JP2001009589A - Austenitic/ferrite two phase stainless steel welding material, and high chromium steel welding method using it - Google Patents

Austenitic/ferrite two phase stainless steel welding material, and high chromium steel welding method using it

Info

Publication number
JP2001009589A
JP2001009589A JP11179686A JP17968699A JP2001009589A JP 2001009589 A JP2001009589 A JP 2001009589A JP 11179686 A JP11179686 A JP 11179686A JP 17968699 A JP17968699 A JP 17968699A JP 2001009589 A JP2001009589 A JP 2001009589A
Authority
JP
Japan
Prior art keywords
less
welding
welding material
stainless steel
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11179686A
Other languages
Japanese (ja)
Other versions
JP3454354B2 (en
Inventor
Yoshiaki Murata
義明 村田
Muneyasu Tsukamoto
宗安 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumikin Welding Industries Ltd
Original Assignee
Sumikin Welding Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Welding Industries Ltd filed Critical Sumikin Welding Industries Ltd
Priority to JP17968699A priority Critical patent/JP3454354B2/en
Publication of JP2001009589A publication Critical patent/JP2001009589A/en
Application granted granted Critical
Publication of JP3454354B2 publication Critical patent/JP3454354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a welding material and a welding method which do not cause delayed crack even in welding without preheating or post heat treatment. SOLUTION: This invention relates to a two phase stainless steel welding material to weld a stainless steel including 0.03 wt.% or less C and 727 wt.% Cr, where the product of hydrogen content (Hw, ppm) in the steel of the welding material and the ferrite volume (ω, volume %) of the deposit metal of the welding material is 135 or less. Also, a gas shield arc welding method is provided, wherein the product of the ferrite volume (δw, volume %) of the welding metal part and Hw is adjusted to be 154 or less using the welding material. It is preferable that the welding material includes 0.08% or less C, 1.0% or less Si, 2.5% or less Mn, 0.03% or less P, 0.02% or less S, 18-27% Cr, 5-11% Ni, 4% or less Mo, 2.5% or less W, 0.35% or less N, and the balance of Fe and inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度で高耐食性
を有する高Cr系ステンレス鋼、即ち、Cが0.03重量%
以下で7〜27重量%(以下、化学組成の含有量を示す重
量%を単に「%」と記載する)のCrを含む鋼、を溶接す
るに際し、母材の予熱処理および溶接後の熱処理を行わ
なくとも溶接割れ、特に溶接後に発生する遅れ割れの発
生がないオーステナイト・フェライト系二相ステンレス
鋼溶接材料およびそれを用いる高Cr系ステンレス鋼の溶
接方法に関する。
The present invention relates to a high Cr stainless steel having high strength and high corrosion resistance, that is, 0.03% by weight of C.
When welding a steel containing Cr of 7 to 27% by weight (hereinafter, the weight% indicating the content of the chemical composition is simply referred to as “%”), a pre-heat treatment of the base material and a heat treatment after the welding are performed. The present invention relates to an austenitic / ferritic duplex stainless steel welding material free from weld cracking, especially delayed cracking occurring after welding, and a method for welding high Cr stainless steel using the same.

【0002】[0002]

【従来の技術】近年、油田の開発条件の苛酷化に伴い、
そこで使用される油井管やラインパイプ用鋼管として、
良好な耐食性と強度を有するオーステナイト・フェライ
ト二相系ステンレス鋼または13%Crマルテンサイト系ス
テンレス鋼などが使用されるようになった。特に、後者
の13%Crマルテンサイト系ステンレス鋼については、低
C化、その他の改良によって、溶接前の予熱および溶接
直後の熱処理(以下、後熱処理という)を行わなくても
溶接が可能となった。
2. Description of the Related Art In recent years, with the harsh development conditions of oil fields,
As oil well pipes and steel pipes for line pipes used there,
Austenitic-ferritic duplex stainless steel or 13% Cr martensitic stainless steel having good corrosion resistance and strength has come to be used. In particular, the latter, 13% Cr martensitic stainless steel, can be welded without preheating before welding and heat treatment immediately after welding (hereinafter referred to as post heat treatment) by lowering C and other improvements. Was.

【0003】例えば、ラインパイプ敷設の現場で、予熱
も後熱処理も無しに溶接が実施できるということは、き
わめて好ましい。しかしながら、最近、熱処理なしで溶
接した上記の鋼種の継手部に、溶接後、ある時間の経過
後に発生する割れ(遅れ割れ)が散見されるようになっ
た。
For example, it is highly desirable that welding can be performed at the site of line pipe laying without preheating or post-heating. However, recently, cracks (delayed cracks) that occur after a lapse of a certain time after welding have been found in joints of the above steel types welded without heat treatment.

【0004】高強度鋼における遅れ割れ(遅れ破壊)と
いう現象は、古くから知られている。この現象は、拡散
性水素による水素脆化によると考えられている。特に溶
接継手部においては、溶接金属と母材の境界部である溶
融線(以下、ボンドという)および溶接熱影響部(以
下、HAZという)の溶接残留応力の高いところが拡散
性水素のトラップサイトとなって、遅れ割れが発生しや
すい。
[0004] The phenomenon of delayed cracking (delayed fracture) in high-strength steel has been known for a long time. This phenomenon is considered to be due to hydrogen embrittlement due to diffusible hydrogen. In particular, in the welded joint portion, a portion having a high welding residual stress in a fusion line (hereinafter, referred to as a bond) and a welding heat-affected zone (hereinafter, referred to as a HAZ), which is a boundary portion between a weld metal and a base metal, is formed as a trap site for diffusible hydrogen. As a result, delayed cracking is likely to occur.

【0005】溶接継手部の遅れ割れを防止するために、
従来、溶接施工時の天候を選ぶ(たとえば、降雨中に
は溶接作業を中止する)、溶接直前に溶接材料のベー
キングを行い、水分を除去する、溶接開先部の水分や
油分を除去する、さらに水素ポテンシャルが低い裸溶
接棒またはワイヤを使用したティグまたはミグ溶接のよ
うなガスシールドアーク溶接法を採用する、といった溶
接金属への水素の侵入を防止する対策が採られている。
In order to prevent delayed cracking of the weld joint,
Conventionally, the weather at the time of welding construction is selected (for example, welding work is stopped during rainfall), baking of the welding material is performed immediately before welding to remove moisture, and moisture and oil at the welding groove are removed. Further, measures to prevent the intrusion of hydrogen into the weld metal, such as employing a gas shielded arc welding method such as TIG or MIG welding using a bare welding rod or wire having a low hydrogen potential, are taken.

【0006】これらに加えて、予熱処理によって溶接
金属部の冷却速度を小さくし、溶接金属部からの水素放
散を促進する方法、溶接直後に熱処理を施すことによ
り溶接金属部の脱水素を実施する、といったトラップサ
イトへの水素集積を防止する方法、等の対策も有効であ
る。
In addition to these, a method of reducing the cooling rate of the weld metal by pre-heat treatment to promote the diffusion of hydrogen from the weld metal, and performing heat treatment immediately after welding to dehydrogenate the weld metal. In addition, measures such as a method of preventing hydrogen accumulation at a trap site are also effective.

【0007】しかし、前記の高Cr系ステンレス鋼の溶接
において遅れ割れの発生を完全に防止するには上記〜
の対策では不十分である。また、およびの熱処理
は、本来このような熱処理が不要であることを利点とす
る母材の溶接においては好ましくない。
However, in order to completely prevent the occurrence of delayed cracking in the welding of the high Cr stainless steel,
Measures are not enough. Further, the heat treatment of (1) and (2) is not preferable in the welding of a base material, which has an advantage that such heat treatment is not necessary.

