WO2013058274A1 - Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material - Google Patents

Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material Download PDF

Info

Publication number
WO2013058274A1
WO2013058274A1 PCT/JP2012/076821 JP2012076821W WO2013058274A1 WO 2013058274 A1 WO2013058274 A1 WO 2013058274A1 JP 2012076821 W JP2012076821 W JP 2012076821W WO 2013058274 A1 WO2013058274 A1 WO 2013058274A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
duplex stainless
less
steel
hot
Prior art date
Application number
PCT/JP2012/076821
Other languages
French (fr)
Japanese (ja)
Inventor
柘植 信二
雄介 及川
裕史 浦島
治彦 梶村
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011231352A external-priority patent/JP5329632B2/en
Priority claimed from JP2011266351A external-priority patent/JP5329634B2/en
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to KR1020147009392A priority Critical patent/KR101632516B1/en
Priority to CN201280050356.5A priority patent/CN103857816B/en
Priority to US14/347,437 priority patent/US20140255244A1/en
Priority to ES12842430T priority patent/ES2768088T3/en
Priority to EP12842430.6A priority patent/EP2770076B1/en
Priority to KR1020167005157A priority patent/KR101648694B1/en
Publication of WO2013058274A1 publication Critical patent/WO2013058274A1/en
Priority to ZA2014/02169A priority patent/ZA201402169B/en
Priority to US15/226,287 priority patent/US20160340764A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present invention relates to an inexpensive Sn-containing duplex stainless steel.
  • the present invention also relates to a duplex stainless steel that contains Cu and Sn in combination, is excellent in corrosion resistance, and is inexpensive.
  • the present invention relates to a duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material that can be used as a seawater desalination device, tanks for transport ships, various containers, and the like.
  • General-purpose duplex stainless steel contains a large amount of Cr, Mo, Ni, and N and has good corrosion resistance. However, since expensive Mo and Ni are contained, it is difficult to say that the alloy cost is high and the productivity is good. As a result, the price of the steel material is not so low, and it is difficult to say that it is often used instead of 316 series, 317 series stainless steel and the like.
  • duplex stainless steel containing Sn For example, a duplex stainless steel containing 25% or more of Cr and 0.01 to 0.1% of Sn as a selective element is disclosed (see Patent Documents 1 and 2 below). Further, an alloy-saving duplex stainless steel containing 1% or less or 0.1% Sn is disclosed (see Patent Documents 3 and 4 below). Although these patent documents aim at improving the corrosion resistance by containing Sn, the relationship between the hot manufacturability of steel and the Sn content has not been studied.
  • the steel whose N content is 0.2% or less is targeted.
  • N is an element that reduces the hot workability of stainless steel.
  • the hot workability of the duplex stainless steel containing less than 0.2% of N is desired. It is more difficult than securing it to a standard.
  • the inventors focused on the possibility of improving acid resistance and pitting corrosion resistance by Sn in alloy-saving duplex stainless steel. Then, the relationship between the Sn content, corrosion resistance and hot manufacturability was investigated. As a result, the possibility of improving corrosion resistance was found by containing 0.01 to 0.2% Sn. However, it has been found that the hot productivity decreases in these duplex stainless steels containing a large amount of Sn. For this reason, the frequency with which the yield of steel materials decreases increases, and a significant cost increase is expected.
  • the present inventors have focused on the possibility of improving acid resistance and pitting corrosion resistance by Sn and Cu in general-purpose duplex stainless steel. And in the duplex stainless steel in which the contents of Mo and Ni are reduced and N is 0.20% or more, the relationship between the contents of Sn and Cu, the corrosion resistance, and the hot manufacturability was investigated. As a result, the possibility of improving corrosion resistance was found by containing 0.01 to 0.2% Sn and 0.2 to 3.0% Cu. However, it has been found that the hot productivity is lowered in these duplex stainless steels containing a large amount of Sn and Cu. For this reason, the frequency with which the yield of steel materials decreases increases, and a significant cost increase is expected.
  • the present inventors examined the conventional knowledge about the manufacturing technology of conventional Sn-containing duplex stainless steel hot rolled steel materials including Patent Documents 1 to 4. As a result, it has been found that there is little knowledge about the relationship between the temperature range of hot embrittlement due to Sn contained in the duplex stainless steel, the relationship with the Sn content, and the relationship with the content of other elements.
  • an object of the present invention is to provide a Sn-containing duplex stainless steel, duplex stainless steel cast, and duplex stainless steel material that are favorable and inexpensive in hot productivity.
  • Such a duplex stainless steel is expected to have an excellent balance between corrosion resistance and cost. For this reason, it is considered that the possibility of wide use in each field is increased.
  • the contents of Ni and Mo, which are expensive elements are increased by increasing the contents of N and Mn and by adding Cu and Sn in combination. It is an object of the invention to develop an inexpensive general-purpose duplex stainless steel that saves energy.
  • the inventors changed the Sn content and the contents of Ca, B, rare earth elements (REM), etc., for the alloy-saving duplex stainless steel targeted by the present invention.
  • a melting material was prepared and the following experiment was performed.
  • content of Ca, B, rare earth elements (REM), etc. improves hot productivity.
  • a tensile test piece was collected from a slab cast from a melting material.
  • the tensile test piece was subjected to high-temperature tension at 1200 to 700 ° C., and the drawing value (cross-sectional reduction rate of the fracture surface) was measured to evaluate high-temperature ductility.
  • the hot rolled steel plate of 12 mm thickness was obtained by hot forging and hot rolling, and the ear cracking property was evaluated.
  • the hot cracking heating temperature and the rolling temperature were changed to evaluate the ear cracking properties, and the correlation between the hot rolling heating temperature, the rolling temperature, and the high temperature ductility was obtained.
  • the present inventors hot-rolled a slab of alloy-saving Sn-containing duplex stainless steel obtained by vacuum melting and casting, and observed the length of the ear cracks generated at that time. As a result, it has been found that there are rarely Sn-containing duplex stainless steel materials with few ear cracks.
  • the hot rolling experiment was performed as follows. First, a slab of 90 to 44 mm thickness was heated to 1200 ° C. The thickness was then reduced to 12-6 mm through multiple rolling passes. The finish rolling temperature was controlled to about 900 ° C. Ear cracks occur on the left and right, and the maximum length of each was added to obtain the ear crack length.
  • the present inventors conducted melting, casting, and rolling experiments with various element contents varied in order to find out the conditions for reliably obtaining a steel material with few ear cracks. And evaluation of the hot ductility of a slab and evaluation of the steel material ear crack after hot rolling were performed energetically. Through the above experiments, based on the obtained knowledge, the first aspect of the present invention in which the inexpensive Sn-containing alloy-saving duplex stainless steel was clearly specified was completed.
  • PI Cr + 3.3Mo + 16N (1) (The element symbol in the formula (1) indicates the content of the element.) (2) Further, it contains at least one selected from Mo: 1.5% or less, Cu: 2.0% or less, W: 1.0% or less, and Co: 2.0% or less. The duplex stainless steel according to (1). (3) It further contains at least one selected from V: 0.05 to 0.5%, Nb: 0.01 to 0.20%, and Ti: 0.003 to 0.05%. The duplex stainless steel according to (1) or (2), which is characterized. (4) Further, it contains one or more selected from B: 0.0050% or less, Mg: 0.0030% or less, and REM: 0.10% or less (1) to (3 ) Duplex stainless steel according to any one of the above.
  • the present inventors have made a general-purpose duplex stainless steel targeted by the present invention with a Sn content, a content of Ca, B, a rare earth element (REM), etc., and a Ni content.
  • a melting material to which Co was further added was produced, and the following experiment was performed.
  • Ca, B, rare earth elements (REM), etc. are contained, it is said that hot productivity improves.
  • a tensile test piece was collected from a slab cast from a melting material.
  • the tensile test piece was subjected to high-temperature tension at 1200 to 700 ° C., and the drawing value (cross-sectional reduction rate of the fracture surface) was measured to evaluate high-temperature ductility.
  • the hot rolled steel plate of 12 mm thickness was obtained by hot forging and hot rolling, and the ear cracking property was evaluated.
  • the hot cracking heating temperature and the rolling temperature were changed to evaluate the ear cracking properties, and the correlation between the hot rolling heating temperature, the rolling temperature, and the high temperature ductility was obtained.
  • the inventors of the present invention hot rolled a slab of general-purpose duplex stainless steel obtained by vacuum melting and casting, and observed the length of the ear cracks generated at that time. As a result, it was discovered that there are rarely Sn-containing duplex stainless steel materials with few ear cracks.
  • the hot rolling experiment was performed as follows. First, a slab of 90 to 44 mm thickness was heated to 1200 ° C. The thickness was then reduced to 12-6 mm through multiple rolling passes. The finish rolling temperature was controlled to about 900 ° C. Ear cracks occur on the left and right, and the maximum length of each was added to obtain the ear crack length.
  • the present inventors conducted melting, casting, and rolling experiments in which various element contents were further changed in order to find out the conditions under which the above-mentioned steel material with few ear cracks could be obtained with certainty. And the hot ductility evaluation of the slab and the steel ear crack evaluation after hot rolling were performed energetically.
  • the second aspect of the present invention which was clearly shown for inexpensive Sn-containing duplex stainless steel, was completed based on the obtained knowledge.
  • duplex stainless steel slab and duplex stainless steel material of the present invention are shown below.
  • duplex stainless steel having improved corrosion resistance and excellent balance with cost compared to steel conventionally used as a material for seawater desalination equipment, tanks for transport ships, various containers, etc.
  • a duplex stainless steel slab and a duplex stainless steel material can be provided. For this reason, the aspect of the present invention greatly contributes to industrial development.
  • the stainless steel slab means steel in a state after casting and before being subjected to processing such as hot working or forging, and the stainless steel material means that the slab is processed by various methods. It means a steel slab, a hot rolled steel plate, a cold rolled steel plate, a steel wire, a steel pipe, etc.
  • Stainless steel means all forms of steel such as slabs and steel materials. The above processing includes hot and cold processing.
  • the C content is limited to 0.03% or less.
  • C is contained exceeding 0.03%, Cr carbide is generated during hot rolling, and corrosion resistance and toughness deteriorate.
  • Si is added at 0.05% or more for deoxidation. However, when Si exceeds 1.0%, toughness deteriorates. Therefore, the upper limit of Si content is limited to 1.0%. A preferable range of the amount of Si is 0.2 to 0.7%.
  • Mn has the effect of increasing the austenite phase and improving toughness. Further, since Mn has the effect of lowering the nitride precipitation temperature TN, it is preferable to add Mn positively in the steel material of this embodiment. 0.1% or more of Mn is added for the toughness of the base metal and the weld. However, when Mn is added exceeding 7.0%, corrosion resistance and toughness deteriorate. Therefore, the upper limit of the amount of Mn is limited to 7.0%.
  • the Mn content is preferably 1.0 to 6.0%, more preferably 2.0 to 5.0%.
  • P P is an element inevitably mixed from the raw material, and the P content is limited to 0.05% or less in order to deteriorate hot workability and toughness.
  • the amount of P is preferably 0.03% or less.
  • S is an element that is inevitably mixed from the raw material, and also degrades hot workability, toughness, and corrosion resistance, so the S amount is limited to 0.0010% or less. Moreover, reducing the amount of S to less than 0.0001% increases the cost for desulfurization refining. For this reason, the S content is determined to be 0.0001 to 0.0010%. The amount of S is preferably 0.0002 to 0.0006%.
  • Ni stabilizes the austenite structure and contains 0.5% or more of Ni in order to improve corrosion resistance to various acids and toughness. By increasing the Ni content, the nitride precipitation temperature can be lowered. On the other hand, Ni is an expensive alloy, and the amount of Ni is limited to 5.0% or less from the viewpoint of cost in the steel of the present embodiment intended for alloy-saving duplex stainless steel.
  • the Ni content is preferably 1.0 to 4.0%, more preferably 1.5 to 3%.
  • the Cr content is set to 18.0% or more and 25.0% or less.
  • a preferable Cr content is 19.0 to 23.0%.
  • N is an effective element that improves the strength and corrosion resistance by dissolving in the austenite phase.
  • 0.10% or more of N is contained.
  • the solid solution limit increases depending on the Cr and Mn contents.
  • the upper limit of N content was 0.30%.
  • a preferable N content is 0.10 to 0.25%.
  • Al is a deoxidizing element of steel and reduces oxygen in the steel as necessary. For this reason, Al is contained together with 0.05% or more of Si. In the Sn-containing steel, the reduction of the oxygen amount is essential to ensure hot productivity, and for this purpose, it is necessary to contain 0.003% or more of Al as necessary.
  • Al is an element having a relatively large affinity with N, and if added excessively, AlN is generated and inhibits the toughness of stainless steel. The degree depends on the N content, but when Al exceeds 0.05%, the toughness is significantly lowered. For this reason, the upper limit of Al content was set to 0.05%.
  • the amount of Al is preferably 0.04% or less.
  • Ca is an important element for the hot manufacturability of steel, and it is necessary to contain Ca in order to fix O and S in the steel as inclusions and improve the hot manufacturability. .
  • 0.0010% or more of Ca is contained for that purpose.
  • excessive addition reduces pitting corrosion resistance. Therefore, the upper limit of the Ca content is set to 0.0040%.
  • Sn is contained in order to improve the corrosion resistance of the steel of this embodiment. Therefore, it is necessary to contain at least 0.01% Sn. Furthermore, it is preferable to contain 0.02% or more of Sn.
  • Sn is an element that hinders the hot manufacturability of steel.
  • the heat at the interface between the ferrite phase and the austenite phase particularly at 900 ° C. or lower. Decrease the strength. The degree of the reduction depends on the contents of S, Ca, and O, but even if other limitations in the present embodiment are added, if Sn is contained exceeding 0.2%, the hot productivity is lowered. Therefore, the upper limit of the Sn content is set to 0.2%.
  • the ratio Ca / O of the content of O and Ca is an important component index for improving the hot manufacturability and corrosion resistance of the steel of this embodiment.
  • the lower limit of Ca / O is limited.
  • the hot ductility of the Sn-containing steel decreases particularly at a temperature of 900 ° C. or less.
  • the value of Ca / O is less than 0.3, the hot ductility at 1000 ° C. is also lowered, and hot productivity is greatly impaired.
  • Ca / O is limited to 0.3 or more.
  • Ca / O is preferably 0.4 to 0.8.
  • O is an inevitable impurity, and its upper limit is not particularly defined, but is an important element constituting an oxide that is representative of non-metallic inclusions. Controlling the composition of the oxide is very important for improving hot manufacturability. In addition, when a coarse cluster-like oxide is generated, it causes surface defects. For this reason, it is necessary to restrict
  • the O content is limited by setting the ratio of the Ca content and the O content to 0.3 or more.
  • the upper limit of the O content is preferably 0.005% or less.
  • 1 is selected from Mo: 1.5% or less, Cu: 2.0% or less, W: 1.0% or less, and Co: 2.0% or less as necessary. It may contain seeds or more. The reason for the limitation will be described.
  • Mo is a very effective element that additionally enhances the corrosion resistance of stainless steel, and can be contained as required. In order to improve the corrosion resistance, it is preferable to contain 0.2% or more of Mo.
  • Mo is an element that promotes precipitation of intermetallic compounds, and the upper limit of the Mo content is set to 1.5% from the viewpoint of suppressing precipitation during hot rolling in the steel of this embodiment.
  • Cu is an element that additionally increases the corrosion resistance of stainless steel to acids, and has the effect of improving toughness. Therefore, it is recommended to contain 0.3% or more as necessary.
  • ⁇ Cu precipitates exceeding the solid solubility during hot rolling to cause embrittlement. For this reason, the upper limit of the amount of Cu was made into 2.0%.
  • a preferable content when Cu is contained is 0.3 to 1.5%.
  • W is an element that additionally improves the corrosion resistance of stainless steel, and can be added as necessary.
  • the upper limit of the W amount is set to 1.0%.
  • a preferable W content is 0.05 to 0.5%.
  • Co is an element effective for enhancing the toughness and corrosion resistance of steel and is selectively added.
  • the Co content is preferably 0.03% or more.
  • the preferable Co content when added is 0.03 to 1.0%.
  • V 0.05 to 0.5%
  • Nb 0.01 to 0.20%
  • Ti 0.003 to 0.05%.
  • V, Nb, and Ti can be added as necessary, and when contained in a very small amount, the corrosion resistance tends to be improved.
  • Nitride and carbide formed by V are generated during the hot working and cooling of the steel material, and have the effect of enhancing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower.
  • 0.05% or more of V is contained. When V is contained exceeding 0.5%, coarse V-based carbonitrides are produced and toughness is deteriorated. Therefore, the upper limit of the V amount is limited to 0.5%.
  • the V content is preferably in the range of 0.1 to 0.3%.
  • Nitrides and carbides formed by Nb are generated during the hot working and cooling of the steel material, and have the effect of increasing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower. In order to improve the corrosion resistance, 0.01% or more of Nb is contained. On the other hand, excessive addition causes precipitation as an undissolved precipitate during heating before hot rolling, thereby inhibiting toughness. For this reason, the upper limit of the Nb content is set to 0.20%. When Nb is added, the preferable range of Nb content is 0.03% to 0.10%.
  • Ti is an element that forms oxides, nitrides, and sulfides in a very small amount, and solidifies the steel and refines the crystal grains of the high-temperature heating structure. Further, like V and Nb, Ti also has a property of substituting for a part of chromium in the chromium nitride. When Ti is contained in an amount of 0.003% or more, Ti precipitates are formed. On the other hand, when Ti is contained in the duplex stainless steel exceeding 0.05%, coarse TiN is generated and the toughness of the steel is inhibited. For this reason, the upper limit of the Ti content is set to 0.05%. A preferable content of Ti is 0.005 to 0.020%.
  • B 0.0050% or less
  • Mg 0.0030% or less
  • REM 0.10% or less.
  • B, Mg, and REM to be contained as necessary are limited as follows.
  • B, Mg, and REM are all elements that improve the hot workability of steel, and one or more of them are added for that purpose.
  • the upper limit of the content was defined as follows.
  • the upper limit of the amount of B is 0.0050%.
  • the upper limit of the amount of Mg is 0.0030%.
  • the upper limit of the amount of REM is 0.10%.
  • the preferred contents are B: 0.0005 to 0.0030%, Mg: 0.0001 to 0.0015%, and REM: 0.005 to 0.05%, respectively.
  • REM is the total content of lanthanoid rare earth elements such as La and Ce.
  • the hot productivity of the alloy-saving duplex stainless steel containing Sn can be remarkably improved.
  • the fracture drawing value at 1000 ° C. is 70% or more.
  • the stainless steel slab means steel in a state after casting and before being subjected to processing such as hot working or forging, and the stainless steel material means that the slab is processed by various methods. It means a steel slab, a hot rolled steel plate, a cold rolled steel plate, a steel wire, a steel pipe, etc.
  • Stainless steel means all forms of steel such as slabs and steel materials. The above processing includes hot and cold processing.
  • the C content is limited to 0.03% or less.
  • C is contained exceeding 0.03%, Cr carbide is generated during hot rolling, and corrosion resistance and toughness deteriorate.
  • Si is added at 0.05% or more for deoxidation. However, when Si exceeds 1.0%, toughness deteriorates. Therefore, the upper limit of Si content is limited to 1.0%. A preferable range of the amount of Si is 0.2 to 0.7%.
  • Mn has the effect of increasing the austenite phase and improving toughness. Further, since Mn has an effect of suppressing the precipitation of nitride, it is preferable to positively add Mn to the steel material of this embodiment. 0.1% or more of Mn is added for the toughness of the base metal and the weld. However, when Mn is added exceeding 4.0%, corrosion resistance and toughness deteriorate. Therefore, the upper limit of the amount of Mn is limited to 4.0%.
  • the Mn content is preferably 1.0 to 3.5%, more preferably 2.0 to 3.0%.
  • P P is an element inevitably mixed from the raw material, and the P content is limited to 0.05% or less in order to deteriorate hot workability and toughness.
  • the amount of P is preferably 0.03% or less.
  • S is an element that is inevitably mixed from the raw material, and also degrades hot workability, toughness, and corrosion resistance, so the S amount is limited to 0.0010% or less. Moreover, reducing the amount of S to less than 0.0001% increases the cost for desulfurization refining. For this reason, the S content is determined to be 0.0001 to 0.0010%. The amount of S is preferably 0.0002 to 0.0006%.
  • ⁇ Cr is contained 23.0% or more in order to ensure basic corrosion resistance.
  • the Cr content is set to 23.0% or more and 28.0% or less.
  • a preferable Cr content is 24.0 to 27.5%.
  • Ni stabilizes the austenite structure and improves corrosion resistance and toughness against various acids. Furthermore, the deterioration of hot workability due to the addition of Sn and Cu is suppressed. For this reason, 2.0% or more of Ni is contained. By increasing the Ni content, the nitride precipitation temperature can be lowered. On the other hand, since Ni is an expensive alloy, the amount of Ni is limited to 6.0% or less. The Ni content is preferably 2.5 to 5.5%, more preferably 3.0 to 5.0%.
  • Co is an element effective for enhancing the toughness and corrosion resistance of steel, and is an element that suppresses the decrease in hot workability due to the addition of Sn and Cu, and is desirably contained together with Ni. Moreover, when adding, it is preferable to contain Co 0.1% or more. When Co is contained exceeding 1.0%, Co is an expensive element, so that an effect corresponding to the cost cannot be exhibited. For this reason, the upper limit of the amount of Co is set to 1.0%. The preferred Co content when added is 0.1 to 0.5%.
  • Non-Patent Document 1 Ni has the effect of increasing the solid solubility of Cu and suppressing the generation of a liquid phase having a low melting point due to the addition of Cu and Sn.
  • Co is an element of the Ni family. For this reason, it is thought that the fall of the hot workability by Cu and Sn is suppressed by making the sum of content of Ni and Co high.
  • the present inventors arranged the hot workability of the steel targeted in the present embodiment by the sum of the contents of Ni and Co, when the total amount of Ni and Co is less than 2.5%, the steel material It was understood that the ear cracking property of was increased. For this reason, the range of Ni + Co was set to 2.5% or more.
  • Cu is an element that enhances the corrosion resistance of stainless steel to acids, and has the effect of improving toughness.
  • 0.2% or more of Cu is contained together with 0.01% or more of Sn.
  • ⁇ Cu precipitates exceeding the solid solubility during hot rolling, and embrittlement occurs.
  • the upper limit of the amount of Cu was made into 3.0%.
  • a preferable content when Cu is contained is 0.5 to 2.0%.
  • Sn is contained in order to improve the corrosion resistance of the steel of this embodiment. Therefore, it is necessary to contain at least 0.01% Sn. Furthermore, it is preferable to contain 0.02% or more of Sn.
  • Sn is an element that hinders the hot productivity of steel.
  • the interface between the ferrite phase and the austenite phase particularly at 900 ° C. or less. Reduce hot strength. The degree of the reduction depends on the contents of S, Ca, and O. However, even if other restrictions in this embodiment are added, if Sn is contained in excess of 0.2%, the hot productivity decreases. Therefore, the upper limit of the Sn content is set to 0.2%.
  • N is an effective element that improves the strength and corrosion resistance by dissolving in the austenite phase.
  • 0.20% or more of N is contained. Increasing the amount of N makes it possible to reduce Ni. Therefore, N is an element to be actively added.
  • the upper limit of the N content needs to be limited within the limit of the solid solution of N.
  • the solid solubility limit of N increases depending on the Cr and Mn contents. In the steel of this embodiment, when N is contained in excess of 0.30%, Cr nitride is precipitated to inhibit toughness and corrosion resistance, and hot productivity is inhibited. For this reason, the upper limit of N content was 0.30%.
  • a preferable N content is 0.20 to 0.28%.
  • Al is a deoxidizing element of steel, and if necessary, Al is contained together with 0.05% or more of Si in order to reduce oxygen in the steel. In the Sn-containing steel, the reduction of the oxygen amount is essential to ensure hot productivity, and for this purpose, it is necessary to contain 0.003% or more of Al as necessary.
  • Al is an element having a relatively large affinity with N, and if added excessively, AlN is generated and inhibits the toughness of stainless steel. The degree depends on the N content, but when Al exceeds 0.05%, the toughness is significantly lowered. For this reason, the upper limit of the Al content is set to 0.05%.
  • the amount of Al is preferably 0.04% or less.
  • Ca is an important element for the hot manufacturability of steel, and it is necessary to contain Ca in order to fix O and S in the steel as inclusions and improve the hot manufacturability. .
  • 0.0010% or more of Ca is contained for that purpose.
  • excessive addition reduces pitting corrosion resistance. Therefore, the upper limit of the Ca content is set to 0.0040%.
  • the ratio Ca / O of the content of O and Ca is an important component index for improving the hot manufacturability and corrosion resistance of the steel of this embodiment.
  • the lower limit of Ca / O is limited.
  • the hot ductility of the Sn-containing steel decreases particularly at a temperature of 900 ° C. or less.
  • the hot ductility at 1000 ° C. is also lowered, and the hot productivity is greatly impaired.
  • Ca / O is limited to 0.3 or more.
  • Ca / O is preferably 0.4 to 0.8.
  • O is an inevitable impurity, and its upper limit is not particularly defined, but is an important element constituting an oxide that is representative of non-metallic inclusions. Controlling the composition of the oxide is very important for improving hot manufacturability. In addition, when a coarse cluster-like oxide is generated, it causes surface defects. For this reason, it is necessary to restrict
  • the O content is limited by setting the ratio of the Ca content and the O content to 0.3 or more.
  • the upper limit of the O content is preferably 0.005% or less.
  • Mo is a very effective element that additionally increases the corrosion resistance of stainless steel, and can be contained as necessary. In order to improve the corrosion resistance, it is preferable to contain 0.2% or more of Mo.
  • Mo is an expensive element.
  • the upper limit of the Mo content is set to 2.0% from the viewpoint of suppressing the alloy cost.
  • W is an element that additionally improves the corrosion resistance of stainless steel, and can be added as necessary. In the steel of this embodiment, the upper limit of the W content is set to 1.0% for the purpose of improving the corrosion resistance. A preferable W content is 0.1 to 0.8%.
  • V 0.05 to 0.5%
  • Nb 0.01 to 0.15%
  • Ti 0.003 to 0.05%.
  • V, Nb, and Ti can be added as necessary, and when contained in a very small amount, the corrosion resistance tends to be improved.
  • V The nitrides and carbides formed by V are generated during hot working and cooling of the steel material, and have the effect of enhancing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower.
  • V content is preferably in the range of 0.1 to 0.3%.
  • Nitrides and carbides formed by Nb are generated during the hot working and cooling of the steel material, and have the effect of increasing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower. In order to improve the corrosion resistance, it is desirable to contain 0.01% or more of Nb. On the other hand, excessive addition causes precipitation as an undissolved precipitate during heating before hot rolling, thereby inhibiting toughness. For this reason, the upper limit of the Nb content is set to 0.15%. When Nb is added, the preferable range of Nb content is 0.03% to 0.10%.
  • Ti is an element that forms oxides, nitrides, and sulfides in a very small amount, and solidifies the steel and refines the crystal grains of the high-temperature heating structure. Further, like V and Nb, Ti also has a property of substituting for a part of chromium in the chromium nitride. When Ti is contained in an amount of 0.003% or more, Ti precipitates are formed. On the other hand, when Ti is contained in the duplex stainless steel exceeding 0.05%, coarse TiN is generated and the toughness of the steel is inhibited. For this reason, the upper limit of the Ti content is set to 0.05%. A preferable content of Ti is 0.005 to 0.020%.
  • B 0.0050% or less
  • Mg 0.0030% or less
  • REM 0.10% or less.
  • B, Mg, and REM to be contained as necessary are limited as follows.
  • B, Mg, and REM are all elements that improve the hot workability of steel, and it is desirable to add one or more of them for that purpose.
  • the upper limit of the content was defined as follows.
  • the upper limit of the amount of B is 0.0050%.
  • the upper limit of the amount of Mg is 0.0030%.
  • the upper limit of the amount of REM is 0.10%.
  • the preferred contents are B: 0.0005 to 0.0030%, Mg: 0.0001 to 0.0015%, and REM: 0.005 to 0.05%, respectively.
  • REM is the total content of lanthanoid rare earth elements such as La and Ce.
  • the hot productivity of general-purpose duplex stainless steel containing Sn can be remarkably improved.
  • the fracture drawing value at 1000 ° C. is 70% or more.
  • Example 1 Examples of alloy-saving duplex stainless steel will be described below.
  • Tables 1 to 4 show the chemical compositions of the test steels. The balance other than the components listed in Table 1 is Fe and inevitable impurity elements. In addition, regarding the components shown in Tables 1 to 4, the portion where the content is not described indicates an impurity level.
  • REM means a lanthanoid rare earth element, and the content of REM indicates the total of these elements. A numerical value with an underline in the table indicates that it is outside the range defined in the first embodiment.
  • a slab having a thickness of 100 mm was used, and the fracture drawing value was evaluated. Evaluation was performed as follows. First, the parallel part of an 8 mm ⁇ round bar was heated to 1200 ° C. using high frequency. Next, the temperature was lowered to a temperature at which a break test was performed (1000 ° C.). At that temperature, the film was pulled and broken at a speed of 20 mm / second to obtain the shrinkage ratio of the cross section. A steel with a fracture drawing value of 70% or more is evaluated as A (good), a steel with a drawing value of 60 to less than 70% is evaluated as B (fair), and a steel with a drawing value of less than 60% is C (bad). The results are shown in Tables 5 and 6.
  • Hot rolling was performed as follows. It was heated to a predetermined temperature of 1150 to 1250 ° C., and then hot-rolled by the two-stage rolling mill in the laboratory under the following conditions. First, the reduction was repeated to adjust the plate thickness to 25 mm. Subsequently, finish rolling was performed from 1000 ° C., final finish rolling was performed at 900 ° C., and the steel sheet was rolled to a final plate thickness of 12 mm and a plate width of 120 mm to obtain a hot-rolled steel plate.
  • the maximum value of the ear crack generated in the left and right ears of the obtained hot rolled steel sheet was measured, and the sum of the maximum values of the left and right ear cracks was obtained.
  • Steel with an ear crack sum of less than 5 mm is evaluated as A (good)
  • steel with an ear crack sum of 5 to 10 mm is evaluated as B (fair)
  • steel with an ear crack sum of more than 10 mm is evaluated as C ( The results are shown in Tables 5 and 6.
  • solution heat treatment was applied to this steel sheet as follows.
  • the steel plate was inserted into a heat treatment furnace set at 1000 ° C., and a soaking time of 5 minutes was taken.
  • the steel plate was then extracted and then water cooled to room temperature.
  • the corrosion resistance of the steel sheet was evaluated by the corrosion rate in sulfuric acid.
  • the corrosion rate in sulfuric acid was measured as follows. A 6-hour immersion test was performed on a test piece having a thickness of 3 mm, a width of 25 mm, and a length of 25 mm in boiling 5% sulfuric acid. The weight before and after immersion was measured, and the rate of weight reduction was determined.
  • a steel having a corrosion rate in sulfuric acid of less than 0.3 g / m 2 ⁇ hr is evaluated as A (good), and a steel having a corrosion rate in sulfuric acid of 0.3 to 1 g / m 2 ⁇ hr as B (fair) Evaluation was made, and steels having a corrosion rate in sulfuric acid of 1 g / m 2 ⁇ hr or more were evaluated as C (bad), and the evaluation results are shown in Tables 5 and 6.
  • Impact characteristics were measured using Charpy specimens taken long in the width direction. A full size 2 mm V notch was processed in the rolling direction to produce a test piece. The test was performed at ⁇ 20 ° C. using two test pieces each, and the impact characteristics were evaluated by the average value of the obtained impact values. Impact value and evaluate the 100 J / cm 2 than the steel and A (good), the impact value and evaluate the 50 ⁇ 100J / cm 2 steel and B (fair), impact value of 50 J / cm 2 less than the steel C (bad) was evaluated, and the evaluation results are shown in Tables 5 and 6.
  • Tables 7 to 10 show the chemical compositions of the test steels. The balance of the components described in Tables 7 to 10 is Fe and inevitable impurity elements. In addition, regarding the components shown in Tables 7 to 10, the portion where the content is not described indicates an impurity level.
  • REM means a lanthanoid rare earth element, and the content of REM indicates the total of these elements. A numerical value with an underline in the table indicates that it is outside the range defined in the second embodiment.
  • solution heat treatment was applied to this steel sheet as follows.
  • the steel plate was inserted into a heat treatment furnace set at 1050 ° C., and a soaking time of 5 minutes was taken.
  • the steel plate was then extracted and then water cooled to room temperature.
  • the corrosion resistance of the steel sheet was evaluated by the corrosion rate in sulfuric acid.
  • the corrosion rate in sulfuric acid was measured as follows. A test piece having a thickness of 3 mm, a width of 25 mm, and a length of 25 mm was subjected to a 6-hour immersion test in sulfuric acid containing 2000 ppm of Cl ions, having a concentration of 15%, and a temperature of 40 ° C. The weight before and after immersion was measured, and the rate of weight reduction was determined. A steel having a corrosion rate in sulfuric acid of less than 0.1 g / m 2 ⁇ hr is evaluated as A (good), and a steel having a corrosion rate in sulfuric acid of 0.1 to 0.3 g / m 2 ⁇ hr is B (fair). The steel having a corrosion rate in sulfuric acid exceeding 0.3 g / m 2 ⁇ hr was evaluated as C (bad), and the evaluation results are shown in Tables 11 and 12.
  • the general-purpose duplex stainless steel Nos. 2-1 to 2-23 satisfying the conditions of the second embodiment have good hot manufacturability, corrosion resistance and impact properties.
  • steel Nos. 2-A to 2-K and 2-M to 2-T that do not satisfy the conditions of the second embodiment are inferior in any of hot manufacturability, corrosion resistance, and impact characteristics.
  • Comparative Example 2-L satisfies the characteristics but is inferior in cost because it contains a large amount of Co.
  • Comparative Example 2-U is S31803 steel, which has good hot manufacturability, corrosion resistance, and manufacturability. However, the contents of Ni and Mo are high, and the cost of the second embodiment is inferior.
  • duplex stainless steel material can be used for seawater desalination equipment, tanks for transport ships, various containers, etc., and has a great industrial contribution.

Abstract

An embodiment of this duplex stainless steel contains, by mass%, 0.03% or less of C, 0.05 to 1.0% of Si, 0.1 to 7.0% of Mn, 0.05% or less of P, 0.0001 to 0.0010% of S, 0.5 to 5.0% of Ni, 18.0 to 25.0% of Cr, 0.10 to 0.30% of N, 0.05% or less of Al, 0.0010 to 0.0040% of Ca, and 0.01 to 0.2% of Sn, the remainder comprising Fe and unavoidable impurities. The ratio Ca/O between the amounts of Ca and O is 0.3 to 1.0. The pitting index (PI) represented by equation (1) is less than 30. PI = Cr + 3.3Mo + 16N (1)

Description

二相ステンレス鋼、二相ステンレス鋼鋳片、および、二相ステンレス鋼鋼材Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
 本発明は、安価なSn含有二相ステンレス鋼に係わる。また、本発明は、CuとSnを複合して含有し、耐食性に優れ、かつ安価な二相ステンレス鋼に係わる。詳細には、本発明は、海水淡水化機器、輸送船のタンク類、各種容器等として使用可能な二相ステンレス鋼、二相ステンレス鋼鋳片、および、二相ステンレス鋼鋼材に関する。
 本願は、2011年10月21日に日本に出願された特願2011-231352号、及び2011年12月6日に日本に出願された特願2011-266351号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an inexpensive Sn-containing duplex stainless steel. The present invention also relates to a duplex stainless steel that contains Cu and Sn in combination, is excellent in corrosion resistance, and is inexpensive. Specifically, the present invention relates to a duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material that can be used as a seawater desalination device, tanks for transport ships, various containers, and the like.
This application claims priority based on Japanese Patent Application No. 2011-231352 filed in Japan on October 21, 2011 and Japanese Patent Application No. 2011-266351 filed in Japan on December 6, 2011. The contents are incorporated herein.
 汎用の二相ステンレス鋼はCr,Mo,Ni,Nを多量に含有し、耐食性が良好である。しかし、高価なMo,Niを含有するため、合金コストが高く、製造性も良好とは言いがたい。その結果、鋼材価格がそれほど安くならず、316系、317系のステンレス鋼などに代わって多く使用されるようになっているとは言いがたい。なお、本発明で言う汎用型二相ステンレス鋼とは、孔食指数PI(右の合金元素の含有量の数式和で示される/PI=Cr+3.3Mo+16N)が30以上、40未満(mass%)程度の値を有する二相ステンレス鋼を意味する。上記のような事情から、これらの鋼において、従来の汎用型二相ステンレス鋼と同等の耐食性を示し、且つ、合金コストが従来よりも低く、熱間製造性が良好で製造コストが安価な鋼が必要であると考えられる。 General-purpose duplex stainless steel contains a large amount of Cr, Mo, Ni, and N and has good corrosion resistance. However, since expensive Mo and Ni are contained, it is difficult to say that the alloy cost is high and the productivity is good. As a result, the price of the steel material is not so low, and it is difficult to say that it is often used instead of 316 series, 317 series stainless steel and the like. The general-purpose duplex stainless steel referred to in the present invention is a pitting corrosion index PI (indicated by the mathematical sum of the contents of the right alloy element / PI = Cr + 3.3Mo + 16N) of 30 or more and less than 40 (mass%). It means a duplex stainless steel having a value of degree. In view of the above circumstances, these steels exhibit corrosion resistance equivalent to that of conventional general-purpose duplex stainless steels, have lower alloy costs than conventional ones, have good hot productivity, and low production costs. Is considered necessary.
 一方で、最近、Cr,Ni,Mo等を節減した省合金型二相ステンレス鋼が開発されている。ここで、省合金型二相ステンレス鋼とは、耐孔食性がSUS304、316L相当の耐食性を示す鋼であって、合金元素の含有量で指標化される耐孔食指数PI(=Cr+3.3Mo+16N)がおよそ30未満のステンレス鋼を指す。耐孔食性、耐酸性に有用な合金元素の含有量を低減したこれらの鋼において、汎用型二相ステンレス鋼と同等の耐食性を得ることは困難である。しかし、安価な代替元素を用いた改良鋼の開発は可能であると考えられる。 On the other hand, recently, an alloy-saving duplex stainless steel with reduced Cr, Ni, Mo, etc. has been developed. Here, the alloy-saving duplex stainless steel is a steel having a pitting corrosion resistance equivalent to SUS304, 316L, and a pitting corrosion index PI (= Cr + 3.3Mo + 16N) indexed by the content of the alloy element. ) Refers to stainless steel of less than about 30. In these steels in which the content of alloy elements useful for pitting corrosion resistance and acid resistance is reduced, it is difficult to obtain corrosion resistance equivalent to that of general-purpose duplex stainless steel. However, it is considered possible to develop improved steel using inexpensive alternative elements.
 Snを含有する二相ステンレス鋼に関しては、従来より種々の提案がなされている。例えば、25%以上のCrを含有し、かつSnを選択元素として0.01~0.1%含有する二相ステンレス鋼が開示されている(下記特許文献1,2参照)。また、1%以下もしくは0.1%のSnを含有する省合金型二相ステンレス鋼が開示されている(下記特許文献3,4参照)。これらの特許文献では、Sn含有による耐食性改善を目的としているが、鋼材の熱間製造性とSn含有量との関係は検討されていなかった。 Various proposals have been made regarding duplex stainless steel containing Sn. For example, a duplex stainless steel containing 25% or more of Cr and 0.01 to 0.1% of Sn as a selective element is disclosed (see Patent Documents 1 and 2 below). Further, an alloy-saving duplex stainless steel containing 1% or less or 0.1% Sn is disclosed (see Patent Documents 3 and 4 below). Although these patent documents aim at improving the corrosion resistance by containing Sn, the relationship between the hot manufacturability of steel and the Sn content has not been studied.
 また、上記特許文献では、Nの含有量が0.2%以下の鋼を対象としている。Nは、ステンレス鋼の熱間加工性を低下させる元素である。Nを0.2%以上含有させた二相ステンレス鋼の熱間加工性を所望の水準に確保することは、Nを0.2%未満含有する二相ステンレス鋼の熱間加工性を所望の水準に確保する場合よりも困難である。0.20%以上のNを含有し、さらにSnおよびCuを複合して含有する二相ステンレス鋼の熱間加工性について開示した技術文献は見当たらない。 Further, in the above-mentioned patent document, the steel whose N content is 0.2% or less is targeted. N is an element that reduces the hot workability of stainless steel. To ensure the hot workability of the duplex stainless steel containing 0.2% or more of N at a desired level, the hot workability of the duplex stainless steel containing less than 0.2% of N is desired. It is more difficult than securing it to a standard. There is no technical document disclosing the hot workability of the duplex stainless steel containing 0.20% or more of N and further containing Sn and Cu in combination.
 本発明者らは、省合金型二相ステンレス鋼においては、Snによる耐酸性及び耐孔食性の改善の可能性に着目した。そしてSnの含有量と耐食性および熱間製造性の関係を調査した。その結果、0.01~0.2%のSnを含有することにより、耐食性改善の可能性を見い出した。しかし、Snを多量に含有させたこれらの二相ステンレス鋼において熱間製造性が低下することを把握した。このため、鋼材の歩留まりが低下する頻度が増加し、著しいコストアップが予想される。 The inventors focused on the possibility of improving acid resistance and pitting corrosion resistance by Sn in alloy-saving duplex stainless steel. Then, the relationship between the Sn content, corrosion resistance and hot manufacturability was investigated. As a result, the possibility of improving corrosion resistance was found by containing 0.01 to 0.2% Sn. However, it has been found that the hot productivity decreases in these duplex stainless steels containing a large amount of Sn. For this reason, the frequency with which the yield of steel materials decreases increases, and a significant cost increase is expected.
 また、本発明者らは、汎用型二相ステンレス鋼においては、SnおよびCuによる耐酸性及び耐孔食性の改善の可能性に着目した。そしてMo,Ni含有量が節減され、かつ0.20%以上のNを含有する二相ステンレス鋼において、SnおよびCuの含有量と耐食性および熱間製造性の関係を調査した。その結果、0.01~0.2%のSnと0.2~3.0%のCuを含有することにより、耐食性改善の可能性を見い出した。しかし、SnとCuを多量に含有させたこれらの二相ステンレス鋼において熱間製造性が低下することを把握した。このため、鋼材の歩留まりが低下する頻度が増加し、著しいコストアップが予想される。 In addition, the present inventors have focused on the possibility of improving acid resistance and pitting corrosion resistance by Sn and Cu in general-purpose duplex stainless steel. And in the duplex stainless steel in which the contents of Mo and Ni are reduced and N is 0.20% or more, the relationship between the contents of Sn and Cu, the corrosion resistance, and the hot manufacturability was investigated. As a result, the possibility of improving corrosion resistance was found by containing 0.01 to 0.2% Sn and 0.2 to 3.0% Cu. However, it has been found that the hot productivity is lowered in these duplex stainless steels containing a large amount of Sn and Cu. For this reason, the frequency with which the yield of steel materials decreases increases, and a significant cost increase is expected.
 本発明者等は、特許文献1~4をはじめとする従来のSn含有二相ステンレス熱間圧延鋼材の製造技術に関する従来の知見について検討した。その結果、二相ステンレス鋼に含まれるSnによる熱間脆性発生の温度域やSn含有量との関係性、その他の元素の含有量との関係性についての知見が乏しいことを見い出した。 The present inventors examined the conventional knowledge about the manufacturing technology of conventional Sn-containing duplex stainless steel hot rolled steel materials including Patent Documents 1 to 4. As a result, it has been found that there is little knowledge about the relationship between the temperature range of hot embrittlement due to Sn contained in the duplex stainless steel, the relationship with the Sn content, and the relationship with the content of other elements.
特開平3-158437号公報JP-A-3-158437 特開平4-072013号公報JP-A-4-072013 特開2010-222593号公報JP 2010-222593 A 国際公開WO2009-119895号公報International Publication WO2009-119895 特開2002-69592号公報JP 2002-69592 A 特開平7-118805号公報Japanese Patent Laid-Open No. 7-118805
 本発明は、省合金型二相ステンレス鋼において、Sn含有量と熱間製造性との関連を明らかにし、上記問題点を解決する対策を見い出す。また本発明は、汎用型二相ステンレス鋼において、Sn、Cu含有量と熱間製造性との関連を明らかにし、上記問題点を解決する対策を見い出す。これにより、本発明は、熱間製造性が良好で安価なSn含有二相ステンレス鋼、二相ステンレス鋼鋳片、及び二相ステンレス鋼鋼材を提供することを課題とする。このような二相ステンレス鋼は、耐食性とコストのバランスが優れると予想される。このため、各分野において広く使用される可能性が高まると考えられる。 The present invention clarifies the relationship between Sn content and hot manufacturability in alloy-saving duplex stainless steel and finds a solution to solve the above problems. The present invention also clarifies the relationship between Sn and Cu contents and hot manufacturability in general-purpose duplex stainless steels and finds measures for solving the above problems. Accordingly, an object of the present invention is to provide a Sn-containing duplex stainless steel, duplex stainless steel cast, and duplex stainless steel material that are favorable and inexpensive in hot productivity. Such a duplex stainless steel is expected to have an excellent balance between corrosion resistance and cost. For this reason, it is considered that the possibility of wide use in each field is increased.
 特に、第2の態様(第2の実施形態)では、N及びMnの含有量を増量すること、およびCu,Snを複合して添加することにより、高価な元素であるNiとMoの含有量を節減した安価な汎用型二相ステンレス鋼を開発することを発明の目的とする。 In particular, in the second aspect (second embodiment), the contents of Ni and Mo, which are expensive elements, are increased by increasing the contents of N and Mn and by adding Cu and Sn in combination. It is an object of the invention to develop an inexpensive general-purpose duplex stainless steel that saves energy.
 本発明者らは上記課題を解決するために、本発明が対象とする省合金型二相ステンレス鋼について、Sn含有量と、Ca,B,希土類元素(REM)等の含有量とを変更した溶解材を作製し、以下の実験を行った。なお、Ca,B,希土類元素(REM)等の含有量は、熱間製造性を改善すると言われる。 In order to solve the above problems, the inventors changed the Sn content and the contents of Ca, B, rare earth elements (REM), etc., for the alloy-saving duplex stainless steel targeted by the present invention. A melting material was prepared and the following experiment was performed. In addition, it is said that content of Ca, B, rare earth elements (REM), etc. improves hot productivity.
 溶解材を鋳造した鋳片より、引張試験片を採取した。引張試験片に対して1200~700℃で高温引張りを行い、絞り値(破断面の断面減少率)を測定して高温延性を評価した。また、熱間鍛造と熱間圧延により板厚12mmの熱間圧延鋼板を得て、耳割れ性を評価した。一部の鋼に対して熱間圧延の加熱温度、圧延温度を変更して耳割れ性を評価し、熱間圧延の加熱温度、圧延温度と、高温延性との相関を求めた。 A tensile test piece was collected from a slab cast from a melting material. The tensile test piece was subjected to high-temperature tension at 1200 to 700 ° C., and the drawing value (cross-sectional reduction rate of the fracture surface) was measured to evaluate high-temperature ductility. Moreover, the hot rolled steel plate of 12 mm thickness was obtained by hot forging and hot rolling, and the ear cracking property was evaluated. For some steels, the hot cracking heating temperature and the rolling temperature were changed to evaluate the ear cracking properties, and the correlation between the hot rolling heating temperature, the rolling temperature, and the high temperature ductility was obtained.
 前記した特許文献5や特許文献6に記載されているように、一般的に二相ステンレス鋼において、高温引張りで評価された鋳片の絞り値が60%を下回ると、多くの場合、その鋳片の熱間圧延で著しい耳割れを生じることが知られている。このため、この分野の技術者は、鋳片の高温における絞り値を少なくとも60%以上にすることを目標として、鋼の精錬、鋳造、及び熱間加工を行うことがしばしばである。ところが、本発明者らが0.1%前後のSnを含有する省合金型二相ステンレス鋼(ベース組成:21%Cr-2%Ni-3%Mn-0.18%N)鋳片の高温延性を評価したところ、いずれも絞り値が60%を下回ることが数回の溶製実験で明らかとなった。高温延性の評価は、以下のように行った。まず8mmφの丸棒の平行部を、高周波を用いて1200℃に加熱した。次いで、破断試験を行う温度まで温度を下げ、その温度にて20mm/秒の速度で引張り破断させた。そして、断面の収縮率を求めた。そのデータの一例を図1に示した。この結果から、Snを添加した安価な省合金型二相ステンレス鋼を実用的に得ることはほとんど望みが無いと考えられた。 As described in Patent Document 5 and Patent Document 6 described above, generally, in a duplex stainless steel, when the drawing value of a slab evaluated by high-temperature tension falls below 60%, in many cases, the casting It is known that hot cracking of pieces causes significant ear cracks. For this reason, engineers in this field often perform steel refining, casting, and hot working with the goal of at least 60% or higher drawing value at the slab. However, the high temperature of the alloy-saving duplex stainless steel (base composition: 21% Cr-2% Ni-3% Mn-0.18% N) slab containing about 0.1% of Sn by the present inventors. When the ductility was evaluated, it was revealed by several melting experiments that the drawing value was less than 60%. Evaluation of high temperature ductility was performed as follows. First, the parallel part of an 8 mmφ round bar was heated to 1200 ° C. using high frequency. Next, the temperature was lowered to a temperature at which a break test was performed, and the sample was pulled and broken at a speed of 20 mm / sec. And the contraction | shrinkage percentage of the cross section was calculated | required. An example of the data is shown in FIG. From this result, it was considered that there was almost no hope to obtain an inexpensive alloy-saving duplex stainless steel added with Sn.
 本発明者らは、真空溶解と鋳造で得られた省合金型Sn含有二相ステンレス鋼の鋳片を熱間圧延し、その際に発生した耳割れ長さを観察した。その結果、まれに耳割れが少ないSn含有二相ステンレス鋼鋼材が存在することを見い出した。熱間圧延実験は、以下のように行った。まず90~44mm厚の鋳片を1200℃に加熱した。次いで、複数の圧延パスを通じて12~6mmの厚さまで減厚した。仕上げ圧延温度は900℃程度に制御した。耳割れは左右に発生するが、それぞれの最大長さを合算して耳割れ長さを求めた。その鋼材の耳割れ長さを鋳片の高温延性の絞り値の極小値(図1では約900℃で極小値が得られている)で整理しても、きれいな相関が得られなかった。しかし、図2に示すように1000℃の絞り値で整理したところ、Snを含有しているかどうかに関わらず、良い相関を示すことが明らかとなった。なお、図2において、○(白丸)プロットの点は、図1のSn-A、Sn-Bの結果に対応しており、◆(黒の菱形)プロットの点は、その他の実験結果(Snを含有しているかどうかに関わらず検討した実験結果)である。 The present inventors hot-rolled a slab of alloy-saving Sn-containing duplex stainless steel obtained by vacuum melting and casting, and observed the length of the ear cracks generated at that time. As a result, it has been found that there are rarely Sn-containing duplex stainless steel materials with few ear cracks. The hot rolling experiment was performed as follows. First, a slab of 90 to 44 mm thickness was heated to 1200 ° C. The thickness was then reduced to 12-6 mm through multiple rolling passes. The finish rolling temperature was controlled to about 900 ° C. Ear cracks occur on the left and right, and the maximum length of each was added to obtain the ear crack length. Even if the ear crack length of the steel material was arranged with the minimum value of the hot ductility drawing value of the slab (the minimum value was obtained at about 900 ° C. in FIG. 1), a clean correlation could not be obtained. However, as shown in FIG. 2, when the aperture value was arranged at 1000 ° C., it became clear that a good correlation was exhibited regardless of whether or not Sn was contained. In FIG. 2, the points on the circle (white circles) plot correspond to the results of Sn-A and Sn-B in FIG. 1, and the points on the ◆ (black rhombus) plot indicate the results of other experiments (Sn (Experimental results examined regardless of whether or not it is contained).
 本発明者らは、上記耳割れが少ない鋼材が確実に得られる条件を見い出すために、さらに種々の元素含有量を変化させて溶製・鋳造・圧延実験を行った。そして、鋳片の高温延性の評価、熱間圧延後の鋼材耳割れの評価を精力的に行った。以上の実験を通じて、得られた知見をもとにして、安価なSn含有省合金型二相ステンレス鋼について明示した本発明の第1の態様の完成に至った。 The present inventors conducted melting, casting, and rolling experiments with various element contents varied in order to find out the conditions for reliably obtaining a steel material with few ear cracks. And evaluation of the hot ductility of a slab and evaluation of the steel material ear crack after hot rolling were performed energetically. Through the above experiments, based on the obtained knowledge, the first aspect of the present invention in which the inexpensive Sn-containing alloy-saving duplex stainless steel was clearly specified was completed.
 本発明の二相ステンレス鋼の第1の態様の要件を以下に示す。
(1)質量%で、C:0.03%以下、Si:0.05~1.0%、Mn:0.1~7.0%、P:0.05%以下、S:0.0001~0.0010%、Ni:0.5~5.0%、Cr:18.0~25.0%、N:0.10~0.30%、Al:0.05%以下、Ca:0.0010~0.0040%、及びSn:0.01~0.2%を含有し、残部がFeおよび不可避的不純物からなり、CaとOの含有量の比率Ca/Oが0.3~1.0であり、(1)式で示す孔食指数PIが30未満であることを特徴とする二相ステンレス鋼。
 PI=Cr+3.3Mo+16N (1)
(式(1)中の元素記号は、その元素の含有量を示す。)
(2)更に、Mo:1.5%以下、Cu:2.0%以下、W:1.0%以下、及びCo:2.0%以下、から選ばれる1種以上を含有することを特徴とする(1)に記載の二相ステンレス鋼。
(3)更に、V:0.05~0.5%、Nb:0.01~0.20%、及びTi:0.003~0.05%、から選ばれる1種以上を含有することを特徴とする(1)または(2)に記載の二相ステンレス鋼。
(4)更に、B:0.0050%以下、Mg:0.0030%以下、及びREM:0.10%以下、から選ばれる1種以上を含有することを特徴とする(1)乃至(3)のいずれか一項に記載の二相ステンレス鋼。
The requirements of the 1st aspect of the duplex stainless steel of this invention are shown below.
(1) By mass%, C: 0.03% or less, Si: 0.05 to 1.0%, Mn: 0.1 to 7.0%, P: 0.05% or less, S: 0.0001 To 0.0010%, Ni: 0.5 to 5.0%, Cr: 18.0 to 25.0%, N: 0.10 to 0.30%, Al: 0.05% or less, Ca: 0 .0010 to 0.0040%, and Sn: 0.01 to 0.2%, the balance is made of Fe and inevitable impurities, and the Ca / O content ratio Ca / O is 0.3 to 1 0.0, and the pitting corrosion index PI shown by the formula (1) is less than 30.
PI = Cr + 3.3Mo + 16N (1)
(The element symbol in the formula (1) indicates the content of the element.)
(2) Further, it contains at least one selected from Mo: 1.5% or less, Cu: 2.0% or less, W: 1.0% or less, and Co: 2.0% or less. The duplex stainless steel according to (1).
(3) It further contains at least one selected from V: 0.05 to 0.5%, Nb: 0.01 to 0.20%, and Ti: 0.003 to 0.05%. The duplex stainless steel according to (1) or (2), which is characterized.
(4) Further, it contains one or more selected from B: 0.0050% or less, Mg: 0.0030% or less, and REM: 0.10% or less (1) to (3 ) Duplex stainless steel according to any one of the above.
 また、本発明者らは上記課題を解決するために、本発明が対象とする汎用型二相ステンレス鋼について、Sn含有量と、Ca,B,希土類元素(REM)等の含有量と、Ni含有量とを変更するとともに、さらにCoを添加した溶解材を作製し、以下の実験を行った。なお、Ca,B,希土類元素(REM)等を含有すると、熱間製造性が改善すると言われる。 In order to solve the above-mentioned problems, the present inventors have made a general-purpose duplex stainless steel targeted by the present invention with a Sn content, a content of Ca, B, a rare earth element (REM), etc., and a Ni content. In addition to changing the content, a melting material to which Co was further added was produced, and the following experiment was performed. In addition, when Ca, B, rare earth elements (REM), etc. are contained, it is said that hot productivity improves.
 溶解材を鋳造した鋳片より、引張試験片を採取した。引張試験片に対して1200~700℃で高温引張りを行い、絞り値(破断面の断面減少率)を測定して高温延性を評価した。また、熱間鍛造と熱間圧延により板厚12mmの熱間圧延鋼板を得て、耳割れ性を評価した。一部の鋼に対して熱間圧延の加熱温度、圧延温度を変更して耳割れ性を評価し、熱間圧延の加熱温度、圧延温度と、高温延性との相関を求めた。 A tensile test piece was collected from a slab cast from a melting material. The tensile test piece was subjected to high-temperature tension at 1200 to 700 ° C., and the drawing value (cross-sectional reduction rate of the fracture surface) was measured to evaluate high-temperature ductility. Moreover, the hot rolled steel plate of 12 mm thickness was obtained by hot forging and hot rolling, and the ear cracking property was evaluated. For some steels, the hot cracking heating temperature and the rolling temperature were changed to evaluate the ear cracking properties, and the correlation between the hot rolling heating temperature, the rolling temperature, and the high temperature ductility was obtained.
 前記した特許文献5や特許文献6に記載されているように、一般的に二相ステンレス鋼において、高温引張りで評価された鋳片の絞り値が60%を下回ると、多くの場合、その鋳片の熱間圧延で著しい耳割れを生じることが知られている。このため、この分野の技術者は、鋳片の高温における絞り値を少なくとも60%以上にすることを目標として、鋼の精錬、鋳造、及び熱間加工を行うことがしばしばである。ところが、本発明者らが0.1%前後のSnを含有する汎用型二相ステンレス鋼(ベース組成:25%Cr-4%Ni-1.2%Mo-1.5%Cu-0.25%N)鋳片の高温延性を評価したところ、いずれも絞り値の極小値が60%を下回ることが数回の溶製実験で明らかとなった。高温延性の評価は、以下のように行った。まず8mmφの丸棒の平行部を、高周波を用いて1200℃に加熱した。次いで、破断試験を行う温度まで温度を下げ、その温度にて20mm/秒の速度で引張り破断させた。そして断面の収縮率を求めた。そのデータの一例を図3に示した。この結果から、Snを添加した安価な汎用型二相ステンレス鋼を実用的に得ることはほとんど望みが無いと考えられた。 As described in Patent Document 5 and Patent Document 6 described above, generally, in a duplex stainless steel, when the drawing value of a slab evaluated by high-temperature tension falls below 60%, in many cases, the casting It is known that hot cracking of pieces causes significant ear cracks. For this reason, engineers in this field often perform steel refining, casting, and hot working with the goal of at least 60% or higher drawing value at the slab. However, the present inventors have found that a general-purpose duplex stainless steel containing about 0.1% Sn (base composition: 25% Cr-4% Ni-1.2% Mo-1.5% Cu-0.25). % N) When the high temperature ductility of the slab was evaluated, it was revealed by several melting experiments that the minimum value of the drawing value was less than 60%. Evaluation of high temperature ductility was performed as follows. First, the parallel part of an 8 mmφ round bar was heated to 1200 ° C. using high frequency. Next, the temperature was lowered to a temperature at which a break test was performed, and the sample was pulled and broken at a speed of 20 mm / sec. Then, the shrinkage ratio of the cross section was obtained. An example of the data is shown in FIG. From this result, it was considered that there was little hope to obtain an inexpensive general-purpose duplex stainless steel added with Sn practically.
 本発明者らは、真空溶解と鋳造で得られた汎用型二相ステンレス鋼の鋳片を熱間圧延し、その際に発生した耳割れ長さを観察した。その結果、まれに耳割れが少ないSn含有二相ステンレス鋼鋼材が存在することを発見した。熱間圧延実験は、以下のように行った。まず90~44mm厚の鋳片を1200℃に加熱した。次いで、複数の圧延パスを通じて12~6mmの厚さまで減厚した。仕上げ圧延温度は900℃程度に制御した。耳割れは左右に発生するが、それぞれの最大長さを合算して耳割れ長さを求めた。その鋼材の耳割れ長さを鋳片の高温延性の絞り値の極小値(図3では約900℃で極小値が得られている)で整理しても、きれいな相関が得られなかった。しかし、図4に示すように1000℃の絞り値で整理したところ、Snを含有しているかどうかに関わらず、良い相関を示すことが明らかとなった。なお、図4において、○(白丸)プロットの点は、図3のSn-A、Sn-Bの結果に対応しており、◆(黒の菱形)プロットの点は、その他の実験結果(Snを含有しているかどうかに関わらず検討した実験結果)である。 The inventors of the present invention hot rolled a slab of general-purpose duplex stainless steel obtained by vacuum melting and casting, and observed the length of the ear cracks generated at that time. As a result, it was discovered that there are rarely Sn-containing duplex stainless steel materials with few ear cracks. The hot rolling experiment was performed as follows. First, a slab of 90 to 44 mm thickness was heated to 1200 ° C. The thickness was then reduced to 12-6 mm through multiple rolling passes. The finish rolling temperature was controlled to about 900 ° C. Ear cracks occur on the left and right, and the maximum length of each was added to obtain the ear crack length. Even if the ear crack length of the steel material was arranged with the minimum value of the drawing value of the hot ductility of the slab (the minimum value was obtained at about 900 ° C. in FIG. 3), a clean correlation could not be obtained. However, as shown in FIG. 4, when the aperture value was arranged at 1000 ° C., it became clear that a good correlation was exhibited regardless of whether or not Sn was contained. In FIG. 4, dots in the circle (white circles) correspond to the results of Sn-A and Sn-B in FIG. 3, and points in the ◆ (black rhombus) plot indicate other experimental results (Sn (Experimental results examined regardless of whether or not it is contained).
 本発明者らは上記耳割れが少ない鋼材が確実に得られる条件を見い出すために、さらに種々の元素含有量を変化させた溶製・鋳造・圧延実験を行った。そして、鋳片の高温延性評価、熱間圧延後の鋼材耳割れ評価を精力的に行った。以上の実験を通じて、得られた知見をもとにして、安価なSn含有二相ステンレス鋼について明示した本発明の第2の態様の完成に至った。 The present inventors conducted melting, casting, and rolling experiments in which various element contents were further changed in order to find out the conditions under which the above-mentioned steel material with few ear cracks could be obtained with certainty. And the hot ductility evaluation of the slab and the steel ear crack evaluation after hot rolling were performed energetically. Through the experiments described above, the second aspect of the present invention, which was clearly shown for inexpensive Sn-containing duplex stainless steel, was completed based on the obtained knowledge.
 本発明の二相ステンレス鋼の第2の態様の要件を以下に示す。
(5)質量%で、C:0.03%以下、Si:0.05~1.0%、Mn:0.1~4.0%、P:0.05%以下、S:0.0001~0.0010%、Cr:23.0~28.0%、Ni:2.0~6.0%、Co:0~1.0%、Cu:0.2~3.0%、Sn:0.01~0.2%、N:0.20~0.30%、Al:0.05%以下、及びCa:0.0010~0.0040%を含有し、残部がFeおよび不可避的不純物からなり、Ni+Coが2.5%以上であり、CaとOの含有量の比率Ca/Oが0.3~1.0であり、(1)式で示すPIが30以上、40未満であることを特徴とする二相ステンレス鋼。
 PI=Cr+3.3Mo+16N (1)
(式(1)中の元素記号は、その元素の含有量を示す。)
(6)更に、Mo:2.0%以下、及びW:1.0%以下のうち、いずれか一方又は両方を含有することを特徴とする(5)に記載の二相ステンレス鋼。
(7)更に、V:0.05~0.5%、Nb:0.01~0.15%、及びTi:0.003~0.05%、から選ばれる1種以上を含有することを特徴とする(5)または(6)に記載の二相ステンレス鋼。
(8)更に、B:0.0050%以下、Mg:0.0030%以下、及びREM:0.10%以下、から選ばれる1種以上を含有することを特徴とする(5)乃至(7)のいずれか一項に記載の二相ステンレス鋼。
The requirements for the second aspect of the duplex stainless steel of the present invention are shown below.
(5) By mass%, C: 0.03% or less, Si: 0.05 to 1.0%, Mn: 0.1 to 4.0%, P: 0.05% or less, S: 0.0001 To 0.0010%, Cr: 23.0 to 28.0%, Ni: 2.0 to 6.0%, Co: 0 to 1.0%, Cu: 0.2 to 3.0%, Sn: Contains 0.01 to 0.2%, N: 0.20 to 0.30%, Al: 0.05% or less, and Ca: 0.0010 to 0.0040%, the balance being Fe and inevitable impurities Ni + Co is 2.5% or more, the Ca / O content ratio Ca / O is 0.3 to 1.0, and the PI represented by the formula (1) is 30 or more and less than 40. Duplex stainless steel characterized by that.
PI = Cr + 3.3Mo + 16N (1)
(The element symbol in the formula (1) indicates the content of the element.)
(6) Furthermore, any one or both of Mo: 2.0% or less and W: 1.0% or less are contained, The duplex stainless steel according to (5).
(7) It further contains at least one selected from V: 0.05 to 0.5%, Nb: 0.01 to 0.15%, and Ti: 0.003 to 0.05%. The duplex stainless steel according to (5) or (6), characterized in that it is characterized.
(8) Further, it contains one or more selected from B: 0.0050% or less, Mg: 0.0030% or less, and REM: 0.10% or less (5) to (7 ) Duplex stainless steel according to any one of the above.
 本発明の二相ステンレス鋼鋳片及び二相ステンレス鋼鋼材の一態様の要件を以下に示す。
(9)(1)乃至(8)の何れか一項に記載の組成を有し、1000℃における破断絞り値が70%以上であることを特徴とする二相ステンレス鋼鋳片。
(10)(9)に記載の二相ステンレス鋼鋳片を熱間加工して製造されたことを特徴とする二相ステンレス鋼鋼材。
The requirements for one aspect of the duplex stainless steel slab and duplex stainless steel material of the present invention are shown below.
(9) A duplex stainless steel slab having the composition according to any one of (1) to (8) and having a fracture drawing value at 1000 ° C. of 70% or more.
(10) A duplex stainless steel material produced by hot working the duplex stainless steel cast according to (9).
 本発明の態様により、海水淡水化機器、輸送船のタンク類、各種容器等の材料として従来用いられていた鋼よりも改善された耐食性を有し、コストとのバランスの優れた二相ステンレス鋼、二相ステンレス鋼鋳片、及び二相ステンレス鋼鋼材を提供することができる。このため、本発明の態様は、産業の発展に寄与するところは極めて大である。 According to an aspect of the present invention, duplex stainless steel having improved corrosion resistance and excellent balance with cost compared to steel conventionally used as a material for seawater desalination equipment, tanks for transport ships, various containers, etc. A duplex stainless steel slab and a duplex stainless steel material can be provided. For this reason, the aspect of the present invention greatly contributes to industrial development.
二相ステンレス鋼の第1の態様(省合金型二相ステンレス鋼)と関連して、Sn含有およびSn無添加の二相ステンレス鋼の高温延性を例示する図である。It is a figure which illustrates high temperature ductility of the duplex stainless steel which contains Sn and does not contain Sn in relation to the first aspect (alloy-saving duplex stainless steel) of the duplex stainless steel. 二相ステンレス鋼の第1の態様(省合金型二相ステンレス鋼)と関連して、熱延後の耳割れ長さと1000℃での絞り値の関係を示す図である。It is a figure which shows the relationship between the ear crack length after a hot rolling, and the aperture value at 1000 degreeC in relation to the 1st aspect (alloy saving type duplex stainless steel) of a duplex stainless steel. 二相ステンレス鋼の第2の態様(汎用型二相ステンレス鋼)と関連して、Sn含有およびSn無添加の二相ステンレス鋼鋳片の高温延性を例示する図である。It is a figure which illustrates high temperature ductility of the duplex stainless steel slab containing Sn and Sn-free in connection with the second aspect of the duplex stainless steel (general-purpose duplex stainless steel). 二相ステンレス鋼の第2の態様(汎用型二相ステンレス鋼)と関連して、熱延後の耳割れ長さと1000℃での絞り値の関係を示す図である。It is a figure which shows the relationship between the ear crack length after hot rolling, and the aperture value at 1000 degreeC in connection with the 2nd aspect (general-purpose type duplex stainless steel) of duplex stainless steel.
(第1の実施形態)
 以下に、本発明の二相ステンレス鋼の第1の態様(省合金型二相ステンレス鋼)の限定理由について説明する。なお、各成分の含有量は質量%を示す。
(First embodiment)
Below, the reason for limitation of the 1st aspect (alloy saving type duplex stainless steel) of the duplex stainless steel of this invention is demonstrated. In addition, content of each component shows the mass%.
 なお、本実施形態において、ステンレス鋼鋳片とは、鋳造後、熱間加工や鍛造等の加工を施す前の状態の鋼を意味し、ステンレス鋼鋼材とは、前記鋳片を種々方法により加工した後の鋼片、熱間圧延鋼板、冷間圧延鋼板、鋼線、鋼管等を意味する。また、ステンレス鋼とは鋳片や鋼材など鋼としての形態全般を意味する。上記の加工は熱間および冷間の加工を含む。 In the present embodiment, the stainless steel slab means steel in a state after casting and before being subjected to processing such as hot working or forging, and the stainless steel material means that the slab is processed by various methods. It means a steel slab, a hot rolled steel plate, a cold rolled steel plate, a steel wire, a steel pipe, etc. Stainless steel means all forms of steel such as slabs and steel materials. The above processing includes hot and cold processing.
 ステンレス鋼の耐食性を確保するために、C量を0.03%以下に制限する。0.03%を越えてCを含有させると、熱間圧延時にCr炭化物が生成して、耐食性、靱性が劣化する。 In order to ensure the corrosion resistance of stainless steel, the C content is limited to 0.03% or less. When C is contained exceeding 0.03%, Cr carbide is generated during hot rolling, and corrosion resistance and toughness deteriorate.
 Siは、脱酸のため0.05%以上添加する。しかしながら、1.0%を超えてSiを添加すると、靱性が劣化する。そのため、Si量の上限を1.0%に限定する。Si量の好ましい範囲は、0.2~0.7%である。 Si is added at 0.05% or more for deoxidation. However, when Si exceeds 1.0%, toughness deteriorates. Therefore, the upper limit of Si content is limited to 1.0%. A preferable range of the amount of Si is 0.2 to 0.7%.
 Mnはオーステナイト相を増加させ靭性を改善する効果を有する。またMnは窒化物析出温度TNを低下させる効果を有するため、本実施形態の鋼材では、積極的にMnを添加することが好ましい。母材および溶接部の靱性のため0.1%以上のMnを添加する。しかしながら、7.0%を超えてMnを添加すると、耐食性および靭性が劣化する。そのため、Mn量の上限を7.0%に限定する。好ましいMn含有量は1.0~6.0%であり、さらに好ましくは2.0~5.0%である。 Mn has the effect of increasing the austenite phase and improving toughness. Further, since Mn has the effect of lowering the nitride precipitation temperature TN, it is preferable to add Mn positively in the steel material of this embodiment. 0.1% or more of Mn is added for the toughness of the base metal and the weld. However, when Mn is added exceeding 7.0%, corrosion resistance and toughness deteriorate. Therefore, the upper limit of the amount of Mn is limited to 7.0%. The Mn content is preferably 1.0 to 6.0%, more preferably 2.0 to 5.0%.
 Pは原料から不可避に混入する元素であり、熱間加工性および靱性を劣化させるため、P量を0.05%以下に限定する。P量は、好ましくは、0.03%以下である。 P P is an element inevitably mixed from the raw material, and the P content is limited to 0.05% or less in order to deteriorate hot workability and toughness. The amount of P is preferably 0.03% or less.
 Sは原料から不可避に混入する元素であり、熱間加工性、靱性および耐食性をも劣化させるため、S量を0.0010%以下に限定する。また、S量を0.0001%未満に低減することは脱硫精錬のためのコストが高くなる。このためS量を0.0001~0.0010%と定めた。S量は、好ましくは、0.0002~0.0006%である。 S is an element that is inevitably mixed from the raw material, and also degrades hot workability, toughness, and corrosion resistance, so the S amount is limited to 0.0010% or less. Moreover, reducing the amount of S to less than 0.0001% increases the cost for desulfurization refining. For this reason, the S content is determined to be 0.0001 to 0.0010%. The amount of S is preferably 0.0002 to 0.0006%.
 Niは、オーステナイト組織を安定にし、各種酸に対する耐食性、さらに靭性を改善するため0.5%以上のNiを含有させる。Ni含有量を増加することにより、窒化物の析出温度を低下させることが可能になる。一方、Niは高価な合金であり、省合金型二相ステンレス鋼を対象とした本実施形態の鋼では、コストの観点より、Ni量を5.0%以下に制限する。Ni含有量は、好ましくは1.0~4.0%であり、さらに好ましくは1.5~3%である。 Ni stabilizes the austenite structure and contains 0.5% or more of Ni in order to improve corrosion resistance to various acids and toughness. By increasing the Ni content, the nitride precipitation temperature can be lowered. On the other hand, Ni is an expensive alloy, and the amount of Ni is limited to 5.0% or less from the viewpoint of cost in the steel of the present embodiment intended for alloy-saving duplex stainless steel. The Ni content is preferably 1.0 to 4.0%, more preferably 1.5 to 3%.
 基本的な耐食性を確保するため、18.0%以上のCrを含有させる。一方25.0%を超えてCrを含有させると、フェライト相分率が増加し、靭性および溶接部の耐食性を阻害する。このためCrの含有量を18.0%以上25.0%以下とした。好ましいCrの含有量は19.0~23.0%である。 ¡In order to secure basic corrosion resistance, 18.0% or more of Cr is included. On the other hand, if the Cr content exceeds 25.0%, the ferrite phase fraction increases, and the toughness and the corrosion resistance of the weld zone are impaired. Therefore, the Cr content is set to 18.0% or more and 25.0% or less. A preferable Cr content is 19.0 to 23.0%.
 Nは、オーステナイト相に固溶して強度、耐食性を高める有効な元素である。このために0.10%以上のNを含有させる。一方、固溶限度はCr,Mn含有量に応じて高くなるが、本実施形態の鋼においては0.30%を越えてNを含有させると、Cr窒化物を析出して靭性および耐食性を阻害するようになるとともに熱間製造性を阻害するようになる。このためN含有量の上限を0.30%とした。好ましいN含有量は0.10~0.25%である。 N is an effective element that improves the strength and corrosion resistance by dissolving in the austenite phase. For this purpose, 0.10% or more of N is contained. On the other hand, the solid solution limit increases depending on the Cr and Mn contents. However, in the steel of this embodiment, if N is contained in excess of 0.30%, Cr nitride is precipitated to inhibit toughness and corrosion resistance. As a result, hot manufacturability is impaired. For this reason, the upper limit of N content was 0.30%. A preferable N content is 0.10 to 0.25%.
 Alは、鋼の脱酸元素であり、必要に応じて鋼中の酸素を低減する。このため0.05%以上のSiとあわせてAlを含有させる。Sn含有鋼において、酸素量の低減は、熱間製造性を確保するために必須であり、このために必要に応じて0.003%以上のAlの含有が必要である。一方でAlはNとの親和力が比較的大きな元素であり、過剰に添加するとAlNを生じてステンレス鋼の靭性を阻害する。その程度はN含有量にも依存するが、Alが0.05%を越えると、靭性低下が著しくなる。このためAl含有量の上限を0.05%と定めた。Al量は、好ましくは0.04%以下である。 Al is a deoxidizing element of steel and reduces oxygen in the steel as necessary. For this reason, Al is contained together with 0.05% or more of Si. In the Sn-containing steel, the reduction of the oxygen amount is essential to ensure hot productivity, and for this purpose, it is necessary to contain 0.003% or more of Al as necessary. On the other hand, Al is an element having a relatively large affinity with N, and if added excessively, AlN is generated and inhibits the toughness of stainless steel. The degree depends on the N content, but when Al exceeds 0.05%, the toughness is significantly lowered. For this reason, the upper limit of Al content was set to 0.05%. The amount of Al is preferably 0.04% or less.
 Caは、鋼の熱間製造性のための重要な元素であり、鋼中のOとSを介在物として固定し、熱間製造性を改善するために、Caを含有させることが必要である。本実施形態の鋼では、その目的のために0.0010%以上のCaを含有させる。また過剰な添加は耐孔食性を低下させる。そのためCaの含有量の上限を0.0040%とした。 Ca is an important element for the hot manufacturability of steel, and it is necessary to contain Ca in order to fix O and S in the steel as inclusions and improve the hot manufacturability. . In the steel of this embodiment, 0.0010% or more of Ca is contained for that purpose. Moreover, excessive addition reduces pitting corrosion resistance. Therefore, the upper limit of the Ca content is set to 0.0040%.
 Snは、本実施形態の鋼の耐食性を改善するために含有させる。そのために最低0.01%のSnの含有が必要である。さらには0.02%以上のSnを含有させることが好ましい。一方でSnは鋼の熱間製造性を阻害する元素であり、本実施形態が対象とする合金元素型節減型二相ステンレス鋼において、特に900℃以下でのフェライト相とオーステナイト相の界面の熱間強度を低下する。その低下の程度はS,Ca,Oの含有量にも依存するが、本実施形態中のその他の制限を加えても0.2%を越えてSnを含有させると、熱間製造性の低下を防ぎ得なくなるため、Sn含有量の上限を0.2%と定めた。 Sn is contained in order to improve the corrosion resistance of the steel of this embodiment. Therefore, it is necessary to contain at least 0.01% Sn. Furthermore, it is preferable to contain 0.02% or more of Sn. On the other hand, Sn is an element that hinders the hot manufacturability of steel. In the alloy element type saving duplex stainless steel targeted by the present embodiment, the heat at the interface between the ferrite phase and the austenite phase particularly at 900 ° C. or lower. Decrease the strength. The degree of the reduction depends on the contents of S, Ca, and O, but even if other limitations in the present embodiment are added, if Sn is contained exceeding 0.2%, the hot productivity is lowered. Therefore, the upper limit of the Sn content is set to 0.2%.
 OとCaの含有量の比率Ca/Oは、本実施形態の鋼の熱間製造性および耐食性を改善するための重要な成分指標である。Sn含有鋼の熱間製造性の改善のためにCa/Oの下限が制限される。Sn含有鋼の高温延性は、特に900℃以下の温度で低下する。Ca/Oの値が0.3未満であると、1000℃の高温延性も低下し、熱間製造性が大きく損なわれる。このため本実施形態の鋼において、Ca/Oを0.3以上に制限する。一方、Caを過剰に添加し、Ca/Oが1.0を越えるようになると、耐孔食性が損なわれるようになる。またさらにCaが過剰になると、1000~1100℃における高温延性も損なわれるようになる。このためCa/Oの上限を1.0と定めた。Ca/Oは、好ましくは0.4~0.8である。 The ratio Ca / O of the content of O and Ca is an important component index for improving the hot manufacturability and corrosion resistance of the steel of this embodiment. In order to improve the hot manufacturability of the Sn-containing steel, the lower limit of Ca / O is limited. The hot ductility of the Sn-containing steel decreases particularly at a temperature of 900 ° C. or less. When the value of Ca / O is less than 0.3, the hot ductility at 1000 ° C. is also lowered, and hot productivity is greatly impaired. For this reason, in the steel of this embodiment, Ca / O is limited to 0.3 or more. On the other hand, when Ca is added excessively and Ca / O exceeds 1.0, pitting corrosion resistance is impaired. Further, when Ca becomes excessive, the high temperature ductility at 1000 to 1100 ° C. is also impaired. For this reason, the upper limit of Ca / O was set to 1.0. Ca / O is preferably 0.4 to 0.8.
 Oは、不可避的不純物であり、その上限を特に定めなかったが、非金属介在物の代表である酸化物を構成する重要な元素である。その酸化物の組成制御は、熱間製造性の改善にとって非常に重要である。また粗大なクラスター状酸化物が生成すると、表面疵の原因となる。このため、Oの含有量は低く制限する必要がある。本実施形態では、先に述べたように、Ca含有量とO含有量の比率を0.3以上とすることで、Oの含有量を制限した。O含有量の上限は0.005%以下が好ましい。 O is an inevitable impurity, and its upper limit is not particularly defined, but is an important element constituting an oxide that is representative of non-metallic inclusions. Controlling the composition of the oxide is very important for improving hot manufacturability. In addition, when a coarse cluster-like oxide is generated, it causes surface defects. For this reason, it is necessary to restrict | limit the content of O low. In this embodiment, as described above, the O content is limited by setting the ratio of the Ca content and the O content to 0.3 or more. The upper limit of the O content is preferably 0.005% or less.
 耐食性を付加的に高めるため、必要に応じて、Mo:1.5%以下、Cu:2.0%以下、W:1.0%以下、及びCo:2.0%以下、から選ばれる1種以上を含有してもよい。その限定理由について説明する。 In order to further increase the corrosion resistance, 1 is selected from Mo: 1.5% or less, Cu: 2.0% or less, W: 1.0% or less, and Co: 2.0% or less as necessary. It may contain seeds or more. The reason for the limitation will be described.
 Moは、ステンレス鋼の耐食性を付加的に高める非常に有効な元素であり、必要に応じて含有させることができる。耐食性改善のためには0.2%以上のMoを含有させることが好ましい。一方でMoは、金属間化合物析出を促進する元素であり、本実施形態の鋼では熱間圧延時の析出を抑制する観点より、Moの含有量の上限を1.5%とする。 Mo is a very effective element that additionally enhances the corrosion resistance of stainless steel, and can be contained as required. In order to improve the corrosion resistance, it is preferable to contain 0.2% or more of Mo. On the other hand, Mo is an element that promotes precipitation of intermetallic compounds, and the upper limit of the Mo content is set to 1.5% from the viewpoint of suppressing precipitation during hot rolling in the steel of this embodiment.
 Cuは、ステンレス鋼の酸に対する耐食性を付加的に高める元素であり、かつ靭性を改善する作用を有するため、必要に応じて0.3%以上含有させることが推奨される。2.0%を越えてCuを含有させると、熱間圧延時に固溶度を超えてεCuが析出し脆化を発生する。このため、Cu量の上限を2.0%とした。Cuを含有させる場合の好ましい含有量は0.3~1.5%である。 Cu is an element that additionally increases the corrosion resistance of stainless steel to acids, and has the effect of improving toughness. Therefore, it is recommended to contain 0.3% or more as necessary. When Cu is contained exceeding 2.0%, εCu precipitates exceeding the solid solubility during hot rolling to cause embrittlement. For this reason, the upper limit of the amount of Cu was made into 2.0%. A preferable content when Cu is contained is 0.3 to 1.5%.
 Wは、Moと同様にステンレス鋼の耐食性を付加的に向上させる元素であり、必要に応じて添加することができる。本実施形態の鋼において耐食性を高める目的のためには、W量の上限を1.0%とする。好ましいWの含有量は0.05~0.5%である。 W, like Mo, is an element that additionally improves the corrosion resistance of stainless steel, and can be added as necessary. For the purpose of improving the corrosion resistance in the steel of this embodiment, the upper limit of the W amount is set to 1.0%. A preferable W content is 0.05 to 0.5%.
 Coは、鋼の靭性と耐食性を高めるために有効な元素であり、選択的に添加される。Coの含有量は0.03%以上が好ましい。2.0%を越えてCoを含有させると、高価な元素であるためにコストに見合った効果が発揮されないようになる。このため、Co量の上限を2.0%と定めた。添加する場合の好ましいCo含有量は0.03~1.0%である。 Co is an element effective for enhancing the toughness and corrosion resistance of steel and is selectively added. The Co content is preferably 0.03% or more. When Co is contained in excess of 2.0%, an effect commensurate with the cost cannot be exhibited because it is an expensive element. For this reason, the upper limit of the amount of Co was set to 2.0%. The preferable Co content when added is 0.03 to 1.0%.
 更に、V:0.05~0.5%、Nb:0.01~0.20%、及びTi:0.003~0.05%、から選ばれる1種以上を含有してもよい。これらは、Crよりも窒化物の生成傾向が大きい元素である。V,Nb,Tiは何れも必要に応じて添加することができ、微量に含有させた場合には耐食性が向上する傾向を有する。 Further, it may contain one or more selected from V: 0.05 to 0.5%, Nb: 0.01 to 0.20%, and Ti: 0.003 to 0.05%. These are elements that have a greater tendency to form nitrides than Cr. V, Nb, and Ti can be added as necessary, and when contained in a very small amount, the corrosion resistance tends to be improved.
 Vが形成する窒化物、炭化物は、熱間加工および鋼材の冷却過程で生成し、耐食性を高める作用を有する。この理由として十分な確認はなされていないが、700℃以下でのクロム窒化物の生成速度を抑制する可能性が考えられる。この耐食性の改善のために0.05%以上のVを含有させる。0.5%を超えてVを含有させると、粗大なV系炭窒化物が生成し、靱性が劣化する。そのため、V量の上限を0.5%に限定する。添加する場合の好ましいV含有量は0.1~0.3%の範囲である。 Nitride and carbide formed by V are generated during the hot working and cooling of the steel material, and have the effect of enhancing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower. In order to improve this corrosion resistance, 0.05% or more of V is contained. When V is contained exceeding 0.5%, coarse V-based carbonitrides are produced and toughness is deteriorated. Therefore, the upper limit of the V amount is limited to 0.5%. When V is added, the V content is preferably in the range of 0.1 to 0.3%.
 Nbが形成する窒化物、炭化物は、熱間加工および鋼材の冷却過程で生成し、耐食性を高める作用を有する。この理由として十分な確認はなされていないが、700℃以下でのクロム窒化物の生成速度を抑制する可能性が考えられる。この耐食性の改善のために0.01%以上のNbを含有させる。一方、過剰な添加は熱間圧延前の加熱時に未固溶析出物として析出するようになって靭性を阻害するようになる。このため、Nbの含有量の上限を0.20%と定めた。添加する場合の好ましいNb含有量の範囲は、0.03%~0.10%である。 Nitrides and carbides formed by Nb are generated during the hot working and cooling of the steel material, and have the effect of increasing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower. In order to improve the corrosion resistance, 0.01% or more of Nb is contained. On the other hand, excessive addition causes precipitation as an undissolved precipitate during heating before hot rolling, thereby inhibiting toughness. For this reason, the upper limit of the Nb content is set to 0.20%. When Nb is added, the preferable range of Nb content is 0.03% to 0.10%.
 Tiは、極微量で酸化物、窒化物、硫化物を形成し鋼の凝固および高温加熱組織の結晶粒を微細化する元素である。またV、Nbと同様に、Tiは、クロム窒化物のクロムの一部に置換する性質も有する。0.003%以上のTiの含有により、Tiの析出物が形成されるようになる。一方0.05%を越えて二相ステンレス鋼にTiを含有させると、粗大なTiNが生成して鋼の靭性を阻害するようになる。このためTiの含有量の上限を0.05%と定めた。Tiの好適な含有量は0.005~0.020%である。 Ti is an element that forms oxides, nitrides, and sulfides in a very small amount, and solidifies the steel and refines the crystal grains of the high-temperature heating structure. Further, like V and Nb, Ti also has a property of substituting for a part of chromium in the chromium nitride. When Ti is contained in an amount of 0.003% or more, Ti precipitates are formed. On the other hand, when Ti is contained in the duplex stainless steel exceeding 0.05%, coarse TiN is generated and the toughness of the steel is inhibited. For this reason, the upper limit of the Ti content is set to 0.05%. A preferable content of Ti is 0.005 to 0.020%.
 更に、B:0.0050%以下、Mg:0.0030%以下、及びREM:0.10%以下、から選ばれる1種以上を含有してもよい。熱間加工性の向上をさらに図るため、必要に応じて含有させるB,Mg,REMを下記の通り限定する。 Furthermore, you may contain 1 or more types chosen from B: 0.0050% or less, Mg: 0.0030% or less, and REM: 0.10% or less. In order to further improve the hot workability, B, Mg, and REM to be contained as necessary are limited as follows.
 B,Mg,REMは、いずれも鋼の熱間加工性を改善する元素であり、その目的で1種以上添加される。B,Mg,REMのいずれも、過剰な添加は逆に熱間加工性および靭性を低下する。このため、その含有量の上限を次のように定めた。B量の上限は0.0050%である。Mg量の上限は0.0030%である。REM量の上限は0.10%である。好ましい含有量はそれぞれB:0.0005~0.0030%、Mg:0.0001~0.0015%、REM:0.005~0.05%である。ここでREMは、LaやCe等のランタノイド系希土類元素の含有量の総和とする。 B, Mg, and REM are all elements that improve the hot workability of steel, and one or more of them are added for that purpose. In any of B, Mg, and REM, excessive addition conversely decreases hot workability and toughness. For this reason, the upper limit of the content was defined as follows. The upper limit of the amount of B is 0.0050%. The upper limit of the amount of Mg is 0.0030%. The upper limit of the amount of REM is 0.10%. The preferred contents are B: 0.0005 to 0.0030%, Mg: 0.0001 to 0.0015%, and REM: 0.005 to 0.05%, respectively. Here, REM is the total content of lanthanoid rare earth elements such as La and Ce.
 以上、説明してきた本実施形態の二相ステンレス鋼の特徴を有することで、Snを含有した省合金二相ステンレス鋼の熱間製造性を顕著に改善することが出来る。
 鋳片の段階では、1000℃における破断絞り値が70%以上となる。また、この鋳片に熱間加工を含む加工を施すことによって、歩留まり良くかつ表面疵の少ない二相ステンレス鋼鋼材を得ることが可能となる。
As described above, by having the characteristics of the duplex stainless steel of the present embodiment described above, the hot productivity of the alloy-saving duplex stainless steel containing Sn can be remarkably improved.
At the slab stage, the fracture drawing value at 1000 ° C. is 70% or more. In addition, by performing processing including hot working on the slab, it is possible to obtain a duplex stainless steel material with high yield and low surface flaws.
(第2の実施形態)
 以下に、本発明の二相ステンレス鋼の第2の態様(汎用型二相ステンレス鋼)の限定理由について説明する。なお、各成分の含有量は質量%を示す。
(Second Embodiment)
Below, the reason for limitation of the 2nd aspect (general-purpose type duplex stainless steel) of the duplex stainless steel of this invention is demonstrated. In addition, content of each component shows the mass%.
 なお、本実施形態において、ステンレス鋼鋳片とは、鋳造後、熱間加工や鍛造等の加工を施す前の状態の鋼を意味し、ステンレス鋼鋼材とは、前記鋳片を種々方法により加工した後の鋼片、熱間圧延鋼板、冷間圧延鋼板、鋼線、鋼管等を意味する。また、ステンレス鋼とは鋳片や鋼材など鋼としての形態全般を意味する。上記の加工は熱間および冷間の加工を含む。 In the present embodiment, the stainless steel slab means steel in a state after casting and before being subjected to processing such as hot working or forging, and the stainless steel material means that the slab is processed by various methods. It means a steel slab, a hot rolled steel plate, a cold rolled steel plate, a steel wire, a steel pipe, etc. Stainless steel means all forms of steel such as slabs and steel materials. The above processing includes hot and cold processing.
 ステンレス鋼の耐食性を確保するために、C量を0.03%以下に制限する。0.03%を越えてCを含有させると、熱間圧延時にCr炭化物が生成して、耐食性、靱性が劣化する。 In order to ensure the corrosion resistance of stainless steel, the C content is limited to 0.03% or less. When C is contained exceeding 0.03%, Cr carbide is generated during hot rolling, and corrosion resistance and toughness deteriorate.
 Siは、脱酸のため0.05%以上添加する。しかしながら、1.0%を超えてSiを添加すると、靱性が劣化する。そのため、Si量の上限を1.0%に限定する。Si量の好ましい範囲は、0.2~0.7%である。 Si is added at 0.05% or more for deoxidation. However, when Si exceeds 1.0%, toughness deteriorates. Therefore, the upper limit of Si content is limited to 1.0%. A preferable range of the amount of Si is 0.2 to 0.7%.
 Mnはオーステナイト相を増加させ靭性を改善する効果を有する。またMnは窒化物の析出を抑制する効果を有するため、本実施形態の鋼材では、積極的にMnを添加することが好ましい。母材および溶接部の靱性のため0.1%以上のMnを添加する。しかしながら、4.0%を超えてMnを添加すると、耐食性および靭性が劣化する。そのため、Mn量の上限を4.0%に限定する。好ましいMn含有量は1.0~3.5%であり、さらに好ましくは2.0~3.0%である。 Mn has the effect of increasing the austenite phase and improving toughness. Further, since Mn has an effect of suppressing the precipitation of nitride, it is preferable to positively add Mn to the steel material of this embodiment. 0.1% or more of Mn is added for the toughness of the base metal and the weld. However, when Mn is added exceeding 4.0%, corrosion resistance and toughness deteriorate. Therefore, the upper limit of the amount of Mn is limited to 4.0%. The Mn content is preferably 1.0 to 3.5%, more preferably 2.0 to 3.0%.
 Pは原料から不可避に混入する元素であり、熱間加工性および靱性を劣化させるため、P量を0.05%以下に限定する。P量は、好ましくは、0.03%以下である。 P P is an element inevitably mixed from the raw material, and the P content is limited to 0.05% or less in order to deteriorate hot workability and toughness. The amount of P is preferably 0.03% or less.
 Sは原料から不可避に混入する元素であり、熱間加工性、靱性および耐食性をも劣化させるため、S量を0.0010%以下に限定する。また、S量を0.0001%未満に低減することは脱硫精錬のためのコストが高くなる。このためS量を0.0001~0.0010%と定めた。S量は、好ましくは、0.0002~0.0006%である。 S is an element that is inevitably mixed from the raw material, and also degrades hot workability, toughness, and corrosion resistance, so the S amount is limited to 0.0010% or less. Moreover, reducing the amount of S to less than 0.0001% increases the cost for desulfurization refining. For this reason, the S content is determined to be 0.0001 to 0.0010%. The amount of S is preferably 0.0002 to 0.0006%.
 Crは、基本的な耐食性を確保するため23.0%以上含有させる。一方28.0%を超えてCrを含有させると、フェライト相分率が増加し、靭性および溶接部の耐食性を阻害する。このためCrの含有量を23.0%以上28.0%以下とした。好ましいCr含有量は24.0~27.5%である。 ¡Cr is contained 23.0% or more in order to ensure basic corrosion resistance. On the other hand, when Cr is contained exceeding 28.0%, the ferrite phase fraction is increased, and the toughness and the corrosion resistance of the welded portion are inhibited. Therefore, the Cr content is set to 23.0% or more and 28.0% or less. A preferable Cr content is 24.0 to 27.5%.
 Niは、オーステナイト組織を安定にし、各種酸に対する耐食性、靭性を改善する。さらにSnとCu添加による熱間加工性の低下を抑制する。このため2.0%以上のNiを含有させる。Ni含有量を増加することにより、窒化物の析出温度を低下させることが可能になる。一方、Niは高価な合金であるため、Ni量を6.0%以下に制限する。Ni含有量は、好ましくは2.5~5.5%であり、さらに好ましくは3.0~5.0%である。 Ni stabilizes the austenite structure and improves corrosion resistance and toughness against various acids. Furthermore, the deterioration of hot workability due to the addition of Sn and Cu is suppressed. For this reason, 2.0% or more of Ni is contained. By increasing the Ni content, the nitride precipitation temperature can be lowered. On the other hand, since Ni is an expensive alloy, the amount of Ni is limited to 6.0% or less. The Ni content is preferably 2.5 to 5.5%, more preferably 3.0 to 5.0%.
 Coは、鋼の靭性と耐食性を高めるために有効な元素であり、かつSnとCu添加による熱間加工性の低下を抑制する元素であり、Niとともに含有させることが望ましい。また、添加する場合はCoを0.1%以上含有させることが好ましい。1.0%を超えてCoを含有させると、Coが高価な元素であるためにコストに見合った効果が発揮されないようになる。このためCo量の上限を1.0%と定めた。添加する場合の好ましいCo含有量は0.1~0.5%である。 Co is an element effective for enhancing the toughness and corrosion resistance of steel, and is an element that suppresses the decrease in hot workability due to the addition of Sn and Cu, and is desirably contained together with Ni. Moreover, when adding, it is preferable to contain Co 0.1% or more. When Co is contained exceeding 1.0%, Co is an expensive element, so that an effect corresponding to the cost cannot be exhibited. For this reason, the upper limit of the amount of Co is set to 1.0%. The preferred Co content when added is 0.1 to 0.5%.
 Niは、Cuの固溶度を高め、CuとSn添加による融点の低い液相の発生を抑制する作用を有することが、非特許文献1で知られている。またCoは、Niの同族の元素である。このためNiとCoの含有量の和を高くすることによって、CuとSnによる熱間加工性の低下を抑制すると考えられる。本発明者らが本実施形態で対象とする鋼の熱間加工性をNiとCoの含有量の和で整理したところ、NiとCoの合計量が2.5%に満たない場合に、鋼材の耳割れ性が高まることを把握した。このため、Ni+Coの範囲を2.5%以上に定めた。 It is known from Non-Patent Document 1 that Ni has the effect of increasing the solid solubility of Cu and suppressing the generation of a liquid phase having a low melting point due to the addition of Cu and Sn. Co is an element of the Ni family. For this reason, it is thought that the fall of the hot workability by Cu and Sn is suppressed by making the sum of content of Ni and Co high. When the present inventors arranged the hot workability of the steel targeted in the present embodiment by the sum of the contents of Ni and Co, when the total amount of Ni and Co is less than 2.5%, the steel material It was understood that the ear cracking property of was increased. For this reason, the range of Ni + Co was set to 2.5% or more.
 Cuは、ステンレス鋼の酸に対する耐食性を高める元素であり、かつ靭性を改善する作用を有する。本実施形態では、耐食性を高めるため、0.01%以上のSnとともに0.2%以上のCuを含有させる。3.0%を越えてCuを含有させると、熱間圧延時に固溶度を超えてεCuが析出し、脆化を発生する。このため、Cu量の上限を3.0%とした。Cuを含有させる場合の好ましい含有量は0.5~2.0%である。 Cu is an element that enhances the corrosion resistance of stainless steel to acids, and has the effect of improving toughness. In this embodiment, in order to improve corrosion resistance, 0.2% or more of Cu is contained together with 0.01% or more of Sn. When Cu is contained exceeding 3.0%, εCu precipitates exceeding the solid solubility during hot rolling, and embrittlement occurs. For this reason, the upper limit of the amount of Cu was made into 3.0%. A preferable content when Cu is contained is 0.5 to 2.0%.
 Snは、本実施形態の鋼の耐食性を改善するために含有させる。そのために最低0.01%のSnの含有が必要である。さらには0.02%以上のSnを含有することが好ましい。一方で、Snは鋼の熱間製造性を阻害する元素であり、本実施形態が対象とする合金元素型節減型二相ステンレス鋼において、特に900℃以下でのフェライト相とオーステナイト相の界面の熱間強度を低下させる。その低下の程度はS,Ca,O含有量にも依存するが、本実施形態中のその他の制限を加えても、0.2%を越えてSnを含有させると、熱間製造性の低下を防ぎ得なくなるため、Sn含有量の上限を0.2%と定めた。 Sn is contained in order to improve the corrosion resistance of the steel of this embodiment. Therefore, it is necessary to contain at least 0.01% Sn. Furthermore, it is preferable to contain 0.02% or more of Sn. On the other hand, Sn is an element that hinders the hot productivity of steel. In the alloying element type saving duplex stainless steel targeted by the present embodiment, the interface between the ferrite phase and the austenite phase particularly at 900 ° C. or less. Reduce hot strength. The degree of the reduction depends on the contents of S, Ca, and O. However, even if other restrictions in this embodiment are added, if Sn is contained in excess of 0.2%, the hot productivity decreases. Therefore, the upper limit of the Sn content is set to 0.2%.
 Nは、オーステナイト相に固溶して強度、耐食性を高める有効な元素である。このために0.20%以上のNを含有させる。Nを増量することにより、Niの節減が可能となるため、Nは積極的に添加したい元素である。一方、Nの含有量の上限は、Nの固溶限度以内に制限する必要がある。Nの固溶限度はCr、Mnの含有量に応じて高くなる。本実施形態の鋼においては、0.30%を越えてNを含有させると、Cr窒化物を析出して靭性および耐食性を阻害するようになるとともに熱間製造性を阻害するようになる。このため、N含有量の上限を0.30%とした。好ましいN含有量は0.20~0.28%である。 N is an effective element that improves the strength and corrosion resistance by dissolving in the austenite phase. For this purpose, 0.20% or more of N is contained. Increasing the amount of N makes it possible to reduce Ni. Therefore, N is an element to be actively added. On the other hand, the upper limit of the N content needs to be limited within the limit of the solid solution of N. The solid solubility limit of N increases depending on the Cr and Mn contents. In the steel of this embodiment, when N is contained in excess of 0.30%, Cr nitride is precipitated to inhibit toughness and corrosion resistance, and hot productivity is inhibited. For this reason, the upper limit of N content was 0.30%. A preferable N content is 0.20 to 0.28%.
 Alは、鋼の脱酸元素であり、必要に応じて鋼中の酸素を低減するために0.05%以上のSiとあわせてAlを含有させる。Sn含有鋼において、酸素量の低減は、熱間製造性を確保するために必須であり、このために必要に応じて0.003%以上のAlの含有が必要である。一方でAlはNとの親和力が比較的大きな元素であり、過剰に添加するとAlNを生じてステンレス鋼の靭性を阻害する。その程度はN含有量にも依存するが、Alが0.05%を越えると、靭性低下が著しくなる。このため、Alの含有量の上限を0.05%と定めた。Al量は、好ましくは0.04%以下である。 Al is a deoxidizing element of steel, and if necessary, Al is contained together with 0.05% or more of Si in order to reduce oxygen in the steel. In the Sn-containing steel, the reduction of the oxygen amount is essential to ensure hot productivity, and for this purpose, it is necessary to contain 0.003% or more of Al as necessary. On the other hand, Al is an element having a relatively large affinity with N, and if added excessively, AlN is generated and inhibits the toughness of stainless steel. The degree depends on the N content, but when Al exceeds 0.05%, the toughness is significantly lowered. For this reason, the upper limit of the Al content is set to 0.05%. The amount of Al is preferably 0.04% or less.
 Caは、鋼の熱間製造性のための重要な元素であり、鋼中のOとSを介在物として固定し、熱間製造性を改善するために、Caを含有させることが必要である。本実施形態の鋼では、その目的のために0.0010%以上のCaを含有させる。また過剰な添加は耐孔食性を低下させる。そのためCaの含有量の上限を0.0040%とした。 Ca is an important element for the hot manufacturability of steel, and it is necessary to contain Ca in order to fix O and S in the steel as inclusions and improve the hot manufacturability. . In the steel of this embodiment, 0.0010% or more of Ca is contained for that purpose. Moreover, excessive addition reduces pitting corrosion resistance. Therefore, the upper limit of the Ca content is set to 0.0040%.
 OとCaの含有量の比率Ca/Oは、本実施形態の鋼の熱間製造性および耐食性を改善するための重要な成分指標である。Sn含有鋼の熱間製造性の改善のためにCa/Oの下限が制限される。Sn含有鋼の高温延性は、特に900℃以下の温度で低下する。Ca/Oの値が0.3未満であると、1000℃の高温延性をも低下し、熱間製造性が大きく損なわれる。このため本実施形態の鋼において、Ca/Oを0.3以上に制限する。一方、Caを過剰に添加し、Ca/Oが1.0を越えるようになると、耐孔食性が損なわれるようになる。またさらにCaが過剰になると、1000~1100℃における高温延性も損なわれるようになる。このためCa/Oの上限を1.0と定めた。Ca/Oは、好ましくは0.4~0.8である。 The ratio Ca / O of the content of O and Ca is an important component index for improving the hot manufacturability and corrosion resistance of the steel of this embodiment. In order to improve the hot manufacturability of the Sn-containing steel, the lower limit of Ca / O is limited. The hot ductility of the Sn-containing steel decreases particularly at a temperature of 900 ° C. or less. When the value of Ca / O is less than 0.3, the hot ductility at 1000 ° C. is also lowered, and the hot productivity is greatly impaired. For this reason, in the steel of this embodiment, Ca / O is limited to 0.3 or more. On the other hand, when Ca is added excessively and Ca / O exceeds 1.0, pitting corrosion resistance is impaired. Further, when Ca becomes excessive, the high temperature ductility at 1000 to 1100 ° C. is also impaired. For this reason, the upper limit of Ca / O was set to 1.0. Ca / O is preferably 0.4 to 0.8.
 Oは、不可避的不純物であり、その上限を特に定めなかったが、非金属介在物の代表である酸化物を構成する重要な元素である。その酸化物の組成制御は、熱間製造性の改善にとって非常に重要である。また粗大なクラスター状酸化物が生成すると、表面疵の原因となる。このため、Oの含有量は低く制限する必要がある。本実施形態では先に述べたように、Ca含有量とO含有量の比率を0.3以上とすることで、Oの含有量を制限した。O含有量の上限は0.005%以下が好ましい。 O is an inevitable impurity, and its upper limit is not particularly defined, but is an important element constituting an oxide that is representative of non-metallic inclusions. Controlling the composition of the oxide is very important for improving hot manufacturability. In addition, when a coarse cluster-like oxide is generated, it causes surface defects. For this reason, it is necessary to restrict | limit the content of O low. In this embodiment, as described above, the O content is limited by setting the ratio of the Ca content and the O content to 0.3 or more. The upper limit of the O content is preferably 0.005% or less.
 更に、Mo:2.0%以下、及びW:1.0%以下のうち、いずれか一方又は両方を含有してもよい。これらは、耐食性を付加的に高める元素である。その限定理由について説明する。
 Moは、ステンレス鋼の耐食性を付加的に高める非常に有効な元素であり、必要に応じて含有させることができる。耐食性改善のためには0.2%以上のMoを含有させることが好ましい。一方でMoは、高価な元素であり、本実施形態の鋼では、合金コストを抑制する観点より、Moの含有量の上限を2.0%とする。
 Wは、Moと同様にステンレス鋼の耐食性を付加的に向上させる元素であり、必要に応じて添加することが出来る。本実施形態の鋼において、耐食性を高める目的のためには、W含有量の上限を1.0%とする。好ましいW含有量は0.1~0.8%である。
Furthermore, you may contain any one or both among Mo: 2.0% or less and W: 1.0% or less. These are elements that additionally enhance the corrosion resistance. The reason for the limitation will be described.
Mo is a very effective element that additionally increases the corrosion resistance of stainless steel, and can be contained as necessary. In order to improve the corrosion resistance, it is preferable to contain 0.2% or more of Mo. On the other hand, Mo is an expensive element. In the steel of this embodiment, the upper limit of the Mo content is set to 2.0% from the viewpoint of suppressing the alloy cost.
W, like Mo, is an element that additionally improves the corrosion resistance of stainless steel, and can be added as necessary. In the steel of this embodiment, the upper limit of the W content is set to 1.0% for the purpose of improving the corrosion resistance. A preferable W content is 0.1 to 0.8%.
 更に、V:0.05~0.5%、Nb:0.01~0.15%、及びTi:0.003~0.05%、から選ばれる1種以上を含有してもよい。これらは、Crよりも窒化物の生成傾向が大きい元素である。V,Nb,Tiは何れも必要に応じて添加することが出来、微量に含有させた場合には耐食性が向上する傾向を有する。 Further, it may contain one or more selected from V: 0.05 to 0.5%, Nb: 0.01 to 0.15%, and Ti: 0.003 to 0.05%. These are elements that have a greater tendency to form nitrides than Cr. V, Nb, and Ti can be added as necessary, and when contained in a very small amount, the corrosion resistance tends to be improved.
 Vが形成する窒化物、炭化物は熱間加工および鋼材の冷却過程で生成し、耐食性を高める作用を有する。この理由として十分な確認はなされていないが、700℃以下でのクロム窒化物の生成速度を抑制する可能性が考えられる。この耐食性の改善のために0.05%以上のVを含有させることが望ましい。0.5%を超えてVを含有させると、粗大なV系炭窒化物が生成し、靱性が劣化する。そのため、V量の上限を0.5%に限定する。添加する場合の好ましいV含有量は0.1~0.3%の範囲である。 The nitrides and carbides formed by V are generated during hot working and cooling of the steel material, and have the effect of enhancing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower. In order to improve the corrosion resistance, it is desirable to contain 0.05% or more of V. When V is contained exceeding 0.5%, coarse V-based carbonitrides are produced and toughness is deteriorated. Therefore, the upper limit of the V amount is limited to 0.5%. When V is added, the V content is preferably in the range of 0.1 to 0.3%.
 Nbが形成する窒化物、炭化物は、熱間加工および鋼材の冷却過程で生成し、耐食性を高める作用を有する。この理由として十分な確認はなされていないが、700℃以下でのクロム窒化物の生成速度を抑制する可能性が考えられる。この耐食性の改善のために0.01%以上のNbを含有させることが望ましい。一方、過剰な添加は熱間圧延前の加熱時に未固溶析出物として析出するようになって靭性を阻害するようになる。このため、Nbの含有量の上限を0.15%と定めた。添加する場合の好ましいNb含有量の範囲は、0.03%~0.10%である。 Nitrides and carbides formed by Nb are generated during the hot working and cooling of the steel material, and have the effect of increasing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower. In order to improve the corrosion resistance, it is desirable to contain 0.01% or more of Nb. On the other hand, excessive addition causes precipitation as an undissolved precipitate during heating before hot rolling, thereby inhibiting toughness. For this reason, the upper limit of the Nb content is set to 0.15%. When Nb is added, the preferable range of Nb content is 0.03% to 0.10%.
 Tiは、極微量で酸化物、窒化物、硫化物を形成し鋼の凝固および高温加熱組織の結晶粒を微細化する元素である。またV、Nbと同様に、Tiは、クロム窒化物のクロムの一部に置換する性質も有する。0.003%以上のTiの含有により、Tiの析出物が形成されるようになる。一方0.05%を越えて二相ステンレス鋼にTiを含有させると、粗大なTiNが生成して鋼の靭性を阻害するようになる。このためTiの含有量の上限を0.05%と定めた。Tiの好適な含有量は0.005~0.020%である。 Ti is an element that forms oxides, nitrides, and sulfides in a very small amount, and solidifies the steel and refines the crystal grains of the high-temperature heating structure. Further, like V and Nb, Ti also has a property of substituting for a part of chromium in the chromium nitride. When Ti is contained in an amount of 0.003% or more, Ti precipitates are formed. On the other hand, when Ti is contained in the duplex stainless steel exceeding 0.05%, coarse TiN is generated and the toughness of the steel is inhibited. For this reason, the upper limit of the Ti content is set to 0.05%. A preferable content of Ti is 0.005 to 0.020%.
 更に、B:0.0050%以下、Mg:0.0030%以下、及びREM:0.10%以下、から選ばれる1種以上を含有してもよい。熱間加工性の向上をさらに図るため、必要に応じて含有させるB,Mg,REMを下記の通り限定する。 Furthermore, you may contain 1 or more types chosen from B: 0.0050% or less, Mg: 0.0030% or less, and REM: 0.10% or less. In order to further improve the hot workability, B, Mg, and REM to be contained as necessary are limited as follows.
 B,Mg,REMは、いずれも鋼の熱間加工性を改善する元素であり、その目的で1種以上添加されることが望ましい。B,Mg,REMのいずれも、過剰な添加は逆に熱間加工性および靭性を低下する。このため、その含有量の上限を次のように定めた。B量の上限は0.0050%である。Mg量の上限は0.0030%である。REM量の上限は0.10%である。好ましい含有量はそれぞれB:0.0005~0.0030%、Mg:0.0001~0.0015%、REM:0.005~0.05%である。ここでREMは、LaやCe等のランタノイド系希土類元素の含有量の総和とする。 B, Mg, and REM are all elements that improve the hot workability of steel, and it is desirable to add one or more of them for that purpose. In any of B, Mg, and REM, excessive addition conversely decreases hot workability and toughness. For this reason, the upper limit of the content was defined as follows. The upper limit of the amount of B is 0.0050%. The upper limit of the amount of Mg is 0.0030%. The upper limit of the amount of REM is 0.10%. The preferred contents are B: 0.0005 to 0.0030%, Mg: 0.0001 to 0.0015%, and REM: 0.005 to 0.05%, respectively. Here, REM is the total content of lanthanoid rare earth elements such as La and Ce.
 以上、説明してきた本実施形態の二相ステンレス鋼の特徴を有することで、Snを含有した汎用二相ステンレス鋼の熱間製造性を顕著に改善することが出来る。
 鋳片の段階では、1000℃における破断絞り値が70%以上となる。また、この鋳片に熱間加工を含む加工を施すことによって、歩留まり良くかつ表面疵の少ない二相ステンレス鋼鋼材を得ることが可能となる。
As described above, by having the characteristics of the duplex stainless steel of the present embodiment that has been described, the hot productivity of general-purpose duplex stainless steel containing Sn can be remarkably improved.
At the slab stage, the fracture drawing value at 1000 ° C. is 70% or more. In addition, by performing processing including hot working on the slab, it is possible to obtain a duplex stainless steel material with high yield and low surface flaws.
(実施例1)
 以下に省合金型二相ステンレス鋼の実施例について記載する。表1~4に供試鋼の化学組成を示す。なお、表1に記載されている成分以外の残部は、Feおよび不可避的不純物元素である。また、表1~4に示した成分について、含有量が記載されていない部分は不純物レベルであることを示す。REMは、ランタノイド系希土類元素を意味し、REMの含有量はそれら元素の合計を示している。表中の下線を付した数値は、第1の実施形態で規定された範囲外であることを示す。
Example 1
Examples of alloy-saving duplex stainless steel will be described below. Tables 1 to 4 show the chemical compositions of the test steels. The balance other than the components listed in Table 1 is Fe and inevitable impurity elements. In addition, regarding the components shown in Tables 1 to 4, the portion where the content is not described indicates an impurity level. REM means a lanthanoid rare earth element, and the content of REM indicates the total of these elements. A numerical value with an underline in the table indicates that it is outside the range defined in the first embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 いずれの鋼についても、まず厚さが100mmの鋳片とし、破断絞り値を評価した。評価は、以下のように行った。まず8mmφの丸棒の平行部を、高周波を用いて1200℃に加熱した。次いで、破断試験を行う温度(1000℃)まで温度を下げた。その温度にて20mm/秒の速度で引張り破断させ、断面の収縮率を求めた。破断絞り値が70%以上の鋼をA(good)と評価し、絞り値が60~70%未満の鋼をB(fair)と評価し、絞り値が60%未満の鋼をC(bad)と評価して、結果を表5,6に記載した。
 鋳片を熱間鍛造して60mm厚の鋼片とし、これを熱間圧延素材とした。熱間圧延を以下のように行った。1150~1250℃の所定の温度に加熱し、次いで実験室の2段圧延機により、以下の条件で熱間圧延を実施した。まず圧下を繰り返し、板厚を25mmに調整した。次いで、1000℃から仕上げ圧延を行い、900℃で最終仕上げ圧延を実施し、最終板厚が12mm、板幅が120mmになるように圧延して熱間圧延鋼板を得た。得られた熱間圧延鋼板の左右の耳部に発生した耳割れの最大値を測定し、左右の耳割れの最大値の和を求めた。この耳割れの和が5mm未満の鋼をA(good)と評価し、耳割れの和が5~10mmの鋼をB(fair)と評価し、耳割れの和が10mm超の鋼をC(bad)と評価して、結果を表5,6に示した。
For each steel, first, a slab having a thickness of 100 mm was used, and the fracture drawing value was evaluated. Evaluation was performed as follows. First, the parallel part of an 8 mmφ round bar was heated to 1200 ° C. using high frequency. Next, the temperature was lowered to a temperature at which a break test was performed (1000 ° C.). At that temperature, the film was pulled and broken at a speed of 20 mm / second to obtain the shrinkage ratio of the cross section. A steel with a fracture drawing value of 70% or more is evaluated as A (good), a steel with a drawing value of 60 to less than 70% is evaluated as B (fair), and a steel with a drawing value of less than 60% is C (bad). The results are shown in Tables 5 and 6.
The slab was hot forged into a steel piece having a thickness of 60 mm, and this was used as a hot rolled material. Hot rolling was performed as follows. It was heated to a predetermined temperature of 1150 to 1250 ° C., and then hot-rolled by the two-stage rolling mill in the laboratory under the following conditions. First, the reduction was repeated to adjust the plate thickness to 25 mm. Subsequently, finish rolling was performed from 1000 ° C., final finish rolling was performed at 900 ° C., and the steel sheet was rolled to a final plate thickness of 12 mm and a plate width of 120 mm to obtain a hot-rolled steel plate. The maximum value of the ear crack generated in the left and right ears of the obtained hot rolled steel sheet was measured, and the sum of the maximum values of the left and right ear cracks was obtained. Steel with an ear crack sum of less than 5 mm is evaluated as A (good), steel with an ear crack sum of 5 to 10 mm is evaluated as B (fair), and steel with an ear crack sum of more than 10 mm is evaluated as C ( The results are shown in Tables 5 and 6.
 さらにこの鋼板に溶体化熱処理を以下のように施した。1000℃に設定した熱処理炉に鋼板を挿入し、5分の均熱時間を取った。次いで鋼板を抽出し、その後、常温まで水冷した。 Furthermore, solution heat treatment was applied to this steel sheet as follows. The steel plate was inserted into a heat treatment furnace set at 1000 ° C., and a soaking time of 5 minutes was taken. The steel plate was then extracted and then water cooled to room temperature.
 鋼板の耐食性は、硫酸中の腐食速度により評価した。
 硫酸中の腐食速度は、以下のように測定した。3mm厚×25mm幅×25mm長の試験片に対して、沸騰した5%の硫酸中で6hの浸漬試験を実施した。浸漬前後の重量を測定し、重量の減少速度を求めた。硫酸中の腐食速度が0.3g/m・hr未満の鋼をA(good)と評価し、硫酸中の腐食速度が0.3~1g/m・hrの鋼をB(fair)と評価し、硫酸中の腐食速度が1g/m・hr以上の鋼をC(bad)と評価して、評価結果を表5,6に示した。
The corrosion resistance of the steel sheet was evaluated by the corrosion rate in sulfuric acid.
The corrosion rate in sulfuric acid was measured as follows. A 6-hour immersion test was performed on a test piece having a thickness of 3 mm, a width of 25 mm, and a length of 25 mm in boiling 5% sulfuric acid. The weight before and after immersion was measured, and the rate of weight reduction was determined. A steel having a corrosion rate in sulfuric acid of less than 0.3 g / m 2 · hr is evaluated as A (good), and a steel having a corrosion rate in sulfuric acid of 0.3 to 1 g / m 2 · hr as B (fair) Evaluation was made, and steels having a corrosion rate in sulfuric acid of 1 g / m 2 · hr or more were evaluated as C (bad), and the evaluation results are shown in Tables 5 and 6.
 幅方向に長く採取したシャルピー試験片を用いて、衝撃特性を測定した。フルサイズで2mmVノッチを圧延方向に加工して試験片を作製した。各2本の試験片を用いて-20℃で試験を実施し、得られた衝撃値の平均値により、衝撃特性を評価した。衝撃値が100J/cm超の鋼をA(good)と評価し、衝撃値が50~100J/cmの鋼をB(fair)と評価し、衝撃値が50J/cm未満の鋼をC(bad)と評価し、評価結果を表5,6に記載した。 Impact characteristics were measured using Charpy specimens taken long in the width direction. A full size 2 mm V notch was processed in the rolling direction to produce a test piece. The test was performed at −20 ° C. using two test pieces each, and the impact characteristics were evaluated by the average value of the obtained impact values. Impact value and evaluate the 100 J / cm 2 than the steel and A (good), the impact value and evaluate the 50 ~ 100J / cm 2 steel and B (fair), impact value of 50 J / cm 2 less than the steel C (bad) was evaluated, and the evaluation results are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5,6に示す実施例より、第1の実施形態の条件を満足する鋼No.1-1~1-33は、熱間製造性、耐食性および衝撃特性が良好である。一方、第1の実施形態の条件を満足しない鋼No.1-A~1-Uは、熱間製造性、耐食性および衝撃特性のいずれかが劣っていた。 From the examples shown in Tables 5 and 6, Steel Nos. 1-1 to 1-33 that satisfy the conditions of the first embodiment have good hot manufacturability, corrosion resistance, and impact characteristics. On the other hand, steel Nos. 1-A to 1-U that do not satisfy the conditions of the first embodiment are inferior in any of hot manufacturability, corrosion resistance, and impact characteristics.
 以上の実施例からわかるように、第1の実施形態により、Sn添加により耐食性が改善され、熱間製造性が良好で安価な省合金型二相ステンレス鋼が得られることが明確となった。 As can be seen from the above examples, it was clarified that according to the first embodiment, the addition of Sn improves the corrosion resistance, and provides an inexpensive alloy-saving duplex stainless steel with good hot productivity.
(実施例2)
 以下に汎用型二相ステンレス鋼の実施例について記載する。表7~10に供試鋼の化学組成を示す。なお表7~10に記載されている成分の残部は、Feおよび不可避的不純物元素である。また表7~10に示した成分について、含有量が記載されていない部分は不純物レベルであることを示す。REMは、ランタノイド系希土類元素を意味し、REMの含有量はそれら元素の合計を示している。表中の下線を付した数値は、第2の実施形態で規定された範囲外であることを示す。
(Example 2)
Examples of general-purpose duplex stainless steel will be described below. Tables 7 to 10 show the chemical compositions of the test steels. The balance of the components described in Tables 7 to 10 is Fe and inevitable impurity elements. In addition, regarding the components shown in Tables 7 to 10, the portion where the content is not described indicates an impurity level. REM means a lanthanoid rare earth element, and the content of REM indicates the total of these elements. A numerical value with an underline in the table indicates that it is outside the range defined in the second embodiment.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例1と同様の条件により、鋳片の製造、鋳片の破断絞り値の評価、熱間圧延素材の製造、熱間圧延素材に対する熱間圧延の実施、及び耳割れの評価を行った。得られた評価結果を表11,12に記載した。 鋳 Under the same conditions as in Example 1, slab production, evaluation of the slab break drawing value, production of hot rolled material, hot rolling of the hot rolled material, and evaluation of ear cracks were performed. The obtained evaluation results are shown in Tables 11 and 12.
 さらにこの鋼板に溶体化熱処理を以下のように施した。1050℃に設定した熱処理炉に鋼板を挿入し、5分の均熱時間を取った。次いで鋼板を抽出し、その後、常温まで水冷した。 Furthermore, solution heat treatment was applied to this steel sheet as follows. The steel plate was inserted into a heat treatment furnace set at 1050 ° C., and a soaking time of 5 minutes was taken. The steel plate was then extracted and then water cooled to room temperature.
 鋼板の耐食性は、硫酸中の腐食速度により評価した。
 硫酸中の腐食速度は、以下のように測定した。3mm厚×25mm幅×25mm長の試験片に対して、2000ppmのClイオンを含み、濃度が15%、温度が40℃の硫酸中で6hの浸漬試験を実施した。浸漬前後の重量を測定し、重量の減少速度を求めた。硫酸中の腐食速度が0.1g/m・hr未満の鋼をA(good)と評価し、硫酸中の腐食速度が0.1~0.3g/m・hrの鋼をB(fair)と評価し、硫酸中の腐食速度が0.3g/m・hr超の鋼をC(bad)と評価して、評価結果を表11,12に示した。
The corrosion resistance of the steel sheet was evaluated by the corrosion rate in sulfuric acid.
The corrosion rate in sulfuric acid was measured as follows. A test piece having a thickness of 3 mm, a width of 25 mm, and a length of 25 mm was subjected to a 6-hour immersion test in sulfuric acid containing 2000 ppm of Cl ions, having a concentration of 15%, and a temperature of 40 ° C. The weight before and after immersion was measured, and the rate of weight reduction was determined. A steel having a corrosion rate in sulfuric acid of less than 0.1 g / m 2 · hr is evaluated as A (good), and a steel having a corrosion rate in sulfuric acid of 0.1 to 0.3 g / m 2 · hr is B (fair). The steel having a corrosion rate in sulfuric acid exceeding 0.3 g / m 2 · hr was evaluated as C (bad), and the evaluation results are shown in Tables 11 and 12.
 実施例1と同様の条件により、衝撃特性を測定した。得られた評価結果を表11,12に記載した。 The impact characteristics were measured under the same conditions as in Example 1. The obtained evaluation results are shown in Tables 11 and 12.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表11,12に示す実施例より、第2の実施形態の条件を満足する汎用型二相ステンレス鋼No.2-1~2-23は、熱間製造性、耐食性および衝撃特性が良好である。一方、第2の実施形態の条件を満足しない鋼No.2-A~2-K、及び2-M~2-Tは、熱間製造性、耐食性および衝撃特性のいずれかが劣っていた。また、比較例2-Lは、特性を満たすが、Coが多量に含有されているため、コスト面で劣る。また比較例2-Uは、S31803鋼であり、熱間製造性、耐食性および製造性がいずれも良好である。ただし、NiおよびMo含有量が高く、第2の実施形態が目的とするコスト面で劣るものである。 From the examples shown in Tables 11 and 12, the general-purpose duplex stainless steel Nos. 2-1 to 2-23 satisfying the conditions of the second embodiment have good hot manufacturability, corrosion resistance and impact properties. . On the other hand, steel Nos. 2-A to 2-K and 2-M to 2-T that do not satisfy the conditions of the second embodiment are inferior in any of hot manufacturability, corrosion resistance, and impact characteristics. Comparative Example 2-L satisfies the characteristics but is inferior in cost because it contains a large amount of Co. Comparative Example 2-U is S31803 steel, which has good hot manufacturability, corrosion resistance, and manufacturability. However, the contents of Ni and Mo are high, and the cost of the second embodiment is inferior.
 以上の実施例からわかるように第2の実施形態によりSn、Cu添加により耐食性が改善され、熱間製造性が良好で安価な汎用型二相ステンレス鋼が得られることが明確となった。 As can be seen from the above examples, it was clarified that according to the second embodiment, corrosion resistance is improved by addition of Sn and Cu, and a general-purpose duplex stainless steel with good hot productivity and low cost can be obtained.
 第1,2の実施形態により、耐食性が改善された安価な省合金型二相ステンレス鋼材及び汎用型二相ステンレス鋼材を提供することが可能となる。この二相ステンレス鋼材は、海水淡水化機器、輸送船のタンク類、各種容器等として使用できるなど産業上寄与するところは極めて大である。 According to the first and second embodiments, it is possible to provide an inexpensive alloy-saving duplex stainless steel material and general-purpose duplex stainless steel material with improved corrosion resistance. This duplex stainless steel material can be used for seawater desalination equipment, tanks for transport ships, various containers, etc., and has a great industrial contribution.

Claims (10)

  1.  質量%で、
     C:0.03%以下、
     Si:0.05~1.0%、
     Mn:0.1~7.0%、
     P:0.05%以下、
     S:0.0001~0.0010%、
     Ni:0.5~5.0%、
     Cr:18.0~25.0%、
     N:0.10~0.30%、
     Al:0.05%以下、
     Ca:0.0010~0.0040%、及び
     Sn:0.01~0.2%を含有し、
     残部がFeおよび不可避的不純物からなり、
     CaとOの含有量の比率Ca/Oが0.3~1.0であり、
     (1)式で示す孔食指数PIが30未満であることを特徴とする二相ステンレス鋼。
     PI=Cr+3.3Mo+16N (1)
    (式(1)中の元素記号は、その元素の含有量を示す。)
    % By mass
    C: 0.03% or less,
    Si: 0.05 to 1.0%,
    Mn: 0.1 to 7.0%,
    P: 0.05% or less,
    S: 0.0001 to 0.0010%,
    Ni: 0.5 to 5.0%,
    Cr: 18.0-25.0%,
    N: 0.10 to 0.30%
    Al: 0.05% or less,
    Ca: 0.0010 to 0.0040%, and Sn: 0.01 to 0.2%,
    The balance consists of Fe and inevitable impurities,
    The Ca / O content ratio Ca / O is 0.3 to 1.0,
    A duplex stainless steel having a pitting corrosion index PI represented by the formula (1) of less than 30.
    PI = Cr + 3.3Mo + 16N (1)
    (The element symbol in the formula (1) indicates the content of the element.)
  2.  更に、
     Mo:1.5%以下、
     Cu:2.0%以下、
     W:1.0%以下、及び
     Co:2.0%以下から選ばれる1種以上を含有することを特徴とする請求項1に記載の二相ステンレス鋼。
    Furthermore,
    Mo: 1.5% or less,
    Cu: 2.0% or less,
    The duplex stainless steel according to claim 1, comprising at least one selected from W: 1.0% or less and Co: 2.0% or less.
  3.  更に、
     V:0.05~0.5%、
     Nb:0.01~0.20%、及び
     Ti:0.003~0.05%から選ばれる1種以上を含有することを特徴とする請求項1又は請求項2に記載の二相ステンレス鋼。
    Furthermore,
    V: 0.05-0.5%
    The duplex stainless steel according to claim 1 or 2, comprising at least one selected from Nb: 0.01 to 0.20% and Ti: 0.003 to 0.05%. .
  4.  更に、
     B:0.0050%以下、
     Mg:0.0030%以下、及び
     REM:0.10%以下から選ばれる1種以上を含有することを特徴とする請求項1乃至請求項3のいずれか一項に記載の二相ステンレス鋼。
    Furthermore,
    B: 0.0050% or less,
    The duplex stainless steel according to any one of claims 1 to 3, comprising one or more selected from Mg: 0.0030% or less and REM: 0.10% or less.
  5.  質量%で、
     C:0.03%以下、
     Si:0.05~1.0%、
     Mn:0.1~4.0%、
     P:0.05%以下、
     S:0.0001~0.0010%、
     Cr:23.0~28.0%、
     Ni:2.0~6.0%、
     Co:0~1.0%、
     Cu:0.2~3.0%、
     Sn:0.01~0.2%、
     N:0.20~0.30%、
     Al:0.05%以下、及び
     Ca:0.0010~0.0040%を含有し、
     残部がFeおよび不可避的不純物からなり、
     Ni+Coが2.5%以上であり、CaとOの含有量の比率Ca/Oが0.3~1.0であり、
     (1)式で示すPIが30以上、40未満であることを特徴とする二相ステンレス鋼。
     PI=Cr+3.3Mo+16N (1)
    (式(1)中の元素記号は、その元素の含有量を示す。)
    % By mass
    C: 0.03% or less,
    Si: 0.05 to 1.0%,
    Mn: 0.1 to 4.0%,
    P: 0.05% or less,
    S: 0.0001 to 0.0010%,
    Cr: 23.0-28.0%,
    Ni: 2.0-6.0%,
    Co: 0 to 1.0%,
    Cu: 0.2 to 3.0%,
    Sn: 0.01 to 0.2%,
    N: 0.20-0.30%,
    Al: 0.05% or less, and Ca: 0.0010-0.0040%,
    The balance consists of Fe and inevitable impurities,
    Ni + Co is 2.5% or more, and the Ca / O content ratio Ca / O is 0.3 to 1.0,
    (1) PI shown by a formula is 30 or more and less than 40, Duplex stainless steel characterized by the above-mentioned.
    PI = Cr + 3.3Mo + 16N (1)
    (The element symbol in the formula (1) indicates the content of the element.)
  6.  更に、
     Mo:2.0%以下、及び
     W:1.0%以下のうち、いずれか一方又は両方を含有することを特徴とする請求項5に記載の二相ステンレス鋼。
    Furthermore,
    The duplex stainless steel according to claim 5, wherein either one or both of Mo: 2.0% or less and W: 1.0% or less is contained.
  7.  更に、
     V:0.05~0.5%、
     Nb:0.01~0.15%、及び
     Ti:0.003~0.05%、から選ばれる1種以上を含有することを特徴とする請求項5または請求項6に記載の二相ステンレス鋼。
    Furthermore,
    V: 0.05-0.5%
    The duplex stainless steel according to claim 5 or 6, comprising at least one selected from Nb: 0.01 to 0.15% and Ti: 0.003 to 0.05%. steel.
  8.  更に、
     B:0.0050%以下、
     Mg:0.0030%以下、及び
     REM:0.10%以下、から選ばれる1種以上を含有することを特徴とする請求項5乃至請求項7のいずれか一項に記載の二相ステンレス鋼。
    Furthermore,
    B: 0.0050% or less,
    The duplex stainless steel according to any one of claims 5 to 7, comprising one or more selected from Mg: 0.0030% or less and REM: 0.10% or less. .
  9.  請求項1乃至請求項8の何れか一項に記載の組成を有し、1000℃における破断絞り値が70%以上であることを特徴とする二相ステンレス鋼鋳片。 A duplex stainless steel slab having the composition according to any one of claims 1 to 8, wherein a fracture drawing value at 1000 ° C is 70% or more.
  10.  請求項9に記載の二相ステンレス鋼鋳片を熱間加工して製造されたことを特徴とする二相ステンレス鋼鋼材。 A duplex stainless steel material produced by hot working the duplex stainless steel slab according to claim 9.
PCT/JP2012/076821 2011-10-21 2012-10-17 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material WO2013058274A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020147009392A KR101632516B1 (en) 2011-10-21 2012-10-17 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
CN201280050356.5A CN103857816B (en) 2011-10-21 2012-10-17 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
US14/347,437 US20140255244A1 (en) 2011-10-21 2012-10-17 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
ES12842430T ES2768088T3 (en) 2011-10-21 2012-10-17 Duplex stainless steel, duplex stainless steel sheet and duplex stainless steel material
EP12842430.6A EP2770076B1 (en) 2011-10-21 2012-10-17 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
KR1020167005157A KR101648694B1 (en) 2011-10-21 2012-10-17 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
ZA2014/02169A ZA201402169B (en) 2011-10-21 2014-03-24 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
US15/226,287 US20160340764A1 (en) 2011-10-21 2016-08-02 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-231352 2011-10-21
JP2011231352A JP5329632B2 (en) 2011-10-21 2011-10-21 Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP2011266351A JP5329634B2 (en) 2011-12-06 2011-12-06 Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP2011-266351 2011-12-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/347,437 A-371-Of-International US20140255244A1 (en) 2011-10-21 2012-10-17 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
US15/226,287 Division US20160340764A1 (en) 2011-10-21 2016-08-02 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material

Publications (1)

Publication Number Publication Date
WO2013058274A1 true WO2013058274A1 (en) 2013-04-25

Family

ID=48140919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076821 WO2013058274A1 (en) 2011-10-21 2012-10-17 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material

Country Status (8)

Country Link
US (2) US20140255244A1 (en)
EP (1) EP2770076B1 (en)
KR (2) KR101632516B1 (en)
CN (1) CN103857816B (en)
ES (1) ES2768088T3 (en)
TW (1) TWI460293B (en)
WO (1) WO2013058274A1 (en)
ZA (1) ZA201402169B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498355B (en) * 2013-10-14 2015-12-09 无锡通用钢绳有限公司 A kind of corrosion-resistant steel wire rope
US11179778B2 (en) * 2013-12-20 2021-11-23 Höganäs Ab (Publ) Method for producing a sintered component and a sintered component
CN104152818A (en) * 2014-08-12 2014-11-19 昆明理工大学 Duplex stainless steel and preparation method thereof
CN105018850A (en) * 2014-08-21 2015-11-04 太仓钧浩自行车科技有限公司 Low-tungsten-molybdenum heat-resistant corrosion-resistant stainless steel and preparation method thereof
WO2016074057A1 (en) * 2014-11-12 2016-05-19 Companhia Siderúrgica Nacional Product that is hot rolled into long steel and use thereof
KR101647210B1 (en) 2014-12-11 2016-08-10 주식회사 포스코 Method for manufacturing a duplex stainless steel sheet reduced inclusion
FI128294B (en) * 2015-01-27 2020-02-28 Outokumpu Oy Method for manufacturing a plate material for electrochemical process
CN107429341B (en) * 2015-03-26 2019-06-11 新日铁住金不锈钢株式会社 The ferritic-austenitic system stainless steel plate of the excellent corrosion resistance of sheared edge
CN105349906B (en) * 2015-11-02 2018-08-10 四川维珍高新材料有限公司 The sleeping spiral shell centrifugal separator drum centrifugal casting process of super-duplex stainless steel
CN107630835A (en) * 2017-08-23 2018-01-26 沈阳鼓风机集团核电泵业有限公司 A kind of Reactor cavity flooding cooling pump
CN109972060B (en) * 2019-05-07 2020-10-09 四川维珍高新材料有限公司 Low-nickel high-strength duplex stainless steel material and preparation method thereof
US20240026509A1 (en) * 2022-07-22 2024-01-25 Carpenter Technology Corporation High molybdenum duplex stainless steel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158437A (en) 1989-11-16 1991-07-08 Nippon Steel Corp Duplex stainless steel having excellent concentrated sulfuric acid resistance
JPH0472013A (en) 1990-07-11 1992-03-06 Nippon Steel Corp Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JPH06200353A (en) * 1992-12-28 1994-07-19 Nippon Steel Corp Austenitic stainless steel excellent in hot workability
JPH07118805A (en) 1993-08-31 1995-05-09 Nkk Corp Duplex stainless steel excellent in workability and working method therefor
JP2002069592A (en) 2000-09-06 2002-03-08 Nippon Steel Corp Cast stainless steel slab containing two phases of austenite and ferrite and having excellent hot workability
WO2003080886A1 (en) * 2002-03-25 2003-10-02 Yong-Soo Park High-grade duplex stainless steel with much suppressed formation of intermetallic phases and having an excellent corrosion resistance , embrittlement resistance, castability and hot workability
WO2009119895A1 (en) 2008-03-26 2009-10-01 新日鐵住金ステンレス株式会社 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
JP2010222593A (en) 2009-03-19 2010-10-07 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel plate having excellent press moldability
WO2012121380A1 (en) * 2011-03-09 2012-09-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel exhibiting excellent corrosion resistance in weld

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101347A (en) * 1977-05-06 1978-07-18 Daido Tokushuko Kabushiki Kaisha Ferrite-austenite stainless steel castings having an improved erosion-corrosion resistance
JPS5915979B2 (en) * 1980-07-03 1984-04-12 新日本製鐵株式会社 Stainless steel alloy with fewer rolling defects during hot rolling
JPS5959826A (en) * 1982-09-30 1984-04-05 Nippon Steel Corp Production of binary phase stainless steel
JPH01316439A (en) * 1987-11-10 1989-12-21 Nkk Corp Stainless steel for extreme high vacuum apparatus
US4828630A (en) * 1988-02-04 1989-05-09 Armco Advanced Materials Corporation Duplex stainless steel with high manganese
JPH0297651A (en) * 1988-09-30 1990-04-10 Aichi Steel Works Ltd Free cutting austenitic stainless steel excellent in controlled rollability and its production
FR2662181B1 (en) * 1990-05-17 1993-07-16 Unirec STAINLESS STEEL FOR USE IN NATURAL AQUATIC MEDIA.
RU2001156C1 (en) * 1991-11-04 1993-10-15 Центральный научно-исследовательский институт конструкционных материалов "Прометей" Steel
JP3521442B2 (en) 1993-06-17 2004-04-19 マツダ株式会社 Vehicle ramp structure
JP3758508B2 (en) * 2001-02-13 2006-03-22 住友金属工業株式会社 Manufacturing method of duplex stainless steel pipe
WO2002101108A1 (en) * 2001-06-11 2002-12-19 Nisshin Steel Co., Ltd. Double phase stainless steel strip for steel belt
WO2005073422A1 (en) * 2004-01-29 2005-08-11 Jfe Steel Corporation Austenitic-ferritic stainless steel
EP1867748A1 (en) * 2006-06-16 2007-12-19 Industeel Creusot Duplex stainless steel
JP5072285B2 (en) * 2006-08-08 2012-11-14 新日鐵住金ステンレス株式会社 Duplex stainless steel
JP4651682B2 (en) * 2008-01-28 2011-03-16 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent corrosion resistance and workability and method for producing the same
JP5366609B2 (en) * 2009-03-26 2013-12-11 新日鐵住金ステンレス株式会社 Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method
JP5398574B2 (en) * 2010-02-18 2014-01-29 新日鐵住金ステンレス株式会社 Duplex stainless steel material for vacuum vessel and manufacturing method thereof
JP5744575B2 (en) * 2010-03-29 2015-07-08 新日鐵住金ステンレス株式会社 Double phase stainless steel sheet and strip, manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158437A (en) 1989-11-16 1991-07-08 Nippon Steel Corp Duplex stainless steel having excellent concentrated sulfuric acid resistance
JPH0472013A (en) 1990-07-11 1992-03-06 Nippon Steel Corp Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JPH06200353A (en) * 1992-12-28 1994-07-19 Nippon Steel Corp Austenitic stainless steel excellent in hot workability
JPH07118805A (en) 1993-08-31 1995-05-09 Nkk Corp Duplex stainless steel excellent in workability and working method therefor
JP2002069592A (en) 2000-09-06 2002-03-08 Nippon Steel Corp Cast stainless steel slab containing two phases of austenite and ferrite and having excellent hot workability
WO2003080886A1 (en) * 2002-03-25 2003-10-02 Yong-Soo Park High-grade duplex stainless steel with much suppressed formation of intermetallic phases and having an excellent corrosion resistance , embrittlement resistance, castability and hot workability
WO2009119895A1 (en) 2008-03-26 2009-10-01 新日鐵住金ステンレス株式会社 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
JP2010222593A (en) 2009-03-19 2010-10-07 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel plate having excellent press moldability
WO2012121380A1 (en) * 2011-03-09 2012-09-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel exhibiting excellent corrosion resistance in weld

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Effect of Cu and Ni on Hot Workability of Hot-rolled Mild Steel", ISIJ, vol. 37, 1997, pages 217 - 223

Also Published As

Publication number Publication date
EP2770076B1 (en) 2019-12-04
CN103857816B (en) 2017-02-15
US20160340764A1 (en) 2016-11-24
EP2770076A1 (en) 2014-08-27
ZA201402169B (en) 2015-04-29
KR101648694B1 (en) 2016-08-16
ES2768088T3 (en) 2020-06-19
TWI460293B (en) 2014-11-11
KR101632516B1 (en) 2016-06-21
EP2770076A4 (en) 2016-03-09
US20140255244A1 (en) 2014-09-11
KR20160028514A (en) 2016-03-11
KR20140064941A (en) 2014-05-28
CN103857816A (en) 2014-06-11
TW201333223A (en) 2013-08-16

Similar Documents

Publication Publication Date Title
WO2013058274A1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
US8133431B2 (en) Austenitic stainless steel
JP5072285B2 (en) Duplex stainless steel
JP6418358B1 (en) High Mn steel sheet and method for producing the same
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP4831257B2 (en) High corrosion resistance ferritic stainless steel cold rolled steel sheet with excellent toughness and method for producing the same
KR20160088375A (en) Steel plate and method for manufacturing same
JP4831256B2 (en) High corrosion resistance ferritic stainless hot rolled steel sheet with excellent toughness
WO2019189871A1 (en) Two-phase stainless-clad steel sheet and production method thereof
KR102628769B1 (en) HIGH-Mn STEEL AND MANUFACTURING METHOD THEREFOR
WO2011114963A1 (en) Martensitic stainless steel with excellent weld characteristics, and mertensitic stainless steel material
KR102405388B1 (en) High Mn steel and its manufacturing method
KR101539520B1 (en) Duplex stainless steel sheet
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP2012193432A (en) Two phase stainless steel for chemical tanker excellent in performance in linear heating
US8865060B2 (en) Austenitic stainless steel
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
US20200157667A1 (en) Austenitic stainless steel
JP4502131B2 (en) Duplex stainless steel with excellent hot workability
WO2019180499A1 (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP6424867B2 (en) Stainless steel having a steel structure composed of two phases of a ferrite phase and a martensite phase and a method of manufacturing the same
JP6776469B1 (en) Duplex stainless steel and its manufacturing method
JP5329634B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP2009179840A (en) Method for producing high tensile steel excellent in low-temperature toughness and crack arrest property

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14347437

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147009392

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012842430

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE