JP4265605B2 - Duplex stainless steel - Google Patents

Duplex stainless steel Download PDF

Info

Publication number
JP4265605B2
JP4265605B2 JP2005511147A JP2005511147A JP4265605B2 JP 4265605 B2 JP4265605 B2 JP 4265605B2 JP 2005511147 A JP2005511147 A JP 2005511147A JP 2005511147 A JP2005511147 A JP 2005511147A JP 4265605 B2 JP4265605 B2 JP 4265605B2
Authority
JP
Japan
Prior art keywords
stainless steel
duplex stainless
corrosion resistance
less
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005511147A
Other languages
Japanese (ja)
Other versions
JPWO2005001151A1 (en
Inventor
和博 小川
朋彦 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of JPWO2005001151A1 publication Critical patent/JPWO2005001151A1/en
Application granted granted Critical
Publication of JP4265605B2 publication Critical patent/JP4265605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

この発明は、二相ステンレス鋼、特に優れた溶接性および耐孔食性を有する二相ステンレス鋼に関する。  The present invention relates to a duplex stainless steel, particularly a duplex stainless steel having excellent weldability and pitting corrosion resistance.

二相ステンレス鋼は、強度および耐食性、特に耐海水腐食性に優れているため熱交換器用鋼管等として古くから広範囲の技術分野で使用されている。従来にあっても、耐食性、強度、加工性等を改善した二相ステンレス鋼についてはすでに多くの組成例が提案されている。
例えば、特開平5−132741号公報には、Wを1.5質量%〜5質量%を含みPREW[PREW=Cr+3.3(Mo+0.5W)+16N]が40以上である高強度二相ステンレス鋼が開示されており、これにはWの多量添加により耐食性が飛躍的に向上し、しかも金属間化合物(シグマ相等)の析出による機械的性質、耐食性の劣化が小さいことが示されている。
Duplex stainless steel has been used in a wide range of technical fields for a long time as a steel pipe for heat exchangers because it is excellent in strength and corrosion resistance, particularly seawater corrosion resistance. Even in the past, many composition examples have already been proposed for duplex stainless steels with improved corrosion resistance, strength, workability, and the like.
For example, Japanese Patent Laid-Open No. 5-137274 discloses a high-strength duplex stainless steel containing W in an amount of 1.5 mass% to 5 mass% and PREW [PREW = Cr + 3.3 (Mo + 0.5 W) + 16N] of 40 or more. It is shown that the corrosion resistance is drastically improved by adding a large amount of W, and that mechanical properties and corrosion resistance are not significantly deteriorated due to precipitation of an intermetallic compound (sigma phase or the like).

