ID=18155640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32352299A Expired - Fee Related JP4193308B2 (en) 1999-11-15 1999-11-15 Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking

Country Status (1)

Country Link
JP (1) JP4193308B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323841A1 (en) * 2001-12-26 2003-07-02 Kawasaki Steel Corporation Martensitic stainless steel sheet and method for making the same
JP2007516351A (en) * 2003-05-20 2007-06-21 トルクロック・コーポレイション Manufacturing method of stainless steel pipe used for piping system
US7862666B2 (en) * 2003-10-31 2011-01-04 Jfe Steel Corporation Highly anticorrosive high strength stainless steel pipe for linepipe and method for manufacturing same
JP2015101763A (en) * 2013-11-26 2015-06-04 新日鐵住金株式会社 Ferrite and martensite two-phase steel and steel tube for oil field
EP3042968A4 (en) * 2013-09-04 2016-08-31 Jfe Steel Corp Method for producing high-strength stainless steel pipe, and high-strength stainless steel pipe
EP3916120A4 (en) * 2019-03-29 2022-02-16 JFE Steel Corporation Stainless seamless steel pipe
CN114535345A (en) * 2022-01-25 2022-05-27 南京沃尔德特钢有限公司 Method for manufacturing oxidation-resistant high-strength duplex stainless steel pipe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323841A1 (en) * 2001-12-26 2003-07-02 Kawasaki Steel Corporation Martensitic stainless steel sheet and method for making the same
US7572407B2 (en) 2001-12-26 2009-08-11 Jfe Steel Corporation Martensitic stainless steel sheet and method for making the same
JP2007516351A (en) * 2003-05-20 2007-06-21 トルクロック・コーポレイション Manufacturing method of stainless steel pipe used for piping system
US7862666B2 (en) * 2003-10-31 2011-01-04 Jfe Steel Corporation Highly anticorrosive high strength stainless steel pipe for linepipe and method for manufacturing same
EP3042968A4 (en) * 2013-09-04 2016-08-31 Jfe Steel Corp Method for producing high-strength stainless steel pipe, and high-strength stainless steel pipe
US10151012B2 (en) 2013-09-04 2018-12-11 Jfe Steel Corporation High-strength stainless steel pipe
JP2015101763A (en) * 2013-11-26 2015-06-04 新日鐵住金株式会社 Ferrite and martensite two-phase steel and steel tube for oil field
EP3916120A4 (en) * 2019-03-29 2022-02-16 JFE Steel Corporation Stainless seamless steel pipe
CN114535345A (en) * 2022-01-25 2022-05-27 南京沃尔德特钢有限公司 Method for manufacturing oxidation-resistant high-strength duplex stainless steel pipe

Also Published As

Publication number Publication date
JP4193308B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP5200932B2 (en) Bend pipe and manufacturing method thereof
JP3427387B2 (en) High strength welded steel structure with excellent corrosion resistance
JP5048167B2 (en) Thick welded steel pipe excellent in low temperature toughness, manufacturing method of thick welded steel pipe excellent in low temperature toughness, steel sheet for manufacturing thick welded steel pipe
JP5303842B2 (en) Manufacturing method of ERW welded steel pipe for heat treatment with excellent flatness
US6220306B1 (en) Low carbon martensite stainless steel plate
JP4761993B2 (en) Manufacturing method of ferritic stainless steel welded pipe for spinning
JP5353156B2 (en) Steel pipe for line pipe and manufacturing method thereof
JP2006299398A (en) Method for producing high strength steel sheet having not lower than 760 mpa tensile strength and excellent strain-aging characteristic and method for producing high strength steel tube using it
JP2018053281A (en) Rectangular steel tube
JP2001009589A (en) Austenitic/ferrite two phase stainless steel welding material, and high chromium steel welding method using it
JP6008042B2 (en) Steel plate for thick-walled steel pipe, method for producing the same, and thick-walled high-strength steel pipe
JP2001179485A (en) Martensitic welded stainless steel pipe and producing method therefor
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JP2003003233A (en) High strength steel and production method therefor
JPH10324950A (en) High-strength welded steel structure, and its manufacture
JP5971415B2 (en) Manufacturing method of martensitic stainless hot-rolled steel strip for welded steel pipe for line pipe
CN102057070B (en) Steel plate excellent in sour resistance and steel pipe for linepipes
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
JP5014831B2 (en) ERW steel pipe for expanded oil well with excellent pipe expansion performance and corrosion resistance and method for producing the same
JP2002060910A (en) HIGH Cr WELDED STEEL PIPE
JP2003301241A (en) Two-phase stainless steel for urea-producing plant, welding material, urea-producing plant and equipment therefor
JP2008195991A (en) Steel sheet and steel pipe with excellent high temperature characteristics for steam transport piping, and their manufacturing methods
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JP2000328202A (en) Low carbon martensitic stainless steel sheet excellent in formability, corrosion resistance and toughness, its production and welded steel pipe
JP2002226947A (en) Martensitic stainless steel welded joint having excellent strain aging resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees