WO2002101108A1 - Double phase stainless steel strip for steel belt - Google Patents

Double phase stainless steel strip for steel belt Download PDF

Info

Publication number
WO2002101108A1
WO2002101108A1 PCT/JP2002/005572 JP0205572W WO02101108A1 WO 2002101108 A1 WO2002101108 A1 WO 2002101108A1 JP 0205572 W JP0205572 W JP 0205572W WO 02101108 A1 WO02101108 A1 WO 02101108A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
stainless steel
transformation
austenite
Prior art date
Application number
PCT/JP2002/005572
Other languages
French (fr)
Japanese (ja)
Inventor
Kouki Tomimura
Hiroshi Fujimoto
Kenichi Morimoto
Naoto Hiramatsu
Original Assignee
Nisshin Steel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co., Ltd. filed Critical Nisshin Steel Co., Ltd.
Priority to JP2003503853A priority Critical patent/JP4252893B2/en
Priority to US10/480,205 priority patent/US20040168750A1/en
Priority to DE60205896T priority patent/DE60205896D1/en
Priority to KR10-2003-7013354A priority patent/KR20040014492A/en
Priority to AT02738626T priority patent/ATE303458T1/en
Priority to EP02738626A priority patent/EP1396552B1/en
Publication of WO2002101108A1 publication Critical patent/WO2002101108A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the present invention relates to a high-strength duplex stainless steel strip for a steel belt having an excellent surface shape in which a reducer band does not occur during shape correction in a steel belt manufacturing process.
  • Stainless steel belts include work hardened austenitic stainless steels, which are reinforced by cold rolling austenitic stainless steels such as SUS301 and SUS304, as well as low-carbon martensitic stainless steels (Japanese Patent Publication No. No. 31085) and precipitation-hardening martensitic stainless steel (Japanese Patent Publication No. 59-49303).
  • the work-hardened structure represented by SUS304 and SUS301 is a metastable austenitic structure, and a work-induced martensite is formed by deformation. As a result, during deformation, a reusable band is generated due to the formation of work-induced martensite (Journal of the Institute of Metals, Vol. 55, No. 4, pp. 376-382, Nisshin Steel Engineering Reports No. 69, Nos. 1--14). page). Undesired surface irregularities occur as a steel belt material.
  • Martensite-precipitation-hardened martensite transforms almost to a single martensite phase during the cooling process after annealing in the manufacturing process, but tends to change its shape due to expansion accompanying the transformation. A deteriorated shape cannot be easily corrected in a belt state. Disclosure of the invention
  • the present invention has been devised in order to solve such a problem, and the generation of a Ruder's band when correcting a belt shape such as a metastable austenite system, and the formation of a martens belt.
  • a belt shape such as a metastable austenite system
  • the purpose is to:
  • the high-strength duplex stainless steel strip for steel belts of the present invention has a C content of 0.04 to 0.15 mass in order to achieve the object. / 0 , Cr: 10.0-20.0 mass.
  • Ni contains 0.5 to 4.0% by mass, has a prior austenite average particle size of ⁇ or less, and has a volume of 20 to 85 at room temperature after transformation. / 0 has martensite and the remainder has a ferrite structure and has been refined to a hardness of HV300 or more.
  • the average grain size of the prior austenite is less than ⁇ , and the average expansion when austenite undergoes martensitic transformation in the cooling step of the annealing step is less than 9%.
  • the present inventors investigated and examined the effects on the reducer band generated when the shape of a steel belt was corrected from various viewpoints such as composition, structure, and material. As a result, it was found that the strain distribution and volume expansion accompanying the martensitic transformation had a great influence on the generation of the Luders band. In consideration of the effects of strain distribution and volume expansion, residual austenite is eliminated from the stainless steel strip, and the expansion strain generated when the austenite phase undergoes martensitic transformation during the cooling process in the annealing step is dispersed throughout the steel strip. Was effective in preventing the occurrence of the re-use band.
  • alloy components, contents, and the like included in the duplex stainless steel strip targeted by the present invention will be described.
  • Cr is included at / 0 or more. But 20.0 mass. If an excessive amount of Cr exceeding / 0 is added, the toughness and workability of the steel material decrease. As the Cr content increases, the amount of austenite-forming elements, such as C, N, Ni, Mn, and Cu, required for martensite formation and strengthening must be increased. Increasing the amount of austenite-forming elements not only increases steel strip costs, but also stabilizes austenite at room temperature, making it difficult to obtain high strength. Therefore, the upper limit of the Cr content is set to 20.0% by mass.
  • the amount of martensite increases according to the Ni content, and the steel material is strengthened.
  • the addition of Ni increases the frequency of nucleation of austenite by annealing in the (austenite + ferrite) two-phase region, resulting in a fine (austenite + ferrite) mixed structure.
  • the mechanism by which the increase of Ni influences the formation of a fine two-phase mixed structure is that the growth rate of austenite nuclei slows beyond the critical nuclei defined by classical nucleation theory, while the equilibrium diagram shows that This is probably because the number of nucleation sites increases due to the formation of new austenite nuclei in an attempt to generate austenite.
  • the effect of adding Ni on the refinement of the two-phase mixed structure is 0.5 mass. /. It becomes remarkable at the above Ni content.
  • the austenite phase formed at a high temperature due to the excessive addition of Ni does not transform into martensite during the cooling process to room temperature and becomes residual austenite, thereby reducing the strength of the steel. Lower responsible.
  • the upper limit of the Ni content is set to 4.0% by mass.
  • austenite-forming elements such as Mn, Cu, and N and ferrite formation such as Si, Ti, Nb, and A1 are formed. Elements can be appropriately added, and each alloy component can be adjusted so that a ferrite + martensite double-phase structure can be obtained at room temperature.
  • Mo is effective in improving corrosion resistance
  • Y, Ca, REM (rare earth metal) is effective in improving oxidation resistance and hot workability
  • B is effective in improving various properties as long as the required strength is not reduced. It is acceptable to add alloying elements such as V.
  • the content of the optional component is determined as follows.
  • austenite-forming element that suppresses the formation of ⁇ ferrite at high temperatures and facilitates the formation of austenite. But 2.0 mass. If an excessive amount of Mn exceeding / 0 is contained, retained austenite is easily generated after annealing, and when forming into a product shape, forms work-induced martensite and generates strain.
  • the upper limit of the S content is 0.020 mass to suppress the adverse effects caused by S. It is preferable to regulate to / 0 .
  • austenite-forming element It is an austenite-forming element and suppresses the formation of ⁇ -ferrite at high temperatures and promotes the formation of an austenite phase. But 0.10 mass. If an excessive amount of ⁇ exceeding / 0 is contained, retained austenite is likely to be formed after annealing. Retained austenite transforms into work-induced martensite at the stage of processing into the product shape, which also causes distortion. It is also a component that increases the strength of the cold-rolled annealed material. ⁇ The ductility decreases as the content increases.
  • the Cu content is excessive, hot workability and corrosion resistance will be adversely affected.
  • the adverse effect caused by Cu is that the Cu content is 2.0 mass. It is suppressed by regulating to / 0 or less.
  • Ti, Nb, and V precipitate solid solution C as carbides to improve workability
  • Zr is an alloy component that improves workability and toughness by trapping oxygen in steel as oxide, but is excessively added. Reduces productivity. Therefore, the content of each alloy component is Ti: 0.01 to 0.50 mass. Nb: 0.01-0.50 mass. V: 0.01 to 0.30 mass. Zr: 0.01 to 0.30 mass. It is preferable to select within the range of / 0 .
  • REM rare earth metal: 0.1 mass. /. j3 ⁇ 4 below Y, Ca, and REM are effective alloy components for improving hot workability, but if they are added excessively, surface flaws are likely to occur.
  • Y, Ca, REM preferably Y: 0.02 mass. /.
  • Ca 0.05 mass. /.
  • REM 0.1 mass. /.
  • Each has an upper limit.
  • the structure, the prior austenite grains, the expansion rate during the martensitic transformation, and the like are regulated in order to suppress the influence of distortion and volume expansion during martensitic transformation on the generation of the Reuse band.
  • Tissue 20-85 volumes. / 0 martensite and balance ferrite
  • the amount of martensite at room temperature is 20 to 85% by volume, and the amount of austenite at high temperature is 20 to 85% by volume. /. Hit.
  • the austenite phase undergoes martensitic transformation in the course of cooling to room temperature, but transformation dislocations in the formed martensite and transformation strains caused by volume expansion accompanying martensitic transformation are introduced into the cooled stainless steel.
  • the strain caused by the martensite transformation is uniformly dispersed and transformed into the surrounding soft ferrite grains.
  • the distortion is absorbed.
  • deformation due to transformation strain that appears on the outer surface of the steel strip is reduced.
  • the strain is corrected by applying 1 to 2% tensile strain to a stainless steel strip in the form of a steel belt in which the transformation strain is uniformly dispersed and absorbed, the finely transformed transformation strain that is uniformly dispersed is absorbed by the distortion during straightening, and the Ruders band is used.
  • the stainless steel strip is uniformly deformed without the occurrence of cracks.
  • martensite volume is 20 volumes. /. If it is less than 1%, the tensile strain of 1% to 2% applied in the shape correction stage exceeds the accumulated amount of transformation strain, and a Ruder's band appears on the steel strip surface. Low martensite content means excess soft ferrite, It tends to run out.
  • Average particle size of former austenite 10um or less
  • the grain size of martensite and ferrite generated in the cooling stage of the annealing process is reduced, and the martensitic transformation region is dispersed, so that the strain accompanying martensitic transformation is uniformly dispersed.
  • the uniform dispersion of the transformation strain and, consequently, the suppression of the Ruders band can be made effective by reducing the average particle size of the former austenite to ⁇ or less.
  • the crystal structure changes from f.c. to b.c.c. or b.c.t.
  • the atomic packing of the crystal structure changes and the stainless steel strip undergoes transformation expansion.
  • the expansion rate due to the transformation is not simply proportional to the amount of martensite generated by the transformation, but depends on the distribution of martensite and fluoride.
  • the average grain size of the former austenite is smaller and the grain boundary area of the transformed martensite ferrite is larger, in other words, as the transformed martensite is more finely distributed, the transformation strain is absorbed by the surrounding soft ferrite and the inside of the ferrite Transformation strain is accumulated in
  • Transformation By utilizing the effect of martensite refinement to suppress transformation distortion, non-uniform deformation at the time of steel belt straightening is prevented, and no reuse band is generated.
  • the former austenite is refined to an average grain size of ⁇ or less, the grain size of the transformed martensitic ferrite is reduced, the grain boundary area of martensite ferrite is increased, and the average expansion is increased. Must be 9% or less.
  • HV300 above By adjusting the C and Ni contents and the martensite content, the hardness of the duplex stainless steel is refined, but high responsiveness in the operating environment, high speed, and high fatigue strength due to the use of small pulleys are required. For use as a steel belt, a material hardness of HV300 or more is required. Next, the present invention will be specifically described with reference to examples.
  • Stainless steel having the composition shown in Table 1 was vacuum-melted, forged, forged, and hot-rolled to a thickness of 3.0 mm.
  • steel type numbers No .:! To 5 are stainless steels having the composition specified in the present invention
  • steel type numbers Nos. 6 to 8 are stainless steels having compositions outside the range specified in the present invention.
  • Comparative steel No. 8 which has an excessive Ni content, has a large amount of retained austenite, and a work-induced martensitic transformation occurs during tensile deformation, resulting in the formation of a ruder band.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Belt Conveyors (AREA)
  • Package Frames And Binding Bands (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

A high strength double phase stainless steel strip, wherein it has a chemical composition in mass %: C: 0.04 to 0.15 %, Cr: 10.0 to 20.0 mass %, Ni: 0.5 to 4.0 mass %, and balance: substantially Fe, an old austenite average grain diameter is 10 μm or less, and it has a structure after transformation at an ordinary temperature which contains martensite in an amount of 20 to 85 vol % and ferrite in the balanced amount, and a hardness of HV300 or more. The double phase stainless steel strip can be used for the production of a steel belt excellent in surface characteristics, since the transformation strain associated with martensitic transformation is dispersed uniformly and thus no Luders band is formed during the correction of the shape of a steel belt.

Description

スチ一ルベルト用複相ステンレス鋼帯 技術分野 Duplex stainless steel strip for steel belt
本発明は、 スチールベルト製造プロセスにおける形状矯正時にリユーダースバ ンドが発生しない表面形状の優れスチールベルト用高強度複相ステンレス鋼帯に 関する。 明  TECHNICAL FIELD The present invention relates to a high-strength duplex stainless steel strip for a steel belt having an excellent surface shape in which a reducer band does not occur during shape correction in a steel belt manufacturing process. Light
 Rice field
背景技術 Background art
ステンレススチールベルトには、 SUS301, SUS304 等のオーステナイ ト系ス テンレス鋼を冷間圧延によって強化された加工硬化型オーステナイ ト系ステンレ ス鋼の他に、 低炭素マルテンサイ ト系ステンレス鋼 (特公昭 51— 31085号公報), 析出硬化型マルテンサイ ト系ステンレス鋼 (特公昭 59— 49303 号公報) 等が使 用されている。  Stainless steel belts include work hardened austenitic stainless steels, which are reinforced by cold rolling austenitic stainless steels such as SUS301 and SUS304, as well as low-carbon martensitic stainless steels (Japanese Patent Publication No. No. 31085) and precipitation-hardening martensitic stainless steel (Japanese Patent Publication No. 59-49303).
SUS304, SUS301 に代表される加工硬化型の組織は準安定オーステナイ ト組 織であり、 変形により加工誘起マルテンサイ トが形成される。 そのため、 変形中 に加工誘起マルテンサイ トの生成に起因するリユーダースバンドが発生し (日本 金属学会誌第 55卷第 4号第 376〜382頁, 日新製鋼技報第 69号第 1〜; 14頁)。 スチールベルト素材として望ましくない表面凹凸が発生する。  The work-hardened structure represented by SUS304 and SUS301 is a metastable austenitic structure, and a work-induced martensite is formed by deformation. As a result, during deformation, a reusable band is generated due to the formation of work-induced martensite (Journal of the Institute of Metals, Vol. 55, No. 4, pp. 376-382, Nisshin Steel Engineering Reports No. 69, Nos. 1--14). page). Undesired surface irregularities occur as a steel belt material.
マルテンサイ ト系ゃ析出硬化型マルテンサイ ト系は、 製造工程における焼鈍か らの冷却過程でほぼマルテンサイ ト単相に変態するが、 変態に伴う膨張により形 状変化を生じやすい。 劣化した形状は、 ベルト状態では容易に矯正できない。 発明の開示  Martensite-precipitation-hardened martensite transforms almost to a single martensite phase during the cooling process after annealing in the manufacturing process, but tends to change its shape due to expansion accompanying the transformation. A deteriorated shape cannot be easily corrected in a belt state. Disclosure of the invention
本発明は、 このような問題を解消すべく案出されたものであり、 準安定オース テナイ ト系のようなベルト形状矯正時にリューダースバンドの発生や、 マルテン サイト系のように製造過程でマルテンサイトに完全変態することにより形状矯正 が困難になることなく、 フェライト /マルテンサイトの複相組織をもち表面形状 に優れたスチールベルト用のステンレス鋼帯を提供することを目的とする。 本発明のスチールベルト用高強度複相ステンレス鋼帯は、 その目的を達成する ため、 C: 0.04〜0.15質量。 /0、 Cr: 10.0〜20.0質量。ん Ni: 0.5〜4.0質量%を 含み、 旧オーステナイト平均粒径が ΙΟμιη 以下で、 変態後の常温で 20〜85 体 積。 /0のマルテンサイトと残部がフェライトの組織をもち、 硬度 HV300以上に調 質されている。 The present invention has been devised in order to solve such a problem, and the generation of a Ruder's band when correcting a belt shape such as a metastable austenite system, and the formation of a martens belt. To provide stainless steel strips for steel belts that have a ferrite / martensite dual-phase structure and excellent surface shape without making shape correction difficult due to complete transformation to martensite in the manufacturing process like a site system. The purpose is to: The high-strength duplex stainless steel strip for steel belts of the present invention has a C content of 0.04 to 0.15 mass in order to achieve the object. / 0 , Cr: 10.0-20.0 mass. Ni: contains 0.5 to 4.0% by mass, has a prior austenite average particle size of ΙΟμιη or less, and has a volume of 20 to 85 at room temperature after transformation. / 0 has martensite and the remainder has a ferrite structure and has been refined to a hardness of HV300 or more.
旧オーステナイト平均粒径を ΙΟμπι以下にし、 焼鈍工程の冷却過程でオース テナイトがマルテンサイト変態する際の平均膨張量を 9%以下に調整することが 好ましい。  It is preferable that the average grain size of the prior austenite is less than ΙΟμπι, and the average expansion when austenite undergoes martensitic transformation in the cooling step of the annealing step is less than 9%.
なお、 本件明細書では、 鋼板を包含する意味で 「鋼帯」 を使用している。 発明を実施するための最良の形態  In this specification, “steel strip” is used to include steel sheets. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者等は、 スチールベルトの形状矯正時に発生するリユーダースバンドに 及ぼす影響を組成, 組織, 材質等、 種々の観点から調査'検討した。 その結果、 マルテンサイト変態に伴う歪み分布や体積膨張がリューダースバンドの発生に大 きな影響を与えていることが判った。 歪み分布, 体積膨張の影響を考慮し、 ステ ンレス鋼帯に残留オーステナイトをなくすと共に、 焼鈍工程の冷却過程でオース テナイト相がマルテンサイト変態する際に生じる膨張歪みを鋼帯全体に分散発生 させることがリユーダースバンドの発生防止に有効であることを解明した。 以下、 本発明が対象とする複相ステンレス鋼帯に含まれる合金成分, 含有量等 を説明する。  The present inventors investigated and examined the effects on the reducer band generated when the shape of a steel belt was corrected from various viewpoints such as composition, structure, and material. As a result, it was found that the strain distribution and volume expansion accompanying the martensitic transformation had a great influence on the generation of the Luders band. In consideration of the effects of strain distribution and volume expansion, residual austenite is eliminated from the stainless steel strip, and the expansion strain generated when the austenite phase undergoes martensitic transformation during the cooling process in the annealing step is dispersed throughout the steel strip. Was effective in preventing the occurrence of the re-use band. Hereinafter, alloy components, contents, and the like included in the duplex stainless steel strip targeted by the present invention will be described.
C: 0.04-0.15質量% C: 0.04-0.15 mass%
オーステナイト形成元素であり、 マルテンサイト相の強化に極めて有効な合金 成分である。 オーステナイト化温度 Aci点以上の高温加熱した後に生じるマル テンサイト量を調整でき、 強度調整及び高強度化に寄与する。 Cの添加効果は、 0.04質量。 /。以上の C含有量で顕著になる。 しかし、 過剰量の C含有は複層化処 理後の冷却過程や時効処理で粒界に Cr炭化物を析出させて耐粒界腐食や疲労特 性を低下させるので、 C含有量の上限を 0.15質量。 /。に設定した。 It is an austenite-forming element and an extremely effective alloy component for strengthening the martensite phase. Austenitizing temperature The amount of tensite can be adjusted, contributing to strength adjustment and high strength. The effect of adding C is 0.04 mass. /. It becomes remarkable at the above C content. However, excessive C content causes precipitation of Cr carbides at the grain boundaries during the cooling process and aging treatment after the multi-layering treatment and lowers the intergranular corrosion resistance and fatigue characteristics.Therefore, the upper limit of the C content is 0.15%. mass. /. Set to.
Cr: 10.0〜動質量0 /0 Cr: 10.0~ dynamic mass 0/0
ステンレス鋼としての耐食性を確保する上で必須の合金成分であり、 必要な耐 食性を付与するため 10.0質量。 /0以上で Crを含ませる。 しかし、 20.0質量。 /0を 超える過剰量の Cr を添加すると、 鋼材の靭性, 加工性が低下する。 Cr含有量 の増加に応じて、 マルテンサイトの生成及び高強度化に必要な C, N, Ni, Mn, Cu等のオーステナイト形成元素を増量することを余儀なくされる。 オーステナ イト形成元素の増量は、 鋼帯コス トを上昇させるばかりでなく、 室温でオーステ ナイトを安定化し、 高強度が得られがたくなる。 したがって、 Cr含有量の上限 を 20.0質量%に定めた。 It is an essential alloy component for ensuring the corrosion resistance of stainless steel, and 10.0 mass to provide the required corrosion resistance. Cr is included at / 0 or more. But 20.0 mass. If an excessive amount of Cr exceeding / 0 is added, the toughness and workability of the steel material decrease. As the Cr content increases, the amount of austenite-forming elements, such as C, N, Ni, Mn, and Cu, required for martensite formation and strengthening must be increased. Increasing the amount of austenite-forming elements not only increases steel strip costs, but also stabilizes austenite at room temperature, making it difficult to obtain high strength. Therefore, the upper limit of the Cr content is set to 20.0% by mass.
Ni : 0.5-4.0質量% Ni: 0.5-4.0 mass%
オーステナイ ト生成元素であり、 高温でフェライト +オーステナイトの組織 (室温でフェライト +マルテンサイト) を得るために添加される。 Ni含有量に 応じてマルテンサイト量が増加し、 鋼材が高強度化される。 また、 Ni添加によ り、 (オーステナイト +フェライト) 二相域焼鈍で、 オーステナイトの核形成頻 度が増加し、 結果として微細な (オーステナイト +フェライト) 二相混合組織が 得られる。 Ni の増量が微細な二相混合組織の生成に及ぼす機構は、 古典的核形 成理論で定義される臨界核を越えてオーステナイト核の成長速度が遅くなる一方、 平衡状態図的には安定量のオーステナイトを生成しょうとして、 新たなオーステ ナイト核を形成するために核形成サイトが多くなることによるものと考えられる。 二相混合組織の微細化に及ぼす Niの添加効果は、 0.5質量。 /。以上の Ni含有量で 顕著になる。 しかし、 鋼材コストを上昇させる高価な元素であることは勿論、 Ni の過剰添加によって高温で生成したォ一ステナイト相が室温までの冷却過程 でマルテンサイトに変態せず残留オーステナイトとなって鋼材強度を低下させる 原因である。 したがって、 Ni含有量の上限を 4.0質量%に定めた。 本発明が対象とする複相ステンレス鋼帯では、 C, Cr, Ni の他に、 必要に応 じて Mn, Cu, N等のオーステナイト形成元素や Si, Ti, Nb, A1等のフェライ ト形成元素を適宜添加し、 常温でフェライト +マルテンサイ トの複相組織が得ら れるように各合金成分を調整することもできる。 また、 必要強度を低下させない 範囲で、 耐食性の向上に有効な Mo, 耐酸化性や熱間加工性の向上に有効な Y, Ca, REM (希土類金属), 各種の特性向上に有効な B, V等の合金元素を添加 しても良レ、。 任意成分の含有量は、 次のように定められる。 It is an austenite forming element and is added to obtain a ferrite + austenite structure at high temperature (ferrite + martensite at room temperature). The amount of martensite increases according to the Ni content, and the steel material is strengthened. In addition, the addition of Ni increases the frequency of nucleation of austenite by annealing in the (austenite + ferrite) two-phase region, resulting in a fine (austenite + ferrite) mixed structure. The mechanism by which the increase of Ni influences the formation of a fine two-phase mixed structure is that the growth rate of austenite nuclei slows beyond the critical nuclei defined by classical nucleation theory, while the equilibrium diagram shows that This is probably because the number of nucleation sites increases due to the formation of new austenite nuclei in an attempt to generate austenite. The effect of adding Ni on the refinement of the two-phase mixed structure is 0.5 mass. /. It becomes remarkable at the above Ni content. However, not only is it an expensive element that raises the cost of steel, but the austenite phase formed at a high temperature due to the excessive addition of Ni does not transform into martensite during the cooling process to room temperature and becomes residual austenite, thereby reducing the strength of the steel. Lower Responsible. Therefore, the upper limit of the Ni content is set to 4.0% by mass. In the duplex stainless steel strip targeted by the present invention, in addition to C, Cr, and Ni, as necessary, austenite-forming elements such as Mn, Cu, and N and ferrite formation such as Si, Ti, Nb, and A1 are formed. Elements can be appropriately added, and each alloy component can be adjusted so that a ferrite + martensite double-phase structure can be obtained at room temperature. In addition, Mo is effective in improving corrosion resistance, Y, Ca, REM (rare earth metal) is effective in improving oxidation resistance and hot workability, and B is effective in improving various properties as long as the required strength is not reduced. It is acceptable to add alloying elements such as V. The content of the optional component is determined as follows.
Si: 2.0質量%以下 Si: 2.0 mass% or less
溶鋼段階で脱酸剤として添加される成分であるが、 固溶強化能が高く、 2.0 質 量。 /0を超える Siの過剰添加は鋼材を硬質化して延性を低下させる。 It is a component added as a deoxidizer in the molten steel stage, but has a high solid solution strengthening ability and has a mass of 2.0. Excessive addition of Si exceeding / 0 hardens the steel material and lowers the ductility.
Mn: 2.0質量%以下 Mn: 2.0 mass% or less
オーステナイト形成元素であり、 高温域での δフェライトの生成を抑制しォー ステナイトを生成しやすくする。 しかし、 2.0質量。 /0を超える過剰量の Mnが含 まれると、 焼鈍後に残留オーステナイトが生成し易く、 製品形状に加工する際に 加工誘起マルテンサイトを生成し、 歪み発生の原因にもなる。 It is an austenite-forming element that suppresses the formation of δ ferrite at high temperatures and facilitates the formation of austenite. But 2.0 mass. If an excessive amount of Mn exceeding / 0 is contained, retained austenite is easily generated after annealing, and when forming into a product shape, forms work-induced martensite and generates strain.
P: 0.050質量%以下 P: 0.050 mass% or less
熱間加工性に有害な元素であり、 0.050質量。 /0を超える過剰な Pが含まれると 熱間加工性に及ぼす悪影響が顕著になる。 Element harmful to hot workability, 0.050 mass. When excessive P exceeding / 0 is contained, the adverse effect on hot workability becomes significant.
S: 0.020質量%以下 S: 0.020 mass% or less
結晶粒界に偏析し易く、 粒界を脆化して熱間加工性等を低下させる成分である。 S起因の悪影響を抑えるため、 S含有量の上限を 0.020質量。 /0に規制することが 好ましい。 It is a component that tends to segregate at crystal grain boundaries, embrittles the grain boundaries, and reduces hot workability and the like. The upper limit of the S content is 0.020 mass to suppress the adverse effects caused by S. It is preferable to regulate to / 0 .
A1: 0.10質量%以下 A1: 0.10 mass% or less
溶鋼段階で脱酸剤として添加される成分であるが、 0.10 質量。 /0を超える過剰 な A1添加は非金属介在物を増加させ、 靭性低下や表面欠陥の原因となる。 N: 0.10質量%以下 0.10 mass, added as a deoxidizer in the molten steel stage. Excessive addition of A1 in excess of / 0 increases nonmetallic inclusions, causing a decrease in toughness and surface defects. N: 0.10 mass% or less
オーステナイト形成元素であり、 高温域における δフェライトの生成を抑制し、 オーステナイト相の生成を促進させる。 しかし、 0.10 質量。 /0を超える過剰量の Ν が含まれると、 焼鈍後に残留オーステナイトが生成し易くなる。 残留オース テナイトは、 製品形状への加工段階で加工誘起マルテンサイトに変態し、 歪み発 生の原因にもなる。 冷延焼鈍材の強度を上昇させる成分でもあり、 Ν 含有量の 増加に応じて延性が低下する。 It is an austenite-forming element and suppresses the formation of δ-ferrite at high temperatures and promotes the formation of an austenite phase. But 0.10 mass. If an excessive amount of Ν exceeding / 0 is contained, retained austenite is likely to be formed after annealing. Retained austenite transforms into work-induced martensite at the stage of processing into the product shape, which also causes distortion. It is also a component that increases the strength of the cold-rolled annealed material. 延 The ductility decreases as the content increases.
Mo: 1.0質量%以下 Mo: 1.0 mass% or less
耐食性改善に有効な合金成分であるが、 1.0質量%を超える Moの過剰添加は 高温での固溶強化や動的再結晶を遅滞させ、 熱間加工性を低下させる。  Although an effective alloy component for improving corrosion resistance, excessive addition of Mo exceeding 1.0% by mass delays solid solution strengthening and dynamic recrystallization at high temperatures, and reduces hot workability.
Cu: 2.0質量%以下 Cu: 2.0 mass% or less
溶解原料であるスクラップ等から混入する不可避的な不純物であるが、 Cu含 有量が過剰になると熱間加工性や耐食性に悪影響が現れる。 Cu 起因の悪影響は、 Cu含有量を 2.0質量。 /0以下に規制することにより抑制される。 It is an unavoidable impurity that is mixed in from the raw material scrap, etc. However, if the Cu content is excessive, hot workability and corrosion resistance will be adversely affected. The adverse effect caused by Cu is that the Cu content is 2.0 mass. It is suppressed by regulating to / 0 or less.
Ti: 0.01-0.50質量% Nb: 0.01〜0.50質量。 /0 Ti: 0.01-0.50 mass% Nb: 0.01-0.50 mass. / 0
V: 0.01〜0.30質量% Zr: 0.01〜0.30質量0 /0 V: 0.01~0.30 mass% Zr: 0.01~0.30 mass 0/0
Ti, Nb, Vは固溶 Cを炭化物として析出させて加工性を向上させ、 Zrは鋼中 の酸素を酸化物として捕捉することにより加工性や靭性を向上させる合金成分で あるが、 過剰添加は生産性を低下させることになる。 そのため、 各合金成分の含 有量は、 Ti: 0.01〜0.50 質量。ん Nb : 0.01-0.50 質量。ん V: 0.01〜0.30 質 量。ん Zr: 0.01〜0.30質量。 /0の範囲で選定することが好ましい。 Ti, Nb, and V precipitate solid solution C as carbides to improve workability, and Zr is an alloy component that improves workability and toughness by trapping oxygen in steel as oxide, but is excessively added. Reduces productivity. Therefore, the content of each alloy component is Ti: 0.01 to 0.50 mass. Nb: 0.01-0.50 mass. V: 0.01 to 0.30 mass. Zr: 0.01 to 0.30 mass. It is preferable to select within the range of / 0 .
B: 0.0010〜0.0100晳量 °/。以下 B: 0.0010-0.0100 晳 ° /. Less than
熱延板の変態相を均一分散させ、 複相化焼鈍段階で変態相を細粒化する作用を 呈する。 Bの添加効果は 0.0010質量%以上で顕著になるが、 0.0100質量%を超 える過剰添加は熱間加工性, 溶接性等に悪影響を及ぼす。  It has the effect of uniformly dispersing the transformed phase of the hot-rolled sheet and making the transformed phase finer in the dual-phase annealing step. The effect of adding B becomes significant at 0.0010 mass% or more, but excessive addition exceeding 0.0100 mass% adversely affects hot workability and weldability.
Y: 0.02質量%以下 Ca: 0.05質量%以下  Y: 0.02% by mass or less Ca: 0.05% by mass or less
REM (希土類金属) : 0.1質量。/。 j¾下 Y, Ca, REM は、 熱間加工性の改善に有効な合金成分であるが、 過剰に添加 すると表面疵が発生しやすくなる。 Y, Ca, REM を添加する場合、 好ましくは Y: 0.02質量。/。, Ca: 0.05質量。/。, REM: 0.1質量。 /。に上限をそれぞれ規制す る。 成分調整されたステンレス鋼は、 マルテンサイト変態時の歪みや体積膨張がリ ユーダースバンド発生に及ぼす影響を抑制するため、 組織, 旧オーステナイト粒, マルテンサイト変態時の膨張率等が規制される。 REM (rare earth metal): 0.1 mass. /. j¾ below Y, Ca, and REM are effective alloy components for improving hot workability, but if they are added excessively, surface flaws are likely to occur. When adding Y, Ca, REM, preferably Y: 0.02 mass. /. , Ca: 0.05 mass. /. , REM: 0.1 mass. /. Each has an upper limit. In the stainless steel whose composition is adjusted, the structure, the prior austenite grains, the expansion rate during the martensitic transformation, and the like are regulated in order to suppress the influence of distortion and volume expansion during martensitic transformation on the generation of the Reuse band.
組織: 20〜85体積。 /0のマルテンサイト及び残部フェライト Tissue: 20-85 volumes. / 0 martensite and balance ferrite
室温でのマルテンサイト量 20〜85 体積%は、 高温でのオーステナイト量 20 〜85 体積。 /。に当る。 室温までの冷却過程でオーステナイト相がマルテンサイト 変態するが、 生成したマルテンサイト中の変態転位及びマルテンサイト変態に伴 う体積膨張に起因する変態歪みが冷却後のステンレス鋼に導入される。  The amount of martensite at room temperature is 20 to 85% by volume, and the amount of austenite at high temperature is 20 to 85% by volume. /. Hit. The austenite phase undergoes martensitic transformation in the course of cooling to room temperature, but transformation dislocations in the formed martensite and transformation strains caused by volume expansion accompanying martensitic transformation are introduced into the cooled stainless steel.
マルテンサイト変態に際し、 旧オーステナイト粒を細粒化して高温域における 旧オーステナイト粒 フェライト粒の粒界表面積を大きくすると、 マルテンサイ ト変態に起因する歪みが均一分散され、 周囲にある軟質のフェライト粒に変態歪 みが吸収される。 その結果、 鋼帯外面に現れる変態歪み起因の変形が小さくなる。 変態歪みが均一分散'吸収されたスチールベルト形状のステンレス鋼帯に 1〜2% の引張り歪みを加えて形状矯正すると、 均一分散した微細な変態歪みが矯正時の 歪みに吸収され、 リューダースバンドの発生なくステンレス鋼帯が均一に加工変 形する。  During the martensitic transformation, when the former austenite grains are refined to increase the grain boundary surface area of the ferrite grains in the high temperature range, the strain caused by the martensite transformation is uniformly dispersed and transformed into the surrounding soft ferrite grains. The distortion is absorbed. As a result, deformation due to transformation strain that appears on the outer surface of the steel strip is reduced. When the strain is corrected by applying 1 to 2% tensile strain to a stainless steel strip in the form of a steel belt in which the transformation strain is uniformly dispersed and absorbed, the finely transformed transformation strain that is uniformly dispersed is absorbed by the distortion during straightening, and the Ruders band is used. The stainless steel strip is uniformly deformed without the occurrence of cracks.
均一分散した微細な変態歪みを形状矯正時の加工歪みに積極的に吸収させてリ ユーダースバンドの発生を抑える上では、 変態歪みの蓄積に有効なマルテンサイ ト量を 20体積%以上に調整することが重要である。 マルテンサイト量が 20体 積。 /。に満たないと、 形状矯正段階で付与される 1〜2%の引張り歪みが変態歪み の蓄積量を超え、 鋼帯表面にリューダースバンドが出現する。 マルテンサイト量 が少ないことは、 軟質のフェライトが過剰なことを意味し、 ステンレス鋼帯の強 度も不足しがちになる。 逆に、 過剰なマルテンサイト量は、 焼鈍工程の冷却段階 でマルテンサイトに完全変態して変態歪み起因の形状劣化が現れやすくなると共 に、 形状矯正時の加工が困難になる。 そのため、 マルテンサイト量の上限を 85 体積%に規制する。 In order to actively absorb the finely transformed strains uniformly dispersed into the processing strains at the time of shape correction and to suppress the occurrence of reuse bands, adjust the amount of martensite effective for accumulating transformation strains to 20% by volume or more. This is very important. Martensite volume is 20 volumes. /. If it is less than 1%, the tensile strain of 1% to 2% applied in the shape correction stage exceeds the accumulated amount of transformation strain, and a Ruder's band appears on the steel strip surface. Low martensite content means excess soft ferrite, It tends to run out. Conversely, an excessive amount of martensite completely transforms into martensite in the cooling stage of the annealing process, which tends to cause shape deterioration due to transformation strain, and also makes processing at the time of shape correction difficult. Therefore, the upper limit of martensite is restricted to 85% by volume.
旧オーステナイトの平均粒径: 10um以下 Average particle size of former austenite: 10um or less
旧オーステナイト粒を細粒化すると、 焼鈍工程の冷却段階で生じるマルテンサ ィト及びフェライトの粒径が小さくなり、 マルテンサイト変態領域が分散される ため、 マルテンサイト変態に伴う歪みが均一分散される。 その結果、 スチールべ ルト矯正時の不均一変形が抑えられ、 リューダースバンドが発生しなくなる。 変 態歪みの均一分散、 ひいてはリューダースバンドの抑制は、 旧オーステナイ トの 平均粒径を ΙΟμιη以下にすることにより効果的になる。  When the prior austenite grains are refined, the grain size of martensite and ferrite generated in the cooling stage of the annealing process is reduced, and the martensitic transformation region is dispersed, so that the strain accompanying martensitic transformation is uniformly dispersed. As a result, non-uniform deformation during straightening of the steel belt is suppressed, and no Ruders band is generated. The uniform dispersion of the transformation strain and, consequently, the suppression of the Ruders band can be made effective by reducing the average particle size of the former austenite to ΙΟμιη or less.
マルテンサイト変態に伴う平均膨張率: 9 %以下 Average expansion rate due to martensitic transformation: 9% or less
オーステナイト相がマルテンサイト変態すると、 結晶構造が f.c. から b.c.c.又 は b.c.t.に変化する。 結晶構造の変化に伴い、 結晶構造の原子充填率が変わりス テンレス鋼帯を変態膨張させる。 変態起因の膨張率は、 変態で生じたマルテンサ イト量に単純比例せず、 マルテンサイト及びフヱライトの分布に依存する。 旧ォ ーステナイトの平均粒径が小さく、 変態後のマルテンサイト フェライトの粒界 面積が大きいほど、 換言すると変態マルテンサイトが微細分布するほど、 周囲に ある軟質のフェライトに変態歪みが吸収され、 フェライト内部に変態歪みが蓄積 される。  When the austenite phase transforms into martensite, the crystal structure changes from f.c. to b.c.c. or b.c.t. As the crystal structure changes, the atomic packing of the crystal structure changes and the stainless steel strip undergoes transformation expansion. The expansion rate due to the transformation is not simply proportional to the amount of martensite generated by the transformation, but depends on the distribution of martensite and fluoride. As the average grain size of the former austenite is smaller and the grain boundary area of the transformed martensite ferrite is larger, in other words, as the transformed martensite is more finely distributed, the transformation strain is absorbed by the surrounding soft ferrite and the inside of the ferrite Transformation strain is accumulated in
変態歪みの吸収'蓄積により、 バルク全体の見掛け膨張量が小さくなる。 変態 マルテンサイトの細粒化が変態歪みを抑える効果を利用することにより、 スチー ルベルト矯正時の不均一変形が防止され、 リユーダースバンドが発生しなくなる。 そのためには、 旧オーステナイトを平均粒径 ΙΟμηι 以下に細粒化し、 変態後の マルテンサイト フェライトの二相組織の粒径を小さくしてマルテンサイト フ ェライトの粒界面積を大きくし、 平均膨張量を 9%以下にする必要がある。  Due to the absorption and accumulation of transformation strain, the apparent bulk expansion of the bulk is reduced. Transformation By utilizing the effect of martensite refinement to suppress transformation distortion, non-uniform deformation at the time of steel belt straightening is prevented, and no reuse band is generated. For this purpose, the former austenite is refined to an average grain size of ΙΟμηι or less, the grain size of the transformed martensitic ferrite is reduced, the grain boundary area of martensite ferrite is increased, and the average expansion is increased. Must be 9% or less.
硬度: HV300 上 C, Ni含有量及びマルテンサイト量の調整により、 複相組織ステンレス鋼は 硬度が調質されるが、 使用環境での高応答性'高速化, 小プーリー化による高疲 労強度が要求されるスチールベルトとしての用途にあっては HV300以上の素材 硬度が必要になる。 次いで、 実施例により本発明を具体的に説明する。 Hardness: HV300 above By adjusting the C and Ni contents and the martensite content, the hardness of the duplex stainless steel is refined, but high responsiveness in the operating environment, high speed, and high fatigue strength due to the use of small pulleys are required. For use as a steel belt, a material hardness of HV300 or more is required. Next, the present invention will be specifically described with reference to examples.
表 1の組成をもつステンレス鋼を真空溶解し、 铸造, 鍛造後、 板厚 3.0mmに 熱間圧延した。 表中、 鋼種番号 No.:!〜 5 は本発明で規定した組成をもつステン レス鋼、 鋼種番号 No.6〜8 は本発明で規定した範囲を外れる組成のステンレス 鋼である。  Stainless steel having the composition shown in Table 1 was vacuum-melted, forged, forged, and hot-rolled to a thickness of 3.0 mm. In the table, steel type numbers No .:! To 5 are stainless steels having the composition specified in the present invention, and steel type numbers Nos. 6 to 8 are stainless steels having compositions outside the range specified in the present invention.