【0008】なお、これら高Cr系ステンレス鋼の溶接
に、例えばJISに規定されているY309L等のステンレス
鋼、または同じくYNiCr-3等のオーステナイト系Ni基超
合金の溶接材料を使用すれば、予熱および後熱処理を行
わなくても遅れ割れ発生が防止できる。この理由は、こ
れらの溶接材料で形成される溶接金属は、面心立方晶の
オーステナイト組織であり、その組織では水素の固溶限
が大きく、また、水素の拡散係数が小さいために、溶接
金属からボンドやHAZへの水素の拡散が殆ど起きない
からであると考えられている。しかしながら、上記のよ
うなオーステナイト系溶接材料は、強度が相対的に低
く、前記高Cr系ステンレス鋼の母材と比べてアンダーマ
ッチングの溶接継手しか得られないという欠点がある。
[0008] If welding of these high Cr stainless steels is performed using a welding material of stainless steel such as Y309L specified in JIS, or an austenitic Ni-base superalloy such as YNiCr-3, preheating may be performed. Also, the occurrence of delayed cracking can be prevented without performing post heat treatment. The reason for this is that the weld metal formed from these welding materials has a face-centered cubic austenitic structure, which has a large solid solubility limit of hydrogen and a low diffusion coefficient of hydrogen, This is considered to be because hydrogen hardly diffuses into the bond or the HAZ from the metal. However, the austenitic welding material as described above has a disadvantage that the strength is relatively low and only an undermatching welded joint can be obtained as compared with the high Cr stainless steel base material.

【0009】[0009]

【発明が解決しようとする課題】溶接継手の強度を高め
るためには、耐食性、靱性および強度を兼ね備えた二相
ステンレス鋼の溶接材料を用いればよい。しかし、これ
は上記のオーステナイト系溶接材料と比べてオーステナ
イト相の量比が約1/2と少なく、前述のようにオーステ
ナイト組織が有するボンドやHAZへの水素の拡散防止
効果が半減し、溶接後に割れを発生させることがある。
In order to increase the strength of a welded joint, a duplex stainless steel welding material having both corrosion resistance, toughness and strength may be used. However, this is because the amount ratio of the austenite phase is as small as about 1/2 compared with the austenitic welding material described above, and as described above, the effect of preventing diffusion of hydrogen to the bond or HAZ of the austenitic structure is reduced by half, and after welding, May cause cracking.

【0010】本発明の第1の目的は、高強度、高耐食性
の低C、高Crステンレス鋼用の溶接材料であって、予熱
および後熱処理を施さずに溶接しても、遅れ割れの発生
しないオーステナイト・フェライト系二相ステンレス鋼
溶接材料を提供することにある。
A first object of the present invention is to provide a welding material for high-strength, high-corrosion-resistant, low-C, high-Cr stainless steel, which can produce delayed cracks even when welded without preheating and post-heat treatment. An object of the present invention is to provide an austenitic / ferritic duplex stainless steel welding material.

【0011】また、第2の目的は、上記の溶接材料を用
いて、予熱および後熱処理を実施せずに、遅れ割れを発
生させない高Crステンレス鋼の溶接継手を得る溶接方法
を提供することにある。
A second object of the present invention is to provide a welding method for obtaining a high Cr stainless steel welded joint which does not cause delayed cracking by using the above welding material without performing preheating and post heat treatment. is there.

【0012】[0012]

【課題を解決するための手段】本発明者らは、低C、高
Crステンレス鋼の母材鋼を二相ステンレス鋼ソリッドワ
イヤを用い、予熱処理を施すことなくティグ溶接を行
い、また、溶接直後の熱処理を施さずに、遅れ割れの発
生形態を調査した。
SUMMARY OF THE INVENTION The present inventors have developed a low C, high
Using a duplex stainless steel solid wire, a base stainless steel of Cr stainless steel was subjected to TIG welding without pre-heat treatment, and the form of delayed crack generation was investigated without heat treatment immediately after welding.

【0013】その結果、溶着金属または溶接金属部のフ
ェライト量(容積%)に応じて溶接材料(ワイヤ)の鋼
中水素含有量を適正範囲とすることよって、溶接継手の
遅れ割れの発生を防止できることを見出し、本発明を完
成した。
As a result, by setting the hydrogen content in the steel of the welding material (wire) in an appropriate range according to the amount of ferrite (volume%) in the weld metal or the weld metal portion, the occurrence of delayed cracking in the welded joint is prevented. We have found that we can do this and completed the present invention.

【0014】本発明の要旨は、下記(1)の溶接材料、お
よびその溶接材料を用いる下記(2)の溶接方法にある。
The gist of the present invention is a welding material of the following (1) and a welding method of the following (2) using the welding material.

【0015】(1)重量%で、C:0.03%以下、Cr:7〜2
7%を含むステンレス鋼をガスシールドアーク溶接する
ための溶接材料であって、その溶接材料の鋼中水素含有
量(Hw、ppm)と、その溶接材料の溶着金属のフェライ
ト量(δd、ただし、δd≧30容積%)との積が下記(1)
式を満足するオーステナイト・フェライト系二相ステン
レス鋼溶接材料。
(1) By weight%, C: 0.03% or less, Cr: 7 to 2%
A welding material for gas shielded arc welding of stainless steel containing 7%, the hydrogen content in steel (Hw, ppm) of the welding material and the amount of ferrite (δd, where δd ≧ 30% by volume)
Austenitic / ferritic duplex stainless steel welding material that satisfies the formula.

【0016】Hw×δd≦135 ・・・・・(1) 上記の溶接材料は、C:0.08%以下、Si:1.0%以下、M
n:2.5%以下、P:0.03%以下、S:0.02%以下、Cr:
18〜27%、Ni:5〜11%、Mo:4%以下、W:2.5%以
下、N:0.35%以下を含有し、残部がFeおよび不可避的
不純物からなる化学組成を有することが望ましい。
Hw × δd ≦ 135 (1) C: 0.08% or less, Si: 1.0% or less, M
n: 2.5% or less, P: 0.03% or less, S: 0.02% or less, Cr:
It is desirable that the composition contains 18 to 27%, Ni: 5 to 11%, Mo: 4% or less, W: 2.5% or less, and N: 0.35% or less, with the balance being Fe and unavoidable impurities.

【0017】(2)重量%で、C:0.03%以下、Cr:7〜2
7%を含むステンレス鋼を、C:0.08%以下、Si:1.0%
以下、Mn:2.5%以下、P:0.03%以下、S:0.02%以
下、Cr:18〜27%、Ni:5〜11%、Mo:4%以下、W:
2.5%以下、N:0.35%以下を含有し、残部がFeおよび
不可避的不純物からなる溶接材料を用い、それによって
形成される溶接継手の溶接金属部のフェライト量(δ
w、ただし、δw≧30容積%)と、上記溶接材料の鋼中水
素含有量(Hw、ppm)との積が下記(2)式を満足するよ
うに調整することを特徴とする高Cr系ステンレス鋼のガ
スシールドアーク溶接方法。
(2) By weight%, C: 0.03% or less, Cr: 7 to 2%
Stainless steel containing 7%, C: 0.08% or less, Si: 1.0%
Mn: 2.5% or less, P: 0.03% or less, S: 0.02% or less, Cr: 18 to 27%, Ni: 5 to 11%, Mo: 4% or less, W:
Using a welding material containing 2.5% or less and N: 0.35% or less, with the balance being Fe and unavoidable impurities, the ferrite content (δ
w, where δw ≧ 30% by volume) and the product of the hydrogen content in steel (Hw, ppm) of the welding material are adjusted so as to satisfy the following equation (2). Gas shielded arc welding method for stainless steel.

【0018】Hw×δw≦154 ・・・・・(2) 本発明の溶接材料を使用して溶接される被溶接材料(母
材鋼)は「重量%で、C:0.03%以下、Cr:7〜27%を
含むステンレス鋼」である。この母材鋼は、マルテンサ
イト系ステンレス鋼と、オーステナイト・フェライトの
二相系ステンレス鋼に大別される。
Hw × δw ≦ 154 (2) The material to be welded (base metal) to be welded by using the welding material of the present invention is “by weight, C: 0.03% or less, Cr: Stainless steel containing 7-27% ". The base steel is roughly classified into a martensitic stainless steel and an austenitic / ferritic duplex stainless steel.

【0019】前者の代表的な鋼に、10.5〜14%程度のCr
と2〜6%程度のNiおよび2.5%程度以下のMoを含有す
るいわゆるスーパーマルテンサイト鋼がある。なお、50
容積%程度以下のフェライトが存在して、厳密にはマル
テンサイト・フェライト系と呼ぶべき鋼もあるが、それ
を含めてここではマルテンサイト系ステンレス鋼とい
う。
The former representative steel has a Cr content of about 10.5 to 14%.
There is a so-called super martensitic steel containing about 2 to 6% of Ni and about 2.5% or less of Mo. Note that 50
Some steels contain ferrite of not more than about% by volume and should be strictly called martensitic / ferritic steels.