しかしながら、今日のように、各種溶接構造物が広く利用されるようになり、例えば、温度の高い海水環境で使用される熱交換器、ポンプ等へ溶接施行で二相ステンレス鋼が用いられる場合、耐食性、特に耐孔食性が問題となってきた。溶接熱影響部に生成する微細なシグマ相が孔食の起点や金属疲労の起点となることがわかってきたことから、二相ステンレス鋼においてそのようなシグマ相の生成防止の必要性が認識されてきた。
このような微細なシグマ相の生成抑制には、まず、溶接入熱量を低減するなど溶接施工法を改善することが考えられる。しかし、溶接入熱量の低減は確かに有効であるが、入熱量を低減すると、溶接施工能率を低下させるため、今日のようにコスト低減が強く求められる状況下からは、好ましい解決手段とは言えない。
したがって、二相ステンレス鋼それ自体を改善することが求められる。
ここに、本発明の課題は、優れた耐孔食性および溶接性を有する二相ステンレス鋼、特に溶接熱影響部においても微細なシグマ相などの金属間化合物が生成しない、優れた耐孔食性および溶接性を有する二相ステンレス鋼を提供することにある。
本発明者は、上述のような課題を達成すべく、種々検討を重ねた結果、次のような知見を得た。
すなわち、溶接熱影響部においても優れた耐食性、特に耐孔食性を得るポイントは、次の2点にある。
1)溶接熱影響部でのシグマ相と呼ばれる金属間化合物の生成抑制、および2)溶接熱影響部での粗大な析出物である窒化物の生成抑制である。
ここに、溶接のような短時間での急速加熱・急速冷却を行って得た組織(以下、単に「急熱急冷組織」という)では、シグマ相の生成は、シグマ相の核生成と核の成長とにより左右される。本発明者らはシグマ相の核生成はWを2%程度添加することにより抑えられること、またその条件下ではNi、Mo量にも依存することを知見した。一方では、Ni、Moは、耐隙間腐食性、耐孔食性等の一般的な耐食性を確保するのに必須の元素である。
さらに本発明者らは下記(1)式に示すように各元素の影響度を考慮したシグマ相の核生成抑制条件を定量的に明らかにした。
Mo+1.1Ni≦12.5 (1)
上記式(1)の冶金学的意味は以下の通りである。
すなわち、シグマ相はCrとFeがほぼ1:1の組成の金属間化合物であるため、溶接等の加熱でシグマ相の核が生じるには、Crの濃化が必要となる。Moは必ずしもシグマ相の主要構成元素ではない。しかし、Moが存在することで核生成のための活性化エネルギーが低くなり、より小さなエンブリオ(核の萌芽)であっても消滅することなく、安定な核となる。一方、Niはシグマ相析出温度では、フェライト相を不安定にするため、その結果として、フェライト相がシグマ相とオーステナイト相に分解する反応の駆動力を高める。
このように、Mo、Niはシグマ相の核生成ポテンシャルを高め、その寄与度は本発明者らの研究により、NiはMoの1.1倍である。かかる知見により、(1)式の左辺を求めた。(1)式の左辺は、核生成頻度の相対的な大きさを記述するパラメータとなっている。
本発明によれば、このパラメータを12.5以下となるようにNi、Mo含有量を規定することで、シグマ相の生成を耐孔食性に影響しない程度にまで抑えることができる。
ところで、一方、シグマ相の核生成は、母材における酸化物系介在物の存在によっても影響を大きく受ける。シグマ相は、鋼の融点より400℃以上低い温度範囲の700℃〜1000℃に加熱された低温HAZで析出しやすい。ここに、鋼の融点直下まで加熱される部分を高温HAZと呼ぶことに対して相対的に低温に加熱されたHAZを低温HAZという。低温HAZの温度域では、オーステナイト相の形態そのものは変化しないため、シグマ相の核生成は母材における介在物の存在の影響を大きく受ける。すなわち、介在物と鋼マトリックスとの境界では自由エネルギーが高いため、析出によってエネルギーが下がる核生成は生じやすい。
これらを総合的に検討した結果、Al、Mg、Caを含む酸化物系介在物、特にAl含有介在物が特に界面エネルギーが高く、ある大きさ以上のそれらの粗大介在物がシグマ相析出を促す有害介在物であり、その密度を低減することがHAZでのシグマ相の析出抑制に有効であることを知見した。
図1は、HAZにおけるAlを20質量%以上含み長径が5μm以上の粗大介在物の密度と孔食発生温度との関係を示したものである。ここで、孔食発生温度が高いものほど、通常の使用環境下の温度(すなわち常温)との温度差があることを意味するため、高い孔食発生温度を有する鋼は耐孔食性が高いといえる。従来の二相ステンレス鋼では、このようなアルミナ系粗大介在物は1平方mm当たり20個以上存在した。
図1に示す結果より、アルミナ系粗大介在物の密度が10個/mm以下の鋼は高い耐食性を示すが、10個/mm超えると孔食発生温度は急激に低下する。
一方、(1)式からはMo、Ni量を低減すれば、HAZでのシグマ相の核生成が抑えられ、シグマ相の不存在による良好な耐孔食性が得られるはずであるが、過度のNi量の低減は、融点直下まで加熱される高温HAZにおいて窒化物の生成を助長する。そのような窒化物の生成はシグマ相の生成と同様に孔食の発生をもたらす。
本発明によれば、これを抑える要件は(2)式に示す定量式で示される。
Mo−0.8Ni≦−1.6 (2)
窒化物の析出駆動力は、Nが短時間で拡散しうる500℃以上の温度域での母材におけるNの固溶度と拡散速度とに左右される。Niの添加は、フェライト相のみとなる融点直下に加熱された状態から冷却される過程で析出するオーステナイト相の析出開始温度を高める。高温でオーステナイト相が析出することは、過飽和に存在するフェライト相中のNが、より短時間でNの固溶度の高いオーステナイト相側に移動することを意味する。このことはさらに、オーステナイト相の成長を促し、冷却の進行とともに高まるフェライト相中のNの過飽和度の緩和に、有効に寄与する。その結果として、窒化物の析出を抑制するのである。
ただし、Moが存在すると逆に、Moがオーステナイト相の析出開始温度を低下させる。本発明者らの研究の結果によれば、それに対するMoの寄与度は、Niの0.8倍であり、かかる知見により(2)式の左辺を求めた。(2)式の左辺は、オーステナイト相生成温度の変化によるフェライト相中のN過飽和度の相対的な大きさを記述するパラメータとなっている。
本発明によれば、このパラメータを−1.6以下とすることで、窒化物の生成を抑制すれば、それに起因する孔食の発生をほぼ完全に抑えることができる。
以上のような各知見に基づいて、上記(1)、(2)式を満たすように成分設計し、酸化物系介在物の制御をすることで、溶接能率を落とすことなくHAZで微細シグマ相、窒化物が生じない、HAZでも耐食性、特に耐孔食性の優れた二相ステンレス鋼が得られることを見出した。
このような母材における酸化物系介在物の制御には、従来とは異なる新しい方法が必要で、溶製の際のスラグの塩基度および脱硫回数、取鍋でのキリング温度と時間、鋳造後のトータルの加工度を最適に組み合わせることによりその制御が可能となる。
なお、本発明においてもPREWは40以上とする。
ここに本発明は次の通りである。
(1)質量%で、
C:0.03%以下、Si:1.0%以下、Mn:1.5%以下、P:0.040%以下、
S:0.008%以下、Cr:23.0〜27.0%、Mo:2.0〜4.0%、Ni:5.0〜9.0%、
W:1.5%超5.0%以下、N:0.24〜0.35%、Feおよび不純物:残部
かつ、PREW=Cr+3.3(Mo+0.5W)+16Nが40以上で
Mo+1.1Ni≦12.5
Mo−0.8Ni≦−1.6
なる関係を満たす化学組成を有し、Alを20%以上含み長径が5μm以上の介在物と定義される粗大介在物が断面観察で1平方mm当たり10個以下であることを特徴とする二相ステンレス鋼。
(2)前記化学組成が、更に0.2〜2.0質量%のCuと0.05〜1.5質量%のVの一方または両方を含む、上記(1)に記載の二相ステンレス鋼。
(3)前記化学組成が、更に0.0005〜0.005質量%のBおよび0.0005〜0.2質量%の希土類元素の中の1種または2種以上を含む、上記(1)または(2)に記載の二相ステンレス鋼。
(4)前記化学組成が、さらにsol.Al:0.040%以下を含む上記(1)〜(3)のいずれかに記載の二相ステンレス鋼。
However, as today, various welded structures are widely used. For example, when duplex stainless steel is used for welding to heat exchangers and pumps used in high temperature seawater environments, Corrosion resistance, particularly pitting corrosion resistance, has become a problem. Since it has been found that the fine sigma phase generated in the heat affected zone is the starting point of pitting corrosion and the starting point of metal fatigue, the need to prevent such sigma phase generation in duplex stainless steel has been recognized. I came.
In order to suppress the formation of such a fine sigma phase, it is conceivable to first improve the welding method such as reducing the amount of heat input to welding. However, reduction of the welding heat input is certainly effective, but if the heat input is reduced, the welding work efficiency is lowered, so it can be said that it is a preferable solution from the situation where cost reduction is strongly demanded like today. Absent.
Therefore, it is required to improve the duplex stainless steel itself.
Here, the problem of the present invention is that the duplex stainless steel having excellent pitting corrosion resistance and weldability, particularly excellent pitting corrosion resistance in which an intermetallic compound such as a fine sigma phase is not generated even in the heat affected zone of welding, and The object is to provide a duplex stainless steel having weldability.
As a result of various studies to achieve the above-described problems, the present inventor has obtained the following knowledge.
That is, there are the following two points for obtaining excellent corrosion resistance, particularly pitting corrosion resistance even in the weld heat affected zone.
1) Suppression of the formation of intermetallic compounds called sigma phases in the weld heat affected zone, and 2) Suppression of the formation of nitrides as coarse precipitates in the weld heat affected zone.
Here, in the structure obtained by performing rapid heating / cooling in a short time such as welding (hereinafter simply referred to as “rapidly quenched structure”), the sigma phase is generated by the nucleation of the sigma phase and the nucleation of the nuclei. It depends on growth. The present inventors have found that the nucleation of the sigma phase can be suppressed by adding about 2% of W, and that it also depends on the amounts of Ni and Mo under the conditions. On the other hand, Ni and Mo are elements essential for ensuring general corrosion resistance such as crevice corrosion resistance and pitting corrosion resistance.
Furthermore, the present inventors quantitatively clarified the sigma phase nucleation suppression conditions considering the influence of each element as shown in the following formula (1).
Mo + 1.1Ni ≦ 12.5 (1)
The metallurgical meaning of the above formula (1) is as follows.
That is, since the sigma phase is an intermetallic compound having a composition of Cr and Fe of approximately 1: 1, Cr concentration is necessary to produce sigma phase nuclei by heating such as welding. Mo is not necessarily the main constituent element of the sigma phase. However, the presence of Mo lowers the activation energy for nucleation, and even a smaller Embryo (nuclear sprouting) does not disappear and becomes a stable nucleus. On the other hand, Ni makes the ferrite phase unstable at the sigma phase precipitation temperature. As a result, the driving force of the reaction in which the ferrite phase decomposes into the sigma phase and the austenite phase is increased.
As described above, Mo and Ni increase the nucleation potential of the sigma phase, and the contribution thereof is 1.1 times that of Mo according to the study by the present inventors. Based on this finding, the left side of equation (1) was determined. The left side of equation (1) is a parameter that describes the relative magnitude of the nucleation frequency.
According to the present invention, by defining the contents of Ni and Mo so that this parameter is 12.5 or less, generation of sigma phase can be suppressed to a level that does not affect pitting corrosion resistance.
On the other hand, the nucleation of the sigma phase is greatly affected by the presence of oxide inclusions in the base material. The sigma phase is likely to precipitate at a low temperature HAZ heated to 700 ° C. to 1000 ° C. in a temperature range 400 ° C. or more lower than the melting point of steel. Here, the part heated to just below the melting point of steel is called high-temperature HAZ, whereas HAZ heated to a relatively low temperature is called low-temperature HAZ. Since the austenite phase itself does not change in the temperature range of the low temperature HAZ, the nucleation of the sigma phase is greatly influenced by the presence of inclusions in the base material. That is, since the free energy is high at the boundary between the inclusion and the steel matrix, nucleation in which the energy decreases due to precipitation is likely to occur.
As a result of comprehensively examining these, oxide-based inclusions containing Al, Mg, and Ca, particularly Al-containing inclusions have particularly high interfacial energy, and those coarse inclusions of a certain size or more promote sigma phase precipitation. It was found that it is a harmful inclusion and reducing its density is effective in suppressing precipitation of sigma phase in HAZ.
FIG. 1 shows the relationship between the density of coarse inclusions containing 20 mass% or more of Al in HAZ and having a major axis of 5 μm or more and the pitting corrosion occurrence temperature. Here, the higher the pitting corrosion occurrence temperature, the higher the temperature of the normal use environment (that is, normal temperature) means that there is a temperature difference. I can say that. In the conventional duplex stainless steel, there are 20 or more such alumina-based coarse inclusions per square mm.
From the results shown in FIG. 1, the steel having a density of coarse alumina inclusions of 10 pieces / mm 2 or less shows high corrosion resistance, but if it exceeds 10 pieces / mm 2 , the pitting corrosion temperature rapidly decreases.
On the other hand, if the amount of Mo and Ni is reduced from the formula (1), nucleation of the sigma phase in the HAZ should be suppressed, and good pitting corrosion resistance due to the absence of the sigma phase should be obtained. The reduction of the Ni content promotes the formation of nitrides in the high-temperature HAZ heated to just below the melting point. Such nitride formation leads to the occurrence of pitting corrosion as well as sigma phase formation.
According to the present invention, the requirement to suppress this is shown by the quantitative formula shown in formula (2).
Mo-0.8Ni ≦ -1.6 (2)
The driving force for precipitation of nitride depends on the solid solubility and diffusion rate of N in the base material in a temperature range of 500 ° C. or higher where N can diffuse in a short time. The addition of Ni increases the precipitation start temperature of the austenite phase that precipitates in the process of cooling from the state of being heated just below the melting point, which is only the ferrite phase. The precipitation of the austenite phase at a high temperature means that N in the supersaturated ferrite phase moves to the austenite phase side where the solid solubility of N is higher in a shorter time. This further promotes the growth of the austenite phase and effectively contributes to the relaxation of the degree of supersaturation of N in the ferrite phase, which increases with the progress of cooling. As a result, the precipitation of nitride is suppressed.
However, when Mo is present, Mo lowers the precipitation start temperature of the austenite phase. According to the results of the study by the present inventors, the contribution of Mo to that is 0.8 times that of Ni, and the left side of the equation (2) was obtained based on this finding. The left side of equation (2) is a parameter that describes the relative magnitude of N supersaturation in the ferrite phase due to changes in the austenite phase formation temperature.
According to the present invention, by setting this parameter to −1.6 or less, if the formation of nitrides is suppressed, the occurrence of pitting corrosion resulting therefrom can be suppressed almost completely.
Based on the above findings, the components are designed so as to satisfy the above formulas (1) and (2), and the oxide inclusions are controlled, so that the fine sigma phase can be obtained in HAZ without reducing the welding efficiency. It has been found that a duplex stainless steel excellent in corrosion resistance, particularly pitting corrosion resistance can be obtained even in HAZ, in which no nitride is formed.
Control of such oxide inclusions in the base metal requires a new method different from the conventional ones. Basicity and desulfurization frequency of slag during melting, killing temperature and time in ladle, after casting The total processing degree can be controlled by optimally combining them.
In the present invention, PREW is 40 or more.
Here, the present invention is as follows.
(1) In mass%,
C: 0.03% or less, Si: 1.0% or less, Mn: 1.5% or less, P: 0.040% or less,
S: 0.008% or less, Cr: 23.0 to 27.0%, Mo: 2.0 to 4.0%, Ni: 5.0 to 9.0%,
W: more than 1.5% and 5.0% or less, N: 0.24 to 0.35%, Fe and impurities: remainder, and PREW = Cr + 3.3 (Mo + 0.5W) + 16N is 40 or more and Mo + 1.1Ni ≦ 12.5
Mo-0.8Ni ≦ −1.6
A two-phase characterized in that the number of coarse inclusions defined as inclusions having a chemical composition satisfying the following relationship and containing 20% or more of Al and having a major axis of 5 μm or more is 10 or less per square mm in cross-sectional observation Stainless steel.
(2) The duplex stainless steel according to (1), wherein the chemical composition further includes one or both of 0.2 to 2.0 mass% Cu and 0.05 to 1.5 mass% V. .
(3) The above (1) or wherein the chemical composition further comprises one or more of 0.0005 to 0.005 mass% B and 0.0005 to 0.2 mass% rare earth element The duplex stainless steel according to (2).
(4) The chemical composition is further sol. Al: The duplex stainless steel according to any one of (1) to (3), including 0.040% or less.

図1は、Al20%以上含む長径5μm以上の酸化物系介在物の密度と孔食発生温度との関係を示すグラフである。
図2は、酸化物系介在物の長径および組成の測定箇所を定義する酸化物系介在物の模式図である。
FIG. 1 is a graph showing the relationship between the density of oxide inclusions having a major axis of 5 μm or more containing 20% or more of Al and the pitting corrosion occurrence temperature.
FIG. 2 is a schematic diagram of an oxide inclusion that defines the measurement points of the major axis and composition of the oxide inclusion.

次に、本発明において二相ステンレス鋼の化学組成を上述のように限定した理由について説明するが、本明細書において、鋼および介在物の化学組成を示す「%」は、とくにことわりがない限り、「質量%」を意味する。
本発明にかかる二相ステンレス鋼は、上記の多種類の合金成分の総合的な効果と組織形態の制御によって優れた溶接性(溶接能率を低下させずに耐孔食性確保)、その他の特性を発揮するが、最も大きな特徴は、Ni、Mo量の組み合わせの適正化と、アルミナ系粗大介在物の制御にある。
C:Cは、後述するNと同様にオーステナイト相を安定化するのに有効であるが、その含有量が0.03%を超えると炭化物が析出しやすくなり、耐食性が劣化するため0.03%以下とする。好ましくは0.02%以下である。本発明においてCは不純物として含有する場合も包含する。
Si:Siは鋼の脱酸成分として有効であるが、金属間化合物(シグマ相等)の生成を促進する元素であるから本発明では1.0%以下に限定する。好ましくは0.5%以下である。本発明においてSiは不純物として含有する場合も包含する。
Mn:Mnは二相ステンレス鋼の溶製時の脱硫および脱酸効果によって熱間加工性を向上させる。また、Nの溶解度を大きくする作用もある。これらの効果を狙って通常はその含有量を2.0%までとすることが多い。しかし、Mnは耐食性を劣化させる元素でもあるため、本発明では1.5%以下と定めた。好ましくは1.0%以下である。本発明においてMnは不純物として含有する場合も包含する。
P:Pは鋼中に不可避的に混入する不純物元素であるが、その含有量が0.040%を超えると耐食性、靱性の劣化が著しくなるから0.040%を上限とする。
S:Sも鋼中に不可避的に混入する不純物元素で、鋼の熱間加工性を劣化させる。また、硫化物は孔食の発生起点となり耐孔食性を損なう。これらの悪影響を避けるため、その含有量を0.008%以下に抑える。これ以下でできるだけ少ない方がよく、特に0.005%以下が望ましい。
Cr:Crは耐食性を維持するために有効な基本成分である。その含有量が23.0%未満では、いわゆるスーパ二相ステンレス鋼と言えるだけの耐食性が母材で得られない。一方、Crの含有量が27.0%を超えると金属間化合物(シグマ相等)の析出が顕著になり、熱間加工性の低下および溶接性の劣化を招く。
Mo:MoはCrと同様にPREWの向上に寄与し、耐食性を向上させるのに非常に有効な成分である。特に耐孔食性および耐隙間腐食性を高めるため、本発明ではその含有量を2.0%以上とする。一方、Moの過剰添加は製造中の素材の脆化の原因になり、Crと同様に金属間化合物の析出を容易にする作用が強い。従って、Moの含有量は4.0%までにとどめる。
Ni:Niはオーステナイトを安定化するために必須の成分であるが、その含有量が9.0%を超えるとフェライト量の減少により二相ステンレス鋼の基本的な性質が確保しにくくなり、またシグマ相等の析出が容易になる。一方、Niの含有量が5.0%より少ないとフェライト量が多くなり過ぎて同じく二相ステンレス鋼の特徴が失われる。また、フェライト中へのNの固溶度が小さいため窒化物が析出して耐食性が劣化する。
ただし、Ni、Moの範囲についてはこれらのみの規定では不十分で、前述の通り本発明の特徴である下記式(1)、(2)を満足するように制限される。
Mo+1.1Ni≦12.5 (1)
Mo−0.8Ni≦−1.6 (2)
ここに上記式における「Mo」および「Ni」はそれぞれの含有量(質量%)を表わす。
(Mo+1.1Ni)の値が12.5を超えると、低温HAZでの微量シグマ相析出が、そして(Mo−0.8Ni)の値が−1.6を超えると高温HAZでの窒化物析出が、それぞれ生じるため、上記範囲内に抑えるのである。
二相ステンレス鋼の耐食性、特に耐海水腐食性を表すパラメーターとして下記の耐孔食性指数(PREW)を40以上とする。
PREW(Pitting Resistance Equivalent After Welding)=Cr+3.3(Mo+0.5W)+16N
一般には、このPREWが35以上となるようにCr、Mo、Nの含有量を調整するのであるが、本発明にかかるスーパ二相ステンレス鋼では、Cr、Mo、Nをさらに高めてPREWを40以上としたもので、著しく優れた耐海水腐食性を示す。Cr、Mo、Nの増加は鋼の高強度化にも寄与するから、元来、フェライトあるいはオーステナイト単相の鋼に比較して高強度である二相ステンレス鋼が、さらに高強度化されたスーパ二相ステンレス鋼が得られる。
WはMoと同様に耐食性、特に孔食および隙間腐食への抵抗性を向上させる元素であり、就中、pHの低い環境で耐食性を向上させる安定な酸化物を形成する元素である。したがって、1.5%を超えるWを含有させる。1.5%以下では、PREWを40以上とするのに、Cr、Mo、N等の添加を増さなければならず、Wを利用する効果が小さくなる。W含有量を増すほどPREWを40以上とするためのCr、Moの含有量を少なくすることができ、これらの元素のシグマ相等の生成促進の害を小さくできる。望ましいWの含有量は、2.0%を超える量である。しかし、5.0%を超える量のWを添加してもそれに見合うだけの効果の増大はなく、徒にコストが嵩むだけであるから上限は5.0%とする。
N(窒素):Nは強力なオーステナイト生成元素で、二相ステンレス鋼の熱的安定性と耐食性の向上に有効である。本発明鋼のようにフェライト生成元素であるCr、Moが多量に添加される場合には、フェライトとオーステナイトの二相のバランスを適正なものにするためにも0.24%以上のNを含有させる。
さらにNは、PREWの向上に寄与してCr、MoおよびWと同様に合金の耐食性を向上させる。しかし、本発明鋼のような25%Cr系の二相ステンレス鋼では、Nを0.35%を超えて含有させようとするとブローホールの発生による欠陥、あるいは溶接の際の熱影響による窒化物生成等により鋼の靱性、耐食性を劣化させる。そのためNの上限は0.35%とする。
sol.Al:Alは鋼の脱酸剤として有効であるが、鋼中のN量が高い場合にはAlN(窒化アルミニウム)として析出し、靱性および耐食性を劣化させる。さらには、酸化物を形成し、シグマ相の核生成サイトとなる。従って、本発明ではAl含有量をsol.Alとして0.040%以下に抑える。本発明鋼ではSiの多量添加は避けているので、脱酸剤としてAlを用いることが多いが、真空溶解を行う場合には必ずしもAlの添加を要しない。
本発明の二相ステンレス鋼は、以上のような成分に加えて、さらに下記の第1群および第2群の元素のうちの1種以上を必要に応じて含むことができる。
第1群元素(Cu、V):CuとVは、本発明の二相ステンレス鋼においては少なくとも1種含有され、耐食性、特に硫酸等の酸に対する耐酸性を向上させるという点で均等な作用効果をもつ。
Cuは、還元性の低pH環境、例えばHSOあるいは硫化水素環境での耐酸性向上に特に有効で、その効果を得るためには0.2%以上の含有量とする。しかし、Cuの多量添加は鋼の熱間加工性を劣化させるから上限を2.0%とする。
Vは、0.05%以上添加することで硫酸等の酸に対する耐酸性を向上させ、特にWと複合添加した場合、耐隙間腐食性をも向上させる。しかし、Vの添加が過多になるとフェライト量が過度に増加し、靱性および耐食性の低下が生じるからその上限を1.5%とする。
第2群元素(Bおよび希土類元素):いずれもSあるいはO(酸素)を固定し熱間加工性を向上させる元素である。
本発明鋼ではSを低く抑えており、Wを多量添加しているとはいえ、これはシグマ相等の生成を促進しないから、元来熱間加工性は良好である。
また、本発明の二相ステンレス鋼は、鋳物として使用することが可能であり、更に、粉末にしてプレス、焼結等の粉末冶金法で管等の製品にすることも可能である。
このような製造方法をとる場合には、熱間加工性はさして問題にならない。従って、第2群元素の添加は必ずしも必要でない。しかし、鍛造、圧延、押出し等の工程を経て製品にする場合に熱間加工性が優れていることは望ましいので、このような場合、必要に応じて、B:0.0005%以上、La、Ce等の希土類:それぞれ0.0005%以上1種または2種以上の添加を行えばよい。ただし、これらの元素も多量に添加されるとそれらの酸化物、硫化物の非金属介在物が増加し、シグマ相の析出核生成サイトとなったり、孔食の起点となり耐食性の劣化を招く。従って、含有量としてBは0.005%以下、希土類(主に、La、Ce)はそれぞれ0.2%以下とするのがよい。
なお、これらBおよび希土類元素の下限値の合計量はいずれも不純物元素であるSとOの算術和(S+1/2・O)の値以上とすることが推奨される。
次に、本発明にあっては、下記に定義される粗大介在物、特にアルミナ系粗大介在物が断面観察で1平方mm当たり10個以下に制限される。
ここで粗大介在物は、「当該介在物にもしAlとともにCaおよび/またはMgが不純物として含まれるときは、CaとMgを含めて質量%の和で20%以上含み長径が5μm以上の介在物」と定義とする。その理由は、AlとCaとMgを質量%の和で20%以上含む介在物は、結晶格子の母相(フェライト相)とのずれが大きくなり界面エネルギーを高めるためである。なお、本明細書ではこのような粗大介在物を便宜上「Alを20質量%以上含み長径が5μm以上の介在物」と記述する。
本発明にかかる二相ステンレス鋼における粗大介在物は酸化物系介在物、特にアルミナ系介在物が主要なもので、本明細書においては粗大介在物を便宜上アルミナ系粗大介在物とも云う。
長径が5μm未満では、母相と介在物との界面の面積そのものが十分大きいため、界面がシグマ相の析出サイトとなる確率が小さくなる。
介在物の長径とは、図2(a)、(b)に示すように、母材と介在物1との界面上の異なる二点を結んだ直線のうち、最も長くなる直線の長さを意味する。図2(a)、(b)ではそれぞれa1またはa2となる。また、酸化物系介在物の組成は、介在物1の中心部近傍(図2(a)、(b)に示す例ではそれぞれb1およびb2)、即ち、介在物1の断面形状の重心部近傍をEDX(エネルギー分散型X線分析)を用いて、O(酸素)以外の合金元素の含有量を求め、これにより決定する。よって、本明細書において、「Alを20質量%以上含み」とは、O以外の合金元素に占めるAl(+Ca+Mg)含有率を意味する。
実用上はこれらのアルミナ系粗大介在物の密度の影響が大きく、断面観察で1平方mm当たり10個超あると粗大介在物と母相との界面においてばかりでなく、自由エネルギーの高いフェライト/オーステナイト界面上にも粗大介在物が存在してシグマ相の析出を助長する確率が高くなる。そのためそのような粗大介在物の存在はHAZ部でのシグマ相析出に有害であり、密度をこれ以下にすることがHAZ部でのシグマ相析出抑制に有効となる。
本発明においてアルミナ系粗大介在物の密度を上述のように1平方mm当たり10個以下に限定する。
本発明にしたがってそのような二相ステンレス鋼を製造するには、例えば真空精錬による二次精錬を行い、その際のスラグ塩基度を例えば0.3〜3.0に調整し、十分な溶鋼撹拌およびスラグ改質を行えばよい。
本発明にかかる鋼組成においては介在物としては主としてアルミナ系介在物が生成し、一部Ca、Mg等が不純物として混合しているときにはCaおよびMgを含む介在物が存在する可能性がある。
ここに、本発明においてアルミナ系粗大介在物のAl含有量を20%以上、Ca、Mg系介在物が混入しているときには、アルミナ系粗大介在物に加え、Ca系粗大介在物およびMg系粗大介在物の(Al+Ca+Mg)の合計量を20%以上に限定した理由は腐食環境での溶出を生じにくくすることで耐孔食性を確保するためである。なお、そのようなMg系、Ca系介在物も形態的には酸化物であって、アルミナ系介在物と複合化している。
次に実施例によって本発明の作用効果についてさらに具体的に説明する。
Next, the reason why the chemical composition of the duplex stainless steel is limited as described above in the present invention will be described. In the present specification, “%” indicating the chemical composition of the steel and inclusions, unless otherwise specified. , “Mass%”.
The duplex stainless steel according to the present invention has excellent weldability (ensuring pitting corrosion resistance without reducing the welding efficiency) and other characteristics by controlling the overall effect and structure of the above-mentioned various types of alloy components. The most significant feature is in optimizing the combination of the amounts of Ni and Mo and controlling the alumina-based coarse inclusions.
C: C is effective for stabilizing the austenite phase, as is the case with N described later. However, if its content exceeds 0.03%, carbide is likely to precipitate, and the corrosion resistance deteriorates. % Or less. Preferably it is 0.02% or less. In the present invention, the case where C is contained as an impurity is also included.
Si: Si is effective as a deoxidizing component of steel, but is an element that promotes the formation of intermetallic compounds (such as sigma phase), so it is limited to 1.0% or less in the present invention. Preferably it is 0.5% or less. In the present invention, Si is included as an impurity.
Mn: Mn improves hot workability by desulfurization and deoxidation effects during the melting of duplex stainless steel. It also has the effect of increasing the solubility of N. Aiming at these effects, the content is usually up to 2.0% in many cases. However, since Mn is an element that deteriorates the corrosion resistance, it is set to 1.5% or less in the present invention. Preferably it is 1.0% or less. In the present invention, Mn is included as an impurity.
P: P is an impurity element inevitably mixed in the steel, but if its content exceeds 0.040%, the corrosion resistance and toughness deteriorate significantly, so 0.040% is made the upper limit.
S: S is an impurity element inevitably mixed in steel, and deteriorates the hot workability of steel. In addition, the sulfide becomes a starting point of pitting corrosion and impairs pitting corrosion resistance. In order to avoid these adverse effects, the content is limited to 0.008% or less. Less than this is preferable, and 0.005% or less is particularly desirable.
Cr: Cr is a basic component effective for maintaining corrosion resistance. When the content is less than 23.0%, the base metal cannot provide corrosion resistance enough to be called a so-called super duplex stainless steel. On the other hand, if the Cr content exceeds 27.0%, precipitation of intermetallic compounds (such as sigma phase) becomes prominent, resulting in a decrease in hot workability and weldability.
Mo: Mo, like Cr, contributes to the improvement of PREW and is a very effective component for improving the corrosion resistance. In particular, in order to improve pitting corrosion resistance and crevice corrosion resistance, the content is set to 2.0% or more in the present invention. On the other hand, excessive addition of Mo causes embrittlement of the raw material during manufacture, and has a strong effect of facilitating the precipitation of intermetallic compounds like Cr. Therefore, the Mo content is limited to 4.0%.
Ni: Ni is an essential component for stabilizing austenite, but if its content exceeds 9.0%, it becomes difficult to secure the basic properties of duplex stainless steel due to the decrease in ferrite content, Precipitation of sigma phase and the like is facilitated. On the other hand, if the Ni content is less than 5.0%, the amount of ferrite becomes too large and the characteristics of the duplex stainless steel are lost. In addition, since the solid solubility of N in ferrite is small, nitride precipitates and the corrosion resistance deteriorates.
However, with respect to the ranges of Ni and Mo, it is not sufficient to define only these, and as described above, they are limited so as to satisfy the following formulas (1) and (2) that are the features of the present invention.
Mo + 1.1Ni ≦ 12.5 (1)
Mo-0.8Ni ≦ -1.6 (2)
Here, “Mo” and “Ni” in the above formula represent respective contents (mass%).
When the value of (Mo + 1.1Ni) exceeds 12.5, a small amount of sigma phase precipitation at low temperature HAZ, and when the value of (Mo-0.8Ni) exceeds -1.6, nitride precipitation at high temperature HAZ Since each occurs, it is suppressed within the above range.
The following pitting corrosion resistance index (PREW) is set to 40 or more as a parameter representing the corrosion resistance of the duplex stainless steel, particularly the seawater corrosion resistance.
PREW (Pitting Resistance Equivalent After Welding) = Cr + 3.3 (Mo + 0.5W) + 16N
Generally, the content of Cr, Mo, and N is adjusted so that the PREW is 35 or more. However, in the super duplex stainless steel according to the present invention, the PRE, 40, and 40 are further increased by increasing Cr, Mo, and N. As described above, it exhibits extremely excellent seawater corrosion resistance. Since the increase in Cr, Mo, and N contributes to the strengthening of steel, duplex stainless steel, which is originally stronger than ferritic or austenitic single-phase steel, is a super-strength that is further strengthened. Duplex stainless steel is obtained.
W, like Mo, is an element that improves corrosion resistance, particularly resistance to pitting corrosion and crevice corrosion. In particular, W is an element that forms a stable oxide that improves corrosion resistance in a low pH environment. Therefore, W exceeding 1.5% is contained. If it is 1.5% or less, the addition of Cr, Mo, N, etc. must be increased in order to make PREW 40 or more, and the effect of using W becomes small. As the W content is increased, the content of Cr and Mo for increasing PREW to 40 or more can be reduced, and the harm of promoting the generation of sigma phase or the like of these elements can be reduced. A desirable W content is an amount exceeding 2.0%. However, even if an amount of W exceeding 5.0% is added, there is no increase in the effect commensurate with it, and the cost is simply increased, so the upper limit is made 5.0%.
N (nitrogen): N is a strong austenite-forming element and is effective in improving the thermal stability and corrosion resistance of the duplex stainless steel. When a large amount of Cr or Mo, which is a ferrite-forming element, is added as in the steel of the present invention, it contains 0.24% or more of N in order to properly balance the two phases of ferrite and austenite. Let
Further, N contributes to the improvement of PREW and improves the corrosion resistance of the alloy in the same manner as Cr, Mo and W. However, in a 25% Cr duplex stainless steel such as the steel of the present invention, if N exceeds 0.35%, a nitride due to defects due to blowholes or thermal effects during welding It deteriorates the toughness and corrosion resistance of steel due to formation. Therefore, the upper limit of N is set to 0.35%.
sol. Al: Al is effective as a deoxidizer for steel, but when the amount of N in the steel is high, it precipitates as AlN (aluminum nitride) and deteriorates toughness and corrosion resistance. Furthermore, an oxide is formed and becomes a nucleation site of a sigma phase. Therefore, in the present invention, the Al content is set to sol. Al is suppressed to 0.040% or less. Since a large amount of Si is avoided in the steel of the present invention, Al is often used as a deoxidizing agent. However, when vacuum melting is performed, it is not always necessary to add Al.
In addition to the above components, the duplex stainless steel of the present invention may further contain one or more of the following elements of the first group and the second group as necessary.
Group 1 elements (Cu, V): Cu and V are contained in the duplex stainless steel of the present invention in at least one kind, and are equally effective in improving corrosion resistance, particularly acid resistance against acids such as sulfuric acid. It has.
Cu is particularly effective for improving acid resistance in a reducing low pH environment such as H 2 SO 4 or a hydrogen sulfide environment, and in order to obtain the effect, the content is made 0.2% or more. However, addition of a large amount of Cu deteriorates the hot workability of steel, so the upper limit is made 2.0%.
V improves the acid resistance against acids such as sulfuric acid by adding 0.05% or more, and also improves the crevice corrosion resistance, especially when added in combination with W. However, when V is excessively added, the amount of ferrite is excessively increased, and the toughness and corrosion resistance are lowered. Therefore, the upper limit is made 1.5%.
Group 2 elements (B and rare earth elements): All are elements that fix S or O (oxygen) and improve hot workability.
In the steel of the present invention, S is kept low and a large amount of W is added, but this does not promote the formation of sigma phase or the like, so that the hot workability is originally good.
Further, the duplex stainless steel of the present invention can be used as a casting, and can be made into a product such as a tube by powder metallurgy such as pressing and sintering.
When such a manufacturing method is adopted, hot workability is not a problem. Therefore, the addition of the second group element is not always necessary. However, since it is desirable that the hot workability is excellent when making the product through processes such as forging, rolling, and extrusion, in such a case, if necessary, B: 0.0005% or more, La, Rare earth such as Ce: Addition of 0.0005% or more, one kind or two kinds or more, respectively. However, when these elements are also added in a large amount, their non-metallic inclusions of oxides and sulfides increase, resulting in sigma phase precipitation nucleation sites and pitting corrosion, leading to deterioration of corrosion resistance. Accordingly, the B content is preferably 0.005% or less, and the rare earths (mainly La and Ce) are each preferably 0.2% or less.
It is recommended that the total amount of the lower limit values of these B and rare earth elements is not less than the value of the arithmetic sum (S + 1/2 · O) of S and O, which are impurity elements.
Next, in the present invention, the coarse inclusions defined below, particularly alumina-based coarse inclusions, are limited to 10 or less per square mm by cross-sectional observation.
Here, coarse inclusions are “inclusions that contain Ca and / or Mg as well as Al as impurities when the inclusions contain 20% or more in terms of the sum of mass% including Ca and Mg, and the major axis is 5 μm or more. As a definition. The reason for this is that inclusions containing 20% or more of Al, Ca, and Mg in a sum of mass% increase the deviation of the crystal lattice from the parent phase (ferrite phase) and increase the interfacial energy. In this specification, such coarse inclusions are described as “inclusions containing 20% by mass or more of Al and having a major axis of 5 μm or more” for convenience.
The coarse inclusions in the duplex stainless steel according to the present invention are mainly oxide inclusions, particularly alumina inclusions. In the present specification, the coarse inclusions are also referred to as alumina coarse inclusions for convenience.
If the major axis is less than 5 μm, the area itself of the interface between the parent phase and the inclusion is sufficiently large, so the probability that the interface becomes a precipitation site for the sigma phase decreases.
As shown in FIGS. 2 (a) and 2 (b), the major axis of the inclusion means the length of the longest straight line among two straight lines connecting two different points on the interface between the base material and the inclusion 1. means. In FIG. 2 (a) and (b), it becomes a1 or a2, respectively. Further, the composition of the oxide inclusions is near the center of the inclusion 1 (b1 and b2 in the examples shown in FIGS. 2A and 2B, respectively), that is, near the center of gravity of the cross-sectional shape of the inclusion 1 Using EDX (energy dispersive X-ray analysis), the content of alloy elements other than O (oxygen) is obtained and determined. Therefore, in this specification, “containing 20 mass% or more of Al” means the Al (+ Ca + Mg) content in the alloy elements other than O.
In practice, the density of these alumina-based coarse inclusions is greatly affected. If the number of cross-sectional observations exceeds 10 per square mm, not only at the interface between the coarse inclusions and the parent phase, but also ferrite / austenite having a high free energy. There is a high probability that coarse inclusions exist on the interface and promote the precipitation of the sigma phase. Therefore, the presence of such coarse inclusions is detrimental to sigma phase precipitation in the HAZ part, and it is effective to suppress the sigma phase precipitation in the HAZ part if the density is lower than this.
In the present invention, the density of coarse alumina inclusions is limited to 10 or less per square mm as described above.
In order to produce such a duplex stainless steel according to the present invention, for example, secondary refining by vacuum refining is performed, the slag basicity at that time is adjusted to, for example, 0.3 to 3.0, and sufficient molten steel stirring is performed. And slag reforming.
In the steel composition according to the present invention, mainly alumina-based inclusions are generated as inclusions. When some Ca, Mg, etc. are mixed as impurities, inclusions containing Ca and Mg may exist.
Here, in the present invention, when the Al content of the alumina-based coarse inclusion is 20% or more and Ca and Mg-based inclusions are mixed, in addition to the alumina-based coarse inclusion, the Ca-based coarse inclusion and the Mg-based coarse inclusion The reason for limiting the total amount of inclusions (Al + Ca + Mg) to 20% or more is to ensure pitting corrosion resistance by making it difficult for elution in a corrosive environment. Note that such Mg-based and Ca-based inclusions are also oxides in form and are combined with alumina-based inclusions.
Next, the effects of the present invention will be described more specifically with reference to examples.

表1に示す化学組成の鋼を電気炉にて溶解し、AOD炉に移して二次精錬を実施した。ただし、代符B6の場合は、二次精練を行わなかった。二次精練においては、スラグ中の(CaO+MgO)重量/スラグ中の(Al+SiO)重量で定義されるスラグ塩基度を−1から3の範囲の異なる値とすることで、介在物の組成、形態、密度の異なる溶鋼を作製した。鋳造後、1200℃に加熱して鍛造により厚さ40mmの板材とした。
得られた板材を、1250℃に加熱し、圧延により、厚さ10mmとした。得られた鋼板の一部を切り出し、圧延面と直交する断面を上にして樹脂中に埋め込んだ後、この断面を鏡面研磨した。その後、粗大介在物を200倍の倍率で5視野、SEM観察を行って、そのサイズを評価した。
アルミナ系粗大介在物の長径は、図2の定義に従って測定し、粗大介在物の中心部近傍(図2のb1およびb2)をEPMAにより組成分析して、前述の粗大介在物を同定し、その密度を測定した。密度は1mm当たりの粗大介在物の個数の5視野の平均値をもって評価した。
供試鋼板を機械加工により、厚さ8mm×幅100mm×長さ200mm、長辺の端部に開先角度30度のV開先を設け試験材とした。代符Alの鋼から作成した外径2mmの溶接棒材を共通に用いて、供試材同志を突き合わせて、一般のステンレス鋼よりも高グレードの高耐食ステンレス鋼で用いられる入熱量10kJ/cm(溶接条件1)および一般的なステンレス鋼の溶接施工としては特に能率に問題が生じない入熱量である20kJ/cm(溶接条件2)の二つの条件にて片側からTIG溶接にて多層溶接して二種類の溶接継手を作製した。
得られた溶接継手から、溶接線に直交方向が40mmの辺で3×10mmの面が圧延面と平行となるように厚さ3mm、幅10mm、長さ40mmの腐食試験片を採取し、10%FeCl・6HO(65℃)の溶液に24時間浸漬し、500倍の視野にてHAZ部での孔食発生の有無を評価した。
また、溶接線と圧延面に直交する断面を検鏡エッチングして、500倍の視野で、画像解析を行いHAZ部での微細シグマ相の面積率を測定した。シグマ相の面積率が1%あれば微量のシグマ相あり、と判定した。
これらの結果を表2にまとめて示す。表2に示す結果から明らかなように、化学組成と粗大介在物の密度が本発明の範囲を満足している試験体では、一般的なステンレス鋼の溶接施工としては特に能率に問題が生じない高入熱量での評価にもかかわらず、微量のシグマ相の析出も認められず、優れた耐孔食性を示している。一方、代符B1、B2のように、ここの元素が化学組成範囲を満たしてもNi、Moの組み合わせ範囲が本発明要件を満たさなければ、代符B1のように微量のシグマ相が生じたり、代符B2のようにシグマ相が生じなくて窒化物が生じ、耐孔食性が劣化していた。また、代符B3〜B5のように鋼組成そのものはそれぞれ代符A1、A3と同一であっても、粗大介在物の密度が本発明の範囲内のものでないものでは、微量のシグマ相が生じたり、耐孔食性が劣化していた。

Figure 0004265605
Figure 0004265605
Steel having the chemical composition shown in Table 1 was melted in an electric furnace, transferred to an AOD furnace, and subjected to secondary refining. However, in the case of the symbol B6, secondary scouring was not performed. In secondary scouring, inclusions are determined by setting the slag basicity defined by the weight of (CaO + MgO) in slag / (Al 2 O 3 + SiO 2 ) in slag to a different value in the range of −1 to 3. Molten steels having different compositions, forms, and densities were prepared. After casting, the plate was heated to 1200 ° C. and forged into a 40 mm thick plate.
The obtained plate was heated to 1250 ° C. and rolled to a thickness of 10 mm. A part of the obtained steel plate was cut out and embedded in the resin with the cross section orthogonal to the rolling surface facing up, and then this cross section was mirror-polished. Thereafter, the coarse inclusions were observed with five fields of view and SEM at a magnification of 200 times to evaluate the size.
The major axis of the alumina-based coarse inclusion is measured according to the definition of FIG. 2, and the composition of the vicinity of the center of the coarse inclusion (b1 and b2 in FIG. 2) is analyzed by EPMA to identify the coarse inclusion, Density was measured. The density was evaluated based on the average value of 5 fields of the number of coarse inclusions per 1 mm 2 .
The test steel sheet was subjected to machining to provide a V groove having a thickness of 8 mm, a width of 100 mm, a length of 200 mm, and a groove having a groove angle of 30 degrees at the end of the long side. A heat input of 10 kJ / cm used in high-corrosion-resistant stainless steel of a higher grade than general stainless steel, using a welding rod with an outer diameter of 2 mm made from steel of Al. (Welding condition 1) and general stainless steel welding work, multi-layer welding by TIG welding from one side under two conditions of 20 kJ / cm (welding condition 2), which is a heat input that does not cause any problem in efficiency. Two types of welded joints were prepared.
From the obtained welded joint, a corrosion test piece having a thickness of 3 mm, a width of 10 mm, and a length of 40 mm was sampled so that the side of the weld line was 40 mm in the direction perpendicular to the weld line and the surface of 3 × 10 mm was parallel to the rolling surface. % FeCl 3 · 6H 2 O ( 65 ℃) solution was immersed 24 hours, to evaluate the presence or absence of pitting in the HAZ at 500 times the field of view.
Further, the cross section orthogonal to the weld line and the rolling surface was spectroscopically etched, and image analysis was performed with a field of view of 500 times to measure the area ratio of the fine sigma phase in the HAZ part. If the area ratio of the sigma phase was 1%, it was determined that there was a trace amount of sigma phase.
These results are summarized in Table 2. As is clear from the results shown in Table 2, in the test specimens in which the chemical composition and the density of coarse inclusions satisfy the scope of the present invention, there is no problem in efficiency particularly for general stainless steel welding. Despite the evaluation with a high heat input, no trace of sigma phase was observed, indicating excellent pitting corrosion resistance. On the other hand, even if these elements satisfy the chemical composition range as in the case of B1 and B2, if the combination range of Ni and Mo does not satisfy the requirements of the present invention, a trace amount of sigma phase may be generated as in B1. As in the case of the symbol B2, no sigma phase was generated, nitride was formed, and the pitting corrosion resistance was deteriorated. Further, even if the steel composition itself is the same as that of the symbols A1 and A3, as in the symbols B3 to B5, a trace amount of sigma phase occurs when the density of coarse inclusions is not within the scope of the present invention. Or pitting corrosion resistance was deteriorated.
Figure 0004265605
Figure 0004265605

発明の効果The invention's effect

本発明によれば、溶接熱影響部におけるシグマ相の生成が防止できることから、また粗大介在物が生成量を大幅に低減できることから、得られる二相ステンレス鋼は、優れた耐孔食性を示すことになり、例えば今日その用途への適用が求められている優れた二相ステンレス鋼が提供される。  According to the present invention, since the generation of the sigma phase in the weld heat affected zone can be prevented and the amount of coarse inclusions can be greatly reduced, the resulting duplex stainless steel exhibits excellent pitting corrosion resistance. Thus, for example, excellent duplex stainless steels that are required to be applied to the application today are provided.

Claims (4)

質量%で、C:0.03%以下、Si:1.0%以下、Mn:1.5%以下、P:0.040%以下、S:0.008%以下、Cr:23.0〜27.0%、Mo:2.0〜4.0%、Ni:5.0〜9.0%、W:1.5%超5.0%以下、N:0.24〜0.35%、Feおよび不純物:残部
かつ、PREW=Cr+3.3(Mo+0.5W)+16Nが40以上で
Mo+1.1Ni≦12.5
Mo−0.8Ni≦−1.6
なる関係を満たす化学組成を有し、Alを20質量%以上含み長い側の径が5μm以上の介在物と定義される粗大介在物が断面観察で1平方mm当たり10個以下であることを特徴とする二相ステンレス鋼。
In mass%, C: 0.03% or less, Si: 1.0% or less, Mn: 1.5% or less, P: 0.040% or less, S: 0.008% or less, Cr: 23.0 to 27.0%, Mo: 2.0-4.0%, Ni: 5.0-9.0%, W: more than 1.5% and 5.0% or less, N: 0.24-0.35% Fe and impurities: balance and PREW = Cr + 3.3 (Mo + 0.5W) + 16N is 40 or more and Mo + 1.1Ni ≦ 12.5
Mo-0.8Ni ≦ −1.6
It has a chemical composition satisfying the following relationship, and is characterized by having no more than 10 coarse inclusions per square mm in cross-sectional observation, defined as inclusions containing 20 mass% or more of Al and having a long side diameter of 5 μm or more. And duplex stainless steel.
前記化学組成が、更に、質量%で、0.2〜2.0%のCuと0.05〜1.5%のVの一方または両方を含む、請求項1に記載の二相ステンレス鋼。The duplex stainless steel of claim 1, wherein the chemical composition further comprises one or both of 0.2 to 2.0% Cu and 0.05 to 1.5% V in mass%. 前記化学組成が、更に、質量%で、0.0005〜0.005%のBおよび/または0.0005〜0.2%の希土類元素の中の1種または2種以上を含む請求項1または2に記載の二相ステンレス鋼。The chemical composition further comprises one or more of 0.0005 to 0.005% B and / or 0.0005 to 0.2% rare earth element in terms of% by mass. 2. The duplex stainless steel according to 2. 前記化学組成が、更に、質量%で、sol.Al:0.040%以下を含む請求項1〜3のいずれかに記載の二相ステンレス鋼。The chemical composition is further mass% and sol. The duplex stainless steel according to any one of claims 1 to 3, comprising Al: 0.040% or less.
JP2005511147A 2003-06-30 2004-06-29 Duplex stainless steel Active JP4265605B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003188045 2003-06-30
JP2003188045 2003-06-30
PCT/JP2004/009511 WO2005001151A1 (en) 2003-06-30 2004-06-29 Duplex stainless steel

Publications (2)

Publication Number Publication Date
JPWO2005001151A1 JPWO2005001151A1 (en) 2006-08-10
JP4265605B2 true JP4265605B2 (en) 2009-05-20

Family

ID=33549741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005511147A Active JP4265605B2 (en) 2003-06-30 2004-06-29 Duplex stainless steel

Country Status (9)

Country Link
US (1) US20060191605A1 (en)
EP (1) EP1645650A4 (en)
JP (1) JP4265605B2 (en)
KR (1) KR100704201B1 (en)
CN (1) CN100497704C (en)
AU (1) AU2004252373B2 (en)
BR (1) BRPI0412092A (en)
NO (1) NO20056009L (en)
WO (1) WO2005001151A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602915A (en) * 2013-11-22 2014-02-26 山东建筑大学 High-carbon high-chromium duplex stainless steel

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE530847C2 (en) * 2006-12-14 2008-09-30 Sandvik Intellectual Property Plate for plate heat exchangers, plate heat exchangers made up of such plates and use of this plate heat exchanger
SE531593C2 (en) * 2007-10-26 2009-06-02 Sandvik Intellectual Property Heat exchanger for phosphoric acid environment
KR101587392B1 (en) 2007-11-29 2016-01-21 에이티아이 프로퍼티즈, 인코퍼레이티드 Lean austenitic stainless steel
BRPI0820024B1 (en) 2007-12-20 2018-06-12 Ati Properties Llc POOR AUSTENIC STAINLESS STEEL RESISTANT TO CORROSION AND MANUFACTURING ARTICLE INCLUDING THIS
BRPI0820586B1 (en) 2007-12-20 2018-03-20 Ati Properties Llc AUSTENIC STAINLESS STEEL AND MANUFACTURING ARTICLE INCLUDING AUSTENIC STAINLESS STEEL
US8337749B2 (en) 2007-12-20 2012-12-25 Ati Properties, Inc. Lean austenitic stainless steel
JP5018863B2 (en) * 2009-11-13 2012-09-05 住友金属工業株式会社 Duplex stainless steel with excellent alkali resistance
CN102296248B (en) * 2011-08-29 2013-04-24 江苏九胜特钢制品有限公司 Diphase tungsten stainless steel alloy material and preparation method thereof
CN102296249A (en) * 2011-08-29 2011-12-28 江苏九胜特钢制品有限公司 Diphase stainless steel alloy material substituting tungsten for molybdenum and preparation method thereof
JP6327633B2 (en) * 2013-09-19 2018-05-23 セイコーインスツル株式会社 Diaphragm made of duplex stainless steel
WO2016063974A1 (en) * 2014-10-24 2016-04-28 新日鐵住金株式会社 Two-phase stainless steel and production method therefor
CN108048755B (en) * 2017-11-10 2019-06-28 洛阳双瑞特种装备有限公司 A kind of high rigidity anticorrosive cast stainless steel for fluid conveying
CN110016625B (en) * 2019-05-15 2021-08-03 丹阳市华龙特钢有限公司 High-purity corrosion-resistant alloy material
JP7469707B2 (en) 2020-10-23 2024-04-17 日本製鉄株式会社 Duplex stainless steel welded joints
CN113337779A (en) * 2021-05-21 2021-09-03 烟台恒邦合金材料有限公司 Wear-resistant and corrosion-resistant stainless steel material for pumps and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079152A (en) * 1987-05-28 1992-01-07 Scripps Clinic And Research Foundation Antibody combining sites that exhibit stereoselective synthase activity, and methods using the same
JP2500162B2 (en) * 1991-11-11 1996-05-29 住友金属工業株式会社 High strength duplex stainless steel with excellent corrosion resistance
SE501321C2 (en) * 1993-06-21 1995-01-16 Sandvik Ab Ferrite-austenitic stainless steel and use of the steel
JP3446294B2 (en) * 1994-04-05 2003-09-16 住友金属工業株式会社 Duplex stainless steel
EP0683241B1 (en) * 1994-05-21 2000-08-16 Yong Soo Park Duplex stainless steel with high corrosion resistance
JPH0813094A (en) * 1994-06-24 1996-01-16 Sumitomo Metal Mining Co Ltd Duplex stainless cast steel and production thereof
JPH08176742A (en) * 1994-12-27 1996-07-09 Sumitomo Metal Ind Ltd Duplex stainless steel excellent in corrosion resistance in hydrogen sulfide atmosphere
JP3241263B2 (en) * 1996-03-07 2001-12-25 住友金属工業株式会社 Manufacturing method of high strength duplex stainless steel pipe
JP3127822B2 (en) * 1996-04-10 2001-01-29 住友金属工業株式会社 Manufacturing method of seamless stainless steel pipe made of duplex stainless steel
JPH1088288A (en) * 1996-09-18 1998-04-07 Sumitomo Metal Ind Ltd Duplex stainless steel material for high purity gas, and its production
SE9902472L (en) * 1999-06-29 2000-08-07 Sandvik Ab Ferrite austenitic steel alloy
JP3534032B2 (en) * 2000-02-03 2004-06-07 住友金属工業株式会社 Method for producing duplex stainless steel pipe
JP3758508B2 (en) * 2001-02-13 2006-03-22 住友金属工業株式会社 Manufacturing method of duplex stainless steel pipe
SE524951C2 (en) * 2001-09-02 2004-10-26 Sandvik Ab Use of a duplex stainless steel alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602915A (en) * 2013-11-22 2014-02-26 山东建筑大学 High-carbon high-chromium duplex stainless steel
CN103602915B (en) * 2013-11-22 2015-11-18 山东建筑大学 High carbon and chromium duplex stainless steel

Also Published As

Publication number Publication date
EP1645650A4 (en) 2007-07-25
CN1816640A (en) 2006-08-09
BRPI0412092A (en) 2006-09-05
CN100497704C (en) 2009-06-10
WO2005001151A1 (en) 2005-01-06
AU2004252373A1 (en) 2005-01-06
AU2004252373B2 (en) 2007-02-22
US20060191605A1 (en) 2006-08-31
EP1645650A1 (en) 2006-04-12
JPWO2005001151A1 (en) 2006-08-10
KR100704201B1 (en) 2007-04-09
NO20056009L (en) 2006-01-11
KR20060026898A (en) 2006-03-24

Similar Documents

Publication Publication Date Title
JP4803174B2 (en) Austenitic stainless steel
JP2500162B2 (en) High strength duplex stainless steel with excellent corrosion resistance
JP5072285B2 (en) Duplex stainless steel
EP2119802B1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
US20060191605A1 (en) Duplex stainless steel
JP5420292B2 (en) Ferritic stainless steel
JP5685198B2 (en) Ferritic-austenitic stainless steel
EP2048255A1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
KR20100122120A (en) Nickel-based alloy
WO2013058274A1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
KR20090078813A (en) Duplex stainless steel alloy and use of this alloy
WO2001000898A1 (en) Duplex stainless steel
CN111041358A (en) Duplex ferritic austenitic stainless steel
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP4502131B2 (en) Duplex stainless steel with excellent hot workability
JPH08170153A (en) Highly corrosion resistant two phase stainless steel
JP6442852B2 (en) Duplex stainless steel welded joint
CN102057070A (en) Steel plate excellent in sour resistance and steel pipe for linepipes
JP2019026940A (en) Two-phase stainless steel welded joint
JP6776469B1 (en) Duplex stainless steel and its manufacturing method
JP6819837B1 (en) Stainless steel seamless steel pipe
JP2005036313A (en) Duplex stainless steel
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
CN117206744A (en) Ferrite stainless steel welding wire and welding component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250