鋼種番号 No.:!〜 7 では、 780°C X 8時間で拡散焼鈍し、 酸洗後に板厚 1.0mm に冷間圧延し、 更に 1050°C X 1分均熱 '空冷の複相化焼鈍を施し、 再度酸洗した。 鋼種番号 No.8では、 SUS301に相当する板厚 2.0mmの熱延鋼板を 1050°C X 60 秒で焼鈍した後、 板厚 1.0mmに冷間圧延した。 For steel grade No .:! ~ 7, diffusion annealing at 780 ° C for 8 hours, cold rolling to a thickness of 1.0mm after pickling, and further soaking at 1050 ° C for 1 minute, then air-cooled dual phase annealing It was pickled again. For steel type No. 8, a 2.0 mm thick hot-rolled steel sheet equivalent to SUS301 was annealed at 1050 ° C for 60 seconds and then cold rolled to a 1.0 mm thickness.
実施例で使用 したス テ ン レ ス 鋼の種類 DType of stainless steel used in Examples D
Figure imgf000011_0001
Figure imgf000011_0001
下線は、 本発明の規定の範囲を外れることを示す。 The underline indicates that the value is out of the specified range of the present invention.
各ステンレス鋼帯について、 組織定量, 表面のビッカース硬度 (荷重 1kg) , 旧オーステナイ ト粒径を調査した。 フェライ ト及びマルテンサイ トは、 フッ酸For each stainless steel strip, the microstructure quantification, Vickers hardness of the surface (load 1 kg), and former austenite grain size were investigated. Ferrite and martensite are hydrofluoric acid
2:硝酸 1: グリセリン 1 のエッチング液でエッチングし、 ポイントカウント法 で定量した。 オーステナイ ト量は磁気的方法で測定した。 旧オーステナイ ト粒径 は電子顕微鏡で観察し、 切片法で測定した。 マルテンサイ ト変態に起因する平均 膨張率は、 実験室的に実施した複相化焼鈍における冷却過程で一方向変態膨張量 を測定し、 測定値を 3乗して体積膨張率に換算することにより求めた。 調査結果 を表 2に示す。 2: Etched with nitric acid 1: glycerin 1 etchant and quantified by the point count method. The amount of austenite was measured by a magnetic method. The old austenite particle size was observed with an electron microscope and measured by the section method. The average coefficient of expansion due to martensite transformation is determined by measuring the amount of one-way transformation expansion during the cooling process in laboratory-assisted dual-phase annealing and converting the measured value to the cube of 3 to convert it to a volume expansion coefficient. Was. Table 2 shows the survey results.
板厚 1mmのステンレス鋼帯から、 圧延方向に長さ方向が一致する幅 50mm, 長さ 200mmの試験片を切り出し、 実際のスチールベルト矯正をシミュレーショ ンする試験に供した。 シミュレーション試験では、 引張り試験機を用いて歪み速 度 ImmZ分で最大 5%まで引張り歪みを付加し、 リューダースバンドの発生有 無を観察した。 なお、 プーリー部分で曲げ応力を受けるステンレススチールベル トの使用環境に近づけるため、 引張り歪みの付加に先立って半径 50mm の曲げ 応力を試験片に 10往復与えた。 試験結果を表 2に併せ示す。 From a 1 mm thick stainless steel strip, a test piece with a width of 50 mm and a length of 200 mm whose length direction matches the rolling direction was cut out and subjected to a test to simulate actual steel belt straightening. In the simulation test, tensile strain was applied up to 5% at a strain rate of ImmZ using a tensile tester, and the presence or absence of a Lüders band was observed. Before the tensile strain was applied, a bending stress with a radius of 50 mm was applied to the test specimen 10 times in order to approximate the operating environment of the stainless steel belt which receives bending stress at the pulley. The test results are shown in Table 2.
表 2 : 各ス テ ン レス鋼帯の組織及び試験結果 Table 2: Microstructure and test results of each stainless steel strip
Figure imgf000013_0001
Figure imgf000013_0001
下線は、 本発明で規定した範囲を外れることを示す。  An underline indicates that the value is out of the range defined in the present invention.
* 1は、 曲げでクラックが発生したことを示す。 * 1 indicates that cracking occurred during bending.
表 2 の調査結果から、 本発明に従ったステンレス鋼帯から作成されたスチ一 ルベルトを形状矯正してもリユーダースバンドが発生しないことが判る。 From the investigation results in Table 2, it can be seen that even if the steel belt made from the stainless steel strip according to the present invention was straightened, no reuse band was generated.
これに対し、 比較鋼 No.6 は、 Ni含有量が不足するため旧オーステナイ トの 核が十分に形成されず、 平均粒径が ΙΟμπι を超える旧オーステナィ ト粒及び 9 体積%を超える平均膨張量に起因したリユーダースバンドの発生が窺われる。 ま た、 比較鋼 No.6 は、 少なすぎる Ni含有量のため、 強度が不足し、 引張り歪み 付加試験に先立つ繰返し曲げ試験の段階でクラックが発生するものもあった。 比較鋼 No.7は、 C含有量が不足してマルテンサイト量が少ないため、 変態歪 みが少なく、 ベルト矯正時の均一変形に必要な歪み量が不足している。 そのため、 不均一変形、 換言するとリューダースバンドが発生し易くなつていた。 比較鋼 No.6 と同様に Ni含有量が少ないものの C含有量も少ないため、 繰返し曲げ試 験の段階でクラックは発生しなかった。  On the other hand, in comparative steel No. 6, the core of old austenite was not sufficiently formed due to insufficient Ni content, and the average austenite grains with an average particle size exceeding ΙΟμπι and the average expansion amount exceeding 9% by volume It seems that a re-band has been generated. In addition, the comparative steel No. 6 had insufficient strength due to too low Ni content, and cracks occurred in the repeated bending test stage prior to the tensile strain addition test. Comparative steel No. 7 has a small amount of martensite due to a lack of C content, so there is little transformation distortion, and the amount of distortion necessary for uniform deformation during belt straightening is insufficient. As a result, non-uniform deformation, in other words, a Luder's band, tends to occur. Similar to comparative steel No. 6, cracks did not occur during the repeated bending test because the Ni content was low but the C content was low.
Ni含有量が過剰な比較鋼 No.8 は、 残留オーステナイ トが多く、 引張り変形 中に加工誘起マルテンサイト変態が生じた結果、 リューダ一スバンドが発生した。 産業上の利用可能性  Comparative steel No. 8, which has an excessive Ni content, has a large amount of retained austenite, and a work-induced martensitic transformation occurs during tensile deformation, resulting in the formation of a ruder band. Industrial applicability
以上に説明したように、 旧オーステナイト粒を細粒化してフェライト Zマルテ ンサイ トの複相組織の粒界面積を大きくすることにより、 焼鈍工程の冷却過程で ォ一ステナイト相がマルテンサイト変態する際に生じる変態歪みが均一分散され て軟質のフェライト相に吸収 '蓄積される。 蓄積された変態歪みは、 スチールべ ルト製造段階の形状矯正で加えられる加工歪みに吸収され、 リユーダースバンド の発生原因にならない。 このようにして、 従来の加工硬化型, 析出硬化型のステ ンレス鋼製ベルト材に比較して、 形状安定性はもとより リューダースバンドがな く表面形状に優れたスチールベルト用高強度ステンレス鋼帯が提供される。  As described above, by reducing the size of the prior austenite grains to increase the grain boundary area of the double phase structure of ferrite Z martensite, the martensitic transformation of the austenite phase during the cooling process in the annealing process Transformation strain is uniformly dispersed and absorbed and accumulated in the soft ferrite phase. The accumulated transformation strain is absorbed by the processing strain applied during shape correction in the steel belt manufacturing stage, and does not cause the generation of a reuse band. In this way, compared to conventional work hardening and precipitation hardening stainless steel belt materials, high strength stainless steel strips for steel belts that have excellent surface stability and excellent surface shape, as well as shape stability. Is provided.

Claims

請求の範囲 The scope of the claims
1. C: 0.04〜0.15質量%, Cr: 10.0-20.0質量。ん Ni: 0.5-4.0質量%を含 み, 残部が実質的に Fe の組成をもち、 旧オーステナイト平均粒径が ΙΟμπι 以下, 変態後の常温組織がマルテンサイト 20〜85 体積。 /0及び残部フェライ ト, 硬度が HV300以上であることを特徴とするスチールベルト用複相ステ ンレス鋼帯。 1. C: 0.04 to 0.15% by mass, Cr: 10.0 to 20.0% by mass. Ni: 0.5-4.0% by mass, with the balance being substantially Fe, the average austenite grain size is less than ΙΟμπι, and the normal temperature structure after transformation is 20-85 martensite. / 0, balance ferrite, hardness not less than HV300, multi-phase stainless steel strip for steel belt.
2. ステンレス鋼が更に Si: 2.0質量%以下, Mn: 2.0質量。 /。以下, P: 0.050 質量。 /。以下, S: 0.020質量。/。以下, A1: 0.10質量。/。以下, N: 0.10質量。 /。 以下, Mo: 1.0質量%以下, Cu: 2.0質量。 /0以下, Ti: 0.01〜0.50質量。ん Nb: 0.01〜0.50質量0ん V: 0.01〜0.30質量。ん Zr: 0.01-0.30質量。ん2. Stainless steel: Si: 2.0 mass% or less, Mn: 2.0 mass%. /. Below, P: 0.050 mass. /. Below, S: 0.020 mass. /. Below, A1: 0.10 mass. /. Below, N: 0.10 mass. /. Mo: 1.0 mass% or less, Cu: 2.0 mass%. / 0 or less, Ti: 0.01 to 0.50 mass. Nb: 0.01 to 0.50 mass 0 V: 0.01 to 0.30 mass. Zr: 0.01-0.30 mass. Hmm
B: 0.0010〜0.0100質量%以下, Y: 0.02質量%以下, Ca: 0.05質量%以下, REM (希土類金属) : 0.1質量%以下の 1種又は 2種以上を含む請求項 1記 載のスチールベルト用複相ステンレス鋼帯。 B: 0.0010 to 0.0100% by mass or less, Y: 0.02% by mass or less, Ca: 0.05% by mass or less, REM (rare earth metal): 0.1% by mass or less of one or more steel belts. For duplex stainless steel strip.
3. 焼鈍工程の冷却過程でオーステナイトがマルテンサイト変態する際の平均 膨張量が 9 %以下である請求項 1記載のスチールベルト用複相ステンレス鋼 帯。  3. The duplex stainless steel strip for a steel belt according to claim 1, wherein the average expansion amount when austenite undergoes martensitic transformation in the cooling step of the annealing step is 9% or less.
PCT/JP2002/005572 2001-06-11 2002-06-06 Double phase stainless steel strip for steel belt WO2002101108A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003503853A JP4252893B2 (en) 2001-06-11 2002-06-06 Duplex stainless steel strip for steel belt
US10/480,205 US20040168750A1 (en) 2001-06-11 2002-06-06 Double phase stainless steel strip for steel belt
DE60205896T DE60205896D1 (en) 2001-06-11 2002-06-06 BAND OF DOUBLE-PHASE NON-STAINLESS STEEL STEEL BELT
KR10-2003-7013354A KR20040014492A (en) 2001-06-11 2002-06-06 Double phase stainless steel strip for steel belt
AT02738626T ATE303458T1 (en) 2001-06-11 2002-06-06 DOUBLE PHASE STAINLESS STEEL BAND FOR STEEL BELT
EP02738626A EP1396552B1 (en) 2001-06-11 2002-06-06 Double phase stainless steel strip for steel belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001175109 2001-06-11
JP2001-175109 2001-06-11

Publications (1)

Publication Number Publication Date
WO2002101108A1 true WO2002101108A1 (en) 2002-12-19

Family

ID=19016298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005572 WO2002101108A1 (en) 2001-06-11 2002-06-06 Double phase stainless steel strip for steel belt

Country Status (8)

Country Link
US (1) US20040168750A1 (en)
EP (1) EP1396552B1 (en)
JP (1) JP4252893B2 (en)
KR (1) KR20040014492A (en)
CN (1) CN1227383C (en)
AT (1) ATE303458T1 (en)
DE (1) DE60205896D1 (en)
WO (1) WO2002101108A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274391A (en) * 2005-03-30 2006-10-12 Nisshin Steel Co Ltd Stainless steel for strain detection sensor substrate
JP2009091614A (en) * 2007-10-08 2009-04-30 Daido Steel Co Ltd Two-phase stainless steel, and bar steel, steel wire, wire rod and steel parts using the same
JP2016079482A (en) * 2014-10-20 2016-05-16 新日鐵住金株式会社 Dual phase stainless steel and manufacturing method therefor

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248263A (en) * 2004-03-04 2005-09-15 Daido Steel Co Ltd Martensitic stainless steel
FR2872825B1 (en) * 2004-07-12 2007-04-27 Industeel Creusot MARTENSITIC STAINLESS STEEL FOR MOLDS AND CARCASES OF INJECTION MOLDS
ES2600754T3 (en) * 2008-02-07 2017-02-10 Nisshin Steel Co., Ltd. High strength stainless steel material and its production process
CN101867234B (en) * 2009-01-13 2014-12-10 日新制钢株式会社 Hysteresis motor and manufacturing method of rotor for hysteresis motor
WO2012102330A1 (en) 2011-01-27 2012-08-02 新日鐵住金ステンレス株式会社 Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
EP2677054B1 (en) * 2011-02-14 2020-03-25 Nippon Steel Corporation Duplex stainless steel plate or pipe, and process for production thereof
TWI460293B (en) * 2011-10-21 2014-11-11 Nippon Steel & Sumikin Sst Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
WO2013080699A1 (en) 2011-11-28 2013-06-06 新日鐵住金株式会社 Stainless steel and method of manufacturing same
WO2015064128A1 (en) * 2013-10-31 2015-05-07 Jfeスチール株式会社 Ferrite-martensite two-phase stainless steel exhibiting low-temperature toughness, and method for producing same
CN104281774B (en) * 2014-09-02 2017-06-13 上海交通大学 Forecasting Methodology of the Q&P steel in different strain rate Dan Lahou residual austenite contents
AT516453B1 (en) * 2014-11-03 2018-02-15 Berndorf Band Gmbh Metallic strips and their manufacturing processes
JP6129140B2 (en) * 2014-11-05 2017-05-17 日新製鋼株式会社 Stainless steel for diffusion bonding
CN107532259A (en) * 2015-04-21 2018-01-02 杰富意钢铁株式会社 Martensitic stain less steel
ES2862309T3 (en) * 2016-04-12 2021-10-07 Jfe Steel Corp Martensitic stainless steel sheet
CN107523759A (en) * 2017-08-25 2017-12-29 苏州双金实业有限公司 A kind of new two phase stainless steel
CN109128166B (en) * 2018-09-27 2020-05-12 北京科技大学 Near-net forming method for ultrahigh-strength corrosion-resistant soft magnetic ferrite stainless steel
CN109457193A (en) * 2018-11-16 2019-03-12 襄阳五二五泵业有限公司 A kind of wear-resisting two phase stainless steel
CN111763893A (en) * 2020-07-13 2020-10-13 南阳师范学院 Corrosion-resistant composite metal material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013405A1 (en) * 1993-11-12 1995-05-18 Nisshin Steel Co., Ltd. High-strength high-ductility two-phase stainless steel and process for producing the same
JPH09263912A (en) * 1996-03-29 1997-10-07 Nisshin Steel Co Ltd High strength double phase structure chromium stainless steel sheet for punching and its production
JPH10265907A (en) * 1997-03-25 1998-10-06 Nippon Kinzoku Co Ltd Steel excellent in stress corrosion resistance, strength, and toughness, and its production
JP2000063998A (en) * 1998-06-12 2000-02-29 Nisshin Steel Co Ltd Metastable austenitic stainless steel sheet for continuously variable transmission belt, and its production
JP2000129400A (en) * 1998-10-21 2000-05-09 Nisshin Steel Co Ltd Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic
JP2000129401A (en) * 1998-10-21 2000-05-09 Nisshin Steel Co Ltd High toughness skin pass-rolled martensitic stainless steel plate having high spring characteristic and its production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3787961T2 (en) * 1986-12-30 1994-05-19 Nisshin Steel Co., Ltd., Tokio/Tokyo Process for the production of stainless chrome steel strip with two-phase structure with high strength and high elongation and with low anisotropy.
JP2756549B2 (en) * 1989-07-22 1998-05-25 日新製鋼株式会社 Manufacturing method of high strength duplex stainless steel strip with excellent spring properties.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013405A1 (en) * 1993-11-12 1995-05-18 Nisshin Steel Co., Ltd. High-strength high-ductility two-phase stainless steel and process for producing the same
JPH09263912A (en) * 1996-03-29 1997-10-07 Nisshin Steel Co Ltd High strength double phase structure chromium stainless steel sheet for punching and its production
JPH10265907A (en) * 1997-03-25 1998-10-06 Nippon Kinzoku Co Ltd Steel excellent in stress corrosion resistance, strength, and toughness, and its production
JP2000063998A (en) * 1998-06-12 2000-02-29 Nisshin Steel Co Ltd Metastable austenitic stainless steel sheet for continuously variable transmission belt, and its production
JP2000129400A (en) * 1998-10-21 2000-05-09 Nisshin Steel Co Ltd Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic
JP2000129401A (en) * 1998-10-21 2000-05-09 Nisshin Steel Co Ltd High toughness skin pass-rolled martensitic stainless steel plate having high spring characteristic and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274391A (en) * 2005-03-30 2006-10-12 Nisshin Steel Co Ltd Stainless steel for strain detection sensor substrate
JP2009091614A (en) * 2007-10-08 2009-04-30 Daido Steel Co Ltd Two-phase stainless steel, and bar steel, steel wire, wire rod and steel parts using the same
JP2016079482A (en) * 2014-10-20 2016-05-16 新日鐵住金株式会社 Dual phase stainless steel and manufacturing method therefor

Also Published As

Publication number Publication date
DE60205896D1 (en) 2005-10-06
ATE303458T1 (en) 2005-09-15
CN1227383C (en) 2005-11-16
KR20040014492A (en) 2004-02-14
US20040168750A1 (en) 2004-09-02
EP1396552B1 (en) 2005-08-31
EP1396552A1 (en) 2004-03-10
JPWO2002101108A1 (en) 2004-09-24
CN1514885A (en) 2004-07-21
JP4252893B2 (en) 2009-04-08
EP1396552A4 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
WO2002101108A1 (en) Double phase stainless steel strip for steel belt
JP5869922B2 (en) Ferrite-austenitic duplex stainless steel sheet with small in-plane anisotropy and method for producing the same
JP5777283B2 (en) High strength stainless steel material and manufacturing method thereof
JP2001323342A (en) Austenitic stainless steel excellent in fine blanking property
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JP2010215953A (en) Austenitic stainless steel and method for producing austenitic stainless steel sheet
JP3470660B2 (en) Chromium stainless steel material for spring and multi-layered structure for spring and method for producing the same
JP6986455B2 (en) Duplex Stainless Steel Wires for Duplex Stainless Steel, Duplex Stainless Steel Wires and Duplex Stainless Steels for Prestressed Concrete
JP2018003139A (en) Stainless steel
TW202233863A (en) Austenitic stainless steel material, method for producing same, and leaf spring
JPH11189842A (en) High-strength and high-workability hot rolled steel plate excellent in impact resistance, balance between strength and elongation, fatigue resistance, and bore-expandability, and its production
JP2005097682A (en) Steel, steel sheet and stock belt for continuously variable transmission belt, continuously variable transmission belt, and production method therefor
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
JP3289980B2 (en) Method for producing high-strength austenitic stainless steel with excellent toughness
JP4209514B2 (en) High toughness tempered rolled martensitic stainless steel sheet with high spring characteristics and method for producing the same
JP2002105601A (en) High strength dual phase stainless steel and its production method
JP2002194506A (en) Stainless steel sheet and production method for the same
JP3603726B2 (en) Austenitic stainless steel sheet for electronic components
JP2004225082A (en) High strength low permeability austenitic stainless steel sheet, method of producing the same, and method of producing washer for bolt fastening
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JPH11256282A (en) Precipitation hardening martensitic stainless steel excellent in strength, toughness, and fatigue characteristic, and its production
JP3370441B2 (en) Duplex stainless steel sheet with excellent elongation characteristics and method for producing the same
JPH06207250A (en) High strength stainless steel excellent in toughness and its production
WO2019189872A1 (en) Ferrite-based stainless steel sheet and production method thereof, and ferrite-based stainless member
JP5470904B2 (en) TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003503853

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002738626

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037013354

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028115821

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10480205

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002738626

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002738626

Country of ref document: EP