【0020】後者の代表的なものには、JISのSUS329J3
L、同SUS329J4Lの二相のステンレス鋼、さらにJISのSUS
329J4LにNおよびMoの含有量を高め、Wなどの合金添加
を行って更に耐食性を高めたスーパー二相ステンレス鋼
と呼ばれるものがある。例えば特開平8-260101号公報に
提案されているのは、この種の鋼の改良材である。
Typical of the latter is JIS SUS329J3
L, SUS329J4L duplex stainless steel, and JIS SUS
There is a so-called super duplex stainless steel in which the contents of N and Mo are increased in 329J4L and an alloy such as W is added to further increase the corrosion resistance. For example, Japanese Patent Application Laid-Open No. 8-260101 proposes an improved material of this type of steel.

【0021】上記いずれの母材鋼も高強度とともに優れ
た耐食性を有し、硫化水素や炭酸ガスを含む腐食環境に
曝されるラインパイプ等の油井用材料として好適なもの
である。
Any of the above base steels has high strength and excellent corrosion resistance, and is suitable as a material for oil wells such as line pipes exposed to a corrosive environment containing hydrogen sulfide and carbon dioxide.

【0022】[0022]

【発明の実施の形態】本発明者らは、前記のマルテンサ
イト系ステンレス鋼(後述の表1の符号B1)を二相ステ
ンレス鋼ソリッドワイヤ(後述の表1の符号W5)を用
い、予熱処理を施すことなくティグ溶接を行い、また、
溶接直後の熱処理を施さず168時間放置したところ、遅
れ割れの発生がみられた。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors pre-heat treated the above-mentioned martensitic stainless steel (reference B1 in Table 1 below) using a duplex stainless steel solid wire (reference W5 in Table 1 below). TIG welding without applying
When left for 168 hours without heat treatment immediately after welding, delayed cracking was observed.

【0023】溶接継手部の遅れ割れは、水素に起因する
割れである。その割れには溶接金属部および母材鋼の材
料因子、ならびに溶接後に発生する残留応力が関与す
る。特に大きく影響するのは、溶接時に侵入する溶接金
属部の拡散性水素である。
The delayed crack in the weld joint is a crack caused by hydrogen. The cracks are associated with the material factors of the weld metal and the base steel, and the residual stress generated after welding. Particularly significant is the diffusible hydrogen in the weld metal that enters during welding.

【0024】そこで、上記の二相ステンレス鋼ソリッド
ワイヤの鋼中水素含有量および溶接金属部の拡散性水素
量を測定したところ、鋼中水素含有量は6.6ppm、拡散性
水素量は1.99ミリリットル/100grであった。これは、従来の
オーステナイト系ステンレス鋼ワイヤを用いたときの拡
散性水素量は検出できない量であるのに対し、はるかに
高いレベルであった。これは、以下の理由による。
Then, when the hydrogen content in the steel and the diffusible hydrogen content in the weld metal of the above duplex stainless steel solid wire were measured, the hydrogen content in the steel was 6.6 ppm, and the diffusible hydrogen content was 1.99 ml / d. It was 100gr. This was a much higher level than the amount of diffusible hydrogen detected using a conventional austenitic stainless steel wire, which was undetectable. This is for the following reason.

【0025】二相ステンレス鋼の溶接材料で形成した溶
接金属部のミクロ組織は、当然ながらフェライト相とオ
ーステナイト相からなる二相組織を呈する。詳しくは、
この二相組織は、フェライト相の母地に固相変態によっ
て生じたオーステナイト相が分散した組織である。した
がって、二相ステンレス鋼における水素の拡散形態は、
母地(フェライト相)の特性に大きく支配されることか
ら、オーステナイト系ステンレス鋼よりも、むしろフェ
ライト系ステンレス鋼における拡散形態に近似したもの
となる。即ち、二相ステンレス鋼の溶接金属部では、フ
ェライト単相の鋼と同様に水素の拡散・移動が起きるこ
とになる。
The microstructure of the weld metal formed from the duplex stainless steel welding material naturally exhibits a two-phase structure consisting of a ferrite phase and an austenite phase. For more information,
This two-phase structure is a structure in which an austenite phase generated by solid phase transformation is dispersed in a base of a ferrite phase. Therefore, the diffusion form of hydrogen in duplex stainless steel is
Since it is largely governed by the properties of the mother ground (ferrite phase), it becomes closer to the diffusion form of ferritic stainless steel rather than austenitic stainless steel. That is, in the weld metal portion of the duplex stainless steel, diffusion and migration of hydrogen occur as in the case of the ferrite single phase steel.

【0026】前記のように、オーステナイト相中への水
素の固溶限は大きく、かつその拡散係数は小さいから、
遅れ割れを引き起こす拡散性水素は、主にフェライト相
中に存在する水素を源としている。フェライト相中での
水素ポテンシャルが高い場合には、ボンドまたはHAZ
のトラップサイト(応力集中部)に水素が拡散・集積
し、遅れ割れを発生させる、と考えられる。
As described above, since the solid solubility limit of hydrogen in the austenite phase is large and its diffusion coefficient is small,
Diffusible hydrogen that causes delayed cracking is mainly derived from hydrogen present in the ferrite phase. If the hydrogen potential in the ferrite phase is high, bond or HAZ
It is thought that hydrogen diffuses and accumulates at the trap site (stress concentration portion) of the, causing delayed cracking.

【0027】ところが、二相ステンレス鋼ワイヤは、オ
ーステナイト鋼ワイヤと同様に、伸線加工時に生じた歪
みの除去および組織の改善のために、約1100℃での溶体
化熱処理(一般に、光輝焼鈍という)が施される。この
熱処理は、ワイヤの酸化防止のために還元ガス雰囲気、
例えばアンモニア分解ガス(水素が約75容積%、窒素が
約25容積%のガス)または純水素ガス雰囲気中で実施さ
れる。この雰囲気ガス中の水素が熱処理中にワイヤに浸
入する。このためワイヤは、光輝焼鈍を行う回数が多い
ほど、また、直径の小さいものほど水素を多く吸蔵し、
溶解水素量(鋼中水素含有量)が多くなる。このよう
に、従来の二相ステンレス鋼ワイヤは、オーステナイト
鋼ワイヤと同様に、溶解水素量(鋼中水素含有量)はほ
ぼ等しいが、拡散性水素含有量が多いことを確認した。
However, the duplex stainless steel wire, like the austenitic steel wire, is subjected to a solution heat treatment at about 1100 ° C. (generally referred to as bright annealing) in order to remove strain generated during wire drawing and to improve the structure. ) Is applied. This heat treatment is performed in a reducing gas atmosphere to prevent oxidation of the wire.
For example, it is carried out in an ammonia decomposition gas (gas of about 75% by volume of hydrogen and about 25% by volume of nitrogen) or a pure hydrogen gas atmosphere. Hydrogen in this atmospheric gas enters the wire during the heat treatment. For this reason, the wire absorbs more hydrogen as the number of bright annealing increases, and as the diameter decreases,
Dissolved hydrogen amount (hydrogen content in steel) increases. Thus, similar to the austenitic steel wire, the conventional duplex stainless steel wire was confirmed to have substantially the same amount of dissolved hydrogen (hydrogen content in steel), but to have a high diffusible hydrogen content.

【0028】本発明者は、溶接材料の鋼中水素含有量と
溶接金属部の拡散性水素との関係ならびにそれらと遅れ
割れとの関係を定量化するため、後述の実施例に示す試
験を行った。
The present inventor conducted a test shown in Examples described later to quantify the relationship between the hydrogen content in steel of the welding material and the diffusible hydrogen in the weld metal and the relationship between these and delayed cracking. Was.

【0029】図1は、溶接金属部の拡散性水素量の溶接
材料の鋼中水素含有量に対する比と溶接金属部のフェラ
イト量との関係を示す図である。この図は、後述の実施
例で得られた表3の結果から、溶接金属部の拡散性水素
(Hd)と溶接材料の鋼中水素含有量(Hw)との比(Hd/
Hw)を縦軸に、溶接金属部のフェライト量(δw)を横
軸にプロットした図である。この図から、溶接金属部の
拡散性水素量(Hd)と溶接材料の鋼中水素含有量(Hw)
との比(Hd/Hw)は、溶接金属部のフェライト量(δ
w)に対してほぼ直線的に増加することがわかり、下記
(a)式の関係が得られた。
FIG. 1 shows the relationship between the ratio of the amount of diffusible hydrogen in the weld metal to the hydrogen content in the steel of the welding material and the amount of ferrite in the weld metal. This figure shows the ratio (Hd / Hd) between the diffusible hydrogen (Hd) in the weld metal and the hydrogen content in steel (Hw) of the welding material from the results in Table 3 obtained in Examples described later.
Hw) is plotted on the vertical axis, and the amount of ferrite (δw) in the weld metal is plotted on the horizontal axis. From this figure, the diffusible hydrogen amount (Hd) of the weld metal and the hydrogen content in steel of the welding material (Hw)
(Hd / Hw) is the amount of ferrite (δ
w) increases almost linearly with respect to
The relationship of the equation (a) was obtained.

【0030】 Hd=Hw×0.0046×δw(ppm)・・・・・(a) 次に、同じ13Cr系高強度マルテンサイト系ステンレス鋼
および二相ステンレス鋼を母材とするy形溶接割れ試験
(JIS Z3158)の結果から、溶接金属部のフェライト
量、拡散性水素量および溶接材料の鋼中水素含有量が溶
接遅れ割れに及ぼす影響を調べた。
Hd = Hw × 0.0046 × δw (ppm) (a) Next, a y-type weld crack test using the same 13Cr-based high-strength martensitic stainless steel and duplex stainless steel as base materials ( From the results of JIS Z3158), the effects of the amount of ferrite in the weld metal, the amount of diffusible hydrogen, and the hydrogen content of steel in the welding material on delayed welding cracking were examined.

【0031】図2は、溶接金属部のフェライト量および
溶接材料の鋼中水素含有量が溶接遅れ割れに及ぼす影響
を示す図である。図において、○および●印は13Cr系高
強度マルテンサイト系ステンレス鋼を溶接母材とする場
合であり、□および■印は二相ステンレス鋼を溶接母材
とする場合である。○および□印は、y形溶接割れ試験
で割れが観察されなかったもの、●および■印は、y形
溶接割れ試験で割れが観察されたものである。図2から
明らかなように、割れが観察されたものと割れが観察さ
れなかったものとは、曲線Aで層別できる。この曲線A
を特定する試みを種々行った結果、図3に示すように溶
接金属部のフェライト量δwの逆数(1/δw)と溶接材
料の鋼中水素含有量Hwとの関係グラフを作成すると、下
記(b)式の直線で層別できることがわかった。
FIG. 2 is a graph showing the effect of the amount of ferrite in the weld metal and the hydrogen content in steel of the welding material on the delayed welding crack. In the figures, ○ and ● indicate the case where a 13Cr-based high-strength martensitic stainless steel is used as a welding base material, and □ and □ indicate the case where a duplex stainless steel is used as a welding base material. The marks ○ and □ indicate that no crack was observed in the y-shaped weld crack test, and the marks も の and Δ indicate that cracks were observed in the y-shaped weld crack test. As apparent from FIG. 2, those in which cracks were observed and those in which no cracks were observed can be stratified by the curve A. This curve A
As a result of various attempts to specify the following, a relationship graph between the reciprocal (1 / δw) of the amount of ferrite δw of the weld metal portion (1 / δw) and the hydrogen content Hw in the welding material as shown in FIG. It was found that stratification can be performed by the straight line in the equation (b).

【0032】1/δw=Hw/154 ・・・・・(b) この(b)式を変形すると、下記の(2)式が得られる。1 / δw = Hw / 154 (b) By transforming the equation (b), the following equation (2) is obtained.

【0033】Hw×δw≦154 ・・・・・(2) すなわち、溶接金属部のフェライト量δwと溶接材料の
鋼中水素含有量Hwとの積が154よりも小さければ、溶接
後の遅れ割れを防止できることがわかる。
Hw × δw ≦ 154 (2) That is, if the product of the ferrite amount δw of the weld metal portion and the hydrogen content Hw in steel of the welding material is smaller than 154, delayed cracking after welding is performed. It can be seen that can be prevented.

【0034】上記の溶接材料を用いて形成される溶接金
属部は、厳密にはフェライト量が30容量%以上の二相組
織でなければならない。フェライト量が30容量%に満た
なければ、JISのY309MoLのごとき広義のオーステナイト
系ステンレス鋼の範疇に属し、二相ステンレス鋼の高強
度の利点が失われる。なお、フェライト量の上限は、お
よそ75容量%程度が望ましい。
Strictly speaking, the weld metal formed using the above welding material must have a two-phase structure in which the amount of ferrite is 30% by volume or more. If the amount of ferrite is less than 30% by volume, it belongs to the broad category of austenitic stainless steel such as JIS Y309MoL, and the high strength advantage of duplex stainless steel is lost. The upper limit of the amount of ferrite is preferably about 75% by volume.

【0035】溶接金属部のフェライト量は、溶接材料の
化学組成からNi当量およびCr当量を計算し、例えば、Es
pyの図(ASME Sec.II Part C SFA 5.9 Appendix Fig.A
2)から大まかには予測することができる。しかし、溶
接材料がこれらの図で用いるNi当量およびCr当量の式に
ない成分を含む場合は、その予測は困難である。また、
溶接条件による冷却速度がフェライト量に及ぼす影響も
大きい。従って、厳密な溶接金属部のフェライト量は、
JISのZ3119で規定されている顕微鏡組織による方法で実
測するのが望ましい。そのフェライト量比率に応じて、
前記(2)式を満たすように、溶接材料の鋼中水素含有量H
wを調整する。
The amount of ferrite in the weld metal is calculated by calculating Ni equivalent and Cr equivalent from the chemical composition of the welding material.
py diagram (ASME Sec.II Part C SFA 5.9 Appendix Fig.A
From 2) can be roughly predicted. However, if the welding material contains components that are not included in the equations for Ni equivalent and Cr equivalent used in these figures, it is difficult to predict the same. Also,
The cooling rate depending on the welding conditions also has a large effect on the amount of ferrite. Therefore, the exact amount of ferrite in the weld metal is
It is desirable to actually measure by a method using a microstructure specified in JIS Z3119. Depending on the ferrite content ratio,
In order to satisfy the above formula (2), the hydrogen content in steel of the welding material H
Adjust w.

【0036】溶接材料の鋼中水素含有量の低減は、例え
ば、最終光輝焼鈍を従来のアンモニア分解ガス雰囲気中
や純水素ガス中での加熱ではなく、真空加熱炉を用いて
行うことにより達成できる。なお、溶接材料(ワイヤ)
の付着水は、溶接作業時のワイヤの発熱によって蒸発し
てしまうので鋼中水素含有量には殆ど影響しない。しか
し、ワイヤの防湿や溶接作業時の濡れ防止を図ることは
当然望ましい。
The reduction of the hydrogen content in steel of the welding material can be achieved, for example, by performing the final bright annealing using a vacuum heating furnace instead of the conventional heating in an ammonia decomposition gas atmosphere or pure hydrogen gas. . In addition, welding material (wire)
Adhered water evaporates due to the heat generated by the wire during the welding operation, and thus hardly affects the hydrogen content in the steel. However, it is, of course, desirable to prevent moisture in the wire and to prevent wetting during welding.

【0037】さらに、(2)式を満足させるための溶接材
料本来が具備すべき溶着金属のフェライト量δdと鋼中
水素含有量Hwの関係を調べたところ、図4および図5に
示すごとく、遅れ割れ感受性の低減のためにはδd量とH
w量の積は小さければ小さい程良く、最低135以下を確保
する必要がある。
Further, the relationship between the amount of ferrite δd of the deposited metal and the hydrogen content Hw in the steel, which should be originally provided by the welding material for satisfying the expression (2), was examined. As shown in FIG. 4 and FIG. Δd and H
The smaller the product of the amount of w, the better, and it is necessary to secure at least 135 or less.

【0038】Hw×δd≦135 ・・・・・(1) 次に、溶接材料の望ましい組成について説明する。Hw × δd ≦ 135 (1) Next, a desirable composition of the welding material will be described.

【0039】C:Cは、後述するNと同様にオーステナ
イト相を安定化させる元素である。しかし、その含有量
が0.08%を超えると炭化物が析出しやすくなり、溶接金
属部の耐孔食性が低下する。従って、C含有量は0.08%
以下が望ましい。さらに望ましいのは、0.03%以下であ
る。
C: C is an element that stabilizes the austenite phase, like N described later. However, if the content exceeds 0.08%, carbides are liable to precipitate, and the pitting corrosion resistance of the weld metal part is reduced. Therefore, C content is 0.08%
The following is desirable. More desirable is 0.03% or less.

【0040】Si:Siは、溶接材料の溶製時に脱酸元素と
して使用される。しかし、溶接時には金属間化合物 (σ
相等) の生成を促進し、溶接金属部の靱性を低下させ
る。従って、上限は1.0%とするのがよい。下限は不純
物レベルでもよいが、脱酸の効果を確保するためには0.
1%以上が望ましい。
Si: Si is used as a deoxidizing element when melting a welding material. However, during welding, the intermetallic compound (σ
Phase) and reduce the toughness of the weld metal. Therefore, the upper limit is preferably set to 1.0%. The lower limit may be the impurity level, but it should be 0.
1% or more is desirable.

【0041】Mn:Mnは、溶接材料の溶製時に脱酸元素と
して使用され、またSと結合して熱間加工性を改善し、
さらにNの溶解度を大きくする元素である。しかし、Mn
含有量が2.5%を超えると溶接金属部の耐孔食性を低下
させる。従って、その含有量は2.5%以下が望ましい。
なお、下限は、脱酸の効果を確保するためには0.2%以
上が望ましい。
Mn: Mn is used as a deoxidizing element when smelting a welding material, and combines with S to improve hot workability.
It is an element that further increases the solubility of N. But Mn
If the content exceeds 2.5%, the pitting corrosion resistance of the weld metal part is reduced. Therefore, its content is desirably 2.5% or less.
Note that the lower limit is desirably 0.2% or more to ensure the effect of deoxidation.

【0042】P:Pは、溶接材料の溶製中に不可避的に
混入する不純物元素であり、少なければ少ない程望まし
い。その含有量が0.03%を超えると溶接金属の耐孔食性
および靱性の低下が著しいので、その含有量は0.03%以
下とすべきである。
P: P is an impurity element that is inevitably mixed during the melting of the welding material. If the content exceeds 0.03%, the pitting corrosion resistance and toughness of the weld metal are significantly reduced, so the content should be 0.03% or less.

【0043】S:Sは、Pと同様、溶接材料の溶製中に
不可避的に混入する元素であり、少ない方がよい。Sは
鋼の熱間加工性を低下させ、線材への圧延加工を困難と
するとともに、硫化物となって孔食の発生起点となり、
溶接金属の耐孔食性を損なう。従って、その含有量は0.
02%以下とすべきである。
S: Like P, S is an element that is inevitably mixed during melting of the welding material, and the smaller the better, the better. S lowers the hot workability of steel, making it difficult to roll into a wire, and becomes a sulfide to become a starting point of pitting corrosion.
Impairs the pitting corrosion resistance of the weld metal. Therefore, its content is 0.
Should be no more than 02%.

【0044】Ni:Niは、オーステナイト相を安定化し、
溶接金属のオーステナイト相とフェライト相のバランス
を調整する重要な元素である。しかし、その含有量が5
%以下では、フェライト相が75%以上になって適切な相
バランスが得られない。しかし、Ni含有量が11%を超え
ると溶接時にσ相の析出を助長し、靱性の低下を招く。
従って、その含有量は5〜11%の範囲が望ましい。
Ni: Ni stabilizes the austenite phase,
It is an important element that adjusts the balance between the austenite phase and the ferrite phase of the weld metal. However, its content is 5
%, The ferrite phase becomes 75% or more, and an appropriate phase balance cannot be obtained. However, when the Ni content exceeds 11%, precipitation of the σ phase is promoted during welding, and the toughness is reduced.
Therefore, its content is preferably in the range of 5 to 11%.

【0045】Cr:Crは、耐食性を高める元素である。そ
の含有量が 18%未満では、母材と同等の溶接金属の耐
食性が得られない。しかし、過剰のCrは金属間化合物
(σ相等)の析出を促し、線材加工時の加工性を低下さ
せる。また、溶接時の溶接金属部にσ相を析出させ靱性
を低下させる。従って、その含有量は18〜27%の範囲が
望ましい。
Cr: Cr is an element that enhances corrosion resistance. If the content is less than 18%, the same corrosion resistance of the weld metal as the base metal cannot be obtained. However, excessive Cr promotes precipitation of an intermetallic compound (such as the σ phase), and lowers workability in wire processing. In addition, a σ phase is precipitated in a weld metal part at the time of welding to reduce toughness. Therefore, its content is desirably in the range of 18 to 27%.

【0046】Mo:Moは、Crと同様に溶接金属部の耐孔食
性を向上させる元素である。しかし、Mo含有量が4.0%
を超えると、Crと同様に金属間化合物の析出を容易にす
る作用が強く、製造中の素材の脆化の原因になり、線材
加工が困難となる。また、溶接時に溶接金属部にσ相の
析出を促進させ、継手部の脆化を招く。従って、その含
有量は4%以下が望ましい。特に耐孔食性および耐隙間
腐食性を高めるため添加する場合には、その含有量を2.
0〜4.0%とするのが望ましい。
Mo: Mo, like Cr, is an element that improves the pitting corrosion resistance of the weld metal. However, the Mo content is 4.0%
If it exceeds 3, the effect of facilitating the precipitation of the intermetallic compound is strong like Cr, which causes embrittlement of the raw material during production and makes wire processing difficult. Further, at the time of welding, precipitation of the σ phase is promoted in the weld metal portion, and the joint portion is embrittled. Therefore, its content is desirably 4% or less. Especially when added to enhance pitting corrosion resistance and crevice corrosion resistance, the content is 2.
It is desirable to set it to 0 to 4.0%.

【0047】W:Wは、Moと同様に溶接金属部の耐食
性、特に孔食および隙間腐食への抵抗性を向上させる元
素であり、pHの低い環境でも耐孔食性を低下させない安
定な酸化物を形成する。また、Cr、Mo、Nと同様に耐孔
食性を向上させる元素であり、しかもCrやMoのようにσ
相の析出を助長する作用が相対的に小さい。即ち、Cr、
Moの含有量を少なくして耐孔食性を高めることができ
る。したがって、Wは、必要に応じて添加することがで
き、添加する場合は、その含有量を1.5%以上とするの
が望ましい。しかし、2.5%を超えて含有させてもその
効果は飽和する。
W: Like Mo, W is an element that improves the corrosion resistance of the weld metal, especially the resistance to pitting and crevice corrosion, and is a stable oxide that does not reduce pitting resistance even in a low pH environment. To form Further, like Cr, Mo, and N, it is an element that improves pitting corrosion resistance.
The effect of promoting the precipitation of the phase is relatively small. That is, Cr,
The pitting corrosion resistance can be improved by reducing the content of Mo. Therefore, W can be added as needed, and when added, its content is desirably 1.5% or more. However, even if the content exceeds 2.5%, the effect saturates.

【0048】N (窒素) :Nは、オーステナイトを生成
させ、また、耐孔食性を向上させる。本発明の溶接材料
のようにフェライト生成元素であるCr、Moが多量に含有
する場合には、溶接金属部のフェライト相とオーステナ
イト相のバランスを適正なものにするために、N含有量
を0.12%以上とするのが望ましい。さらにNは、Cr、Mo
およびWと同様、耐孔食性を向上させる。しかし、0.35
%を超えると溶接金属部にブローホール欠陥が発生す
る。また、溶接の際の熱影響による窒化物の生成により
溶接金属部の靱性、耐食性を劣化させる。したがって、
N含有量の上限が0.35%とすべきである。
N (nitrogen): N forms austenite and improves pitting resistance. When the ferrite-forming elements Cr and Mo are contained in a large amount as in the welding material of the present invention, the N content is set to 0.12 to make the balance between the ferrite phase and the austenite phase of the weld metal part appropriate. % Is desirable. N is Cr, Mo
And W, improve pitting resistance. But 0.35
%, Blowhole defects occur in the weld metal. Moreover, the toughness and corrosion resistance of the weld metal part are degraded due to the formation of nitrides due to the heat effect during welding. Therefore,
The upper limit for the N content should be 0.35%.

【0049】[0049]

【実施例】表1に示す13Cr系高強度マルテンサイトステ
ンレス鋼および二相ステンレス鋼(いずれもAPI-X80グ
レード)の板材を用いて、JIS Z3158に準じてy形溶接
割れ試験板(板厚:25mm、ルートギャップ:2mm)を作
製した。また、表2に示すように水素量を変化させたオ
ーステナイト・フェライト系二相ステンレス鋼ワイヤ
(径=1.2mm)を自動送給してティグ溶接法により1パス
のビードを溶接した。
EXAMPLE A y-type weld crack test plate (sheet thickness: 13 mm) according to JIS Z3158, using 13Cr-based high-strength martensitic stainless steel and duplex stainless steel (both API-X80 grade) shown in Table 1. 25 mm, root gap: 2 mm). Further, as shown in Table 2, an austenitic / ferritic duplex stainless steel wire (diameter = 1.2 mm) in which the amount of hydrogen was changed was automatically fed, and a 1-pass bead was welded by a TIG welding method.

【0050】ワイヤの鋼中水素含有量を高めるのにはワ
イヤを水素ガス雰囲気中で溶体化熱処理を行い、鋼中水
素含有量を低くするのには真空雰囲気中で脱水素化熱処
理を行った。なお、ワイヤの鋼中水素含有量は、ワイヤ
を予めアセトンなどの有機溶剤で洗浄後、不活性ガス中
で加熱し、そのとき放出される水素をガスクロマトグラ
フィーを用いて検出する方法(不活性ガス中抽出・溶解
−カラム分解−熱伝導法)によって測定した。こうして
測定されるのは、ワイヤ中に溶解している全水素量(鋼
中水素含有量)である。また、オーステナイト・フェラ
イト二相ステンレス鋼の表面にそれぞれのワイヤを用い
て溶着金属を形成し、顕微鏡組織からフェライト量を測
定し、表2に示した。
To increase the hydrogen content in the steel of the wire, the wire was subjected to a solution heat treatment in a hydrogen gas atmosphere, and to reduce the hydrogen content in the steel, a dehydrogenation heat treatment was performed in a vacuum atmosphere. . The hydrogen content in the steel of the wire is measured by washing the wire in advance with an organic solvent such as acetone, heating the wire in an inert gas, and detecting the hydrogen released at that time using gas chromatography (inactive gas). (Extraction / dissolution in gas-column decomposition-heat conduction method). What is measured in this way is the total amount of hydrogen dissolved in the wire (hydrogen content in steel). Further, a weld metal was formed on the surface of the austenitic / ferritic duplex stainless steel using the respective wires, and the amount of ferrite was measured from the microscopic structure.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】溶接は、予熱処理および直後熱処理を一切
行わず、溶接条件は下記のように設定した。
The welding was performed without any pre-heat treatment and immediately after heat treatment, and the welding conditions were set as follows.

【0054】溶接電流 ・・・ 180A、 アーク電圧 ・・・14V、 溶接速度 ・・・・10cm/min、 ワイヤ送給速度・・8g/min、 雰囲気 ・・・・・温度20℃、相対湿度60%。Welding current: 180 A, arc voltage: 14 V, welding speed: 10 cm / min, wire feeding speed: 8 g / min, atmosphere: temperature: 20 ° C., relative humidity: 60 %.

【0055】シールドガス(バックシールドを含む)
は、JIS K 1105規定の1級のアルゴンガスを使用した。
溶接トーチのガス流量は 10 リットル/min、バックシール
ドのガス流量は 5 リットル/minとした。
Shield gas (including back shield)
Used first-class argon gas specified in JIS K 1105.
The gas flow rate of the welding torch was 10 l / min, and the gas flow rate of the back shield was 5 l / min.

【0056】得られた溶接部から、溶接金属部の拡散性
水素量(Hd)、フェライト量(δw)および遅れ割れを
調査し、表3に示した。
The diffusible hydrogen content (Hd), ferrite content (δw) and delayed cracking of the weld metal were examined from the obtained welds.

【0057】[0057]

【表3】 [Table 3]

【0058】拡散性水素量(Hd)の測定はJISのZ3118に
規定されたガスクロマトグラフ法で実施した。
The amount of diffusible hydrogen (Hd) was measured by a gas chromatography method specified in JIS Z3118.

【0059】溶接金属部のフェライト量δw(容積%)
は、顕微鏡組織から実測した。
Ferrite amount δw of weld metal (volume%)
Was actually measured from the microstructure.

【0060】遅れ割れの評価は、溶接後の試験体を常温
で168時間保持した後、断面の割れを観察した。割れが
認められなかった場合を合格(なし)、割れが認められ
た場合を不合格(あり)として示した。
For evaluation of delayed cracking, the specimen after welding was held at room temperature for 168 hours, and then cracks in the cross section were observed. The case where cracks were not recognized was indicated as pass (none), and the case where cracks were recognized was rejected (presence).

【0061】表3から、本発明例の試験番号1〜9は、溶
接材料の鋼中水素含有量Hw(ppm)と溶接金属部のフェラ
イト量δw(容積%)の積(Hw×δw)が(2)式の左辺154
以下となり、遅れ割れが認められなかった。
From Table 3, the test numbers 1 to 9 of the examples of the present invention show that the product (Hw × δw) of the hydrogen content Hw (ppm) in steel of the welding material and the ferrite content δw (volume%) of the welding metal part is obtained. Left side of equation (154)
Below, no delayed cracking was observed.

【0062】これに対して、比較例の試験番号10〜15
は、溶接材料の鋼中水素含有量Hw(ppm)と溶接金属部の
フェライト量δw(容積%)の積(Hw×δw)が154を超
え、母材HAZまたはボンド部に遅れ割れが観察され
た。これは、溶接金属部の拡散性水素量が多くなったた
めである。
On the other hand, the test numbers 10 to 15 of the comparative examples
The product (Hw × δw) of the hydrogen content Hw (ppm) in steel of the welding material and the ferrite content δw (volume%) of the weld metal exceeds 154, and delayed cracking is observed in the base metal HAZ or the bond. Was. This is because the amount of diffusible hydrogen in the weld metal has increased.

【0063】[0063]

【発明の効果】本発明の溶接材料は、鋼中水素含有量を
溶着金属のフェライト量に応じて算出される許容上限値
以下の値(溶接材料の鋼中水素含有量とフェライト量と
の積が135以下)に制限されたものである。この溶接材
料を用いれば、高強度、高耐食性高Cr系ステンレス鋼の
ガスシールドアーク溶接において、予熱処理および直後
熱処理を施さなくとも、遅れ割れの発生を防止できる。
また、本発明の溶接方法は、溶接金属部のフェライト量
に応じて鋼中水素含有量を調整した溶接材料を用いるの
で、予熱処理および直後熱処理を施さなくとも、遅れ割
れの発生を防止できる。
According to the welding material of the present invention, the hydrogen content in steel is set to a value equal to or less than an allowable upper limit calculated according to the ferrite content of the deposited metal (the product of the hydrogen content in steel of the welding material and the ferrite content). Is 135 or less). By using this welding material, it is possible to prevent the occurrence of delayed cracking in gas shielded arc welding of high-strength, high-corrosion-resistant, high-Cr stainless steel without performing pre-heating and heat treatment immediately after.
Further, since the welding method of the present invention uses a welding material in which the hydrogen content in steel is adjusted according to the amount of ferrite in the weld metal, the occurrence of delayed cracking can be prevented without performing a pre-heat treatment and a heat treatment immediately after.

【0064】これにより、本発明の溶接方法は、予熱処
理および直後熱処理が困難な油井管やラインパイプの現
地溶接に有効に用いることができる。
As a result, the welding method of the present invention can be effectively used for on-site welding of oil country tubular goods and line pipes, for which pre-heat treatment and immediate heat treatment are difficult.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶接金属部の拡散性水素量の溶接材料の鋼中水
素含有量に対する比と溶接金属のフェライト量との関係
を示す図である。
FIG. 1 is a graph showing the relationship between the ratio of the amount of diffusible hydrogen in a weld metal to the hydrogen content in steel of a welding material and the amount of ferrite in a weld metal.

【図2】溶接金属部のフェライト量および溶接材料の鋼
中水素含有量が溶接遅れ割れに及ぼす影響を示す図であ
る。
FIG. 2 is a view showing the effect of the amount of ferrite in a weld metal part and the hydrogen content in steel of a welding material on welding delayed cracking.

【図3】溶接金属部のフェライト量の逆数と溶接材料の
鋼中水素含有量との関係を示す図である。
FIG. 3 is a graph showing the relationship between the reciprocal of the amount of ferrite in a weld metal part and the hydrogen content in steel of a welding material.

【図4】溶着金属のフェライト量および溶接材料の鋼中
水素含有量が溶接遅れ割れに及ぼす影響を示す図であ
る。
FIG. 4 is a view showing the effect of the amount of ferrite of a deposited metal and the content of hydrogen in steel of a welding material on delayed welding cracking.

【図5】溶着金属のフェライト量の逆数と溶接材料の鋼
中水素含有量との関係を示す図である。
FIG. 5 is a graph showing the relationship between the reciprocal of the amount of ferrite in a deposited metal and the hydrogen content in steel of a welding material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.03%以下、Cr:7〜27%
を含むステンレス鋼をガスシールドアーク溶接するため
の溶接材料であって、その溶接材料の鋼中水素含有量
(Hw、ppm)と、その溶接材料の溶着金属のフェライト
量(δd、ただし、δd≧30容積%)との積が下記(1)式
を満足することを特徴とするオーステナイト・フェライ
ト系二相ステンレス鋼溶接材料。 Hw×δd≦135 ・・・・・(1)
(1) C: 0.03% or less, Cr: 7 to 27% by weight%
Is a welding material for gas-shielded arc welding of stainless steel containing: (a) a hydrogen content (Hw, ppm) in steel of the welding material; and (b) a ferrite amount of a deposited metal of the welding material (δd, where δd ≧ Austenitic-ferritic duplex stainless steel welding material characterized in that the product of the austenitic and ferritic duplex stainless steels satisfies the following formula (1). Hw × δd ≦ 135 ・ ・ ・ ・ ・ (1)
【請求項2】化学組成が重量%で、C:0.08%以下、S
i:1.0%以下、Mn:2.5%以下、P:0.03%以下、S:
0.02%以下、Cr:18〜27%、Ni:5〜11%、Mo:4%以
下、W:2.5%以下、N:0.35%以下、残部Feおよび不
可避的不純物からなることを特徴とする請求項1に記載
のオーステナイト・フェライト系二相ステンレス鋼溶接
材料。
2. The chemical composition in weight%, C: 0.08% or less, S
i: 1.0% or less, Mn: 2.5% or less, P: 0.03% or less, S:
0.02% or less, Cr: 18 to 27%, Ni: 5 to 11%, Mo: 4% or less, W: 2.5% or less, N: 0.35% or less, balance Fe and inevitable impurities Item 4. An austenitic / ferritic duplex stainless steel welding material according to item 1.
【請求項3】重量%で、C:0.03%以下、Cr:7〜27%
を含むステンレス鋼をガスシールドアーク溶接する方法
であって、C:0.08%以下、Si:1.0%以下、Mn:2.5%
以下、P:0.03%以下、S:0.02%以下、Cr:18〜27
%、Ni:5〜11%、Mo:4%以下、W:2.5%以下、
N:0.35%以下を含有し、残部がFeおよび不可避的不純
物からなる溶接材料を用い、それによって形成される溶
接継手の溶接金属部のフェライト量(δw、ただし、δw
≧30容積%)と上記溶接材料の鋼中水素含有量(Hw、p
pm)との積が下記(2)式を満足するように調整すること
を特徴とする高Cr系ステンレス鋼のガスシールドアーク
溶接方法。 Hw×δw≦154 ・・・・・(2)
3. In% by weight, C: 0.03% or less, Cr: 7 to 27%
Gas-assisted arc welding of stainless steel containing iron, C: 0.08% or less, Si: 1.0% or less, Mn: 2.5%
Below, P: 0.03% or less, S: 0.02% or less, Cr: 18 to 27
%, Ni: 5 to 11%, Mo: 4% or less, W: 2.5% or less,
N: A welding material containing 0.35% or less, with the balance being Fe and unavoidable impurities, and the amount of ferrite (δw, where δw,
≧ 30% by volume) and the hydrogen content (Hw, p
pm) is adjusted so as to satisfy the following equation (2). Hw × δw ≦ 154 (2)
JP17968699A 1999-06-25 1999-06-25 Austenitic / ferritic duplex stainless steel welding material and method for welding high Cr steel using the same Expired - Fee Related JP3454354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17968699A JP3454354B2 (en) 1999-06-25 1999-06-25 Austenitic / ferritic duplex stainless steel welding material and method for welding high Cr steel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17968699A JP3454354B2 (en) 1999-06-25 1999-06-25 Austenitic / ferritic duplex stainless steel welding material and method for welding high Cr steel using the same

Publications (2)

Publication Number Publication Date
JP2001009589A true JP2001009589A (en) 2001-01-16
JP3454354B2 JP3454354B2 (en) 2003-10-06

Family

ID=16070106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17968699A Expired - Fee Related JP3454354B2 (en) 1999-06-25 1999-06-25 Austenitic / ferritic duplex stainless steel welding material and method for welding high Cr steel using the same

Country Status (1)

Country Link
JP (1) JP3454354B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1340829A1 (en) * 2002-02-05 2003-09-03 Sumitomo Metal Industries, Ltd. Duplex stainless steel for urea manufacturing plants
JP2008063595A (en) * 2006-09-05 2008-03-21 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel wire rod and steel wire having excellent weldability and hot workability
KR100908684B1 (en) * 2002-12-30 2009-07-22 주식회사 포스코 TIG welding method of super ferritic stainless steel
US7767314B2 (en) 2005-09-28 2010-08-03 Nippon Steel Corporation Weld joint formed with stainless steel-based weld metal for welding a zinc-based alloy coated steel sheet
CN102513662A (en) * 2011-12-23 2012-06-27 山东大学 Q690 and Q980 high-strength dissimilar steel non-preheating welding method
US20120241053A1 (en) * 2007-10-05 2012-09-27 Vae Gmbh Use of intermediate piece for connecting molded articles of manganese steel with carbon steel, and method for connecting austenitic manganese steel casting pieces with standard rails
JP2013199679A (en) * 2012-03-26 2013-10-03 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel having excellent corrosion resistance to high temperature lactic acid and method for using the same
WO2013146860A1 (en) 2012-03-30 2013-10-03 新日鐵住金株式会社 Process for producing welded joint, and welded joint
EP2737972A1 (en) * 2012-11-28 2014-06-04 Sandvik Intellectual Property AB Welding material for weld cladding
US8748778B2 (en) 2007-12-27 2014-06-10 Nippon Steel & Sumitomo Metal Corporation Stainless steel flux-cored welding wire for welding of zinc-coated steel sheet and arc welding method of zinc-coated steel sheet using same
US20140286698A1 (en) * 2011-05-13 2014-09-25 Nippon Steel & Sumitomo Metal Corporation Welding material and welding joint
JP2015196894A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Two-phase stainless steel
EP2676763A4 (en) * 2011-02-14 2016-12-28 Nippon Steel & Sumitomo Metal Corp Welded duplex stainless joint
JP2017100171A (en) * 2015-12-03 2017-06-08 日鐵住金溶接工業株式会社 Submerged arc welding method of duplex stainless steel
JP2017131912A (en) * 2016-01-26 2017-08-03 日鐵住金溶接工業株式会社 Flux-cored wire for two-phase stainless steel welding
CN109706402A (en) * 2018-12-27 2019-05-03 浙江腾龙精线有限公司 A kind of preparation method of two phase stainless steel gas metal-arc welding silk
WO2019189871A1 (en) * 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Two-phase stainless-clad steel sheet and production method thereof
JP2021142567A (en) * 2015-12-23 2021-09-24 グッドウィン ピーエルシーGoodwin Plc Steel, welding consumable, cast, forged or wrought product, method of welding, welded product and method of heat treating

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154395A (en) * 1981-03-19 1982-09-24 Daido Steel Co Ltd Welding material
JPS59163097A (en) * 1983-03-07 1984-09-14 Nippon Steel Corp Filler metal for welding
JPS59218295A (en) * 1983-05-24 1984-12-08 Sumitomo Metal Ind Ltd Filler metal for welding two-phase stainless steel
JPH06155080A (en) * 1992-11-20 1994-06-03 Kobe Steel Ltd Flux cored wire for stainless steel having excellent pore resistance
JPH0890281A (en) * 1994-09-21 1996-04-09 Nippon Steel Corp Welding method of high-cr steel
JPH08260101A (en) * 1995-03-20 1996-10-08 Sumitomo Metal Ind Ltd Welding material for welding dual phase stainless steel, having high corrosion resistance and high toughness
WO1997012072A1 (en) * 1995-09-27 1997-04-03 Sumitomo Metal Industries, Ltd. High-strength welded steel structures having excellent corrosion resistance
JPH0994694A (en) * 1995-09-29 1997-04-08 Kobe Steel Ltd Flux cored wire for stainless steel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154395A (en) * 1981-03-19 1982-09-24 Daido Steel Co Ltd Welding material
JPS59163097A (en) * 1983-03-07 1984-09-14 Nippon Steel Corp Filler metal for welding
JPS59218295A (en) * 1983-05-24 1984-12-08 Sumitomo Metal Ind Ltd Filler metal for welding two-phase stainless steel
JPH06155080A (en) * 1992-11-20 1994-06-03 Kobe Steel Ltd Flux cored wire for stainless steel having excellent pore resistance
JPH0890281A (en) * 1994-09-21 1996-04-09 Nippon Steel Corp Welding method of high-cr steel
JPH08260101A (en) * 1995-03-20 1996-10-08 Sumitomo Metal Ind Ltd Welding material for welding dual phase stainless steel, having high corrosion resistance and high toughness
WO1997012072A1 (en) * 1995-09-27 1997-04-03 Sumitomo Metal Industries, Ltd. High-strength welded steel structures having excellent corrosion resistance
JPH0994694A (en) * 1995-09-29 1997-04-08 Kobe Steel Ltd Flux cored wire for stainless steel

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003200351B2 (en) * 2002-02-05 2004-04-22 Nippon Steel Corporation Duplex stainless steel for urea manufacturing plants
US7347903B2 (en) 2002-02-05 2008-03-25 Sumitomo Metal Industries, Ltd. Duplex stainless steel for urea manufacturing plants
EP1340829A1 (en) * 2002-02-05 2003-09-03 Sumitomo Metal Industries, Ltd. Duplex stainless steel for urea manufacturing plants
KR100908684B1 (en) * 2002-12-30 2009-07-22 주식회사 포스코 TIG welding method of super ferritic stainless steel
US7767314B2 (en) 2005-09-28 2010-08-03 Nippon Steel Corporation Weld joint formed with stainless steel-based weld metal for welding a zinc-based alloy coated steel sheet
JP2008063595A (en) * 2006-09-05 2008-03-21 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel wire rod and steel wire having excellent weldability and hot workability
US20120241053A1 (en) * 2007-10-05 2012-09-27 Vae Gmbh Use of intermediate piece for connecting molded articles of manganese steel with carbon steel, and method for connecting austenitic manganese steel casting pieces with standard rails
US8748778B2 (en) 2007-12-27 2014-06-10 Nippon Steel & Sumitomo Metal Corporation Stainless steel flux-cored welding wire for welding of zinc-coated steel sheet and arc welding method of zinc-coated steel sheet using same
US9579870B2 (en) 2011-02-14 2017-02-28 Nippon Steel & Sumitomo Metal Corporation Welded joint of duplex stainless steel
EP2676763A4 (en) * 2011-02-14 2016-12-28 Nippon Steel & Sumitomo Metal Corp Welded duplex stainless joint
US10201880B2 (en) * 2011-05-13 2019-02-12 Nippon Steel & Sumitomo Metal Corporation Welding material and welding joint
US20140286698A1 (en) * 2011-05-13 2014-09-25 Nippon Steel & Sumitomo Metal Corporation Welding material and welding joint
CN102513662A (en) * 2011-12-23 2012-06-27 山东大学 Q690 and Q980 high-strength dissimilar steel non-preheating welding method
JP2013199679A (en) * 2012-03-26 2013-10-03 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel having excellent corrosion resistance to high temperature lactic acid and method for using the same
US9555496B2 (en) 2012-03-30 2017-01-31 Nippon Steel & Sumitomo Metal Corporation Process for producing welded joint using GMA welding and CO2 as a shielding gas
WO2013146860A1 (en) 2012-03-30 2013-10-03 新日鐵住金株式会社 Process for producing welded joint, and welded joint
RU2650367C2 (en) * 2012-11-28 2018-04-11 Сандвик Интеллекчуал Проперти Аб Welding material for weld cladding
WO2014083009A1 (en) * 2012-11-28 2014-06-05 Sandvik Intellectual Property Ab Welding material for weld cladding
US10807203B2 (en) 2012-11-28 2020-10-20 Esab Sweden Ab Welding material for weld cladding
EP2737972A1 (en) * 2012-11-28 2014-06-04 Sandvik Intellectual Property AB Welding material for weld cladding
JP2015196894A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Two-phase stainless steel
JP2017100171A (en) * 2015-12-03 2017-06-08 日鐵住金溶接工業株式会社 Submerged arc welding method of duplex stainless steel
JP7230102B2 (en) 2015-12-23 2023-02-28 グッドウィン ピーエルシー Steel, welding consumables, cast or forged or drawn products, welding methods, welded products, and heat treatment methods
JP2021142567A (en) * 2015-12-23 2021-09-24 グッドウィン ピーエルシーGoodwin Plc Steel, welding consumable, cast, forged or wrought product, method of welding, welded product and method of heat treating
JP2017131912A (en) * 2016-01-26 2017-08-03 日鐵住金溶接工業株式会社 Flux-cored wire for two-phase stainless steel welding
CN111989417A (en) * 2018-03-30 2020-11-24 日铁不锈钢株式会社 Duplex stainless steel clad steel sheet and method for manufacturing same
JPWO2019189871A1 (en) * 2018-03-30 2021-02-25 日鉄ステンレス株式会社 Duplex stainless clad steel sheet and its manufacturing method
WO2019189871A1 (en) * 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Two-phase stainless-clad steel sheet and production method thereof
JP7059357B2 (en) 2018-03-30 2022-04-25 日鉄ステンレス株式会社 Duplex stainless clad steel sheet and its manufacturing method
CN109706402A (en) * 2018-12-27 2019-05-03 浙江腾龙精线有限公司 A kind of preparation method of two phase stainless steel gas metal-arc welding silk

Also Published As

Publication number Publication date
JP3454354B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
US8049131B2 (en) Ultrahigh strength welded joint and ultrahigh strength welded steel pipe excellent in cold cracking resistance of weld metal, and methods for producing the same
JP5202862B2 (en) High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same
JP3427387B2 (en) High strength welded steel structure with excellent corrosion resistance
JP3454354B2 (en) Austenitic / ferritic duplex stainless steel welding material and method for welding high Cr steel using the same
JP4761993B2 (en) Manufacturing method of ferritic stainless steel welded pipe for spinning
JP6741860B2 (en) High Mn austenitic stainless steel for hydrogen excellent in weldability, weld joint and hydrogen equipment using the same, and method for manufacturing weld joint
JP2007260715A (en) Method for producing superhigh strength welded steel pipe
KR20210069097A (en) Welded structure and its manufacturing method
JP4082464B2 (en) Manufacturing method of high strength and high toughness large diameter welded steel pipe
JP2004042116A (en) WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2001179485A (en) Martensitic welded stainless steel pipe and producing method therefor
JPH10324950A (en) High-strength welded steel structure, and its manufacture
JP3900230B2 (en) Powder material for powder plasma overlay welding and powder plasma overlay weld metal
JP3815227B2 (en) Martensitic stainless steel welded joint with excellent strain aging resistance
JPH09194991A (en) Welded steel tube excellent in sour resistance and carbon dioxide gas corrosion resistance
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JP2004068055A (en) High strength welded steel pipe having excellent weld zone toughness and method for producing the same
JP2000015447A (en) Welding method of martensitic stainless steel
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP4424484B2 (en) Welded joints with excellent cold cracking resistance and steel for welding materials
EP3928917A1 (en) Welding material for high-cr ferritic heat-resistant steels
JP4522042B2 (en) Steel with excellent high-pass temperature weldability and its welded joint
JP2016079474A (en) Weld joint
JP3624758B2 (en) A welded steel structure with excellent cold cracking resistance
JP4040824B2 (en) Weld metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030708

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees