JP2003003233A - High strength steel and production method therefor - Google Patents

High strength steel and production method therefor

Info

Publication number
JP2003003233A
JP2003003233A JP2001185998A JP2001185998A JP2003003233A JP 2003003233 A JP2003003233 A JP 2003003233A JP 2001185998 A JP2001185998 A JP 2001185998A JP 2001185998 A JP2001185998 A JP 2001185998A JP 2003003233 A JP2003003233 A JP 2003003233A
Authority
JP
Japan
Prior art keywords
less
steel
strength
mpa
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001185998A
Other languages
Japanese (ja)
Other versions
JP3770106B2 (en
Inventor
Hideji Okaguchi
秀治 岡口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001185998A priority Critical patent/JP3770106B2/en
Publication of JP2003003233A publication Critical patent/JP2003003233A/en
Application granted granted Critical
Publication of JP3770106B2 publication Critical patent/JP3770106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high tensile strength steel (a steel sheet, and a steel pipe including a welded pipe) having unstable fracture resisting characteristics, in which 85% ductile fracture transition temperature SATT 85% in a DWTT test in API standards is <=-30 deg.C, and absorbed energy EDWTT at -30 deg.C is >=5,000 J, and to provide a production method therefor. SOLUTION: The high strengh steel has a composition containing 0.01 to 0.10% C, <=0.30% Si, 1.00 to 2.50% Mn, <=0.010% P, <=0.0008% S, 0.005 to 0.06% Nb, 0.004 to 0.025% Ti, <=0.05% sol. Al, <=0.0040% N and <=0.003% O, and the balance Fe with impurities, and also satisfying the inequality of 20×S+P+5×(N+O)}<=0.045, and has TS(tensile strength) of <=750 MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガスや原油を
輸送するラインパイプや各種圧力容器等に利用して好適
な不安定破壊抵抗特性に優れた引張強さ750MPa以
上の高張力鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel having a tensile strength of 750 MPa or more, which is suitable for use in line pipes for transporting natural gas and crude oil, various pressure vessels, and the like and is excellent in unstable fracture resistance.

【0002】[0002]

【従来の技術】天然ガスや原油を長距離輸送するパイプ
ラインにおいては、敷設費や輸送費の低減を目指し、パ
イプ素材そのものを高強度化して肉厚の増大を制限する
ニーズが高まっている。
2. Description of the Related Art In pipelines for transporting natural gas and crude oil over long distances, there is an increasing need to limit the increase in wall thickness by strengthening the pipe material itself in order to reduce laying costs and transportation costs.

【0003】現在、米国石油協会(API)において
は、X80(引張強さ620MPa以上)グレード鋼が
規格化されて実用に供されており、さらに強度の高いX
100(引張強さ750MPa以上)およびX100超
(たとえば引張強さ900MPa以上)の高強度グレー
ド鋼の適用も検討されている。
At present, the American Petroleum Institute (API) standardizes X80 (tensile strength of 620 MPa or more) grade steel and puts it into practical use.
Application of high-strength grade steels of 100 (tensile strength of 750 MPa or more) and more than X100 (for example, tensile strength of 900 MPa or more) is also under consideration.

【0004】例えば、特開平8−199292号公報お
よび特開2000−199036号公報には、Mn含有
量を高めに設定したX100超グレードの高強度ライン
パイプとその製造方法が提案されている。
For example, Japanese Unexamined Patent Publication No. 8-199292 and Japanese Unexamined Patent Publication No. 2000-199036 propose a high-strength line pipe of X100 super grade having a high Mn content and a method for producing the same.

【0005】ラインパイプでは、構造材料として具備す
べき要求特性のうち、強度特性と不安定破壊特性の両者
が重要である。特に、後者の不安定破壊特性について
は、脆性破壊特性と延性的な不安定破壊特性である不安
定延性破壊特性の双方のバランスのよい特性確保が必要
とされている。
In the line pipe, both the strength characteristics and the unstable fracture characteristics are important among the required characteristics to be provided as a structural material. In particular, regarding the latter unstable fracture characteristics, it is necessary to secure a well-balanced characteristic of both brittle fracture characteristics and unstable ductile fracture characteristics that are ductile unstable fracture characteristics.

【0006】上記の両特性については、シャルピー衝撃
試験等の小型破壊試験では把握できず、鋼管全厚の試験
片、例えばAPIで規定されているDWTT試験におい
て優れた脆性破壊抵抗特性と不安定延性破壊抵抗特性を
確保する必要がある。X100グレード以上の高強度ラ
インパイプでは、特に全厚の破壊試験による不安定破壊
特性の評価が必要と考えられる。
Both of the above characteristics cannot be grasped by a small fracture test such as a Charpy impact test, and a brittle fracture resistance characteristic and an unstable ductility which are excellent in a test piece having a full thickness of a steel pipe, for example, a DWTT test specified by API. It is necessary to secure the breakdown resistance characteristics. For high strength line pipes of X100 grade or higher, it is considered necessary to evaluate the unstable fracture characteristics by a full-thickness fracture test.

【0007】しかし、上記の両公報に示される技術にお
いては、破壊特性はシャルピー衝撃試験でしか評価され
ておらず、実管での脆性破壊特性や不安定延性破壊特性
については全く検討されていない。すなわち、X100
グレード以上の高強度鋼において、実管での脆性破壊抵
抗特性と不安定延性破壊抵抗特性(以下、両特性を総称
して不安定破壊抵抗特性という)を向上させて構造材料
としての安全性を高める技術についてはほとんど明らか
になっていない。
However, in the techniques disclosed in both of the above publications, the fracture characteristics are evaluated only by the Charpy impact test, and the brittle fracture characteristics and the unstable ductile fracture characteristics in a real pipe are not examined at all. . That is, X100
For high-strength steels of grade or higher, the brittle fracture resistance characteristics and unstable ductile fracture resistance characteristics of actual pipes (both characteristics are collectively referred to as unstable fracture resistance characteristics) are improved to improve safety as structural materials. Little is known about the technology to boost it.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、上述
のような事情を踏まえ、引張強さが750MPa以上
(好ましくは900MPa以上)で、しかもAPI規格
に規定されるDWTT試験における85%延性破面遷移
温度(SATT85% :℃)が−30℃以下、−30
℃での吸収エネルギー(vEDWTT:J)が5000
J以上という、不安定破壊抵抗特性に優れた高張力鋼、
具体的には鋼板および溶接管を含めた鋼管とこれらを安
定して製造することが可能な製造方法を提供することに
ある。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, an object of the present invention is to provide a tensile strength of 750 MPa or more (preferably 900 MPa or more) and 85% ductility in a DWTT test specified by API standard. Fracture transition temperature (SATT 85% : ° C) is -30 ° C or lower, -30
Energy absorbed at ℃ (vE DWTT : J) is 5000
High tensile steel with J or more, which has excellent unstable fracture resistance characteristics,
Specifically, it is to provide a steel pipe including a steel plate and a welded pipe and a manufacturing method capable of stably manufacturing these.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記の課題
を達成するために、実験検討を重ねた結果、以下のこと
を知見した。
The present inventor has found the following as a result of repeated experiments and studies in order to achieve the above object.

【0010】従来の強度グレード鋼では、小型破壊試験
による不安定破壊特性と鋼管本体の不安定破壊特性との
間の差は比較的小さく、その間の関係も明確であった。
In the conventional strength grade steel, the difference between the unstable fracture characteristics in the small fracture test and the unstable fracture characteristics of the steel pipe body was relatively small, and the relationship between them was also clear.

【0011】これに対して、X100(引張強さ750
MPa以上)グレード以上の高強度鋼では、小型破壊試
験では鋼管本体の不安定破壊特性を把握することができ
ず、鋼管の全厚試験であるAPIに規定されるDWTT
試験で評価する必要があることが確認された。すなわ
ち、DWTT試験における85%延性破面遷移温度(S
ATT85% )と吸収エネルギー(vEDWTT)に
より高強度鋼管の不安定破壊特性が把握できることが判
明した。
On the other hand, X100 (tensile strength 750
For high-strength steels of (MPa or higher) grade or higher, the unstable fracture characteristics of the steel pipe body cannot be grasped by the small-scale fracture test, and the DWTT specified in the API for full-thickness test of steel pipe
It was confirmed that the test needs to be evaluated. That is, the 85% ductile fracture surface transition temperature (S
It was found that the unstable fracture characteristics of the high-strength steel pipe can be grasped by ATT 85% ) and absorbed energy (vE DWTT ).

【0012】そして、引張強さ750MPa以上の高強
度鋼において、溶接施工時の溶接性および溶接部靱性を
損なうことなく、優れた不安定破壊抵抗特性を得るに
は、以下に述べる手段を採ればよいことを知見した。
In order to obtain excellent unstable fracture resistance characteristics in high-strength steel having a tensile strength of 750 MPa or more without deteriorating the weldability and the toughness of the welded portion during welding, the following means should be taken. I found it good.

【0013】(a) C含有量が0.1質量%以下である低
C系の引張強さ750MPa以上の高強度鋼のS含有量
を0.0008質量%以下、好ましくは0.0006質
量%、さらに好ましくは0.0004質量%以下とする
と、例えば、引張強さが930MPa以上の鋼管であっ
ても、DWTT試験における85%延性破面遷移温度
(SATT85% )と吸収エネルギー(v
DWTT)が向上し、部分ガスバーストおよびフルガ
スバースト試験における脆性破壊抵抗特性および不安定
延性破壊抵抗特性が飛躍的に向上し、ラインパイプとし
ての破壊安全性が向上する。
(A) The S content of a high-strength steel having a C content of 0.1% by mass or less and a tensile strength of 750 MPa or more of a low C system is 0.0008% by mass or less, preferably 0.0006% by mass. And more preferably 0.0004 mass% or less, for example, even for a steel pipe having a tensile strength of 930 MPa or more, 85% ductile fracture surface transition temperature (SATT 85% ) and absorbed energy (v
E DWTT ) is improved, brittle fracture resistance characteristics and unstable ductile fracture resistance characteristics in the partial gas burst and full gas burst tests are dramatically improved, and fracture safety as a line pipe is improved.

【0014】(b) S含有量の低減と同時に、鋼中に含ま
れるP、NおよびO(酸素)の含有量を、式「{20×
S+P+5×(N+O)}≦0.045」、好ましくは
式「{20×S+P+5×(N+O)}≦0.035」
を満たす値に調整すると、脆性亀裂および延性亀裂の発
生と停止特性が向上し、DWTT試験における85%延
性破面遷移温度(SATT85% )と吸収エネルギー
(vEDWTT)がさらに向上する。
(B) At the same time as reducing the S content, the contents of P, N and O (oxygen) contained in the steel are calculated by the formula "{20 ×
S + P + 5 × (N + O)} ≦ 0.045 ”, preferably the formula“ {20 × S + P + 5 × (N + O)} ≦ 0.035 ”
When adjusted to a value satisfying the above conditions, the initiation and termination properties of brittle cracks and ductile cracks are improved, and the 85% ductile fracture surface transition temperature (SATT 85% ) and absorbed energy (vE DWTT ) in the DWTT test are further improved.

【0015】(c) 表層部と肉厚中心部の金属組織に占め
るマルテンサイト相とベイナイト相の合計割合を、それ
ぞれ、95体積%以上、80体積%以上にすると、脆性
亀裂および延性亀裂の発生と停止特性がさらに向上し、
鋼管の不安定破壊抵抗特性が一段と安定する。
(C) When the total proportions of the martensite phase and the bainite phase in the metal structure of the surface layer portion and the thickness center portion are 95% by volume and 80% by volume, respectively, brittle cracks and ductile cracks are generated. And the stopping characteristics are further improved,
The unstable fracture resistance characteristics of steel pipes become more stable.

【0016】本発明は、上記の知見に基づいて完成され
たもので、その要旨は、下記(1)、(2)の高強度
鋼、(3)の鋼板、(4)〜(5)の鋼管、および
(6)の高強度鋼の製造方法にある。
The present invention has been completed based on the above findings, and the gist thereof is as follows: (1) and (2) high strength steel, (3) steel plate, and (4) to (5). The method is for producing a steel pipe and (6) high-strength steel.

【0017】(1)質量%で、C:0.01〜0.10
%、Si:0.30%以下、Mn:1.00〜2.50
%、P:0.010%以下、S:0.0008%以下、
Nb:0.005〜0.06%、Ti:0.004〜
0.025%、sol.Al:0.05%以下、N:
0.0040%以下、O:0.003%以下、Ni:
2.5%以下、Cu:1.5%以下、Mo:0.8%以
下、Cr:1.0%以下、V:0.1%以下、B:0.
002%以下、Zr:0.03%以下、Ca:0.00
3%以下を含み、残部Feおよび不純物で、下記の(1)
式を満たす鋼からなり、引張強さが750MPa以上で
ある高強度鋼。
(1) C: 0.01 to 0.10.
%, Si: 0.30% or less, Mn: 1.00 to 2.50
%, P: 0.010% or less, S: 0.0008% or less,
Nb: 0.005 to 0.06%, Ti: 0.004 to
0.025%, sol. Al: 0.05% or less, N:
0.0040% or less, O: 0.003% or less, Ni:
2.5% or less, Cu: 1.5% or less, Mo: 0.8% or less, Cr: 1.0% or less, V: 0.1% or less, B: 0.
002% or less, Zr: 0.03% or less, Ca: 0.00
It contains 3% or less, and the balance is Fe and impurities.
A high-strength steel made of steel that satisfies the formula and having a tensile strength of 750 MPa or more.

【0018】 {20×S+P+5×(N+O)}≦0.045 ・・・・ (1) ここで、(1) 式中の元素記号は鋼中に含まれる各元素の
含有量(質量%)を意味する。
{20 × S + P + 5 × (N + O)} ≦ 0.045 (1) Here, the element symbol in the formula (1) is the content (% by mass) of each element contained in the steel. means.

【0019】(2)表層部と肉厚中央部の金属組織に占
めるマルテンサイト相とベイナイト相との合計割合が、
それぞれ、95体積%以上、80体積%以上である上記
(1)に記載の高強度鋼。
(2) The total proportion of the martensite phase and the bainite phase in the metal structure of the surface layer portion and the central portion of the wall thickness is
The high-strength steel according to (1) above, which is 95% by volume or more and 80% by volume or more, respectively.

【0020】(3)上記(1)または(2)に記載の高
強度鋼よりなる高強度鋼板。
(3) A high-strength steel sheet made of the high-strength steel according to (1) or (2) above.

【0021】(4)上記(1)または(2)に記載の高
強度鋼よりなる高強度鋼管。
(4) A high-strength steel pipe made of the high-strength steel described in (1) or (2) above.

【0022】(5)母材部が上記(1)または(2)に
記載の高強度鋼よりなる溶接鋼管であり、溶接金属の引
張強さが700MPa以上で、かつ(母材の引張強さ−
50)MPa以上、溶接金属中のアシキュラーフェライ
ト組織の割合が10〜80体積%である高強度鋼管。
(5) The base metal part is a welded steel pipe made of the high-strength steel described in (1) or (2) above, the tensile strength of the weld metal is 700 MPa or more, and the (base metal tensile strength is −
50) A high-strength steel pipe having a MPa or higher and a proportion of the acicular ferrite structure in the weld metal of 10 to 80% by volume.

【0023】(6)質量%で、C:0.01〜0.10
%、Si:0.30%以下、Mn:1.00〜2.50
%、P:0.010%以下、S:0.0008%以下、
Nb:0.005〜0.06%、Ti:0.004〜
0.025%、sol.Al:0.05%以下、N:
0.0040%以下、O:0.003%以下、Ni:
2.5%以下、Cu:1.5%以下、Mo:0.80%
以下、Cr:1.0%以下、V:0.1%以下、B:
0.002%以下、Zr:0.03%以下、Ca:0.
0030%以下を含み、残部Feおよび不純物で、下記
の(1) 式を満たす鋼を、950〜1200℃に加熱後、
熱間圧延をおこなって仕上温度900〜600℃で圧延
を終了し、500℃を下回らない温度域から300℃以
下の温度にまで4℃/秒以上の冷却速度で加速冷却する
高強度鋼の製造方法。
(6) C: 0.01 to 0.10.
%, Si: 0.30% or less, Mn: 1.00 to 2.50
%, P: 0.010% or less, S: 0.0008% or less,
Nb: 0.005 to 0.06%, Ti: 0.004 to
0.025%, sol. Al: 0.05% or less, N:
0.0040% or less, O: 0.003% or less, Ni:
2.5% or less, Cu: 1.5% or less, Mo: 0.80%
Below, Cr: 1.0% or less, V: 0.1% or less, B:
0.002% or less, Zr: 0.03% or less, Ca: 0.
After heating steel containing 0030% or less and the balance Fe and impurities and satisfying the following formula (1) to 950 to 1200 ° C.,
Manufacture of high-strength steel that is hot-rolled to finish rolling at a finishing temperature of 900 to 600 ° C. and acceleratedly cooled at a cooling rate of 4 ° C./sec or more from a temperature range not lower than 500 ° C. to a temperature of 300 ° C. or less. Method.

【0024】 {20×S+P+5×(N+O)}≦0.045 ・・・・ (1) ここで、(1) 式中の元素記号は鋼中に含まれる各元素の
含有量(質量%)を意味する。
{20 × S + P + 5 × (N + O)} ≦ 0.045 (1) Here, the element symbol in the formula (1) is the content (% by mass) of each element contained in the steel. means.

【0025】なお、上記(1)〜(6)に記載の本発明
においては、Ni、Cu、Mo、Cr、V、B、Zrお
よびCaの各元素は、必ずしも積極的に添加含有させる
必要はなく、その含有量はいずれも不純物量レベルであ
ってもよい。
In the present invention described in (1) to (6) above, the elements Ni, Cu, Mo, Cr, V, B, Zr and Ca need not necessarily be positively added and contained. Alternatively, the content may be at the impurity level.

【0026】また、上記(5)における表層部とは表面
から肉厚の1/10位置までの範囲内をいい、肉厚中心
部とは肉厚中心からそれぞれ肉厚の1/4位置までの範
囲内をいう。
In addition, the surface layer portion in the above (5) means a range from the surface to the 1/10 position of the wall thickness, and the center portion of the wall thickness is from the center of the wall thickness to 1/4 position of the wall thickness. Within the range.

【0027】[0027]

【発明の実施の形態】以下、本発明の高張力鋼(鋼板、
鋼管)とその製造方法および溶接鋼管を上記のように規
定した理由について詳細に説明する。なお。以下におい
て、「%」は特に断らない限り「質量%」を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION The high-strength steel (steel plate,
Steel pipe), its manufacturing method, and the reason for defining the welded steel pipe as described above will be described in detail. Incidentally. In the following, "%" means "mass%" unless otherwise specified.

【0028】まず、鋼の化学組成について述べる。First, the chemical composition of steel will be described.

【0029】C:0.01〜0.10% Cは、強度を確保する目的で含有させるが、0.01%
未満の含有量では焼入性が不足で750MPa以上の引
張強さを確保することが難しく、また靭性も十分ではな
い。逆に、0.10%を超えて含有させると、鋼および
その溶接部、特に溶接熱影響部の靭性が低下するだけで
なく、不安定破壊抵抗特性も低下する。また、溶接施工
時における溶接性も低下する。このため、C含有量は
0.01〜0.10%とした。好ましい範囲は0.02
〜0.08%、より好ましい範囲は0.03〜0.05
%である。
C: 0.01 to 0.10% C is contained for the purpose of ensuring strength, but 0.01%
If the content is less than 1, the hardenability is insufficient and it is difficult to secure a tensile strength of 750 MPa or more, and the toughness is not sufficient. On the contrary, if the content exceeds 0.10%, not only the toughness of the steel and its welded portion, particularly the weld heat affected zone is deteriorated, but also the unstable fracture resistance characteristic is deteriorated. In addition, the weldability during welding is also reduced. Therefore, the C content is set to 0.01 to 0.10%. The preferred range is 0.02
~ 0.08%, more preferably 0.03 to 0.05
%.

【0030】Si:0.30%以下 Siは、脱酸剤として通常添加されるが、その含有量が
0.30%を超えると、鋼およびその溶接部の靭性が低
下するだけでなく、不安定破壊抵抗特性も低下する。こ
のため、Si含有量は0.30以下とした。好ましい上
限は0.15%、より好ましい上限は0.10%であ
る。なお、下限は特に定めないが、十分な脱酸効果を得
るためはSi含有量を0.02%以上とするのが望まし
い。
Si: 0.30% or less Si is usually added as a deoxidizing agent, but if its content exceeds 0.30%, not only the toughness of steel and its welded portion is deteriorated, but also the Stable breakdown resistance characteristics also deteriorate. Therefore, the Si content is set to 0.30 or less. A preferred upper limit is 0.15%, and a more preferred upper limit is 0.10%. The lower limit is not particularly specified, but it is desirable that the Si content be 0.02% or more in order to obtain a sufficient deoxidizing effect.

【0031】Mn:1.00〜2.50% Mnは、焼入性を向上させて強度を高めるために含有さ
せるが、1.00%未満の含有量では750MPa以上
の引張強さを確保することが困難である。逆に2.50
%を超えて含有させると、鋼およびその溶接部の靭性が
低下する。このため、Mn含有量は1.00〜2.50
%とした。好ましい範囲は1.2〜1.9%、より好ま
しい範囲は1.2〜1.7%である。
Mn: 1.00 to 2.50% Mn is contained in order to improve hardenability and strength, but a content of less than 1.00% secures a tensile strength of 750 MPa or more. Is difficult. On the contrary, 2.50
If it is contained in excess of%, the toughness of steel and its welded portion will be reduced. Therefore, the Mn content is 1.00 to 2.50.
%. A preferable range is 1.2 to 1.9%, and a more preferable range is 1.2 to 1.7%.

【0032】P:0.010%以下 Pは、不純物元素で、鋼およびその溶接部、なかでも溶
接熱影響部の低温靭性を低下させるだけでなく、溶接性
も低下させ、さらに不安定破壊抵抗特性をも低下させ
る。したがって、P含有量は低ければ低いほど好ましい
が、不可避的な混入は避けられず、過度な低減はコスト
上昇を招くので、実害を生じさせない限度として、その
上限を0.010%とした。好ましい上限は0.008
%、より好ましい上限は0.005%である。なお、P
含有量は後述する(1) 式を満たす必要がある。
P: 0.010% or less P is an impurity element, which not only lowers the low temperature toughness of the steel and its welds, especially the heat-affected zone of the weld, but also lowers the weldability and further provides an unstable fracture resistance. It also deteriorates the characteristics. Therefore, the lower the P content is, the more preferable it is, but unavoidable mixing is unavoidable, and excessive reduction causes an increase in cost. Therefore, the upper limit is set to 0.010% so as not to cause actual damage. The preferred upper limit is 0.008
%, And a more preferable upper limit is 0.005%. Note that P
The content must satisfy the formula (1) described later.

【0033】S:0.0008%以下 Sは、上記のPと同様の不純物元素で、鋼およびその溶
接部、なかでも溶接熱影響部の低温靭性を低下させるだ
けでなく、溶接性をも低下させる。さらに、Sは、上記
のPとは異なり、微量にて高強度鋼の不安定破壊抵抗特
性を著しく劣化させるため、本発明においてはその含有
量の低減が必須の元素である。すなわち、引張強さ75
0MPa以上、なかでも900MPa以上の高強度鋼に
十分な不安定破壊抵抗特性を付与するためにはS含有量
をできるだけ低くするのが好ましいが、不可避的な混入
は避けられず、過度な低減はコスト上昇を招くので、実
害を生じさせない限度として、0.0008%以下とし
た。好ましい上限は0.0006%、より好ましい上限
は0.0004%である。なお、S含有量は後述する
(1) 式を満たす必要がある。
S: 0.0008% or less S is an impurity element similar to the above P, and not only lowers the low temperature toughness of the steel and its welded part, especially the weld heat affected zone, but also the weldability. Let Further, S, unlike P described above, remarkably deteriorates the unstable fracture resistance characteristics of high-strength steel in a small amount, so that a reduction in its content is an essential element in the present invention. That is, tensile strength 75
It is preferable to make the S content as low as possible in order to impart sufficient unstable fracture resistance characteristics to high-strength steels of 0 MPa or more, and particularly 900 MPa or more, but inevitable mixing is unavoidable and excessive reduction is not possible. Since it causes an increase in cost, it is set to 0.0008% or less as a limit that does not cause actual damage. A preferable upper limit is 0.0006%, and a more preferable upper limit is 0.0004%. The S content will be described later.
It is necessary to satisfy the formula (1).

【0034】Nb:0.005〜0.06% Nbは、鋼の組織を微細化させ、高強度鋼の靭性を大幅
に向上させる他、脆性亀裂および延性亀裂の発生抑制と
停止促進させて不安定破壊抵抗特性を向上させる元素で
あるが、0.005%未満の含有量では前記の効果が得
られない。一方、0.06%を超えて含有させると、溶
接性を損なうだけでなく、不安定破壊抵抗特性がかえっ
て低下する。このため、Nb含有量は0.005〜0.
06%とした。好ましい範囲は0.005〜0.03
%、より好ましい範囲は0.005〜0.02%であ
る。
Nb: 0.005 to 0.06% Nb refines the structure of the steel and significantly improves the toughness of high-strength steel, and also suppresses the occurrence of brittle cracks and ductile cracks and accelerates the stoppage of Nb. Although it is an element that improves the stable fracture resistance characteristic, if the content is less than 0.005%, the above effect cannot be obtained. On the other hand, if the content exceeds 0.06%, not only the weldability is impaired, but also the unstable fracture resistance characteristic is rather deteriorated. Therefore, the Nb content is 0.005 to 0.
It was set to 06%. The preferred range is 0.005-0.03
%, And a more preferable range is 0.005 to 0.02%.

【0035】Ti:0.004〜0.025% Tiは、鋼およびその溶接熱影響部の組織を微細化し、
鋼およびその溶接熱影響部の低温靭性を向上させる元素
であるが、0.004%未満の含有量では前記の効果が
得られない。一方、0.015%を超えて含有させる
と、鋼およびその溶接部、なかでも溶接熱影響部の低温
靭性を損なうだけでなく、溶接性をも低下し、さらに不
安定破壊抵抗特性も低下する。このため、Ti含有量は
0.004〜0.025%とした。好ましい範囲は0.
004〜0.015%、より好ましい範囲は0.004
〜0.010%である。
Ti: 0.004 to 0.025% Ti refines the structure of steel and its heat-affected zone,
Although it is an element that improves the low temperature toughness of steel and its heat affected zone, if the content is less than 0.004%, the above effect cannot be obtained. On the other hand, if the content exceeds 0.015%, not only the low-temperature toughness of the steel and its welds, especially the heat-affected zone of the weld, is impaired, but also the weldability is reduced and the unstable fracture resistance property is also reduced. . Therefore, the Ti content is set to 0.004 to 0.025%. The preferred range is 0.
004 to 0.015%, more preferably 0.004
Is about 0.010%.

【0036】sol.Al:0.05%以下 Alは、脱酸剤として通常添加される元素で、鋼中に不
純物として含まれる次に述べるNをAlNとして固定し
て安定化し、不安定破壊抵抗特性を向上させる作用を有
するが、その含有量がsol.Al含有量で0.05%
を超えると、溶接部の特性が劣化するだけでなく、溶接
性もかえって低下する。このため、Alの含有量はso
l.Al含有量で0.05%以下とした。好ましい上限
は0.035%、より好ましい上限は0.025%であ
る。なお、下限は特に定める必要はないが、前記の効果
を十分に得るためにはsol.Al含有量を0.000
5%以上とするのが望ましい。
Sol. Al: 0.05% or less Al is an element that is usually added as a deoxidizer, and the following N contained as an impurity in steel is fixed and stabilized as AlN to improve unstable fracture resistance characteristics. However, the content of sol. 0.05% in Al content
If it exceeds, not only the characteristics of the welded portion are deteriorated, but also the weldability is rather deteriorated. Therefore, the Al content is so
l. The Al content is 0.05% or less. A preferable upper limit is 0.035%, and a more preferable upper limit is 0.025%. The lower limit need not be specified, but in order to obtain the above-mentioned effects sufficiently, sol. Al content 0.000
It is desirable to be 5% or more.

【0037】N:0.0040%以下 Nは、不純物元素で、鋼の靭性を低下させ、延性破壊抵
抗性も低下させることから不安定破壊抵抗特性の向上に
極めて有害であり、その含有量が0.0040%を超え
ると、所望の不安定破壊抵抗特性が確保できなくなる。
このため、N含有量は0.0040%以下とした。好ま
しい上限は0.0025%、より好ましい上限は0.0
020%であるが、N含有量は低ければ低いほどよい。
なお、N含有量は後述する(1) 式を満たす必要がある。
N: 0.0040% or less N is an impurity element, which lowers the toughness of the steel and also reduces the ductile fracture resistance, and is extremely harmful for improving the unstable fracture resistance characteristics. If it exceeds 0.0040%, the desired unstable fracture resistance cannot be ensured.
Therefore, the N content is set to 0.0040% or less. A preferred upper limit is 0.0025%, and a more preferred upper limit is 0.0
Although it is 020%, the lower the N content, the better.
The N content must satisfy the formula (1) described later.

【0038】O(酸素):0.003%以下 Oは、上記のNと同様の不純物元素で、鋼の靭性を低下
させ、延性破壊抵抗性も低下させることから不安定破壊
抵抗特性の向上に極めて有害な元素であり、その含有量
が0.003%を超えると、所望の不安定破壊抵抗特性
が確保できなくなる。このため、O含有量は0.003
%以下とした。好ましい上限は0.0018%、より好
ましい上限は0.0012%であるが、O含有量は低け
れば低いほどよい。なお、O含有量は後述する(1) 式を
満たす必要がある。
O (oxygen): 0.003% or less O is an impurity element similar to the above-mentioned N, which lowers the toughness of the steel and also reduces the ductile fracture resistance, thus improving the unstable fracture resistance characteristics. It is an extremely harmful element, and if its content exceeds 0.003%, desired unstable fracture resistance characteristics cannot be secured. Therefore, the O content is 0.003
% Or less. The preferable upper limit is 0.0018%, and the more preferable upper limit is 0.0012%, but the lower the O content, the better. The O content must satisfy the formula (1) described later.

【0039】P、S、NおよびOの関係:これら元素の
含有量は、それぞれ、前述した範囲内において下記の
(1) 式を満たす含有量にする必要がある。すなわち、
P、S、NおよびOの含有量が下記の(1) 式を満たさな
い場合には、鋼の脆性亀裂および延性亀裂の発生、伝播
停止特性が著しく低下し、所望の不安定破壊抵抗特性が
確保できない。下記(1) 式中の左辺で求められる好まし
い上限値は0.035である。この場合は、不安定破壊
抵抗特性が一段と向上する。これらのことは、後述する
実施例からも明らかである。
Relationship between P, S, N and O: The contents of these elements are as follows within the above-mentioned ranges.
The content must satisfy the formula (1). That is,
If the contents of P, S, N and O do not satisfy the formula (1) below, the occurrence of brittle cracks and ductile cracks in the steel, the propagation stopping properties are significantly reduced, and the desired unstable fracture resistance properties are Cannot be secured. The preferable upper limit value calculated on the left side of the following formula (1) is 0.035. In this case, the unstable breakdown resistance characteristic is further improved. These facts are also clear from the examples described later.

【0040】 {20×S+P+5×(N+O)}≦0.045 ・・・・ (1) ここで、(1) 式中の元素記号は、鋼中に含まれる各元素
の含有量(質量%)を意味する。
{20 × S + P + 5 × (N + O)} ≦ 0.045 (1) where the element symbol in the formula (1) is the content (% by mass) of each element contained in the steel. Means

【0041】なお、上記の(1) 式は、本発明者が次に述
べる実験をおこない、得られた結果から、各元素が鋼の
不安定破壊抵抗特性、具体的にはAPI規格に規定され
るDWTT試験における85%延性破面遷移温度(SA
TT85% )と吸収エネルギー(vEDWTT)に及
ぼす影響を調査するとともに、多重解析して初めて定め
た式である。
The above formula (1) is obtained from the results of the experiments conducted by the inventor of the present invention. Based on the results obtained, each element is defined by the unstable fracture resistance characteristics of steel, specifically, the API standard. 85% ductile fracture transition temperature (SA
TT 85% ) and the effect on absorbed energy (vE DWTT ) are investigated, and this is the formula first determined by multiple analysis.

【0042】実験内容:化学組成が異なる多くの鋼を対
象に、仕上げ温度1000〜800℃の熱間圧延後、7
50〜600℃から冷却速度18〜35℃/秒で300
℃以下に冷却する加速冷却処理をおこなって板厚20m
mの鋼板を得る。次いで、得られた鋼板の圧延方向と直
交する方向から試験片を採取し、APIに規定されるD
WっT試験をおこない、85%延性破面遷移温度(SA
TT85% )と吸収エネルギー(vEDWTT)を調
べる。
Experiment content: After subjecting many steels having different chemical compositions to hot rolling at a finishing temperature of 1000 to 800 ° C., 7
300 from 50-600 ℃ at a cooling rate of 18-35 ℃ / sec
Accelerated cooling process to cool below ℃
m steel plate is obtained. Then, a test piece is taken from a direction orthogonal to the rolling direction of the obtained steel sheet, and D specified by API is taken.
A W-T test was performed and the 85% ductile fracture surface transition temperature (SA
TT 85% ) and absorbed energy (vE DWTT ) are investigated.

【0043】また、上記の(1) 式は、次のことを表す。
すなわち、Sは、MnS等の硫化物を形成し、その一部
が圧延によって伸展して微細な硫化物となり、これが脆
性亀裂の発生と伝播を著しく促進し、さらに延性進展亀
裂抵抗をも劣化させるため、係数が20であるように影
響度が最も大きいこと。NとOは、それぞれ、窒化物と
酸化物を形成して延性進展亀裂抵抗を劣化させる他、固
溶状態でも、脆性亀裂の発生と伝播および延性進展亀裂
の伝播を促進するが、係数が5であるように、Sに比べ
ると影響度が小さこと。Pはミクロまたはマクロに偏析
して脆性亀裂および延性亀裂の発生を容易にするが、係
数が1であるように、S、NおよびOに比べると影響度
が遙かに小さいこと。
The above equation (1) represents the following.
That is, S forms sulfides such as MnS, and a part thereof is extended by rolling to become fine sulfides, which significantly promotes the generation and propagation of brittle cracks and further deteriorates ductility-propagation crack resistance. Therefore, the degree of influence is the largest, as the coefficient is 20. N and O respectively form nitrides and oxides to deteriorate ductile growth crack resistance, and promote the initiation and propagation of brittle cracks and the propagation of ductile growth cracks even in a solid solution state, but the coefficient is 5 As described above, the degree of influence is smaller than that of S. P segregates into micro or macro to facilitate the generation of brittle cracks and ductile cracks, but as the coefficient is 1, its influence is much smaller than that of S, N and O.

【0044】本発明の高強度鋼は、以上に述べた化学組
成を有すれば十分であるが、必要に応じてNi、Cu、
Cr、Mo、V、B、CaおよびZrのいずれか1種以
上を積極的に添加含有させてもよい。この場合は、鋼お
よびその溶接部、なかでも溶接熱影響部の低温靱性、溶
接性を損なうことなく、高強度、耐食性および不安定破
壊抵抗特性が一段と向上し、より厚肉の鋼板や鋼管等を
得ることができる。
The high-strength steel of the present invention is sufficient if it has the chemical composition described above, but if necessary, Ni, Cu,
Any one or more of Cr, Mo, V, B, Ca and Zr may be positively added and contained. In this case, high-strength, corrosion resistance, and unstable fracture resistance properties are further improved without impairing the low-temperature toughness and weldability of the steel and its welds, especially the heat-affected zone of welding, and thicker steel plates and steel pipes, etc. Can be obtained.

【0045】Ni:2.5%以下(添加時の望ましい下
限は0.2%) Niは、鋼の低温靭性、脆性亀裂伝播停止性能を改善し
て不安定破壊抵抗特性を向上させる他、溶接性をも向上
させる作用を有する。これらの効果は不純物量レベルで
も得られるが、0.2%以上の含有量で顕著になる。し
かし、2.5%を超えて含有させても、コスト上昇の割
に前記の効果の向上代が小さくなるだけでなく、焼入れ
−焼戻し処理によって過度の残留オーステナイトが生成
し、降伏強度が低下してしまう場合がある。このため、
積極的に添加含有させる場合のNi含有量は0.2〜
2.5%とするのがよい。
Ni: 2.5% or less (desirable lower limit of 0.2% at the time of addition) Ni improves the low temperature toughness and brittle crack propagation stopping performance of the steel to improve the unstable fracture resistance characteristics, as well as welding. It also has the effect of improving the sex. These effects can be obtained even at the impurity amount level, but become remarkable when the content is 0.2% or more. However, even if the content exceeds 2.5%, not only the margin for improving the above-mentioned effect becomes small for the cost increase, but also excessive residual austenite is generated by the quenching-tempering treatment, and the yield strength decreases. It may happen. For this reason,
When positively added and contained, the Ni content is 0.2 to
2.5% is preferable.

【0046】Cu:1.5%以下(添加時の望ましい下
限は0.1%) Cr:1.0%以下(添加時の望ましい下限は0.1
%) Mo:0.8%以下(添加時の望ましい下限は0.1
%) V:0.1%以下(添加時の望ましい下限は0.005
%) B:0.003%以下(添加時の望ましい下限は0.0
003%) これらの元素は、いずれも、焼入性を向上させて鋼を強
靱化する作用を有する。この効果は、いずれの元素も、
不純物量レベルでも得られるが、Cu、CrおよびMo
では0.1%以上、Vでは0.005%以上、Bでは
0.0003%以上の含有量で顕著になる。しかし、C
uは、1.5%を超えて含有させると、鋼およびその溶
接部の靭性が損なわれる他、熱間延性が著しく低下する
ことがある。また、Cr、Mo、VおよびBは、それぞ
れ、1.0%、0.8%、0.1%、0.003%を超
えて含有させると、いずれも、強度上昇が過度となり、
鋼およびその溶接部の靭性が損なわれることがある。こ
のため、積極的に添加含有させる場合のCu、Cr、M
o、VおよびBの含有量は、それぞれ、0.1〜1.5
%、0.1〜1.0%、0.1〜0.8%、0.005
〜0.1%、0.0003〜0.003%とするのがよ
い。
Cu: 1.5% or less (desirable lower limit of 0.1%) Cr: 1.0% or less (desirable lower limit of 0.1)
%) Mo: 0.8% or less (desirable lower limit at the time of addition is 0.1
%) V: 0.1% or less (desirable lower limit of addition is 0.005
%) B: 0.003% or less (desirable lower limit at the time of addition is 0.0
(003%) All of these elements have the effect of improving hardenability and strengthening the steel. This effect is
Cu, Cr and Mo can be obtained even at the impurity level.
In 0.1% or more, V is 0.005% or more, and B is 0.0003% or more. But C
If u is contained in an amount of more than 1.5%, the toughness of steel and its welded portion may be impaired, and the hot ductility may be significantly reduced. When Cr, Mo, V, and B are contained in an amount of more than 1.0%, 0.8%, 0.1%, and 0.003%, respectively, the strength increases excessively,
The toughness of steel and its welds may be compromised. For this reason, Cu, Cr, M when positively added and contained
The contents of o, V and B are 0.1 to 1.5, respectively.
%, 0.1-1.0%, 0.1-0.8%, 0.005
˜0.1%, 0.0003 to 0.003% is preferable.

【0047】なお、上記各元素のうち、Crは焼戻し処
理時の析出強化作用、Moは固溶強化作用によって強度
と靭性を高める効果もあり、Moについては、必須成分
のNbとの複合効果によって組織の微細化を促進すると
同時に、適量(0.5〜5体積%)の残留オーステナイ
トを鋼中に分散させ、不安定破壊抵抗特性を向上させる
効果もある。また、Vは耐歪み時効特性に有害な元素
(N、C、O)を安定化し、耐歪み時効特性を向上させ
る効果もある。
Among the above elements, Cr has the effect of increasing the strength and toughness by the precipitation strengthening action during tempering and Mo has the effect of strengthening the solid solution, and Mo has a combined effect with the essential component Nb. At the same time as promoting the refinement of the structure, an appropriate amount (0.5 to 5% by volume) of retained austenite is dispersed in the steel to improve the unstable fracture resistance characteristics. Further, V also has an effect of stabilizing elements (N, C, O) harmful to the strain aging resistance and improving the strain aging resistance.

【0048】Ca:0.003%以下(添加時の望まし
い下限は0.0005%) Zr:0.03%以下(添加時の望ましい下限は0.0
05%) これらの元素は、いずれも、鋼中の介在物の形態を制御
し、鋼およびその溶接部の靱性および耐食性を向上させ
る他、脆性破壊に有害な元素(N、C、O)を安定化
し、不安定破壊抵抗特性を向上させる作用を有する。こ
れらの効果は不純物量レベルでも得られるが、Caでは
0.0005%以上、Zrは0.005%以上の含有量
で顕著になる。しかし、Caは0.003%、Zrは
0.03%を超えて含有させると、鋼の清浄度が低下
し、鋼およびその溶接部の靭性が低下するだけでなく、
不安定延性亀裂破壊抵抗特性も低下する。このため、積
極的に添加含有させる場合のCaとZrの含有量は、そ
れぞれ、0.0005〜0.003%、0.005〜
0.03%とするのがよい。
Ca: 0.003% or less (desirable lower limit of 0.0005%) Zr: 0.03% or less (desirable lower limit of 0.0
(05%) All of these elements control the morphology of inclusions in the steel, improve the toughness and corrosion resistance of the steel and its welds, and add elements harmful to brittle fracture (N, C, O). It has the effect of stabilizing and improving the unstable fracture resistance characteristics. Although these effects can be obtained even at the impurity amount level, Ca becomes significant at a content of 0.0005% or more and Zr of 0.005% or more. However, when Ca is contained in an amount of more than 0.003% and Zr is more than 0.03%, not only the cleanliness of the steel is lowered and the toughness of the steel and its welded portion is lowered,
The unstable ductile crack fracture resistance properties are also reduced. Therefore, the contents of Ca and Zr when positively added and contained are 0.0005 to 0.003% and 0.005 to 0.005%, respectively.
It is good to set it to 0.03%.

【0049】金属組織について:本発明の高強度鋼は、
鋼板や鋼管として用いられるが、その金属組織は、表層
部の金属組織に占めるマルテンサイト相とベイナイト相
との合計割合が95体積%以上であり、肉厚中央部の金
属組織に占めるマルテンサイト相とベイナイト相との合
計割合が80体積%以上の金属組織であることが望まし
く、この場合には不安定破壊抵抗特性が一段と向上す
る。
Metal Structure: The high strength steel of the present invention is
Although used as a steel plate or a steel pipe, the metal structure has a total ratio of the martensite phase and the bainite phase in the metal structure of the surface layer portion of 95% by volume or more, and the martensite phase in the metal structure of the central portion of the wall thickness. It is desirable that the total proportion of the bainite phase and the bainite phase is 80% by volume or more, and in this case, the unstable fracture resistance characteristics are further improved.

【0050】以上に詳述した本発明の高強度鋼(鋼板お
よび継目無鋼管を含む)は、鋼の化学組成が本発明で規
定する条件を満たす限り、通常の熱間圧延後に再加熱焼
入れして焼戻す方法や、同じく通常の熱間圧延後に直接
焼入れして焼戻す方法、さらには同じく通常の熱間圧延
後に加速冷却処理する方法などにより製造することも可
能であるが、確実かつ安定して製造するには下記の条件
による熱間圧延後に加速冷却処理する方法で製造するの
が好ましい。
The high-strength steels (including steel plates and seamless steel pipes) of the present invention detailed above are reheat-quenched after ordinary hot rolling as long as the chemical composition of the steel satisfies the conditions specified in the present invention. It is also possible to manufacture by means of a tempering method, a normal hot rolling method followed by a direct quenching and tempering method, or a normal hot rolling method followed by an accelerated cooling treatment. It is preferable to manufacture by a method of performing accelerated cooling treatment after hot rolling under the following conditions.

【0051】加熱温度:加熱温度が950℃未満である
と、750MPa以上の引張強さが確保できない場合が
ある。また、加熱温度が1200℃を超えると、その後
の熱間圧延後に脆性破壊の発生および延性破壊停止に有
害な元素(N、C、O)の安定化が不十分となり、所望
の不安定破壊抵抗特性を確保することができない場合が
ある。このため、加熱温度は950〜1200℃とする
のが望ましい。
Heating temperature: If the heating temperature is lower than 950 ° C., tensile strength of 750 MPa or more may not be secured in some cases. On the other hand, if the heating temperature exceeds 1200 ° C., the elements (N, C, O) harmful to the occurrence of brittle fracture and the termination of ductile fracture become insufficiently stabilized after the subsequent hot rolling, resulting in a desired unstable fracture resistance. In some cases, the characteristics cannot be secured. Therefore, it is desirable that the heating temperature be 950 to 1200 ° C.

【0052】熱間圧延の仕上温度:熱間圧延の仕上温度
が600℃未満であると、750MPa以上の引張強さ
が確保できない場合がある。また、熱間圧延の仕上温度
が900℃を超えると、圧延およびその後の加速冷却に
よる組織の微細化が十分でなく、脆性破壊の発生および
延性破壊停止に有害な元素(N、C)の安定化が不十分
となり、所望の不安定破壊抵抗特性を確保することがで
きない場合がある。このため、熱間圧延の仕上温度は6
00〜900℃とするのが望ましい。
Finishing temperature of hot rolling: When the finishing temperature of hot rolling is less than 600 ° C., tensile strength of 750 MPa or more may not be secured in some cases. Further, when the finishing temperature of hot rolling exceeds 900 ° C., the refinement of the structure due to rolling and subsequent accelerated cooling is not sufficient, and the elements (N, C) harmful to the occurrence of brittle fracture and the termination of ductile fracture are stabilized. In some cases, it may not be possible to ensure the desired unstable breakdown resistance characteristics. Therefore, the finishing temperature for hot rolling is 6
It is desirable to set the temperature to 00 to 900 ° C.

【0053】水冷開始温度:加速冷却時の水冷開始温度
が500℃未満であると、750MPa以上の引張強さ
が確保できないことがある。このため、加速冷却時の水
冷開始温度は500℃以上とするのがよい。
Water-cooling start temperature: If the water-cooling start temperature during accelerated cooling is less than 500 ° C., a tensile strength of 750 MPa or more may not be secured. Therefore, the water cooling start temperature at the time of accelerated cooling is preferably 500 ° C. or higher.

【0054】冷却速度:加速冷却時の冷却速度が4℃/
秒未満であると、組織中に粗大な上部ベイナイトが混入
し、良好な低温靭性、不安定破壊抵抗特性が確保できな
いことがある。このため、加速冷却時の冷却速度は4℃
/秒とするのがよい。なお、冷却速度は4℃/秒以上で
あればよく、特にその上限を規定する必要はない。
Cooling rate: Cooling rate during accelerated cooling is 4 ° C. /
If it is less than seconds, coarse upper bainite may be mixed in the structure, and good low temperature toughness and unstable fracture resistance characteristics may not be secured. Therefore, the cooling rate during accelerated cooling is 4 ° C.
/ Sec is recommended. The cooling rate may be 4 ° C./second or more, and it is not necessary to specify the upper limit.

【0055】水冷停止温度:加速冷却時の水冷停止温度
が300℃を超えると、750MPa以上の引張強さが
確保できないだけでなく、鋼中に存在する適量(0.5
〜5体積%)の残留オーステナイトが分解し、所望の不
安定破壊抵抗特性が確保できないことがある。このた
め、加速冷却時の水冷停止温度は300℃以下とするの
がよい。
Water-cooling stop temperature: When the water-cooling stop temperature at the time of accelerated cooling exceeds 300 ° C., not only a tensile strength of 750 MPa or more cannot be secured, but also an appropriate amount existing in steel (0.5
Retained austenite (about 5% by volume) may decompose and the desired unstable fracture resistance characteristics may not be secured. Therefore, the water cooling stop temperature during accelerated cooling is preferably 300 ° C. or lower.

【0056】次に、本発明の溶接鋼管について説明す
る。
Next, the welded steel pipe of the present invention will be described.

【0057】本発明の溶接鋼管は、本発明の高強度鋼よ
りなる鋼板を母材とするものであれば、周知の如何なる
製管法で製造されたものであってもよい。具体的には、
鍛接鋼管、電縫溶接鋼管、レーザー溶接鋼管、電子ビー
ム溶接鋼管、プラズマアーク溶接鋼管、TIG溶接鋼
管、UOE鋼管やスパイラル鋼管に代表されるSAW溶
接鋼管、MAG溶接鋼管、MIG溶接鋼管等を挙げるこ
とができる。
The welded steel pipe of the present invention may be manufactured by any well-known pipe manufacturing method as long as the steel plate made of the high-strength steel of the present invention is used as a base material. In particular,
Forging welded steel pipe, electric resistance welded steel pipe, laser welded steel pipe, electron beam welded steel pipe, plasma arc welded steel pipe, TIG welded steel pipe, SAW welded steel pipe represented by UOE steel pipe and spiral steel pipe, MAG welded steel pipe, MIG welded steel pipe, etc. You can

【0058】しかし、その溶接鋼管は、溶接金属の引張
強さが700MPa以上で、かつ(母材の引張強さ−5
0)MPa以上、溶接金属中のアシキュラーフェライト
組織の割合が10〜80体積%である必要がある。
However, in the welded steel pipe, the tensile strength of the weld metal is 700 MPa or more, and the tensile strength of the base metal is −5.
0) MPa or more, and the proportion of the acicular ferrite structure in the weld metal must be 10 to 80% by volume.

【0059】その理由は次のとおりである。すなわち、
溶接金属の引張強さが700MPa未満であると溶接継
手部の引張強さが750MPa以上とならず、また、溶
接金属の引張強さが(母材の引張強さ−50)MPa未
満であると、変形時の歪みが溶接金属および溶接熱影響
部に集中し、所望の不安定破壊抵抗特性が確保できなく
なる。さらに、溶接金属中のアシキュラーフェライト組
織の割合が10体積%未満であると、溶接金属の低温靭
性と変形能が不足で、所望の不安定破壊抵抗特性が確保
できなくなるためであり、逆に80体積%を超えると所
望の強度が確保できなくなるからである。
The reason is as follows. That is,
If the tensile strength of the weld metal is less than 700 MPa, the tensile strength of the welded joint does not exceed 750 MPa, and if the tensile strength of the weld metal is less than (tensile strength of base material −50) MPa. The strain at the time of deformation concentrates on the weld metal and the heat affected zone of the weld, and the desired unstable fracture resistance cannot be secured. Further, if the proportion of the acicular ferrite structure in the weld metal is less than 10% by volume, the low temperature toughness and deformability of the weld metal are insufficient, and the desired unstable fracture resistance characteristics cannot be ensured. This is because if it exceeds 80% by volume, the desired strength cannot be secured.

【0060】ここで、上記の条件を満たす溶接鋼管は、
その鋼管が鍛接鋼管、電縫鋼管、レーザー溶接鋼管、電
子ビーム溶接鋼管、プラズマアーク溶接鋼管の場合に
は、本発明の高強度鋼からなる鋼板を用い、常法に従っ
て溶接製管することにより得られる。
Here, the welded steel pipe satisfying the above conditions is
In the case where the steel pipe is a forged steel pipe, an electric resistance welded steel pipe, a laser welded steel pipe, an electron beam welded steel pipe, a plasma arc welded steel pipe, a steel plate made of the high-strength steel of the present invention is used and obtained by welding in accordance with a conventional method. To be

【0061】また、TIG溶接鋼管、UOE鋼管やスパ
イラル鋼管に代表されるSAW溶接鋼管、MAG溶接鋼
管、MIG溶接鋼管の場合には、本発明の高強度鋼から
なる鋼板を母材とし、化学組成が本発明の高強度鋼と同
様で、かつ下記の(2) 式により定義されるPcm値が
0.20〜0.32の範囲内の溶接ワイヤを用い、その
溶接部位をAr、He、N、CO等のガスでシール
ドして溶接するか、または焼成型もしくは溶融型のフラ
ックスを使用して溶接することによって得られる。
In the case of SAW welded steel pipe represented by TIG welded steel pipe, UOE steel pipe and spiral steel pipe, MAG welded steel pipe and MIG welded steel pipe, the steel sheet made of the high-strength steel of the present invention is used as the base material, and the chemical composition is Is the same as the high strength steel of the present invention, and a welding wire having a Pcm value defined by the following formula (2) in the range of 0.20 to 0.32 is used, and the welding site is Ar, He, N. It can be obtained by welding by shielding with a gas such as 2 , CO 2 or by using a flux of a firing type or a melting type.

【0062】 Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B ・・・ (2) ここで、式中の元素記号は鋼中に含まれる各元素の含有
量(質量%)である。
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15 + V / 10 + 5B (2) Here, the element symbol in the formula is the content (mass%) of each element contained in the steel. .

【0063】[0063]

【実施例】表1に示す化学組成を有する10種類の鋼
を、表2に示す種々の条件で板厚20mmの鋼板とし、
得られた鋼板を母材とする外径1014mm、長さ12
mのUOE溶接鋼管を製造した。
EXAMPLES Ten kinds of steels having the chemical compositions shown in Table 1 were made into steel plates having a thickness of 20 mm under various conditions shown in Table 2,
The obtained steel plate is used as a base material and has an outer diameter of 1014 mm and a length of 12
m UOE welded steel pipe was manufactured.

【0064】その際、溶接は、4電極のSAW溶接機を
用い、入熱量3〜4kJ/mmの条件で、内外面各1パ
スの溶接をおこなった。また、溶接ワイヤとしては、化
学組成が各鋼とほぼ同様で、前述した(2) 式で定義され
るPcm値が0.27〜0.30のもの用いた。なお、
溶接後の拡管率は0.8〜1.2%とした。
At this time, the welding was carried out by using a four-electrode SAW welding machine and performing a one-pass welding on each of the inner and outer surfaces under the condition of the heat input amount of 3 to 4 kJ / mm. Further, as the welding wire, one having a chemical composition similar to that of each steel and having a Pcm value defined by the above-mentioned formula (2) of 0.27 to 0.30 was used. In addition,
The pipe expansion ratio after welding was 0.8 to 1.2%.

【0065】そして、得られた各鋼管について、母材部
の強度(降伏強さYS(MPa)、引張強さTS(MP
a))、靭性(破面遷移温度vTs:℃)、表層部と中
心部の金属組織に占めるマルテンサイト(M)+ベイナ
イト(B)の体積割合(vol.%)、溶接金属中に含
まれるアシキュラーフェライト(AF)の体積割合(v
ol.%)、溶接金属の引張強さTS(MPa)と靭性
(試験温度−30℃でのシャルピー吸収エネルギーvE
−30℃(J)を調べる一方、API規格に規定される
DWTT試験に供し、85%延性破面遷移温度(SAT
85% :℃)と吸収エネルギー(vEDWTT
J)を調べ、これらの結果を表2に併せて示した。
With respect to each of the obtained steel pipes, the strength of the base material (yield strength YS (MPa), tensile strength TS (MP
a)), toughness (fracture transition temperature vTs: ° C), volume ratio (vol.%) of martensite (M) + bainite (B) in the metal structure of the surface layer portion and the center portion, contained in the weld metal. Volume ratio of acicular ferrite (AF) (v
ol. %), Tensile strength TS (MPa) of weld metal and toughness (Charpy absorbed energy vE at test temperature −30 ° C.)
While examining −30 ° C. (J), it was subjected to a DWTT test specified by the API standard, and a 85% ductile fracture surface transition temperature (SAT
T 85% : ° C) and absorbed energy (vE DWTT :
J) was examined, and these results are also shown in Table 2.

【0066】なお、溶接金属の引張強さと靭性は、溶接
金属部分から試験片を切り出して調べた。
The tensile strength and toughness of the weld metal were examined by cutting out a test piece from the weld metal portion.

【0067】表2から明らかなように、本発明で規定す
る条件を満たす試番1〜9のUOE溶接鋼管は、いずれ
も、母材の引張強さTSが765MPa以上、溶接金属
の引張強さTSが822MPa以上と高く、靭性も母材
の破面遷移温度が−86℃以下、溶接金属のシャルピー
吸収エネルギーが105J以上と良好であり、しかもD
WTT試験の85%延性破面遷移温度SATT85%
が−41℃以下、−30℃でのDWTT吸収エネルギー
vEDWTT−30℃が6887J以上と、いずれも目
標の−30℃以下、5000J以上を大幅に上回ってい
る。
As is clear from Table 2, in the UOE welded steel pipes of trial numbers 1 to 9 satisfying the conditions specified in the present invention, the tensile strength TS of the base metal is 765 MPa or more, and the tensile strength of the weld metal is all. TS is as high as 822 MPa or more, toughness is good, the fracture surface transition temperature of the base material is -86 ° C or less, and the Charpy absorbed energy of the weld metal is 105 J or more, and D
WTT test 85% ductile fracture transition temperature SATT 85%
Is −41 ° C. or lower, and the DWTT absorbed energy vE DWTT−30 ° C. at −30 ° C. is 6887 J or higher, which are significantly higher than the target −30 ° C. or lower and 5000 J or higher.

【0068】これに対し、本発明で規定する(1) 式は満
たすが、S含有量が本発明で規定する上限値の0.00
08%を超える代符Hの鋼からなる試番10のUOE溶
接鋼管は、母材および溶接金属の強度と靭性は良好なも
のの、SATT85% が−18℃、vE
DWTT−30℃が2775Jと、いずれも目標の−3
0℃以下、5000J以上を大幅に下回っている。
On the other hand, the formula (1) defined in the present invention is satisfied, but the S content is 0.00, which is the upper limit value defined in the present invention.
The UOE welded steel pipe of trial No. 10 made of the steel of the substitution H exceeding 08% has good strength and toughness of the base metal and the weld metal, but has a SATT 85% of −18 ° C. and vE.
DWTT-30 ° C is 2775J, which is the target of -3
It is well below 0 ° C and above 5000J.

【0069】また、各元素の含有量は本発明で規定する
範囲内であるが、本発明で規定する(1) 式を満たさない
代符Iの鋼からなる試番11のUOE溶接鋼管は、母材
の強度と靭性は良好なものの、溶接金属中にアシキュラ
ーフェライト組織が含まれないために溶接金属の靭性が
劣り、SATT85% が−22℃、vEDWTT−
30℃が3125Jと、いずれも目標の−30℃以下、
5000J以上を大幅に下回っている。
Although the content of each element is within the range specified in the present invention, the UOE welded steel pipe of trial No. 11 made of the steel of the substitute I which does not satisfy the formula (1) specified in the present invention is Although the strength and toughness of the base metal are good, the toughness of the weld metal is poor because the acicular ferrite structure is not contained in the weld metal, SATT 85% is -22 ° C, vE DWTT-
30 ° C is 3125J, which is the target of -30 ° C or less,
It is well below 5000J.

【0070】さらに、本発明で規定する(1) 式は満たす
が、CとNの含有量が本発明で規定する上限値を超える
代符Jの鋼からなる試番12のUOE溶接鋼管は、母材
の強度と靭性は良好なものの、溶接金属の引張強さが母
材の引張強さから50MPaを減じた値の938MPa
より低い902MPaであるために、WATT85%
−15℃、vEDWTT−30℃が3112Jと、いず
れも目標の−30℃以下、5000J以上を大幅に下回
っている。
Further, the UOE welded steel pipe of trial No. 12, which is made of the steel of the substitute J, which satisfies the formula (1) defined by the present invention, but whose C and N contents exceed the upper limits defined by the present invention, is Although the base metal has good strength and toughness, the tensile strength of the weld metal is 938 MPa, which is the value obtained by subtracting 50 MPa from the tensile strength of the base metal.
Because of the lower value of 902 MPa, WATT 85% was -15 ° C and vE DWTT-30 ° C was 3112J, both of which were significantly lower than the target of -30 ° C or less and 5000J or more.

【0071】なお、以上の結果は、本発明の高強度鋼、
この高強度鋼からなる鋼板および継目無鋼管およびUO
E溶接鋼管以外の溶接鋼管でも、同様の結果が得られる
ことを意味していることはいうまでもない。
The above results show that the high-strength steel of the present invention,
Steel plate, seamless steel pipe and UO made of this high strength steel
Needless to say, it means that similar results can be obtained with welded steel pipes other than E-welded steel pipe.

【0072】[0072]

【表1】 [Table 1]

【表2】 [Table 2]

【発明の効果】本発明の高強度鋼、この鋼からなる鋼板
および溶接管を含む鋼管は、高強度であるにもかかわら
ず不安定破壊抵抗特性に優れている。このため、例え
ば、本発明の鋼管をラインパイプとしてパイプラインを
構築すれば、その安全性が飛躍的に向上する等の効果が
得られ、産業上に寄与するところ多大である。
The high-strength steel, the steel sheet made of this steel, and the steel pipe including the welded pipe of the present invention are excellent in the unstable fracture resistance characteristic despite the high strength. Therefore, for example, if the steel pipe of the present invention is used as a line pipe to construct a pipeline, the safety of the pipeline can be dramatically improved, which greatly contributes to the industry.

フロントページの続き Fターム(参考) 4K032 AA01 AA02 AA04 AA08 AA11 AA14 AA15 AA16 AA17 AA19 AA21 AA22 AA23 AA24 AA26 AA27 AA29 AA31 AA35 AA36 AA39 BA01 CA01 CA02 CC02 CC03 CC04 CD02 CD03 Continued front page    F-term (reference) 4K032 AA01 AA02 AA04 AA08 AA11                       AA14 AA15 AA16 AA17 AA19                       AA21 AA22 AA23 AA24 AA26                       AA27 AA29 AA31 AA35 AA36                       AA39 BA01 CA01 CA02 CC02                       CC03 CC04 CD02 CD03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】質量%で、C:0.01〜0.10%、S
i:0.30%以下、Mn:1.00〜2.50%、
P:0.010%以下、S:0.0008%以下、N
b:0.005〜0.06%、Ti:0.004〜0.
025%、sol.Al:0.05%以下、N:0.0
040%以下、O:0.003%以下、Ni:2.5%
以下、Cu:1.5%以下、Mo:0.8%以下、C
r:1.0%以下、V:0.1%以下、B:0.002
%以下、Zr:0.03%以下、Ca:0.003%以
下を含み、残部Feおよび不純物で、かつ下記の(1) 式
を満たす鋼からなり、引張強さが750MPa以上であ
る高強度鋼。 {20×S+P+5×(N+O)}≦0.045 ・・・・ (1) ここで、(1) 式中の元素記号は鋼中に含まれる各元素の
含有量(質量%)を意味する。
1. C: 0.01 to 0.10% by mass% and S
i: 0.30% or less, Mn: 1.00 to 2.50%,
P: 0.010% or less, S: 0.0008% or less, N
b: 0.005 to 0.06%, Ti: 0.004 to 0.
025%, sol. Al: 0.05% or less, N: 0.0
040% or less, O: 0.003% or less, Ni: 2.5%
Below, Cu: 1.5% or less, Mo: 0.8% or less, C
r: 1.0% or less, V: 0.1% or less, B: 0.002
%, Zr: 0.03% or less, Ca: 0.003% or less, balance Fe and impurities, and a steel satisfying the following formula (1), and a tensile strength of 750 MPa or more. steel. {20 × S + P + 5 × (N + O)} ≦ 0.045 (1) Here, the element symbol in the formula (1) means the content (mass%) of each element contained in the steel.
【請求項2】表層部と肉厚中央部の金属組織に占めるマ
ルテンサイト相とベイナイト相との合計割合が、それぞ
れ、95体積%以上、80体積%以上である請求項1に
記載の高強度鋼。
2. The high strength according to claim 1, wherein the total proportions of the martensite phase and the bainite phase in the metal structure of the surface layer portion and the central portion of the wall thickness portion are 95% by volume and 80% by volume, respectively. steel.
【請求項3】請求項1または2に記載の高強度鋼よりな
る高強度鋼板。
3. A high-strength steel sheet comprising the high-strength steel according to claim 1.
【請求項4】請求項1または2に記載の高強度鋼よりな
る高強度鋼管。
4. A high-strength steel pipe made of the high-strength steel according to claim 1.
【請求項5】母材部が請求項1または2に記載の高強度
鋼よりなる溶接鋼管であり、溶接金属の引張強さが70
0MPa以上で、かつ(母材の引張強さ−50)MPa
以上、溶接金属中のアシキュラーフェライト組織の割合
が10〜80体積%である高強度鋼管。
5. A welded pipe made of the high-strength steel according to claim 1, wherein the base metal portion has a tensile strength of 70.
0 MPa or more and (tensile strength of base material −50) MPa
As described above, a high-strength steel pipe in which the proportion of the acicular ferrite structure in the weld metal is 10 to 80% by volume.
【請求項6】質量%で、C:0.01〜0.10%、S
i:0.30%以下、Mn:1.00〜2.50%、
P:0.010%以下、S:0.0008%以下、N
b:0.005〜0.06%、Ti:0.004〜0.
025%、sol.Al:0.05%以下、N:0.0
040%以下、O:0.003%以下、Ni:2.5%
以下、Cu:1.5%以下、Mo:0.80%以下、C
r:1.0%以下、V:0.1%以下、B:0.002
%以下、Zr:0.03%以下、Ca:0.0030%
以下を含み、残部Feおよび不純物で、かつ下記の(1)
式を満たす鋼を、950〜1200℃に加熱後、熱間圧
延をおこなって仕上温度900〜600℃で圧延を終了
し、500℃を下回らない温度域から300℃以下の温
度にまで4℃/秒以上の冷却速度で加速冷却する高強度
鋼の製造方法。 {20×S+P+5×(N+O)}≦0.045 ・・・・ (1) ここで、(1) 式中の元素記号は鋼中に含まれる各元素の
含有量(質量%)を意味する。
6. C: 0.01 to 0.10% by mass% and S
i: 0.30% or less, Mn: 1.00 to 2.50%,
P: 0.010% or less, S: 0.0008% or less, N
b: 0.005 to 0.06%, Ti: 0.004 to 0.
025%, sol. Al: 0.05% or less, N: 0.0
040% or less, O: 0.003% or less, Ni: 2.5%
Below, Cu: 1.5% or less, Mo: 0.80% or less, C
r: 1.0% or less, V: 0.1% or less, B: 0.002
% Or less, Zr: 0.03% or less, Ca: 0.0030%
Includes the following, balance Fe and impurities, and (1)
After heating the steel satisfying the formula to 950 to 1200 ° C., hot rolling is performed to finish the rolling at a finishing temperature of 900 to 600 ° C., and a temperature range of not lower than 500 ° C. to a temperature of 300 ° C. or lower is 4 ° C. / A method for producing high-strength steel in which accelerated cooling is performed at a cooling rate of at least 2 seconds. {20 × S + P + 5 × (N + O)} ≦ 0.045 (1) Here, the element symbol in the formula (1) means the content (mass%) of each element contained in the steel.
JP2001185998A 2001-06-20 2001-06-20 High strength steel and its manufacturing method Expired - Fee Related JP3770106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185998A JP3770106B2 (en) 2001-06-20 2001-06-20 High strength steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185998A JP3770106B2 (en) 2001-06-20 2001-06-20 High strength steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2003003233A true JP2003003233A (en) 2003-01-08
JP3770106B2 JP3770106B2 (en) 2006-04-26

Family

ID=19025491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185998A Expired - Fee Related JP3770106B2 (en) 2001-06-20 2001-06-20 High strength steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3770106B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292857A (en) * 2003-03-26 2004-10-21 Sumitomo Metal Ind Ltd Non-heat treated seamless steel tube
WO2005038067A1 (en) * 2003-10-20 2005-04-28 Jfe Steel Corporation Expansible seamless steel pipe for use in oil well and method for production thereof
WO2007119878A1 (en) * 2006-04-13 2007-10-25 Nippon Steel Corporation High-strength steel plate with superior crack arrestability
JP2008156754A (en) * 2006-11-30 2008-07-10 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2008163455A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
WO2008105110A1 (en) * 2007-02-28 2008-09-04 Jfe Steel Corporation Electric resistance welded steel pipe for line pipe excelling in weld part toughness
JP2009091653A (en) * 2007-09-19 2009-04-30 Jfe Steel Kk High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
JP2010516895A (en) * 2007-10-26 2010-05-20 宝山鋼鉄股▲分▼有限公司 Yield strength 800 MPa class low weld crack sensitive steel plate and method for producing the same
WO2012070360A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
WO2012070355A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
KR101185198B1 (en) 2010-10-27 2012-09-21 현대제철 주식회사 Heat resistant steel with excellent reheating cracking resistance and high temperature strength and method of manufacturing the heat resistant steel
KR20130080048A (en) * 2010-11-22 2013-07-11 신닛테츠스미킨 카부시키카이샤 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2617857A1 (en) * 2010-09-14 2013-07-24 Nippon Steel & Sumitomo Metal Corporation Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
CN105821315A (en) * 2016-05-06 2016-08-03 武汉钢铁股份有限公司 Tensile strength 750 MPa-grade hot-rolled complex phase steel and production method thereof
US10500817B2 (en) 2010-04-30 2019-12-10 Nippon Steel Corporation Electron-beam welded joint, steel for electron-beam welding, and method of manufacturing the same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292857A (en) * 2003-03-26 2004-10-21 Sumitomo Metal Ind Ltd Non-heat treated seamless steel tube
EP1681364A4 (en) * 2003-10-20 2010-12-22 Jfe Steel Corp Expansible seamless steel pipe for use in oil well and method for production thereof
WO2005038067A1 (en) * 2003-10-20 2005-04-28 Jfe Steel Corporation Expansible seamless steel pipe for use in oil well and method for production thereof
EP1681364A1 (en) * 2003-10-20 2006-07-19 JFE Steel Corporation Expansible seamless steel pipe for use in oil well and method for production thereof
WO2007119878A1 (en) * 2006-04-13 2007-10-25 Nippon Steel Corporation High-strength steel plate with superior crack arrestability
JP2008156754A (en) * 2006-11-30 2008-07-10 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2008163455A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
US8328957B2 (en) 2007-02-28 2012-12-11 Jfe Steel Corporation Electric resistance welded steel pipe with excellent weld toughness for line pipe
JP2008240145A (en) * 2007-02-28 2008-10-09 Jfe Steel Kk Electric resistance welded steel pipe for line pipe excelling in weld part toughness
WO2008105110A1 (en) * 2007-02-28 2008-09-04 Jfe Steel Corporation Electric resistance welded steel pipe for line pipe excelling in weld part toughness
JP2009091653A (en) * 2007-09-19 2009-04-30 Jfe Steel Kk High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
JP2010516895A (en) * 2007-10-26 2010-05-20 宝山鋼鉄股▲分▼有限公司 Yield strength 800 MPa class low weld crack sensitive steel plate and method for producing the same
US10500817B2 (en) 2010-04-30 2019-12-10 Nippon Steel Corporation Electron-beam welded joint, steel for electron-beam welding, and method of manufacturing the same
US8871039B2 (en) 2010-09-14 2014-10-28 Nippon Steel & Sumitomo Metal Corporation Thick welded steel pipe excellent in low temperature toughness, manufacturing method of thick welded steel pipe excellent in low temperature toughness, and steel plate for manufacturing thick welded steel pipe
EP2617857A4 (en) * 2010-09-14 2014-06-25 Nippon Steel & Sumitomo Metal Corp Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
EP2617857A1 (en) * 2010-09-14 2013-07-24 Nippon Steel & Sumitomo Metal Corporation Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
KR101185198B1 (en) 2010-10-27 2012-09-21 현대제철 주식회사 Heat resistant steel with excellent reheating cracking resistance and high temperature strength and method of manufacturing the heat resistant steel
CN103221565A (en) * 2010-11-22 2013-07-24 新日铁住金株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
CN103210107A (en) * 2010-11-22 2013-07-17 新日铁住金株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
KR20130080048A (en) * 2010-11-22 2013-07-11 신닛테츠스미킨 카부시키카이샤 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP5273301B2 (en) * 2010-11-22 2013-08-28 新日鐵住金株式会社 Electron beam welding joint and steel for electron beam welding
JP5177325B2 (en) * 2010-11-22 2013-04-03 新日鐵住金株式会社 Electron beam welded joint, steel plate for electron beam welded joint, and manufacturing method thereof
WO2012070355A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
CN103210107B (en) * 2010-11-22 2015-09-09 新日铁住金株式会社 Electro-beam welding joint and electrons leaves welding steel and manufacture method thereof
KR101850571B1 (en) 2010-11-22 2018-04-19 신닛테츠스미킨 카부시키카이샤 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
KR101867111B1 (en) * 2010-11-22 2018-06-12 신닛테츠스미킨 카부시키카이샤 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
WO2012070360A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
CN105821315A (en) * 2016-05-06 2016-08-03 武汉钢铁股份有限公司 Tensile strength 750 MPa-grade hot-rolled complex phase steel and production method thereof
CN105821315B (en) * 2016-05-06 2017-12-26 武汉钢铁有限公司 Tensile strength 750MPa level hot rolling Multiphase Steels and its production method

Also Published As

Publication number Publication date
JP3770106B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
US7601231B2 (en) High-strength steel pipe excellent in low temperature toughness and toughness at weld heat-affected zone
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
JP5200932B2 (en) Bend pipe and manufacturing method thereof
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
EP3276024B1 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes.
WO2009125863A1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JP2008163455A (en) Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP2003003233A (en) High strength steel and production method therefor
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
KR102002241B1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
JP3290247B2 (en) Method for manufacturing high tensile strength and high toughness bent pipe with excellent corrosion resistance
JP3654194B2 (en) High-strength steel material with excellent strain aging resistance and its manufacturing method
JPWO2009148193A1 (en) Steel plate and line pipe steel pipe with excellent sour resistance
JPH1017980A (en) Welded steel pipe with low yield ratio, and its production
JP2000328202A (en) Low carbon martensitic stainless steel sheet excellent in formability, corrosion resistance and toughness, its production and welded steel pipe
JP2711163B2 (en) Method for producing high corrosion resistant low alloy linepipe steel with excellent corrosion resistance
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP2002285283A (en) Superhigh strength steel pipe having excellent high speed ductile fracture characteristic
JP3009126B2 (en) Method for producing high Cr martensitic steel pipe for line pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Ref document number: 3770106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees