JP2015196894A - Two-phase stainless steel - Google Patents

Two-phase stainless steel Download PDF

Info

Publication number
JP2015196894A
JP2015196894A JP2014076683A JP2014076683A JP2015196894A JP 2015196894 A JP2015196894 A JP 2015196894A JP 2014076683 A JP2014076683 A JP 2014076683A JP 2014076683 A JP2014076683 A JP 2014076683A JP 2015196894 A JP2015196894 A JP 2015196894A
Authority
JP
Japan
Prior art keywords
less
stainless steel
duplex stainless
corrosion resistance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014076683A
Other languages
Japanese (ja)
Other versions
JP6442852B2 (en
Inventor
小川 和博
Kazuhiro Ogawa
和博 小川
平田 弘征
Hiromasa Hirata
弘征 平田
佳奈 浄徳
Kana Jotoku
佳奈 浄徳
孝裕 小薄
Takahiro Kousu
孝裕 小薄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014076683A priority Critical patent/JP6442852B2/en
Publication of JP2015196894A publication Critical patent/JP2015196894A/en
Application granted granted Critical
Publication of JP6442852B2 publication Critical patent/JP6442852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a welded joint having high pitting corrosion resistance.SOLUTION: There is provided a two-phase stainless steel welded joint in which each of a base metal and a weld metal has a chemical composition containing, by mass%, C:0.03% or less, Si:0.5% or less, Mn:2% or less, P:0.04% or less, S:0.003% or less, Cr:21 to 29%, Ni:4.0 to 10.5%, Mo:0.8 to 4.0%, N:0.1 to 0.4%, sol.Al:0.040% or less, W:0 to 4.0%, Cu:0 to 4.0%, B:0 to 0.005%, REM:0 to 0.2% and the balance Fe with inevitable impurities and in which an austenite index a represented by the formula (1) is 0.1 to 0.4, Mn/N≥2, a PF index represented by the formula (2) is 1.0 or less, and thickness of an oxidized scale of the surfaces of the base metal and the weld metal upon welding is 500 nm or less. a={Ni+30(C+N)-0.6(Cr+1.5Si+Mo)+5.6}/{Cr+1.5Si+Mo-6}(1) PF=Mn×(100 Pb+50Sb+30Zn+40As)(2)

Description

この発明は、二相ステンレス鋼に関し、特に、優れた溶接性および耐孔食性を有する二相ステンレス鋼に関する。   The present invention relates to a duplex stainless steel, and more particularly to a duplex stainless steel having excellent weldability and pitting corrosion resistance.

二相ステンレス鋼は、強度および耐食性、特に、耐海水腐食性に優れているため、熱交換器用鋼管等として古くから広範囲の技術分野で使用されている。従来、耐食性、強度、加工性等を改善した二相ステンレス鋼についてはすでに多くの組成例が提案されている。   Since the duplex stainless steel is excellent in strength and corrosion resistance, in particular, seawater corrosion resistance, it has long been used in a wide range of technical fields as a heat exchanger steel pipe and the like. Conventionally, many composition examples have already been proposed for duplex stainless steel with improved corrosion resistance, strength, workability, and the like.

例えば、特許文献1には、Wを1.5質量%〜5質量%を含みPREW[PREW=Cr+3.3(Mo+0.5W)+16N]が40以上である高強度二相ステンレス鋼が開示されている。この二相ステンレス鋼は、Wの多量添加により耐食性が飛躍的に向上し、しかも金属間化合物(シグマ相等)の析出による機械的性質、耐食性の劣化が小さいとされている。   For example, Patent Document 1 discloses a high-strength duplex stainless steel containing 1.5% by mass to 5% by mass of W and PREW [PREW = Cr + 3.3 (Mo + 0.5W) + 16N] of 40 or more. Yes. In this duplex stainless steel, corrosion resistance is drastically improved by adding a large amount of W, and mechanical properties and corrosion resistance deterioration due to precipitation of intermetallic compounds (such as sigma phase) are said to be small.

特許文献2には、優れた耐孔食性および溶接性を有する二相ステンレス鋼、特に溶接熱影響部においても微細なシグマ相などの金属間化合物が生成しない、優れた耐孔食性および溶接性を有する二相ステンレス鋼が開示されている。耐孔食性の向上に関して、特許文献3には、N/Snが特定範囲にあるSnを含有させることにより、不働態皮膜を形成しやすくし、しかも、その安定性を高めて、局部腐食を大幅に抑制できることが開示されている。   In Patent Document 2, duplex stainless steel having excellent pitting corrosion resistance and weldability, in particular, excellent pitting corrosion resistance and weldability in which an intermetallic compound such as a fine sigma phase is not generated even in a welding heat affected zone. A duplex stainless steel is disclosed. Regarding the improvement of pitting corrosion resistance, Patent Document 3 contains Sn with N / Sn in a specific range, which makes it easier to form a passive film, and further increases its stability, thereby significantly increasing local corrosion. It is disclosed that it can be suppressed.

さらに、高耐食高靱性二相ステンレス鋼溶接用溶接材料として、特許文献4には、CrとMoの含有量を制限し、Wを含有させ、耐孔食性指数PREWを42.0以上とし、かつフェライト容量指数Phを0.25〜0.35%とすることにより、熱間加工性、溶接金属部の靱性と耐孔食性に優れた溶接材料が開示されている。   Further, as a welding material for high corrosion resistance and high toughness duplex stainless steel welding, Patent Document 4 restricts the contents of Cr and Mo, contains W, sets the pitting corrosion resistance index PREW to 42.0 or more, and By setting the ferrite capacity index Ph to 0.25 to 0.35%, a welding material excellent in hot workability, weld metal toughness and pitting corrosion resistance is disclosed.

特開平5−132741号公報JP-A-5-132741 国際公開第2005/001151号International Publication No. 2005/001151 特開2013−253315号公報JP 2013-253315 A 特開平8−260101号公報JP-A-8-260101

今日のように、各種溶接構造物が広く利用されるようになっている。例えば、温度の高い海水環境で使用される配管、熱交換器、ポンプ等などの溶接構造物として、二相ステンレス鋼を用いる場合、溶接部の耐食性、特に耐孔食性が問題となってきた。特許文献2では鋼中のNおよびMo量とアルミナ系粗大介在物の密度をコントロールすることにより孔食の起点となる溶接熱影響部に生成する微細なシグマ相や窒化物を抑制することが、溶接部の耐孔食性向上に有効なことが示されている。   As of today, various welded structures are widely used. For example, when duplex stainless steel is used as a welded structure such as a pipe, heat exchanger, pump or the like used in a high temperature seawater environment, the corrosion resistance of the welded portion, particularly pitting corrosion resistance has been a problem. In Patent Document 2, by controlling the amount of N and Mo in the steel and the density of the alumina-based coarse inclusions, it is possible to suppress the fine sigma phase and nitride generated in the weld heat affected zone that becomes the starting point of pitting corrosion. It is shown that it is effective for improving the pitting corrosion resistance of the weld.

しかしながら、これらは、溶接の際に生成する酸化スケールが残存した際の耐孔食性の劣化を抑制するものではない。溶接施工後に研磨処理が可能な場合には問題はないが、片面から溶接された際に配管の周溶接部の管内面側や箱形の構造体の溶接部の内面側でスケールを完全に除去することは困難である。   However, these do not suppress the deterioration of pitting corrosion resistance when the oxide scale generated during welding remains. If polishing is possible after welding, there is no problem, but when welding is performed from one side, the scale is completely removed on the pipe inner surface side of the peripheral welded part of the pipe and the inner surface side of the welded part of the box-shaped structure. It is difficult to do.

本発明は、このような従来技術の問題を解決するためになされたものであり、溶接時の酸化スケールが生成した部位においても高い耐孔食性を有する溶接継手を提供することを目的とする。   The present invention has been made to solve such problems of the prior art, and an object of the present invention is to provide a welded joint having high pitting corrosion resistance even at a site where an oxide scale is generated during welding.

二相ステンレス鋼の耐孔食性は、Crによる不動態皮膜により発現する。そして、高Cr化とともに、Mo、WおよびNを含有させることにより、不動態皮膜を補強すると、苛酷な腐食環境にまで耐えることが可能となる。本発明者らは、溶接にともない溶接熱影響部および溶接金属の表面に生成するスケールが耐孔食性を低下させる機構およびその解決法につき鋭意研究をした結果、以下のことを知見した。   The pitting corrosion resistance of the duplex stainless steel is manifested by a passive film made of Cr. And it becomes possible to endure even a severe corrosive environment, if Mo, W, and N are contained together with increasing Cr and reinforcing the passive film. As a result of intensive studies on a mechanism and a solution to the problem that the scale generated on the surface of the weld heat-affected zone and the weld metal during welding reduces pitting corrosion resistance, the present inventors have found the following.

溶接の際に1000℃以上に加熱される領域の表面では、鋼中の合金元素が溶接雰囲気中のOと反応して新たな酸化スケールが生成する。高温での反応であることから、Oは、親和力の強いCrだけでなく、蒸気圧の低いMn、さらには鋼中に多く存在するFeと反応する。その結果、常温での反応で形成されているCr主体のスケールは、FeおよびMnが富化し、Cr濃度が低下したスケールとなる。このスケールは、腐食に対する抵抗が低いため、耐孔食性が劣化する。   On the surface of the region heated to 1000 ° C. or higher during welding, an alloy element in the steel reacts with O in the welding atmosphere to generate a new oxide scale. Since it is a reaction at a high temperature, O reacts not only with Cr having a strong affinity but also with Mn having a low vapor pressure, and further with Fe existing in a large amount in steel. As a result, the scale mainly composed of Cr formed by the reaction at room temperature becomes a scale in which Fe and Mn are enriched and the Cr concentration is lowered. Since this scale has low resistance to corrosion, the pitting corrosion resistance deteriorates.

この皮膜の劣化は、鋼中のMn量と溶接によって形成される酸化スケール厚さを500nm以下とすることで抑制することが可能である。   This deterioration of the film can be suppressed by setting the amount of Mn in the steel and the oxide scale thickness formed by welding to 500 nm or less.

鋼中のMn量を抑制することは、Oと反応して酸化スケールに入るMnの量を直接抑えることができる点で有効である。しかし、鋼中のMnは、Nの固溶度を高めるので、溶接熱影響部での窒化物の析出を抑えることにより、耐孔食性の劣化を防止する役割も担っているため、少なくともNの2倍以上含有させる必要がある。   Inhibiting the amount of Mn in the steel is effective in that the amount of Mn that reacts with O and enters the oxide scale can be directly suppressed. However, since Mn in steel increases the solid solubility of N, it also plays a role of preventing the deterioration of pitting corrosion resistance by suppressing the precipitation of nitride in the weld heat affected zone. It is necessary to contain 2 times or more.

一方、鋼中に適正量のNを添加すれば、溶接時の高温状態で、一時的に生じるフェライト相が富化した状態からオーステナイト相の生成を促進することができ、窒化物の抑制に有効である。NはNiやCrのような置換型の合金元素に比べて拡散速度が大きいため、溶接のような比較的冷却速度の速い条件でも拡散変態に十分に寄与するためである。そのような制御を行うことを前提にすれば、Mnは必要最小限に低減することができる。   On the other hand, if an appropriate amount of N is added to the steel, the formation of the austenite phase can be promoted from a state in which the ferrite phase that is temporarily generated is enriched at a high temperature during welding, which is effective in suppressing nitrides. It is. This is because N has a higher diffusion rate than substitutional alloy elements such as Ni and Cr, and therefore sufficiently contributes to diffusion transformation even under conditions of a relatively high cooling rate such as welding. Assuming that such control is performed, Mn can be reduced to the minimum necessary.

しかし、鋼中にMnが存在する限り不動態皮膜の劣化は免れないが、溶接時に生じた酸化スケールの厚さを十分に薄くすれば、1000℃以上でのOと鋼中の金属との反応量が少なくなり、結果としてCr濃度の高い安定な皮膜が得られる。   However, as long as Mn is present in the steel, the deterioration of the passive film is inevitable. However, if the thickness of the oxide scale formed during welding is sufficiently reduced, the reaction between O and the metal in the steel at 1000 ° C. or higher. As a result, a stable film having a high Cr concentration can be obtained.

さらには溶接時に生成する酸化スケール中に鋼中からPb、Sb、ZnおよびAsが混入すると、MnおよびFeの濃度の高くなったCrの酸化被膜に微細な亀裂が生じやすくなり腐食環境によっては、皮膜の損傷が生じやすくなる。よって、これらの不純物量をMn量に応じて規制する必要がある。   Furthermore, when Pb, Sb, Zn and As are mixed from the steel into the oxide scale produced during welding, fine cracks are likely to occur in the oxide film of Cr having a high Mn and Fe concentration, and depending on the corrosive environment, Damage to the film is likely to occur. Therefore, it is necessary to regulate the amount of these impurities according to the amount of Mn.

なお、上記の技術事項は、溶接熱影響部のみならず、溶接金属においても同様であり、また、溶接材料にも適用できる。   In addition, said technical matter is the same not only in a welding heat affected zone but in a weld metal, and is applicable also to a welding material.

本発明は、上記の知見に基づいてなされたものであり、下記の二相ステンレス鋼溶接継手および二相ステンレス鋼溶接材料を要旨とする。   This invention is made | formed based on said knowledge, and makes a summary the following duplex stainless steel welded joint and duplex stainless steel welding material.

(1)母材および溶接金属の化学組成が、質量%で、
C:0.03%以下、
Si:0.5%以下、
Mn:2%以下、
P:0.04%以下、
S:0.003%以下、
Cr:21%以上29%未満、
Ni:4.0〜10.5%、
Mo:0.8〜4.0%、
N:0.1%を超え0.4%以下、
sol.Al:0.040%以下、
W:0〜4.0%、
Cu:0〜4.0%、
B:0〜0.005%、
REM:0〜0.2%、
残部:Feおよび不純物であり、
下記の(1)式から求められるオーステナイト指数aが0.1〜0.4であり、
Mn/N≧2を満足し、かつ、
下記(2)式から求められるPF指数が1.0以下であり、
母材および溶接金属の表面に形成された溶接時の酸化スケール厚さが500nm以下である、
二相ステンレス鋼溶接継手。
a={Ni+30(C+N)−0.6(Cr+1.5Si+Mo)+5.6}/{Cr+1.5Si+Mo−6} (1)
PF=Mn×(100Pb+50Sb+30Zn+40As) (2)
ただし、上記式中の各元素記号は、それぞれの元素の含有量(質量%)を意味する。
(1) The chemical composition of the base metal and the weld metal is mass%,
C: 0.03% or less,
Si: 0.5% or less,
Mn: 2% or less,
P: 0.04% or less,
S: 0.003% or less,
Cr: 21% or more and less than 29%,
Ni: 4.0 to 10.5%,
Mo: 0.8 to 4.0%,
N: more than 0.1% and 0.4% or less,
sol. Al: 0.040% or less,
W: 0 to 4.0%,
Cu: 0 to 4.0%,
B: 0 to 0.005%,
REM: 0-0.2%
Balance: Fe and impurities,
The austenite index a calculated | required from the following (1) Formula is 0.1-0.4,
Mn / N ≧ 2 is satisfied, and
The PF index obtained from the following formula (2) is 1.0 or less,
The oxide scale thickness at the time of welding formed on the surface of the base metal and the weld metal is 500 nm or less,
Duplex stainless steel welded joint.
a = {Ni + 30 (C + N) −0.6 (Cr + 1.5Si + Mo) +5.6} / {Cr + 1.5Si + Mo−6} (1)
PF = Mn × (100Pb + 50Sb + 30Zn + 40As) (2)
However, each element symbol in the above formula means the content (% by mass) of each element.

(2)前記の化学組成が、
Cu:0.2〜2.0%を含む、
上記(1)の二相ステンレス鋼溶接継手。
(2) The chemical composition is
Cu: including 0.2 to 2.0%,
The duplex stainless steel welded joint of (1) above.

(3)前記の化学組成が、
B:0.0005〜0.005%および
REM:0.0005〜0.2%から選択される一種以上を含む、
上記(1)または(2)の二相ステンレス鋼溶接継手。
(3) The chemical composition is
One or more selected from B: 0.0005-0.005% and REM: 0.0005-0.2%,
The duplex stainless steel welded joint according to (1) or (2) above.

(4)化学組成が、質量%で、
C:0.03%以下、
Si:0.5%以下、
Mn:2%以下、
P:0.04%以下、
S:0.003%以下、
Cr:21%以上29%未満、
Ni:4.0〜10.5%、
Mo:0.8〜4.0%、
N:0.1%を超え0.4%以下、
sol.Al:0.040%以下、
W:0〜4.0%、
Cu:0〜4.0%、
B:0〜0.005%、
REM:0〜0.2%、
残部:Feおよび不純物であり、
下記の(1)式から求められるオーステナイト指数aが0.1〜0.4であり、
Mn/N≧2を満足し、かつ、
下記(2) 式から求められるPF指数が1.0以下である、
二相ステンレス鋼溶接材料。
a={Ni+30(C+N)−0.6(Cr+1.5Si+Mo)+5.6}/{Cr+1.5Si+Mo−6} (1)
PF=Mn×(100Pb+50Sb+30Zn+40As) (2)
ただし、上記式中の各元素記号は、それぞれの元素の含有量(質量%)を意味する。
(4) The chemical composition is mass%,
C: 0.03% or less,
Si: 0.5% or less,
Mn: 2% or less,
P: 0.04% or less,
S: 0.003% or less,
Cr: 21% or more and less than 29%,
Ni: 4.0 to 10.5%,
Mo: 0.8 to 4.0%,
N: more than 0.1% and 0.4% or less,
sol. Al: 0.040% or less,
W: 0 to 4.0%,
Cu: 0 to 4.0%,
B: 0 to 0.005%,
REM: 0-0.2%
Balance: Fe and impurities,
The austenite index a calculated | required from the following (1) Formula is 0.1-0.4,
Mn / N ≧ 2 is satisfied, and
The PF index calculated from the following formula (2) is 1.0 or less,
Duplex stainless steel welding material.
a = {Ni + 30 (C + N) −0.6 (Cr + 1.5Si + Mo) +5.6} / {Cr + 1.5Si + Mo−6} (1)
PF = Mn × (100Pb + 50Sb + 30Zn + 40As) (2)
However, each element symbol in the above formula means the content (% by mass) of each element.

(5)前記の化学組成が、
Cu:0.2〜2.0%を含む、
上記(4)の二相ステンレス鋼溶接材料。
(5) The chemical composition is
Cu: including 0.2 to 2.0%,
The duplex stainless steel welding material according to (4) above.

(6)前記の化学組成が、
B:0.0005〜0.005%および
REM:0.0005〜0.2%から選択される一種以上を含む、
上記(4)または(5)の二相ステンレス鋼溶接材料。
(6) The chemical composition is
One or more selected from B: 0.0005-0.005% and REM: 0.0005-0.2%,
The duplex stainless steel welding material according to (4) or (5) above.

本発明によれば、溶接時に生成する酸化スケールを除去しなくても、溶接継手の耐孔食性の劣化が防止できる。よって、溶接時の酸化スケールが生成した部位においても高い耐孔食性を有する溶接構造物を提供することができる。   According to the present invention, deterioration of pitting corrosion resistance of a welded joint can be prevented without removing the oxide scale generated during welding. Therefore, it is possible to provide a welded structure having high pitting corrosion resistance even at a site where an oxide scale is generated during welding.

溶接時のガスシールド方法を示す図Diagram showing gas shielding method during welding 腐食試験片の採取位置を示す図Figure showing the sampling position of the corrosion test piece

まず、溶接継手の母材および溶接金属を構成する二相ステンレス鋼、ならびに、溶接材料を構成する二相ステンレス鋼(以下、溶接継手の母材および溶接金属ならびに溶接材料を構成する二相ステンレス鋼を単に「二相ステンレス鋼」または「鋼」と呼ぶこととする。)における化学組成について説明する。以下の説明において、各元素の含有量についての「%」は「質量%」を意味する。   First, the duplex stainless steel constituting the base metal and weld metal of the welded joint, and the duplex stainless steel constituting the weld material (hereinafter referred to as the duplex stainless steel constituting the base metal, weld metal and weld material of the weld joint) Will be simply referred to as “duplex stainless steel” or “steel”). In the following description, “%” for the content of each element means “mass%”.

C:0.03%以下
Cは、オーステナイト相を安定化するのに有効な元素である。しかし、その含有量が0.03%を超えると炭化物が析出しやすくなり、耐食性が劣化する。よって、Cの含有量は0.03%以下とする。好ましくは0.02%以下である。上記の効果は、その含有量が不純物レベルでも発揮されるが、特に、0.005%以上とするのが好ましい。
C: 0.03% or less C is an element effective for stabilizing the austenite phase. However, when the content exceeds 0.03%, carbides are likely to precipitate, and the corrosion resistance is deteriorated. Therefore, the C content is 0.03% or less. Preferably it is 0.02% or less. The above effect is exhibited even when the content is at the impurity level, but it is particularly preferably 0.005% or more.

Si:0.5%以下
Siは、鋼の脱酸に有効であるが、その含有量が過剰な場合、金属間化合物(シグマ相等)の生成を促進する。したがって、その含有量は0.5%以下とする。上記の効果は、その含有量が不純物レベルでも発揮されるが、特に、0.05%以上とするのが好ましい。
Si: 0.5% or less Si is effective for deoxidation of steel, but when its content is excessive, it promotes the formation of intermetallic compounds (such as sigma phase). Therefore, the content is 0.5% or less. The above effect is exhibited even when the content is an impurity level, but it is particularly preferably 0.05% or more.

Mn:2%以下
Mnは、二相ステンレス鋼の溶製時の脱硫および脱酸効果によって熱間加工性を向上させる。また、Nの固溶度を大きくして溶接部での窒化物析出を抑制する。しかし、その含有量が過剰な場合、耐食性を劣化させるので、その含有量は2%以下とする。好ましくは1.0%以下である。上記の効果は、その含有量が不純物レベルでも発揮されるが、特に、Nとの関係で、Mn/N≧2を満足する必要がある。また、特に、0.2%以上とするのが好ましい。
Mn: 2% or less Mn improves hot workability by desulfurization and deoxidation effects during the melting of duplex stainless steel. Further, the solid solubility of N is increased to suppress nitride precipitation at the weld. However, if the content is excessive, the corrosion resistance is deteriorated, so the content is made 2% or less. Preferably it is 1.0% or less. The above effect is exhibited even at the impurity level, but it is necessary to satisfy Mn / N ≧ 2 particularly in relation to N. In particular, it is preferably 0.2% or more.

P:0.04%以下
Pは、鋼中に不可避的に混入する不純物元素であり、その含有量が0.04%を超えると耐食性、靱性の劣化が著しくなる。よって、Pは0.04%を上限とする。
P: 0.04% or less P is an impurity element inevitably mixed in steel, and when its content exceeds 0.04%, deterioration of corrosion resistance and toughness becomes remarkable. Therefore, the upper limit of P is 0.04%.

S:0.003%以下
Sも鋼中に不可避的に混入する不純物元素で、鋼の熱間加工性を劣化させる。また、硫化物は孔食の発生起点となり耐孔食性を損なう。これらの悪影響を避けるため、その含有量を0.003%以下に抑える。
S: 0.003% or less S is an impurity element inevitably mixed in steel, and deteriorates the hot workability of steel. In addition, the sulfide becomes a starting point of pitting corrosion and impairs pitting corrosion resistance. In order to avoid these adverse effects, the content is limited to 0.003% or less.

Cr:21%以上29%未満
Crは、耐食性を維持するために有効な基本成分である。その含有量が21.0%未満では、耐孔食性が不十分である。一方、Crの含有量が29.0%以上の場合、金属間化合物(シグマ相等)の析出が顕著になり、熱間加工性の低下および溶接性の劣化を招く。よって、Cr含有量は21%以上29%未満とする。好ましい下限は23%であり、好ましい上限は27%である。
Cr: 21% or more and less than 29% Cr is a basic component effective for maintaining corrosion resistance. When the content is less than 21.0%, pitting corrosion resistance is insufficient. On the other hand, when the Cr content is 29.0% or more, the precipitation of intermetallic compounds (such as sigma phase) becomes remarkable, leading to a decrease in hot workability and a deterioration in weldability. Therefore, the Cr content is 21% or more and less than 29%. A preferred lower limit is 23% and a preferred upper limit is 27%.

Ni:4.0〜10.5%、
Niは、オーステナイトを安定化するために必須の成分であるが、その含有量が10.5%を超えるとフェライト量の減少により二相ステンレス鋼の基本的な性質が確保しにくくなり、またシグマ相等の析出が容易になる。一方、Niの含有量が4.0%より少ないとフェライト量が多くなり過ぎて同じく二相ステンレス鋼の特徴が失われる。また、フェライト中へのNの固溶度が小さいため窒化物が析出して耐食性が劣化する。よって、Ni含有量は、4.0〜10.5%とする。好ましい下限は5.0%であり、好ましい上限は9.5%である。
Ni: 4.0 to 10.5%,
Ni is an essential component for stabilizing austenite, but if its content exceeds 10.5%, it becomes difficult to secure the basic properties of duplex stainless steel due to the decrease in ferrite content, and sigma Precipitation of phases and the like becomes easy. On the other hand, if the Ni content is less than 4.0%, the amount of ferrite becomes too large and the characteristics of the duplex stainless steel are lost. In addition, since the solid solubility of N in ferrite is small, nitride precipitates and the corrosion resistance deteriorates. Therefore, the Ni content is 4.0 to 10.5%. A preferred lower limit is 5.0% and a preferred upper limit is 9.5%.

Mo:0.8〜4.0%
Moは、Crと同様に耐食性の向上に非常に有効な成分である。特に耐孔食性および耐隙間腐食性を高めるためには、その含有量を0.8%以上とする必要がある。1.5%以上とするのが好ましく、2%以上とするのがより好ましい。一方、Moを過剰に含有させると、製造中の素材の脆化の原因になり、Crと同様に金属間化合物の析出を容易にする作用が強い。従って、Moの含有量の上限は4.0%とする。好ましい上限は3.5%である。
Mo: 0.8-4.0%
Mo, like Cr, is a very effective component for improving corrosion resistance. In particular, in order to improve the pitting corrosion resistance and crevice corrosion resistance, the content needs to be 0.8% or more. It is preferably 1.5% or more, and more preferably 2% or more. On the other hand, if Mo is excessively contained, it causes embrittlement of the raw material during production, and has a strong effect of facilitating the precipitation of intermetallic compounds like Cr. Therefore, the upper limit of the Mo content is 4.0%. A preferable upper limit is 3.5%.

N:0.1%を超え0.4%以下
Nは、強力なオーステナイト生成元素で、二相ステンレス鋼の熱的安定性と耐食性の向上に有効である。フェライト生成元素であるCr、Moを多量に含有させる本発明においては、フェライトとオーステナイトの二相のバランスを適正なものにするために、0.1%を超えるNを含有させる必要がある。
N: More than 0.1% and 0.4% or less N is a strong austenite-forming element and is effective in improving the thermal stability and corrosion resistance of the duplex stainless steel. In the present invention that contains a large amount of ferrite-forming elements such as Cr and Mo, it is necessary to contain more than 0.1% N in order to achieve an appropriate balance between the two phases of ferrite and austenite.

さらにNは、PREWの向上に寄与してCr、MoおよびWと同様に合金の耐食性を向上させる。しかし、本発明に係る二相ステンレス鋼では0.4%を超えるNを含有させると、ブローホールの発生による欠陥、あるいは溶接の際の熱影響による窒化物生成等により鋼の靱性、耐食性を劣化させる。よって、N含有量は、0.1%を超え0.4%以下とする。好ましい上限は0.35%である。   Further, N contributes to the improvement of PREW and improves the corrosion resistance of the alloy in the same manner as Cr, Mo and W. However, if the duplex stainless steel according to the present invention contains more than 0.4% N, the toughness and corrosion resistance of the steel deteriorate due to defects caused by blowholes or the formation of nitrides due to the thermal effect during welding. Let Therefore, the N content is more than 0.1% and 0.4% or less. A preferable upper limit is 0.35%.

なお、Mnを含有させることにより鋼中にNの活量を下げて十分に固溶させるためには、Nの二倍以上のMnを含有させることが不可欠である。したがって、本発明においては鋼中のMn/Nの比を2.0以上とすることが必須となる。   In addition, in order to reduce the activity of N in steel and to make it fully solid-solution by containing Mn, it is indispensable to contain Mn more than twice N. Therefore, in the present invention, it is essential that the ratio of Mn / N in the steel is 2.0 or more.

sol.Al:0.040%以下
Alは、鋼の脱酸剤として有効であるが、鋼中のN量が高い場合にはAlN(窒化アルミニウム)として析出し、靱性および耐食性を劣化させる。さらには、酸化物を形成し、シグマ相の核生成サイトとなる。従って、Alは、酸可溶Al(sol.Al)の含有量として0.040%以下に抑える。本発明では、Siの多量の含有は避けているので、脱酸剤としてAlを用い場合が多いが、真空溶解を行う場合には必ずしもAlを含有させなくてもよい。好ましい上限は0.03%である。なお、Al含有量は極力少ないことが好ましいが、あまりに低減することは製造コストを上昇させる。このため、Alの下限は0.001%とすることが好ましい。
sol. Al: 0.040% or less Al is effective as a deoxidizer for steel, but when the amount of N in the steel is high, it precipitates as AlN (aluminum nitride) and deteriorates toughness and corrosion resistance. Furthermore, an oxide is formed and becomes a nucleation site of a sigma phase. Therefore, Al is suppressed to 0.040% or less as the content of acid-soluble Al (sol. Al). In the present invention, since a large amount of Si is avoided, Al is often used as a deoxidizing agent. However, when vacuum melting is performed, it is not always necessary to include Al. A preferable upper limit is 0.03%. Although the Al content is preferably as small as possible, reducing it too much increases the manufacturing cost. For this reason, it is preferable that the lower limit of Al is 0.001%.

W:0〜4.0%
Wは、Moと同様、耐食性、特に孔食および隙間腐食への抵抗性を向上させる元素であり、就中、安定な酸化物を形成して、pHの低い環境で耐食性を向上させるのに有効な元素である。よって、Wを含有させてもよい。しかし、Wの含有量が4.0%を超えると、それに見合うだけの効果の増大はなく、徒にコストが嵩むだけである。よって、Wを含有させる場合には、その含有量を4.0%以下とする。好ましい下限は0.5%であり、好ましい上限は3.5%である。
W: 0 to 4.0%
W, like Mo, is an element that improves corrosion resistance, in particular resistance to pitting corrosion and crevice corrosion, and is particularly effective in forming stable oxides and improving corrosion resistance in low pH environments. Element. Therefore, W may be contained. However, if the W content exceeds 4.0%, there is no increase in the effect commensurate with it, and the cost only increases. Therefore, when it contains W, the content shall be 4.0% or less. A preferred lower limit is 0.5% and a preferred upper limit is 3.5%.

Cu:0〜4.0%
Cuは、還元性の低pH環境、例えば、HSOまたは硫化水素環境での耐酸性の向上に特に有効な元素である。よって、Cuを含有させてもよい。しかし、Cuを過剰に含有させると、熱間加工性を劣化させる。よって、Cuを含有させる場合には、その含有量を4.0%以下とする。上記の効果を十分に得るためには0.2%以上含有させるのが好ましい。好ましい上限は3.0%である。
Cu: 0 to 4.0%
Cu is an element particularly effective for improving acid resistance in a reducing low pH environment, for example, H 2 SO 4 or hydrogen sulfide environment. Therefore, Cu may be contained. However, when Cu is contained excessively, hot workability is deteriorated. Therefore, when it contains Cu, the content shall be 4.0% or less. In order to sufficiently obtain the above effect, it is preferable to contain 0.2% or more. A preferable upper limit is 3.0%.

B:0〜0.005%
REM:0〜0.2%
本発明の二相ステンレス鋼は、S含有量を低く抑えており、Wを多量に含有させたとしても、これはシグマ相等の生成を促進しないから、元来、熱間加工性は良好である。また、本発明の二相ステンレス鋼は、鋳物として使用することが可能であり、更に、粉末にしてプレス、焼結等の粉末冶金法で管等の製品にすることも可能である。このような製造方法による場合には熱間加工性はさして問題にならない。しかし、鍛造、圧延、押出し等の工程を経て製品にする場合には熱間加工性が優れていることが求められる。
B: 0 to 0.005%
REM: 0 to 0.2%
The duplex stainless steel of the present invention keeps the S content low, and even if it contains a large amount of W, it does not promote the formation of a sigma phase or the like, so that the hot workability is originally good. . Further, the duplex stainless steel of the present invention can be used as a casting, and can be made into a product such as a tube by powder metallurgy such as pressing and sintering. In the case of such a manufacturing method, hot workability is not a problem. However, when it is made into a product through processes such as forging, rolling, and extrusion, it is required that the hot workability is excellent.

BおよびREMは、いずれも熱間加工性を向上させるのに有効な元素であるため、含有させてもよい。しかし、それぞれの含有量が過剰な場合には、それらの酸化物および硫化物の非金属介在物が増加し、シグマ相の析出核生成サイトとなったり、孔食の起点となったりして、耐食性の劣化を招く。よって、これらの元素を含有させる場合には、B含有量は0.005%以下、REM含有量は0.2%以下とする。上記の効果を十分に得るためには、Bは0.0005%以上、REMは0.0005%以上含有させるのが好ましい。B含有量の好ましい下限は0.0010%であり、好ましい上限は0.0040%である。REM含有量の好ましい下限は0.01%であり、好ましい上限は0.1%である。   Since B and REM are both effective elements for improving hot workability, they may be contained. However, when the respective contents are excessive, the non-metallic inclusions of those oxides and sulfides increase, becoming a nucleation site of sigma phase precipitation, or starting point of pitting corrosion, It causes deterioration of corrosion resistance. Therefore, when these elements are contained, the B content is 0.005% or less, and the REM content is 0.2% or less. In order to sufficiently obtain the above effects, it is preferable to contain B in an amount of 0.0005% or more and REM in an amount of 0.0005% or more. The minimum with preferable B content is 0.0010%, and a preferable upper limit is 0.0040%. The preferable lower limit of the REM content is 0.01%, and the preferable upper limit is 0.1%.

なお、BおよびREMはいずれか一方を含有させてもよいし、両方を含有させてもよい。また、REMは、Sc、Yおよびランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計量を意味する。   B and REM may contain either one or both. REM is a general term for a total of 17 elements of Sc, Y and lanthanoid, and the content of REM means the total amount of the above elements.

本発明の二相ステンレス鋼は、上記の各元素を含み、残部はFeおよび不純物からなるものである。そして、不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料その他の要因により混入する成分を意味する。   The duplex stainless steel of the present invention contains each of the above elements, with the balance being Fe and impurities. And an impurity means the component mixed by raw materials and other factors, such as an ore and a scrap, when manufacturing steel materials industrially.

オーステナイト指数a:0.1〜0.4
二相ステンレス鋼は、特に溶接部における合金元素の量によりフェライト相とオーステナイト相の比が敏感に変動するため、各元素の含有量の範囲を特定するだけでは不十分であり、下記の(1)式から求められるオーステナイト指数aを0.1〜0.4の範囲とする必要がある。
a={Ni+30(C+N)−0.6(Cr+1.5Si+Mo)+5.6}/{Cr+1.5Si+Mo−6} (1)
ただし、上記式中の各元素記号は、それぞれの元素の含有量(質量%)を意味する。
Austenite index a: 0.1 to 0.4
In the duplex stainless steel, since the ratio of the ferrite phase and the austenite phase varies sensitively depending on the amount of alloy elements in the weld zone, it is not sufficient to specify the content range of each element. ) The austenite index a determined from the formula needs to be in the range of 0.1 to 0.4.
a = {Ni + 30 (C + N) −0.6 (Cr + 1.5Si + Mo) +5.6} / {Cr + 1.5Si + Mo−6} (1)
However, each element symbol in the above formula means the content (% by mass) of each element.

オーステナイト指数aが0.4を超えると、低温HAZでの微量シグマ相析出が生じ、また、0.1未満では高温HAZでの窒化物析出が生じる。したがって、オーステナイト指数aは0.1〜0.4の範囲とする。オーステナイト指数aの好ましい下限は0.12%であり、好ましい上限は0.35%である。   When the austenite index a exceeds 0.4, a small amount of sigma phase precipitation occurs at a low temperature HAZ, and when it is less than 0.1, nitride precipitation occurs at a high temperature HAZ. Therefore, the austenite index a is set to a range of 0.1 to 0.4. A preferable lower limit of the austenite index a is 0.12%, and a preferable upper limit is 0.35%.

PF指数:1.0以下
溶接時に生成する酸化スケール中に鋼中からPb、Sb、ZnおよびAsが混入すると、MnおよびFeの濃度の高くなったCr酸化被膜に微細な亀裂が生じやすくなる。このような亀裂が生じると、腐食環境によっては被膜の損傷が生じやすくなり、耐孔食性が劣化する。しかし、溶接時のスケールが存在してもPb、Sb、Zn、Asの量をMn量に応じて適切な範囲に規制する、すなわち、下記(2)式から求められるPF指数を1.0以下とすれば、被膜の損傷を防止でき、耐孔食性の劣化が防止できる。
PF=Mn×(100Pb+50Sb+30Zn+40As) (2)
ただし、上記式中の各元素記号は、それぞれの元素の含有量(質量%)を意味する。
PF index: 1.0 or less When Pb, Sb, Zn, and As are mixed from the steel into the oxide scale generated during welding, fine cracks are likely to occur in the Cr oxide film having a high Mn and Fe concentration. When such a crack occurs, the coating tends to be damaged depending on the corrosive environment, and the pitting corrosion resistance is deteriorated. However, even if there is a scale at the time of welding, the amount of Pb, Sb, Zn, As is restricted to an appropriate range according to the amount of Mn, that is, the PF index obtained from the following equation (2) is 1.0 or less. If so, damage to the coating can be prevented, and deterioration of pitting corrosion resistance can be prevented.
PF = Mn × (100Pb + 50Sb + 30Zn + 40As) (2)
However, each element symbol in the above formula means the content (% by mass) of each element.

溶接継手の母材および溶接金属については、その表面に形成された溶接時の酸化スケール厚さが500nm以下であることが必要である。   About the base material and weld metal of a welded joint, the oxide scale thickness at the time of the welding formed in the surface needs to be 500 nm or less.

溶接の際に1000℃以上に加熱される領域の表面では、鋼中の合金元素が溶接雰囲気中のOと反応して新たな酸化スケールが生成する。高温での反応であることから、Oは、親和力の強いCrだけでなく、蒸気圧の低いMn、さらには鋼中に多く存在するFeと反応する。その結果、常温での反応で形成されているCr主体のスケールは、FeおよびMnが富化し、Cr濃度が低下したスケールとなる。このスケールは、腐食に対する抵抗が低いため、耐孔食性が劣化する。スケール厚さを500nm以下とすることにより、1000℃以上でのOと鋼中のMnおよびFeとの反応量を少なくすることができ、結果としてCr濃度の高い安定な被膜が得られる。スケール厚さは、400nm以下とするのが好ましい。一方、スケール厚さの下限は、10nm以上とするのが好ましい。   On the surface of the region heated to 1000 ° C. or higher during welding, an alloy element in the steel reacts with O in the welding atmosphere to generate a new oxide scale. Since it is a reaction at a high temperature, O reacts not only with Cr having a strong affinity but also with Mn having a low vapor pressure, and further with Fe existing in a large amount in steel. As a result, the scale mainly composed of Cr formed by the reaction at room temperature becomes a scale in which Fe and Mn are enriched and the Cr concentration is lowered. Since this scale has low resistance to corrosion, the pitting corrosion resistance deteriorates. By setting the scale thickness to 500 nm or less, the reaction amount of O with 1000 Mn or more and Mn and Fe in the steel can be reduced, and as a result, a stable film having a high Cr concentration can be obtained. The scale thickness is preferably 400 nm or less. On the other hand, the lower limit of the scale thickness is preferably 10 nm or more.

表1に示す化学組成を有する母材用二相ステンレス鋼と、表2に示す化学組成を有する溶接材料用二相ステンレス鋼を実験室規模の電気炉にて溶解した。   Base metal duplex stainless steel having the chemical composition shown in Table 1 and welding material duplex stainless steel having the chemical composition shown in Table 2 were melted in a laboratory-scale electric furnace.

Figure 2015196894
Figure 2015196894

Figure 2015196894
Figure 2015196894

母材用二相ステンレス鋼については、鋳造後、1200℃に加熱し、鍛造により厚さ40mmの板材とした。得られた板材を、1250℃に加熱し、圧延により厚さ10mmの供試鋼板とした。この鋼板を、機械加工により厚さ8mm×幅100mm×長さ200mmで、長辺の端部に開先角度30度のV開先を設け、試験材とした。   The duplex stainless steel for base metal was heated to 1200 ° C. after casting and formed into a plate material having a thickness of 40 mm by forging. The obtained plate was heated to 1250 ° C. and rolled to obtain a test steel plate having a thickness of 10 mm. This steel plate was made into a test material by machining it with a V groove of 8 mm thickness x width 100 mm x length 200 mm and a groove angle of 30 degrees at the end of the long side.

溶接材料用二相ステンレス鋼については、鋳造後、1200℃に加熱し、鍛造により外径30mmの棒材とした。得られた棒材を、1250℃での熱間圧延および冷間圧延により、外径1.6mmの線材とした。   About the duplex stainless steel for welding materials, after casting, it heated at 1200 degreeC and made it the rod material of the outer diameter of 30 mm by forging. The obtained bar was formed into a wire having an outer diameter of 1.6 mm by hot rolling and cold rolling at 1250 ° C.

同じ化学組成を有する試験材同士を突き合わせて、一般のステンレス鋼で用いられる入熱量13kJ/cmの条件にて、片側からTIG溶接にて多層溶接して二種類の溶接継手を作製した。溶接材料として、前記の線材を適宜選択して用いた。図1に示すように、開先の裏面側には、短い2辺が10mm、他の1辺が30mmのコの字型に折り曲げた銅板からなるガスシールドボックスを置き、溶接時に流量25リットル/分で供給するボックス内のシールドガス組成を純ArおよびAr+100〜1000ppmOの範囲で変えることで裏面溶接部に種々の厚さの溶接時の酸化スケールを生成させた。溶接金属の化学組成を表3に示す。 Two kinds of welded joints were prepared by matching test materials having the same chemical composition and performing multilayer welding by TIG welding from one side under the condition of a heat input of 13 kJ / cm used in general stainless steel. As the welding material, the above wire was appropriately selected and used. As shown in FIG. 1, on the back side of the groove, a gas shield box made of a copper plate bent into a U-shape with two short sides of 10 mm and the other side of 30 mm is placed. By changing the shielding gas composition in the box supplied in minutes in the range of pure Ar and Ar + 100 to 1000 ppm O 2 , oxide scales at the time of welding with various thicknesses were generated on the back surface welded part. Table 3 shows the chemical composition of the weld metal.

Figure 2015196894
Figure 2015196894

得られた各溶接継手の溶接時の酸化スケール厚さを測定した。また、得られた各溶接継手から、図2に示すように、溶接ビードと溶接時の酸化スケールが残ったままの裏面側の溶接部を含み、溶接線に直交方向が40mmの辺、圧延面と平行な面を3×10mmの面として、厚さ3mm、幅10mm、長さ40mmの腐食試験片を採取した。また、前記の母材用二相ステンレス鋼の試験片から厚さ3mm、幅10mm、長さ40mmの腐食試験片を採取した。これらの腐食試験片を、一定温度に保持した10%塩化第二鉄水溶液に24h浸漬し、初層溶接側表面を検鏡し、孔食がない場合には、該水溶液の温度を2.5℃昇温し、さらに24h浸漬した。この浸漬−検鏡−昇温を孔食発生するまで繰り返し、限界孔食発生温度CPTを求めた。ただし、PREWの値が34未満である試験材については、試験溶液として4%塩化第二鉄水溶液を用いた。これらの結果を表4に示す。   The oxide scale thickness at the time of welding of each obtained welded joint was measured. Further, from each of the obtained welded joints, as shown in FIG. 2, the weld bead and the welded portion on the back side with the oxide scale at the time of welding remain, the side perpendicular to the weld line is 40 mm, the rolling surface A corrosion test piece having a thickness of 3 mm, a width of 10 mm, and a length of 40 mm was taken with a surface parallel to the surface of 3 × 10 mm. Further, a corrosion test piece having a thickness of 3 mm, a width of 10 mm, and a length of 40 mm was taken from the specimen of the duplex stainless steel for base material. These corrosion test pieces were immersed in a 10% ferric chloride aqueous solution maintained at a constant temperature for 24 hours, and the surface on the first layer welding side was examined. The temperature was raised and further immersed for 24 hours. This immersion-microscope-temperature increase was repeated until pitting corrosion occurred, and the critical pitting corrosion temperature CPT was determined. However, for the test material having a PREW value of less than 34, a 4% ferric chloride aqueous solution was used as the test solution. These results are shown in Table 4.

Figure 2015196894
Figure 2015196894

表3および4に示すように、本発明の要件を全て満たす例(AW1〜AW9)は、すべて溶接時に生じたスケールを研磨せずに評価したにもにもかかわらず、母材とのCPTの差異は高々12.5℃であり、優れた耐孔食性を示していた。
一方、溶接時の酸化スケール厚さが過大な例(BW1、BW2)、および、個々の元素の含有量の範囲は本発明で規定される範囲にあるが、PF、オーステナイト指数a、PF指数およびMn/Nのいずれかが本発明で規定される範囲を外れる母材を用いた例(BW3〜BW9)では、溶接熱影響部において孔食が発生し、母材にくらべてCPTは30℃以上低くなっており、溶接時の酸化スケールによる耐孔食性の劣化が顕著となっていた。また、母材が本発明で規定される要件を全て満たしていても、本発明で規定される要件を満足しない溶接材料を用いた例(BW10〜BW12)では、溶接金属の化学組成が本発明で規定される範囲を外れるため、溶接金属にて溶接時の酸化スケールによる耐孔食性の劣化が生じていた。
As shown in Tables 3 and 4, the examples (AW1 to AW9) satisfying all the requirements of the present invention were evaluated without polishing the scales generated during welding, but the CPT with the base material was evaluated. The difference was at most 12.5 ° C., indicating excellent pitting corrosion resistance.
On the other hand, examples where the oxide scale thickness at the time of welding is excessive (BW1, BW2), and the range of the content of each element are in the range defined by the present invention, but PF, austenite index a, PF index and In the example (BW3 to BW9) in which any of Mn / N is out of the range defined in the present invention (BW3 to BW9), pitting corrosion occurs in the weld heat affected zone, and the CPT is 30 ° C. or higher compared to the base material. The pitting corrosion resistance deteriorated due to the oxide scale during welding. Further, in the examples (BW10 to BW12) using the welding material that does not satisfy the requirements defined in the present invention even if the base material satisfies all the requirements defined in the present invention, the chemical composition of the weld metal is the present invention. Therefore, the pitting corrosion resistance deteriorated due to the oxide scale during welding in the weld metal.

本発明によれば、溶接時に生成する酸化スケールを除去しなくても、溶接継手の耐孔食性の劣化が防止できる。よって、溶接時の酸化スケールが生成した部位においても高い耐孔食性を有する溶接構造物を提供することができる。   According to the present invention, deterioration of pitting corrosion resistance of a welded joint can be prevented without removing the oxide scale generated during welding. Therefore, it is possible to provide a welded structure having high pitting corrosion resistance even at a site where an oxide scale is generated during welding.

Claims (6)

母材および溶接金属の化学組成が、質量%で、
C:0.03%以下、
Si:0.5%以下、
Mn:2%以下、
P:0.04%以下、
S:0.003%以下、
Cr:21%以上29%未満、
Ni:4.0〜10.5%、
Mo:0.8〜4.0%、
N:0.1%を超え0.4%以下、
sol.Al:0.040%以下、
W:0〜4.0%、
Cu:0〜4.0%、
B:0〜0.005%、
REM:0〜0.2%、
残部:Feおよび不純物であり、
下記の(1)式から求められるオーステナイト指数aが0.1〜0.4であり、
Mn/N≧2を満足し、かつ、
下記(2)式から求められるPF指数が1.0以下であり、
母材および溶接金属の表面に形成された溶接時の酸化スケール厚さが500nm以下である、
二相ステンレス鋼溶接継手。
a={Ni+30(C+N)−0.6(Cr+1.5Si+Mo)+5.6}/{Cr+1.5Si+Mo−6} (1)
PF=Mn×(100Pb+50Sb+30Zn+40As) (2)
ただし、上記式中の各元素記号は、それぞれの元素の含有量(質量%)を意味する。
The chemical composition of the base metal and the weld metal is mass%,
C: 0.03% or less,
Si: 0.5% or less,
Mn: 2% or less,
P: 0.04% or less,
S: 0.003% or less,
Cr: 21% or more and less than 29%,
Ni: 4.0 to 10.5%,
Mo: 0.8 to 4.0%,
N: more than 0.1% and 0.4% or less,
sol. Al: 0.040% or less,
W: 0 to 4.0%,
Cu: 0 to 4.0%,
B: 0 to 0.005%,
REM: 0-0.2%
Balance: Fe and impurities,
The austenite index a calculated | required from the following (1) Formula is 0.1-0.4,
Mn / N ≧ 2 is satisfied, and
The PF index obtained from the following formula (2) is 1.0 or less,
The oxide scale thickness at the time of welding formed on the surface of the base metal and the weld metal is 500 nm or less,
Duplex stainless steel welded joint.
a = {Ni + 30 (C + N) −0.6 (Cr + 1.5Si + Mo) +5.6} / {Cr + 1.5Si + Mo−6} (1)
PF = Mn × (100Pb + 50Sb + 30Zn + 40As) (2)
However, each element symbol in the above formula means the content (% by mass) of each element.
前記の化学組成が、
Cu:0.2〜2.0%を含む、
請求項1に記載の二相ステンレス鋼溶接継手。
The chemical composition is
Cu: including 0.2 to 2.0%,
The duplex stainless steel welded joint according to claim 1.
前記の化学組成が、
B:0.0005〜0.005%および
REM:0.0005〜0.2%から選択される一種以上を含む、
請求項1または2に記載の二相ステンレス鋼溶接継手。
The chemical composition is
One or more selected from B: 0.0005-0.005% and REM: 0.0005-0.2%,
The duplex stainless steel welded joint according to claim 1 or 2.
化学組成が、質量%で、
C:0.03%以下、
Si:0.5%以下、
Mn:2%以下、
P:0.04%以下、
S:0.003%以下、
Cr:21%以上29%未満、
Ni:4.0〜10.5%、
Mo:0.8〜4.0%、
N:0.1%を超え0.4%以下、
sol.Al:0.040%以下、
W:0〜4.0%、
Cu:0〜4.0%、
B:0〜0.005%、
REM:0〜0.2%、
残部:Feおよび不純物であり、
下記の(1)式から求められるオーステナイト指数aが0.1〜0.4であり、
Mn/N≧2を満足し、かつ、
下記(2) 式から求められるPF指数が1.0以下である、
二相ステンレス鋼溶接材料。
a={Ni+30(C+N)−0.6(Cr+1.5Si+Mo)+5.6}/{Cr+1.5Si+Mo−6} (1)
PF=Mn×(100Pb+50Sb+30Zn+40As) (2)
ただし、上記式中の各元素記号は、それぞれの元素の含有量(質量%)を意味する。
Chemical composition is mass%,
C: 0.03% or less,
Si: 0.5% or less,
Mn: 2% or less,
P: 0.04% or less,
S: 0.003% or less,
Cr: 21% or more and less than 29%,
Ni: 4.0 to 10.5%,
Mo: 0.8 to 4.0%,
N: more than 0.1% and 0.4% or less,
sol. Al: 0.040% or less,
W: 0 to 4.0%,
Cu: 0 to 4.0%,
B: 0 to 0.005%,
REM: 0-0.2%
Balance: Fe and impurities,
The austenite index a calculated | required from the following (1) Formula is 0.1-0.4,
Mn / N ≧ 2 is satisfied, and
The PF index calculated from the following formula (2) is 1.0 or less,
Duplex stainless steel welding material.
a = {Ni + 30 (C + N) −0.6 (Cr + 1.5Si + Mo) +5.6} / {Cr + 1.5Si + Mo−6} (1)
PF = Mn × (100Pb + 50Sb + 30Zn + 40As) (2)
However, each element symbol in the above formula means the content (% by mass) of each element.
前記の化学組成が、
Cu:0.2〜2.0%を含む、
請求項4に記載の二相ステンレス鋼溶接材料。
The chemical composition is
Cu: including 0.2 to 2.0%,
The duplex stainless steel welding material according to claim 4.
前記の化学組成が、
B:0.0005〜0.005%および
REM:0.0005〜0.2%から選択される一種以上を含む、
請求項4または5に記載の二相ステンレス鋼溶接材料。
The chemical composition is
One or more selected from B: 0.0005-0.005% and REM: 0.0005-0.2%,
The duplex stainless steel welding material according to claim 4 or 5.
JP2014076683A 2014-04-03 2014-04-03 Duplex stainless steel welded joint Active JP6442852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076683A JP6442852B2 (en) 2014-04-03 2014-04-03 Duplex stainless steel welded joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076683A JP6442852B2 (en) 2014-04-03 2014-04-03 Duplex stainless steel welded joint

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018186428A Division JP2019026940A (en) 2018-10-01 2018-10-01 Two-phase stainless steel welded joint

Publications (2)

Publication Number Publication Date
JP2015196894A true JP2015196894A (en) 2015-11-09
JP6442852B2 JP6442852B2 (en) 2018-12-26

Family

ID=54546773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076683A Active JP6442852B2 (en) 2014-04-03 2014-04-03 Duplex stainless steel welded joint

Country Status (1)

Country Link
JP (1) JP6442852B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190003023A1 (en) * 2015-12-23 2019-01-03 Goodwin Plc Steel, a welding consumable, a cast, forged or wrought product, a method of welding, a welded product and a method of heat treating
WO2020138490A1 (en) * 2018-12-28 2020-07-02 日鉄ステンレス株式会社 Weld structure and method for producing same
WO2022210849A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Two-phase stainless steel welded joint
WO2023198721A1 (en) * 2022-04-12 2023-10-19 Alleima Tube Ab A new welding duplex stainless steel material suitable for welding a duplex stainless steel, a welded joint and a welding method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295678A (en) * 1989-05-02 1990-12-06 Nippon Steel Corp Method for welding duplex stainless steels excellent in pitting corrosion resistance of weld metal part
JPH06648A (en) * 1992-06-19 1994-01-11 Sumitomo Metal Ind Ltd Welding method for members made of cr containing alloy
WO1998010888A1 (en) * 1996-09-13 1998-03-19 Sumitomo Metal Industries, Ltd. Welding material for stainless steels
JPH10216942A (en) * 1997-01-31 1998-08-18 Sumitomo Metal Ind Ltd Consumable electrode type gas shielded metal arc welding method
JP2001009589A (en) * 1999-06-25 2001-01-16 Sumikin Welding Ind Ltd Austenitic/ferrite two phase stainless steel welding material, and high chromium steel welding method using it
JP2003301241A (en) * 2002-02-05 2003-10-24 Sumitomo Metal Ind Ltd Two-phase stainless steel for urea-producing plant, welding material, urea-producing plant and equipment therefor
JP2004100027A (en) * 2002-09-12 2004-04-02 Nippon Steel Corp Steel for liquid-phase diffusion bonding having excellent resistance to low-temperature transformation crack
JP2009084606A (en) * 2007-09-28 2009-04-23 Sumitomo Metal Ind Ltd Austenitic stainless steel for use in high temperature superior in workability after long period of use
JP2010194562A (en) * 2009-02-24 2010-09-09 Hitachi Plant Technologies Ltd Weld metal for welding structural member of sea water pump, and sea water pump
JP2011173124A (en) * 2010-02-23 2011-09-08 Nisshin Steel Co Ltd Welding method of ferritic stainless steel
JP2014039953A (en) * 2012-08-23 2014-03-06 Nippon Steel & Sumitomo Metal Weld material for two-phase stainless steel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295678A (en) * 1989-05-02 1990-12-06 Nippon Steel Corp Method for welding duplex stainless steels excellent in pitting corrosion resistance of weld metal part
JPH06648A (en) * 1992-06-19 1994-01-11 Sumitomo Metal Ind Ltd Welding method for members made of cr containing alloy
WO1998010888A1 (en) * 1996-09-13 1998-03-19 Sumitomo Metal Industries, Ltd. Welding material for stainless steels
JPH10216942A (en) * 1997-01-31 1998-08-18 Sumitomo Metal Ind Ltd Consumable electrode type gas shielded metal arc welding method
JP2001009589A (en) * 1999-06-25 2001-01-16 Sumikin Welding Ind Ltd Austenitic/ferrite two phase stainless steel welding material, and high chromium steel welding method using it
JP2003301241A (en) * 2002-02-05 2003-10-24 Sumitomo Metal Ind Ltd Two-phase stainless steel for urea-producing plant, welding material, urea-producing plant and equipment therefor
JP2004100027A (en) * 2002-09-12 2004-04-02 Nippon Steel Corp Steel for liquid-phase diffusion bonding having excellent resistance to low-temperature transformation crack
JP2009084606A (en) * 2007-09-28 2009-04-23 Sumitomo Metal Ind Ltd Austenitic stainless steel for use in high temperature superior in workability after long period of use
JP2010194562A (en) * 2009-02-24 2010-09-09 Hitachi Plant Technologies Ltd Weld metal for welding structural member of sea water pump, and sea water pump
JP2011173124A (en) * 2010-02-23 2011-09-08 Nisshin Steel Co Ltd Welding method of ferritic stainless steel
JP2014039953A (en) * 2012-08-23 2014-03-06 Nippon Steel & Sumitomo Metal Weld material for two-phase stainless steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190003023A1 (en) * 2015-12-23 2019-01-03 Goodwin Plc Steel, a welding consumable, a cast, forged or wrought product, a method of welding, a welded product and a method of heat treating
JP2021142567A (en) * 2015-12-23 2021-09-24 グッドウィン ピーエルシーGoodwin Plc Steel, welding consumable, cast, forged or wrought product, method of welding, welded product and method of heat treating
JP7230102B2 (en) 2015-12-23 2023-02-28 グッドウィン ピーエルシー Steel, welding consumables, cast or forged or drawn products, welding methods, welded products, and heat treatment methods
WO2020138490A1 (en) * 2018-12-28 2020-07-02 日鉄ステンレス株式会社 Weld structure and method for producing same
CN113227409A (en) * 2018-12-28 2021-08-06 日铁不锈钢株式会社 Welded structure and method for manufacturing same
JPWO2020138490A1 (en) * 2018-12-28 2021-10-14 日鉄ステンレス株式会社 Welded structure and its manufacturing method
WO2022210849A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Two-phase stainless steel welded joint
KR20230160383A (en) 2021-03-31 2023-11-23 닛폰세이테츠 가부시키가이샤 Two-phase stainless steel welded joint
WO2023198721A1 (en) * 2022-04-12 2023-10-19 Alleima Tube Ab A new welding duplex stainless steel material suitable for welding a duplex stainless steel, a welded joint and a welding method thereof

Also Published As

Publication number Publication date
JP6442852B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
US8137613B2 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP5870201B2 (en) Duplex stainless steel
KR102154217B1 (en) Welded structural members
KR101530940B1 (en) Ni-Fe-Cr-Mo ALLOY
WO2010090041A1 (en) Ferrite stainless steel with low black spot generation
JP6303851B2 (en) Duplex stainless steel pipe
KR20130034042A (en) Ferritic stainless steel
JPWO2019189871A1 (en) Duplex stainless clad steel sheet and its manufacturing method
WO2012153814A1 (en) Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance
CN111041358A (en) Duplex ferritic austenitic stainless steel
JP5170351B1 (en) Duplex stainless steel
JP6442852B2 (en) Duplex stainless steel welded joint
JP4265605B2 (en) Duplex stainless steel
JP2019026940A (en) Two-phase stainless steel welded joint
JP6566125B2 (en) Welded structural members
JP5857914B2 (en) Welding material for duplex stainless steel
TW201207128A (en) Structural stainless steel sheet having excellent corrosion resistance at weld and method for manufacturing same
EP3156169A1 (en) Buildup welded metal and machine structure
JP6587881B2 (en) Ferritic stainless steel wire for fastening parts
JP5884183B2 (en) Structural stainless steel sheet
JP2021143407A (en) Duplex stainless steel and manufacturing method thereof
JP5890342B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP7054079B2 (en) Duplex stainless clad steel and its manufacturing method
JP7054078B2 (en) Duplex stainless clad steel and its manufacturing method
JP2019099866A (en) Two-phase stainless steel and weld article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181001

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R151 Written notification of patent or utility model registration

Ref document number: 6442852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350