JP6129140B2 - Stainless steel for diffusion bonding - Google Patents
Stainless steel for diffusion bonding Download PDFInfo
- Publication number
- JP6129140B2 JP6129140B2 JP2014225576A JP2014225576A JP6129140B2 JP 6129140 B2 JP6129140 B2 JP 6129140B2 JP 2014225576 A JP2014225576 A JP 2014225576A JP 2014225576 A JP2014225576 A JP 2014225576A JP 6129140 B2 JP6129140 B2 JP 6129140B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- diffusion bonding
- phase
- steel material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009792 diffusion process Methods 0.000 title claims description 78
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 51
- 239000010935 stainless steel Substances 0.000 title claims description 48
- 239000000463 material Substances 0.000 claims description 69
- 230000003746 surface roughness Effects 0.000 claims description 23
- 229910000859 α-Fe Inorganic materials 0.000 claims description 21
- 239000013078 crystal Substances 0.000 claims description 20
- 229910001566 austenite Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 229910001039 duplex stainless steel Inorganic materials 0.000 claims description 10
- 229910000734 martensite Inorganic materials 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 239000012071 phase Substances 0.000 description 56
- 229910000831 Steel Inorganic materials 0.000 description 41
- 239000010959 steel Substances 0.000 description 41
- 238000000034 method Methods 0.000 description 35
- 238000012360 testing method Methods 0.000 description 14
- 238000005304 joining Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 238000005259 measurement Methods 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000012966 insertion method Methods 0.000 description 5
- 239000002436 steel type Substances 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、拡散接合される成型品に用いられる複相系ステンレス鋼材に関する。 The present invention relates to a duplex stainless steel material used for a molded article to be diffusion bonded.
ステンレス鋼材同士の接合方法の一つに拡散接合があり、拡散接合によって組み立てられたステンレス鋼拡散接合製品は、熱交換器、機械部品、燃料電池部品、家電製品部品、プラント部品、装飾品構成部材、建材など、種々の用途に適用されている。拡散接合方法には、インサート材を接合界面に挿入し固相拡散または液相拡散により接合する「インサート材挿入法」と、双方のステンレス鋼材の表面同士を直接接触させて拡散接合する「直接法」がある。 One of the joining methods of stainless steel materials is diffusion bonding. Stainless steel diffusion bonding products assembled by diffusion bonding are heat exchangers, machine parts, fuel cell parts, home appliance parts, plant parts, decorative components. It is applied to various uses such as building materials. The diffusion bonding method includes an “insert material insertion method” in which an insert material is inserted into the bonding interface and bonded by solid phase diffusion or liquid phase diffusion, and a “direct method” in which the surfaces of both stainless steel materials are in direct contact with each other. There is.
インサート材挿入法は確実な拡散接合を比較的簡便に実現できる点で有利である。しかし、インサート材を用いることによりコストが増大する点や、接合部分が異種金属となることにより耐食性が低下する場合がある点で直接法よりも不利となる。
他方、直接法はインサート材挿入法に比べ一般に十分な接合強度を得ることが難しいとされる。しかし、製造コスト低減の面で有利となる可能性を含んでいることから、直接法に関しても種々の方法が検討されてきた。例えば特許文献1には、鋼中のS量を0.01重量%以下とし所定温度の非酸化性雰囲気中で拡散接合することで材料の変形を回避してステンレス鋼材の拡散接合性を向上させる技術が開示されている。特許文献2には、酸洗処理により表面に凹凸を付与したステンレス鋼箔材を使用する方法が開示されている。特許文献3には、拡散接合の阻害要因となるアルミナ皮膜が拡散接合時に生成しにくいようにAl含有量を抑制したステンレス鋼を被接合材として用いる方法が開示されている。特許文献4には冷間加工により変形を付与したステンレス鋼箔を用いて拡散を促進させることが開示されている。特許文献5、6には、組成を適正化した直接拡散接合用のフェライト系ステンレス鋼が記載されている。
The insert material insertion method is advantageous in that reliable diffusion bonding can be realized relatively easily. However, the use of the insert material is disadvantageous compared to the direct method in that the cost is increased and the corrosion resistance may be lowered due to the dissimilar metal in the joint portion.
On the other hand, it is generally difficult for the direct method to obtain sufficient bonding strength compared to the insert material insertion method. However, since there is a possibility that it is advantageous in terms of reduction in manufacturing cost, various methods have been examined with respect to the direct method. For example,
上述の技術などによりステンレス鋼材の拡散接合は直接法によっても可能となった。しかし、工業的には、直接法はステンレス鋼材の拡散接合方法の主流として定着するには至っていない。その主たる理由は、接合部の信頼性(接合強度や密着性)確保と、製造負荷抑制の両立が難しいことにある。従来の知見によると、直接法により接合部の信頼性を確保するためには接合温度を1100℃を超える高温としたり、ホットプレスやHIP等により高い面圧を付与したりする負荷の大きい工程を採用する必要があり、それによるコスト増大が避けられない。ステンレス鋼材の拡散接合を通常のインサート材挿入法と同等の作業負荷にて実施すると、接合部の信頼性を十分に確保することは難しいのが現状である。 Due to the above technique, diffusion bonding of stainless steel materials has become possible by the direct method. However, industrially, the direct method has not been established as the mainstream of the diffusion bonding method of stainless steel materials. The main reason is that it is difficult to ensure the reliability (bonding strength and adhesion) of the joint and to suppress the production load. According to the conventional knowledge, in order to ensure the reliability of the joint part by the direct method, the process of making the joint temperature higher than 1100 ° C. or applying a high surface pressure by hot press, HIP or the like is a heavy load process. It is necessary to employ it, and the cost increase by it is inevitable. If diffusion bonding of stainless steel material is performed with a work load equivalent to that of a normal insert material insertion method, it is difficult to sufficiently secure the reliability of the joint.
そこで、拡散接合時にフェライト相がオーステナイト相へ変態するときの駆動力を利用すること(特許文献7)や、結晶粒成長の駆動力を利用すること(特許文献8)により、特別な高温加熱や高面圧を付与することなく、インサート材挿入法と同等の作業負荷で実施できる拡散接合品の製造方法が提案された。また、拡散接合に供するステンレス鋼材の表面酸化物をできるだけ低減して拡散接合性を高める方法(特許文献9、10)が提案された。これらの方法は、良好な接合性を確保するためには、使用されるステンレス鋼材の接合前の表面粗さを規制する必要がある。そのため、拡散接合製品に使用されるステンレス鋼材には一層の接合性の向上が求められている。 Therefore, by utilizing the driving force when the ferrite phase is transformed into the austenite phase during diffusion bonding (Patent Document 7) or by using the driving force of crystal grain growth (Patent Document 8), There has been proposed a method for manufacturing a diffusion bonded product that can be carried out with a work load equivalent to that of the insert material insertion method without applying a high surface pressure. In addition, a method (Patent Documents 9 and 10) has been proposed in which the surface oxide of a stainless steel material used for diffusion bonding is reduced as much as possible to enhance diffusion bonding properties. In these methods, it is necessary to regulate the surface roughness before joining of the used stainless steel material in order to ensure good joining properties. Therefore, a further improvement in bondability is required for stainless steel materials used in diffusion bonding products.
本発明は、表面粗さの程度に影響されないで、拡散接合性をさらに向上させた拡散接合成型品に適したステンレス鋼材を提供することを目的とする。 It is an object of the present invention to provide a stainless steel material suitable for a diffusion bonding molded product having further improved diffusion bonding properties without being affected by the degree of surface roughness.
本発明者らは、フェライト相、マルテンサイト相、オーステナイト相の少なくとも2種以上からなる複相組織を有する複相系ステンレス鋼材について、拡散接合前の平均結晶粒径、γmax量、クリープ伸びを制御することによって、鋼材の表面粗さに影響されることなく、良好な拡散接合性が得られることを見出し、拡散接合用ステンレス鋼材として本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。 The present inventors have controlled the average crystal grain size, γmax amount, and creep elongation before diffusion bonding for a duplex stainless steel material having a duplex structure consisting of at least two of a ferrite phase, a martensite phase, and an austenite phase. As a result, it was found that good diffusion bondability was obtained without being affected by the surface roughness of the steel material, and the present invention was completed as a stainless steel material for diffusion bonding. Specifically, the present invention provides the following.
(1) 本発明は、拡散接合前の金属組織がフェライト相、マルテンサイト相またはオーステナイト相の少なくとも2種以上からなる複相組織を有する複相系ステンレス鋼材であって、前記複相組織の平均結晶粒径が20μm以下であり、下記(a)式で示されるγmaxが10〜90であり、1.0MPaの負荷を1000℃、0.5hで加えたときのクリープ伸びが0.2%以上である、拡散接合用ステンレス鋼材である。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49Ti−47Nb−52Al+470N+189 ・・・(a)式
ここで、上記(a)式における元素記号は、各元素の含有量(質量%)を意味する。
(1) The present invention is a dual-phase stainless steel material in which the metal structure before diffusion bonding has a multi-phase structure composed of at least two of a ferrite phase, a martensite phase, or an austenite phase, and the average of the multi-phase structure The crystal grain size is 20 μm or less, γmax represented by the following formula (a) is 10 to 90, and the creep elongation is 0.2% or more when a 1.0 MPa load is applied at 1000 ° C. for 0.5 h. It is a stainless steel material for diffusion bonding.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-47Nb-52Al + 470N + 189 (a) Formula
Here, the element symbol in the above formula (a) means the content (% by mass) of each element.
(2) 本発明は、前記ステンレス鋼材は、質量%で、C:0.2%以下、Si:1.0%以下、Mn:3.0%以下、P:0.05%以下、S:0.03%以下、Ni:10.0%以下、Cr:10.0〜30.0%、N:0.3%以下、Ti:0.15%以下、Al:0.15%以下を含み、残部がFeおよび不可避的不純物からなり、TiとAlの合計量が0.15%以下である、上記(1)に記載の拡散接合用ステンレス鋼材である。 (2) In the present invention, the stainless steel material is mass%, C: 0.2% or less, Si: 1.0% or less, Mn: 3.0% or less, P: 0.05% or less, S: 0.03% or less, Ni: 10.0% or less , Cr: 10.0 to 30.0%, N: 0.3% or less, Ti: 0.15% or less, Al: 0.15% or less The balance is the stainless steel material for diffusion bonding according to (1), wherein the balance is made of Fe and inevitable impurities, and the total amount of Ti and Al is 0.15% or less.
(3) 本発明は、前記ステンレス鋼材は、さらに、質量%で、Nb:4.0%以下、Mo:0.01〜4.0%、Cu:0.01〜3.0%、V:0.03〜0.15%の1種または2種以上を含む、上記(1)または上記(2)に記載の拡散接合用ステンレス鋼材である。 (3) In the present invention, the stainless steel material is further in mass%, Nb: 4.0% or less, Mo: 0.01 to 4.0%, Cu: 0.01 to 3.0%, V: The stainless steel material for diffusion bonding according to (1) or (2) above, containing one or more of 0.03 to 0.15%.
(4) 本発明は、前記ステンレス鋼材は、さらに、質量%で、B:0.0003〜0.01%を含む、上記(1)〜(3)のいずれかに記載の拡散接合用ステンレス鋼材である。 (4) The stainless steel material for diffusion bonding according to any one of (1) to (3), wherein the stainless steel material further includes B: 0.0003 to 0.01% by mass%. It is.
本発明によれば、フェライト相、マルテンサイト相、オーステナイト相の少なくとも2種以上からなる複相組織を有する複相系ステンレス鋼が、拡散接合前の平均結晶粒径およびγmax、接合温度でのクリープ伸びを最適な範囲で備えたことにより、優れた拡散接合性を有するステンレス鋼材が提供されるため、良好な接合界面を呈する拡散接合成型品が提供される。さらに、TiおよびAlの合計含有量を抑制することにより、拡散接合性が向上した拡散接合成型品が得られる。 According to the present invention, a duplex stainless steel having a duplex structure composed of at least two of a ferrite phase, a martensite phase, and an austenite phase is obtained by creeping at an average crystal grain size and γmax before diffusion bonding, and at a bonding temperature. By providing the elongation within the optimum range, a stainless steel material having excellent diffusion bonding properties is provided, and thus a diffusion bonding molded product exhibiting a good bonding interface is provided. Furthermore, by suppressing the total content of Ti and Al, a diffusion bonded molded article with improved diffusion bonding properties can be obtained.
以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
ステンレス鋼材の直接法による拡散接合は、従来の手法に従えば、(i)接合面の凹凸が変形して密着し、接合した箇所の接合面積が増大する過程、(ii)密着した箇所で接合前鋼材の表面酸化物皮膜が消失する過程、(iii)未接合部であるボイド内の残留ガスが母材と反応する過程が並行して進行することにより完了すると考えられている。 According to the conventional method, diffusion bonding by a direct method of stainless steel material is (i) a process in which the unevenness of the joint surface is deformed and brought into close contact, and the joint area of the joined part increases, and (ii) joining at the tight part It is considered that the process in which the surface oxide film of the front steel material disappears and (iii) the process in which the residual gas in the void which is an unjoined portion reacts with the base material proceed in parallel.
発明者らは、これまで、上記(ii)の過程に着目して母材成分や不動態皮膜中に含まれる成分、表面粗さを規制し、工業的にネックとなる生産性の低下を回避すべく検討してきた。しかし、上記(ii)の工程を制御しても、工業的に安定した接合性の確保は困難な場合があり、上記(i)の工程も加味して安定した接合性を得るための鋼材に関して種々研究を重ねてきた。その結果、拡散接合に供するステンレス鋼が複相組織を有する複相系ステンレス鋼である場合、拡散接合前の結晶粒径を微細にすることが極めて有効であることを見出した。 The inventors have so far focused on the process (ii) above to regulate the base material components, the components contained in the passive film, and the surface roughness, and avoid the industrial productivity drop. I have been considering it. However, even if the step (ii) is controlled, it may be difficult to ensure industrially stable bondability. With regard to the steel material for obtaining stable bondability in consideration of the step (i), Various studies have been conducted. As a result, it has been found that when the stainless steel used for diffusion bonding is a dual phase stainless steel having a double phase structure, it is extremely effective to make the crystal grain size before diffusion bonding fine.
[複相組織]
ステンレス鋼は、一般に、常温での金属組織に基づいてオーステナイト系ステンレス鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼などに分類される。本発明の「複相組織」は、フェライト相、マルテンサイト相、オーステナイト相の少なくとも2種以上からなる金属組織を有するものである。本発明の「複相系ステンレス鋼材」は、かかる複相組織を有するものであり、接合温度域でオーステナイト+フェライト2相組織となる鋼をいうものとする。このような2相系のステンレス鋼の中には、フェライト系ステンレス鋼やマルテンサイト系ステンレス鋼に分類されるステンレス鋼が含まれることもある。
[Multiphase structure]
Stainless steel is generally classified into austenitic stainless steel, ferritic stainless steel, martensitic stainless steel, and the like based on the metal structure at room temperature. The “multiphase structure” of the present invention has a metal structure composed of at least two of a ferrite phase, a martensite phase, and an austenite phase. The “multi-phase stainless steel material” of the present invention has such a multi-phase structure, and refers to a steel having an austenite + ferrite two-phase structure in the joining temperature range. Such a two-phase stainless steel may include a stainless steel classified as a ferritic stainless steel or a martensitic stainless steel.
本発明では、低温・低面圧下で直接法による拡散接合を実現するために、拡散接合に供するステンレス鋼材に、フェライト相、マルテンサイト相、オーステナイト相の少なくとも2種以上からなる複相組織を有する複相系ステンレス鋼を用いる。このステンレス鋼は、拡散接合が進行する温度域では、フェライト相およびマルテンサイト相が一部オーステナイト相へ相変態し、オーステナイト相+フェライト相の2相組織となり、お互いの相が高温下で生じる結晶粒成長を抑制することで、微細な組織を維持し、粒界すべりを起因すると推定されるクリープ変形が容易に生じ得る。その結果、接合面の凹凸部において容易な変形が促進され、接合した箇所の接合面積が増大することにより、低温・低面圧下で直接法による拡散接合が可能となる。 In the present invention, in order to realize diffusion bonding by a direct method under low temperature and low surface pressure, the stainless steel material used for diffusion bonding has a multiphase structure composed of at least two types of ferrite phase, martensite phase, and austenite phase. Use duplex stainless steel. In this stainless steel, in the temperature range where diffusion bonding proceeds, the ferrite phase and martensite phase are partly transformed to austenite phase to form a two-phase structure of austenite phase + ferrite phase, and each phase is produced at high temperature. By suppressing grain growth, a fine structure can be maintained and creep deformation presumed to be caused by grain boundary sliding can easily occur. As a result, easy deformation is promoted in the concavo-convex portion of the bonding surface, and the bonding area of the bonded portion increases, thereby enabling diffusion bonding by a direct method at a low temperature and low surface pressure.
本発明の複相系ステンレス鋼材は、直接接触させて拡散接合により一体化させるステンレス鋼材の双方あるいはその一方に使用できるものである。一体化させる相手材としては、本発明のステンレス鋼材を適用できる他、それ以外の2相系鋼種、拡散接合の加熱温度域でオーステナイト単相となるオーステナイト系鋼種、フェライト単相となるフェライト系鋼種などを適用することができる。 The duplex stainless steel material of the present invention can be used for both or one of the stainless steel materials that are brought into direct contact and integrated by diffusion bonding. As a counterpart material to be integrated, the stainless steel material of the present invention can be applied, other two-phase steel types, austenitic steel types that become austenite single phase in the heating temperature range of diffusion bonding, ferritic steel types that become ferrite single phase Etc. can be applied.
[成分組成]
本発明で適用対象となる複相系ステンレス鋼は、Ti、Al以外の成分元素については、拡散接合性の観点からは特にこだわる必要はなく、用途に応じて種々の成分組成を採用することができる。ただし、本発明では拡散接合が進行する温度域でオーステナイト+フェライト2相組織が対象であり、下記(a)式で示されるγmaxが10〜90を満たす成分組成の鋼を採用する必要がある。具体的な成分組成範囲として、以下のものを例示することができる。
[Ingredient composition]
The duplex stainless steel to be applied in the present invention does not need to be particularly concerned with respect to the component elements other than Ti and Al from the viewpoint of diffusion bonding, and may employ various component compositions depending on the application. it can. However, in the present invention, an austenite + ferrite two-phase structure is an object in the temperature range where diffusion bonding proceeds, and it is necessary to employ steel having a component composition satisfying γmax of 10 to 90 represented by the following formula (a). Specific examples of the component composition range include the following.
質量%で、C:0.2%以下、Si:1.0%以下、Mn:3.0%以下、P:0.05%以下、S:0.03%以下、Ni:10.0%以下、Cr:10.0〜30.0%、N:0.3%以下、Ti:0.15%以下、Al:0.15%以下を含み、残部がFeおよび不可避的不純物からなり、TiとAlの合計量が0.15%以下である。 In mass%, C: 0.2% or less, Si: 1.0% or less, Mn: 3.0% or less, P: 0.05% or less, S: 0.03% or less, Ni: 10.0% Hereinafter , Cr: 10.0 to 30.0%, N: 0.3% or less, Ti: 0.15% or less, Al: 0.15% or less, the balance is made of Fe and inevitable impurities, Ti And the total amount of Al is 0.15% or less.
さらに、質量%で、Nb:4.0%以下、Mo:0.01〜4.0%、Cu:0.01〜3.0%、V:0.03〜0.15%の1種または2種以上を含むことができる。さらに、質量%で、B:0.0003〜0.01%を含むことができる。 Furthermore, in mass%, Nb: 4.0% or less, Mo: 0.01-4.0%, Cu: 0.01-3.0%, V: 0.03-0.15% Two or more types can be included. Furthermore, it can contain B: 0.0003-0.01% by the mass%.
以下、ステンレス鋼材に含まれる成分について説明する。 Hereinafter, the components contained in the stainless steel material will be described.
Cは、固溶強化により鋼の強度、硬さを向上させるが、含有量が多くなると、鋼の加工性、靱性を低下させるため、C含有量は、0.2%以下とした。好ましくは、0.08%以下である。 C improves the strength and hardness of the steel by solid solution strengthening, but when the content increases, the workability and toughness of the steel decrease, so the C content is set to 0.2% or less. Preferably, it is 0.08% or less.
Siは、鋼の脱酸に使用されるが、過多であると靭性、加工性を低下させる。また、強固な表面酸化膜を形成して、拡散接合性を阻害するため、1.0%以下とした。好ましくは、0.6%以下である。 Si is used for deoxidation of steel, but if it is excessive, toughness and workability are reduced. Moreover, in order to form a strong surface oxide film and inhibit diffusion bonding properties, the content was made 1.0% or less. Preferably, it is 0.6% or less.
Mnは、高温酸化特性を向上させる元素であるが、過多であると、加工硬化して冷間加工性を低下させるため、3.0%以下とした。 Mn is an element that improves high-temperature oxidation characteristics. However, if it is excessive, Mn is set to 3.0% or less because it is hardened by work and decreases cold workability.
Pは、不可避的不純物であり、粒界腐食性を高めるとともに、靭性の低下を招くため、0.05%以下が好ましく、0.03質量%以下がより好ましい。 P is an inevitable impurity, and increases grain boundary corrosion and causes a decrease in toughness. Therefore, P is preferably 0.05% or less, and more preferably 0.03% by mass or less.
Sは、不可避的不純物であり、熱間加工性を低下させるため、0.03%以下が好ましい。 S is an unavoidable impurity and is preferably 0.03% or less in order to reduce hot workability.
Niは、オーステナイト生成元素であり、また、還元性酸環境中での耐食性を向上させる作用を有するが、過多であると、オーステナイト相が安定となり、フェライト結晶の成長を抑制することができないため、安定なオーステナイト単相を形成してフェライト結晶の成長を抑制するため、10.0%以下とした。 Ni is an austenite-generating element and has an effect of improving the corrosion resistance in a reducing acid environment. However, if it is excessive, the austenite phase becomes stable and the growth of ferrite crystals cannot be suppressed. In order to form a stable austenite single phase and suppress the growth of ferrite crystals, the content was made 10.0% or less.
Crは、不働態被膜を形成して耐食性を付与する元素である。10.0%未満では、その効果が十分でない。30.0%を超えると、加工性が低下する。そのため、Cr含有量は、10.0〜30.0%とした。
Cr is an element that forms a passive film and imparts corrosion resistance. If it is less than 10.0%, the effect is not sufficient. 3 If it exceeds 0.0%, workability deteriorates. Therefore, the Cr content is set to 10.0 to 30.0%.
Nは、不可避的不純物であり、冷間加工性を劣化させるため、0.3%以下が好ましい。 N is an unavoidable impurity and is preferably 0.3% or less in order to deteriorate the cold workability.
Tiは、C、Nを固定する作用を有するため、耐食性や加工性を改善するうえで有効な元素である。Alは、脱酸剤として添加されることが多い。他方、TiおよびAlは、易酸化性元素であるから、鋼材表面の酸化皮膜中に含まれるTi酸化物やAl酸化物は、真空拡散接合の熱処理において還元されにくい。そのため、これらのTi酸化物やAl酸化物が多いと、拡散接合時に上記(ii)の過程の進行を妨げるおそれがあることから、Ti含有量は、0.15質量%以下、Al含有量は、0.15質量%以下が好ましく、より好ましくは0.05質量%以下である。そして、TiとAlの合計含有量は、0.15質量%以下とすることが好ましく、より好ましくは0.05質量%以下である。 Ti has an effect of fixing C and N, and is therefore an effective element for improving corrosion resistance and workability. Al is often added as a deoxidizer. On the other hand, since Ti and Al are easily oxidizable elements, Ti oxide and Al oxide contained in the oxide film on the surface of the steel material are difficult to be reduced in the heat treatment of vacuum diffusion bonding. Therefore, if these Ti oxides and Al oxides are large, the progress of the process (ii) may be hindered during diffusion bonding. Therefore, the Ti content is 0.15% by mass or less, and the Al content is 0.15 mass% or less is preferable, and 0.05 mass% or less is more preferable. Then, the total content of Ti and Al is preferably set to 0.15 mass% or less, and more preferably not more than 0.05 mass%.
Nbは、炭化物または炭窒化物を形成し、鋼の結晶粒を微細化して靭性を高める効果があるが、過多であると加工性の低下を招くため、4.0質量%以下が好ましい。 Nb has the effect of forming carbides or carbonitrides and increasing the toughness by refining the crystal grains of the steel, but if it is excessive, it causes a decrease in workability, so 4.0% by mass or less is preferable.
Moは、強度を低下させることなく耐食性を向上させる作用を有する。過多であると加工性の低下を招くため、0.01〜4.0質量%が好ましい。 Mo has the effect of improving the corrosion resistance without reducing the strength. If it is excessive, the workability is lowered, so 0.01 to 4.0% by mass is preferable.
Cuは、耐食性を向上させるのに効果的であり、また、フェライト相を生成する作用を有するが、過多であると加工性が低下するため、0.01〜3.0質量%が好ましい。 Cu is effective for improving the corrosion resistance and has an effect of generating a ferrite phase. However, if it is excessive, the workability is lowered, so 0.01 to 3.0% by mass is preferable.
Vは、固溶Cを炭化物として固定することにより、加工性や靭性の向上に寄与する元素であるが、過剰に含有すると、製造性の低下を招くので、0.03〜0.15%が好ましい。 V is an element that contributes to improvement of workability and toughness by fixing solute C as a carbide. However, if excessively contained, it causes a decrease in manufacturability, so 0.03 to 0.15%. preferable.
Bは、Nを固定することにより、耐食性や加工性の改善に寄与する元素であるが、過剰に含有すると、熱間加工性の低下を招くので、0.0003〜0.01%が好ましい。 B is an element that contributes to the improvement of corrosion resistance and workability by fixing N. However, if contained excessively, the hot workability is lowered, so 0.0003 to 0.01% is preferable.
上記化学組成を有する複相系ステンレス鋼として、特に下記(a)式で示されるγmaxが10〜90である鋼を適用することができる。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49Ti−47Nb−52Al+470N+189 ・・・(a)式
ここで、上記(a)式における、C、Si等の元素記号は、各元素の含有量(質量%)を意味する。
As the duplex stainless steel having the above chemical composition, steel having a γmax of 10 to 90 represented by the following formula (a) can be applied.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-47Nb-52Al + 470N + 189 (a) Formula
Here, element symbols such as C and Si in the above formula (a) mean the content (% by mass) of each element.
γmaxは、1100℃程度に加熱保持した場合に生成するオーステナイト相の量(体積%)を表す指標である。γmaxが100以上の場合はオーステナイト単相となる鋼種であるとみなすことができ、γmaxが0以下の場合はフェライト単相となる鋼種であるとみなすことができる。
本発明の複相系ステンレス鋼は、γmaxが10〜90であると、拡散接合が進行する温度域でオーステナイト+フェライト2相となり、この2相が互いに高温下での結晶粒成長を抑制するため、微細結晶組織を得るのに有効である。γmaxが50〜80であるとさらに好ましい。
γmax is an index representing the amount (volume%) of the austenite phase that is generated when heated and held at about 1100 ° C. When γmax is 100 or more, it can be regarded as a steel type that becomes an austenite single phase, and when γmax is 0 or less, it can be regarded as a steel type that becomes a ferrite single phase.
In the duplex stainless steel of the present invention, when γmax is 10 to 90, the two phases become austenite + ferrite in the temperature range where diffusion bonding proceeds, and these two phases suppress grain growth at high temperatures. It is effective for obtaining a fine crystal structure. More preferably, γmax is 50-80.
[接合前の平均結晶粒径]
本発明の複相系ステンレス鋼は、細粒組織であるほど、上記(i)の過程を迅速に進行させることができる。そのため、接合前の平均結晶粒径は、20μm以下が好ましく、10μm以下がより好ましい。
[Average crystal grain size before bonding]
As the duplex stainless steel of the present invention has a finer grain structure, the process (i) can be rapidly advanced. Therefore, the average crystal grain size before bonding is preferably 20 μm or less, and more preferably 10 μm or less.
[表面粗さ]
本発明の微細結晶粒を有する複相系ステンレス鋼は、上記(i)の過程が迅速に進行するので、上記(ii)の過程による影響が小さく、表面粗さRaの程度によって接合性が制約されることはない。ただ、拡散接合に供するステンレス鋼材の表面粗さが大きくなると、上記(ii)の過程における酸化皮膜の消失が遅くなる傾向にある。そのため、ステンレス鋼材の表面は、平滑であることが好ましく、表面粗さRaとしては0.3μm以下が好ましい。
[Surface roughness]
In the multi-phase stainless steel having fine crystal grains according to the present invention, since the process (i) proceeds rapidly, the influence of the process (ii) is small, and the bondability is limited by the degree of the surface roughness Ra. It will never be done. However, when the surface roughness of the stainless steel material used for diffusion bonding increases, the disappearance of the oxide film in the process (ii) tends to be delayed. Therefore, the surface of the stainless steel material is preferably smooth, and the surface roughness Ra is preferably 0.3 μm or less.
[拡散接合製品の製造方法]
本発明のステンレス鋼材は、直接法による真空拡散接合を行うことにより、接合性の良好な拡散接合品が得られる。具体的な拡散接合処理としては、例えば、接触面圧0.1〜1.0MPaで直接接触させた状態とし、圧力1.0×10−2Pa以下、好ましくは1.0×10−3Pa以下、露点−40℃以下の炉内で、900〜1100℃に加熱保持することにより、拡散接合を進行させる。保持時間は、0.5〜3hの範囲で調整すればよい。
[Diffusion bonding product manufacturing method]
The stainless steel material of the present invention provides a diffusion bonded product with good bondability by performing vacuum diffusion bonding by a direct method. As a specific diffusion bonding treatment, for example, a direct contact is made at a contact surface pressure of 0.1 to 1.0 MPa, and the pressure is 1.0 × 10 −2 Pa or less, preferably 1.0 × 10 −3 Pa. Hereinafter, diffusion bonding is advanced by heating and maintaining at 900 to 1100 ° C. in a furnace having a dew point of −40 ° C. or less. The holding time may be adjusted in the range of 0.5 to 3 h.
以下、本発明の実施例について説明するが、本発明は、以下の実施例に限定されるものではなく、発明の要旨の範囲内で適宜変更して実施できる。 Examples of the present invention will be described below, but the present invention is not limited to the following examples, and can be implemented with appropriate modifications within the scope of the gist of the invention.
表1に示す化学組成を有するステンレス鋼について、30kgの真空溶解で溶製し、得られた鋼塊を30mm厚の板に鍛造した後、1230℃で2hの熱間圧延を行って3.0mm厚の熱延板を得た。次いで、焼鈍、酸洗、冷間圧延を行って、1.0mmの厚さの冷延板を得た。その後、該冷延板に後述する焼鈍処理を施して冷延焼鈍板を製造し、これを供試材とした。 The stainless steel having the chemical composition shown in Table 1 was melted by 30 kg of vacuum melting, and the obtained steel ingot was forged into a 30 mm thick plate, followed by hot rolling at 1230 ° C. for 2 hours and 3.0 mm. A thick hot-rolled sheet was obtained. Subsequently, annealing, pickling, and cold rolling were performed to obtain a cold-rolled sheet having a thickness of 1.0 mm. Then, the cold-rolled sheet was annealed as described later to produce a cold-rolled sheet, which was used as a test material.
FM−1鋼〜FM−4鋼は、拡散接合前の金属組織がフェライト+マルテンサイト2相鋼(α+M相)、FA−1鋼およびFA−2鋼は、拡散接合前の金属組織がフェライト+オーステナイト2相鋼(α+γ相)、F−1鋼は、拡散接合前の金属組織がフェライト単相鋼(α相)、A−1鋼は、拡散接合前の金属組織がオーステナイト単相鋼(γ相)である。M−1鋼は、拡散接合前の金属組織がマルテンサイト単相鋼(M相)である。
各鋼板は、冷延後の焼鈍温度を900℃〜1200℃の間で変化させることにより、平均結晶粒径の異なる供試材を得た。また、表面粗さの影響を調査するため、一部の鋼板を用いて冷延焼鈍板の仕上げ処理を変更することにより、表面粗さRaの異なる供試材を得た。
For FM-1 steel to FM-4 steel, the metal structure before diffusion bonding is ferrite + martensite dual phase steel (α + M phase), and for FA-1 steel and FA-2 steel, the metal structure before diffusion bonding is ferrite + Austenitic dual-phase steel (α + γ phase), F-1 steel has a ferrite single-phase steel (α phase) as the metal structure before diffusion bonding, and A-1 steel has an austenitic single-phase steel (γ as the metal structure before diffusion bonding). Phase). M-1 steel is martensitic single phase steel (M phase) in the metal structure before diffusion bonding.
Each steel plate obtained the test material from which an average crystal grain diameter differs by changing the annealing temperature after cold rolling between 900 degreeC-1200 degreeC. Moreover, in order to investigate the influence of surface roughness, the test material from which surface roughness Ra differs was obtained by changing the finishing process of a cold-rolled annealing board using some steel plates.
(平均結晶粒径)
鋼板の拡散接合前の平均結晶粒径(μm)は、冷間圧延方向に平行な板厚断面の金属組織を連続した1mm2以上で観察し、求積法を用いて単位面積内に含まれる結晶粒の個数を算出し、結晶粒1つ当たりの平均面積を1/2乗した値を用いた。
(Average crystal grain size)
The average crystal grain size (μm) before diffusion bonding of the steel plate is observed within 1 mm 2 or more of the metal structure of the plate thickness section parallel to the cold rolling direction, and is included in the unit area using the quadrature method. The number of crystal grains was calculated, and a value obtained by raising the average area per crystal grain to the power of 1/2 was used.
(表面粗さ)
表面粗さRa(μm)は、表面粗さ測定装置(東京精密社製;SURFCOM2900DX)により、圧延方向に対し直角方向の表面粗さRaを測定した。
(Surface roughness)
The surface roughness Ra (μm) was measured with a surface roughness measuring device (manufactured by Tokyo Seimitsu Co., Ltd .; SURFCOM 2900DX) in a direction perpendicular to the rolling direction.
(クリープ伸び)
クリープ伸びは、以下に示す方法で測定した。各鋼板から、JIS13B試験片を切り出し、一方のつかみ部中央にφ5mmの穴を開けた。当該試験片に標点間50mmのけがきを入れた後、高温引張試験機において、穴を有するつかみ部が下方となるように取り付けた。標点間内の温度が1000℃になるまで昇温し、その温度で15min均熱した後、1.0MPaの応力が加わるように算出された錘を備えたSUS310S製ワイヤを当該つかみ部の穴に取り付けて、0.5h保持した。その後、当該SUS310S製ワイヤを試験片から取り外し、さらに空冷により常温まで冷却した。そして、標点間の長さLを測定し、クリープ伸び(%)として、(L−50)/50×100を算出した。
(Creep elongation)
Creep elongation was measured by the method shown below. A JIS 13B test piece was cut out from each steel plate, and a hole of φ5 mm was formed in the center of one gripping part. After marking the test piece with a mark of 50 mm between the marks, the test piece was attached in a high-temperature tensile tester so that the gripping part having a hole would be downward. The temperature between the gauge points is raised to 1000 ° C., soaked at that temperature for 15 minutes, and then a SUS310S wire having a weight calculated so as to apply a stress of 1.0 MPa is attached to the hole in the gripping portion. And held for 0.5 h. Thereafter, the SUS310S wire was removed from the test piece and further cooled to room temperature by air cooling. The length L between the gauge points was measured, and (L-50) / 50 × 100 was calculated as the creep elongation (%).
(接合性試験)
各鋼板から20mm×20mmの平板試験片を取り出し、以下の方法で拡散接合を行った。同一鋼材2枚の試験片を互いに表面同士が接触するように積層した状態とし、錘を有する冶具を用いて、これら2枚の試験片の接触表面に付与される面圧を0.1MPaとなるように調整した。以下、積層した平板試験片を「鋼材」という。当該鋼材が積層された状態のものを「積層体」という。その後、冶具と積層体を真空炉に挿入し、真空引きを行って圧力1.0×10−3〜1.0×10−4Paの初期真空度とした後、1000℃まで約1hで昇温し、その温度で2h保持した後、冷却室に移して冷却した。冷却は900℃まで上記真空度を維持し、その後Arガスを導入して90kPaのArガス雰囲気中で約100℃以下まで冷却した。上記熱処理を終えた積層体について、超音波厚さ計(オリンパス社製;Model35DL)を用いて、図1に示すように20mm×20mmの積層体表面上に3mmピッチで設けた49箇所の測定点において厚さ測定を行った。プローブ径は1.5mmとした。ある測定点での板厚測定値が2枚の鋼材の合計板厚を示す場合には、その測定点に対応する両鋼材の界面位置では原子の拡散によって両鋼材が一体化しているとみなすことができる。一方、板厚測定値が両鋼材の合計板厚と異なる場合には、その測定点に対応する両鋼材の界面位置に未接合部(欠陥)が存在するとみなすことができる。加熱処理後の積層体の断面組織と、この測定手法により得られた測定結果との対応関係を調べたところ、測定結果が両鋼材の合計板厚となった測定点の数を測定総数49で除した値(これを、以下「接合率」という。)によって、接触面積に占める接合部分の面積率が精度良く評価できることを確認した。そこで、以下の評価基準で拡散接合性を評価した。
◎:接合率100%(優秀)
○:接合率90〜99%(良好)
△:接合率60〜89%(やや良好)
×:接合率0〜59%(不良)
種々の検討の結果、○評価において拡散接合部の強度が十分に確保され、かつ両部材間のシール性(連通する欠陥を介する気体の漏れが生じない性質)も良好であることから、○評価以上を合格と判定した。
(Jointability test)
A plate test piece of 20 mm × 20 mm was taken out from each steel plate and diffusion bonded by the following method. Two test pieces of the same steel material are laminated so that the surfaces are in contact with each other, and using a jig having a weight, the surface pressure applied to the contact surface of these two test pieces is 0.1 MPa. Adjusted as follows. Hereinafter, the laminated flat plate test piece is referred to as “steel material”. A state in which the steel materials are laminated is referred to as a “laminated body”. After that, the jig and the laminated body are inserted into a vacuum furnace, and evacuation is performed to obtain an initial vacuum degree of 1.0 × 10 −3 to 1.0 × 10 −4 Pa, and then the temperature is increased to 1000 ° C. in about 1 h. After warming and holding at that temperature for 2 h, it was transferred to a cooling chamber and cooled. The vacuum was maintained at 900 ° C., and then Ar gas was introduced to cool to about 100 ° C. or less in a 90 kPa Ar gas atmosphere. For the laminate after the heat treatment, 49 measurement points provided at a 3 mm pitch on the surface of the laminate of 20 mm × 20 mm as shown in FIG. 1 using an ultrasonic thickness meter (manufactured by Olympus; Model 35DL) The thickness was measured at. The probe diameter was 1.5 mm. If the measured thickness at a given measurement point indicates the total thickness of the two steel materials, it is assumed that both steel materials are integrated by diffusion of atoms at the interface position of both steel materials corresponding to the measurement point. Can do. On the other hand, when the plate thickness measurement value is different from the total plate thickness of both steel materials, it can be considered that an unjoined portion (defect) exists at the interface position of both steel materials corresponding to the measurement point. When the correspondence between the cross-sectional structure of the laminate after the heat treatment and the measurement results obtained by this measurement method was examined, the number of measurement points at which the measurement results were the total plate thickness of both steel materials was 49 in total. It was confirmed that the area ratio of the joint portion occupying the contact area can be accurately evaluated by the value obtained by dividing (hereinafter referred to as “joining ratio”). Therefore, diffusion bonding properties were evaluated according to the following evaluation criteria.
A: Joining rate 100% (excellent)
○: Joining rate 90 to 99% (good)
Δ: Joining rate 60-89% (slightly good)
X: Joining rate 0 to 59% (defect)
As a result of various investigations, the strength of the diffusion bonding portion is sufficiently secured in the evaluation, and the sealing property between the two members (the property that gas does not leak through the communicating defect) is also good. The above was determined to be acceptable.
表2に各鋼の冷延焼鈍後の平均結晶粒径およびγmax、表面粗さ、クリープ伸び、接合性評価結果を示す。 Table 2 shows the average crystal grain size and γmax, surface roughness, creep elongation, and bondability evaluation results after cold rolling annealing of each steel.
表2に示すように、本発明例1〜6は、接合率が90%以上であり、1000℃という比較的低温でかつ0.1MPaという低い面圧であっても良好な拡散接合性を示した。また、本発明例1〜6は、表面粗さRaの程度にかかわらず、良好な拡散接合性を示しており、表面粗さによる影響が見られなかった。本発明の構成を備えた複相系ステンレス鋼材は、表面粗さが増大しても拡散接合性が低下しないので、その拡散接合性が鋼材表面性状に制約されないことが分かる。なお、表2の数値に付した下線は、本発明の範囲外であることを示す。 As shown in Table 2, Examples 1 to 6 of the present invention have a bonding rate of 90% or more, and exhibit good diffusion bonding even at a relatively low temperature of 1000 ° C. and a low surface pressure of 0.1 MPa. It was. In addition, Examples 1 to 6 of the present invention showed good diffusion bonding properties regardless of the degree of the surface roughness Ra, and no influence by the surface roughness was observed. In the multiphase stainless steel material having the configuration of the present invention, the diffusion bondability does not decrease even when the surface roughness is increased, so that it can be understood that the diffusion bondability is not restricted by the surface property of the steel material. In addition, the underline attached | subjected to the numerical value of Table 2 shows that it is outside the scope of the present invention.
それに対し、比較例1〜10は、平均結晶粒径、γmax、クリープ伸びが本発明の範囲から外れていたので、2相高温域での接合面の凹凸部の変形が小さく、接合した箇所の接合面積が増加しなかった。そのため、その多くの接合率は、80%未満のやや不良または不良であった。
また、比較例5〜7のフェライト単相鋼、比較例8〜9のオーステナイト単相鋼について、表面粗さRaによる接合率の変化をみると、表面粗さが極めて小さい比較例7と比較例9が90%以上の接合率を示した一方で、それ以外の比較例は、表面粗さが大きく、接合率が低下した。このように、単相系では、表面粗さが大きいと接合率が不良となり、その拡散接合性が表面粗さにより制約されることが分かる。
On the other hand, in Comparative Examples 1 to 10, since the average crystal grain size, γmax, and creep elongation were out of the scope of the present invention, the deformation of the uneven portion of the joint surface in the two-phase high temperature region was small, The bonding area did not increase. Therefore, most of the joining ratios were slightly poor or poor at less than 80%.
Moreover, about the ferrite single phase steel of Comparative Examples 5-7 and the austenite single phase steel of Comparative Examples 8-9, when the change of the joining rate by surface roughness Ra is seen, the comparative example 7 and comparative example whose surface roughness is very small While 9 showed a bonding rate of 90% or more, the other comparative examples had large surface roughness and a low bonding rate. Thus, it can be seen that in a single phase system, if the surface roughness is large, the bonding rate becomes poor, and the diffusion bonding property is restricted by the surface roughness.
Claims (3)
前記複相組織の平均結晶粒径が20μm以下(ただし、1μm以下を除く)であり、
下記(a)式で示されるγmaxが10〜90であり、
1.0MPaの負荷を1000℃、0.5hで加えたときのクリープ伸びが0.2%以上であり、
質量%で、C:0.2%以下、Si:1.0%以下、Mn:3.0%以下、P:0.05%以下、S:0.03%以下、Ni:10.0%以下、Cr:10.0〜30.0%、N:0.3%以下、Ti:0.15%以下、Al:0.15%以下を含み、残部がFeおよび不可避的不純物からなり、TiとAlの合計量が0.15%以下であり、
表面粗さRaが0.22μm以上である、拡散接合用ステンレス鋼材。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49Ti−47Nb−52Al+470N+189 ・・・(a)式
ここで、上記(a)式における元素記号は、各元素の含有量(質量%)を意味する。 A metal structure before diffusion bonding is a duplex stainless steel material having a duplex structure consisting of at least two of a ferrite phase, a martensite phase or an austenite phase,
The average crystal grain size of the multiphase structure is 20 μm or less (excluding 1 μm or less) ;
Γmax represented by the following formula (a) is 10 to 90,
Creep elongation when applying a 1.0 MPa load at 1000 ° C. for 0.5 h is 0.2% or more,
In mass%, C: 0.2% or less, Si: 1.0% or less, Mn: 3.0% or less, P: 0.05% or less, S: 0.03% or less, Ni: 10.0% Hereinafter, Cr: 10.0 to 30.0%, N: 0.3% or less, Ti: 0.15% or less, Al: 0.15% or less, the balance is made of Fe and inevitable impurities, Ti and the total amount of Al Ri der 0.15% or less,
A stainless steel material for diffusion bonding having a surface roughness Ra of 0.22 μm or more .
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-47Nb-52Al + 470N + 189 (a) Formula Here, the element symbol in the formula (a) means the content (mass%) of each element. To do.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014225576A JP6129140B2 (en) | 2014-11-05 | 2014-11-05 | Stainless steel for diffusion bonding |
US15/523,882 US20170321311A1 (en) | 2014-11-05 | 2015-10-16 | Stainless steel material for diffusion bonding |
KR1020177015017A KR102384698B1 (en) | 2014-11-05 | 2015-10-16 | Stainless steel material for diffusion bonding |
EP15857850.0A EP3216888B1 (en) | 2014-11-05 | 2015-10-16 | Use of a dual-phase stainless steel material for diffusion bonding |
SG11201703499XA SG11201703499XA (en) | 2014-11-05 | 2015-10-16 | Stainless steel material for diffusion bonding |
ES15857850T ES2886446T3 (en) | 2014-11-05 | 2015-10-16 | Use of a dual phase stainless steel material for diffusion bonding |
PCT/JP2015/079342 WO2016072244A1 (en) | 2014-11-05 | 2015-10-16 | Stainless steel material for diffusion bonding |
CN201580056844.0A CN107002189B (en) | 2014-11-05 | 2015-10-16 | Diffusion bonding stainless steel material |
TW104136186A TWI680193B (en) | 2014-11-05 | 2015-11-03 | Stainless steel material for diffusion bonding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014225576A JP6129140B2 (en) | 2014-11-05 | 2014-11-05 | Stainless steel for diffusion bonding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016089223A JP2016089223A (en) | 2016-05-23 |
JP6129140B2 true JP6129140B2 (en) | 2017-05-17 |
Family
ID=55908971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014225576A Active JP6129140B2 (en) | 2014-11-05 | 2014-11-05 | Stainless steel for diffusion bonding |
Country Status (9)
Country | Link |
---|---|
US (1) | US20170321311A1 (en) |
EP (1) | EP3216888B1 (en) |
JP (1) | JP6129140B2 (en) |
KR (1) | KR102384698B1 (en) |
CN (1) | CN107002189B (en) |
ES (1) | ES2886446T3 (en) |
SG (1) | SG11201703499XA (en) |
TW (1) | TWI680193B (en) |
WO (1) | WO2016072244A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6799387B2 (en) * | 2016-05-17 | 2020-12-16 | 日鉄ステンレス株式会社 | Manufacturing method of ferritic stainless steel with excellent steam oxidation resistance |
JP6358411B1 (en) | 2016-09-02 | 2018-07-18 | Jfeスチール株式会社 | Duplex stainless steel and manufacturing method thereof |
WO2018131412A1 (en) * | 2017-01-10 | 2018-07-19 | Jfeスチール株式会社 | Duplex stainless steel and method for producing same |
CN107675099A (en) * | 2017-08-23 | 2018-02-09 | 宁波市鄞州亚大汽车管件有限公司 | Bent-tube boiler muffler |
CN109778079B (en) * | 2017-11-13 | 2020-06-16 | 路肯(上海)医疗科技有限公司 | Stainless steel for medical instruments, manufacturing method, heat treatment method and application |
JP6812956B2 (en) * | 2017-11-28 | 2021-01-13 | Jfeスチール株式会社 | Stainless steel plate for lamination and laminate |
CN108330400A (en) * | 2018-01-19 | 2018-07-27 | 辽宁顺通机械科技有限公司 | Edge face sealing member material |
JP7029308B2 (en) * | 2018-02-09 | 2022-03-03 | 日鉄ステンレス株式会社 | Stainless clad steel sheet, its manufacturing method, and cutlery |
JP2019151901A (en) * | 2018-03-05 | 2019-09-12 | 日鉄日新製鋼株式会社 | Stainless steel |
TWI665315B (en) * | 2018-03-27 | 2019-07-11 | 日商日鐵日新製鋼股份有限公司 | Stainless steel for diffusion bonding jigs |
JP7067998B2 (en) * | 2018-03-28 | 2022-05-16 | 日鉄ステンレス株式会社 | Stainless steel |
CN108588578B (en) * | 2018-04-27 | 2019-12-06 | 中南大学 | Nickel-free high-molybdenum corrosion-resistant cast steel and preparation method and application thereof |
JP7165202B2 (en) | 2018-10-04 | 2022-11-02 | 日本製鉄株式会社 | Austenitic stainless steel sheet and manufacturing method thereof |
JP7328504B2 (en) * | 2019-04-17 | 2023-08-17 | 日本製鉄株式会社 | Steel part and its manufacturing method |
KR102259806B1 (en) * | 2019-08-05 | 2021-06-03 | 주식회사 포스코 | Ferritic stainless steel with improved creep resistance at high temperature and method for manufacturing the ferritic stainless steel |
JP7564695B2 (en) | 2020-12-03 | 2024-10-09 | 日鉄ステンレス株式会社 | Duplex stainless steel with excellent diffusion bonding and weldability |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62199277A (en) | 1986-02-26 | 1987-09-02 | Sumitomo Metal Ind Ltd | Diffusion joining method for stainless steel |
JPH02261548A (en) | 1989-04-03 | 1990-10-24 | Nippon Steel Corp | Production of metal carrier of catalyst for purification of exhaust gas from automobile |
JP3238561B2 (en) | 1994-02-04 | 2001-12-17 | 新日本製鐵株式会社 | Metal honeycomb for catalyst |
JPH07256468A (en) * | 1994-03-23 | 1995-10-09 | Suzuki Motor Corp | Solid phase diffusion joining method |
JP3816974B2 (en) | 1995-10-04 | 2006-08-30 | 新日本製鐵株式会社 | Diffusion bonded metal carrier for catalyst having strong bonding strength and method for producing the same |
JP3300225B2 (en) | 1996-04-16 | 2002-07-08 | 新日本製鐵株式会社 | Stainless steel foil with excellent diffusion bonding properties and metal carrier using the same |
JP2000303150A (en) | 1999-04-19 | 2000-10-31 | Nippon Steel Corp | Stainless steel for direct diffusion joining |
JP2002301577A (en) * | 2001-04-05 | 2002-10-15 | Daido Steel Co Ltd | Method of joining martensitic stainless steel |
US20040168750A1 (en) * | 2001-06-11 | 2004-09-02 | Kouki Tomimura | Double phase stainless steel strip for steel belt |
JP2003089851A (en) * | 2001-09-14 | 2003-03-28 | Nisshin Steel Co Ltd | High strength duplex stainless steel sheet having high elasticity, and production method therefor |
JP2004131743A (en) * | 2002-08-09 | 2004-04-30 | Nisshin Steel Co Ltd | Stainless steel sheet for etching working |
AU2006331887B2 (en) * | 2005-12-21 | 2011-06-09 | Exxonmobil Research And Engineering Company | Corrosion resistant material for reduced fouling, heat transfer component with improved corrosion and fouling resistance, and method for reducing fouling |
US20080296354A1 (en) * | 2007-05-31 | 2008-12-04 | Mark Crockett | Stainless steel or stainless steel alloy for diffusion bonding |
JP5697302B2 (en) * | 2008-10-10 | 2015-04-08 | 新日鐵住金ステンレス株式会社 | Stainless steel rebar joint with excellent corrosion resistance |
JP5846868B2 (en) * | 2011-11-16 | 2016-01-20 | 日新製鋼株式会社 | Manufacturing method of stainless steel diffusion bonding products |
JP5850763B2 (en) * | 2012-02-27 | 2016-02-03 | 日新製鋼株式会社 | Stainless steel diffusion bonding products |
US8836016B2 (en) | 2012-03-08 | 2014-09-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structures and methods with high mobility and high energy bandgap materials |
JP5868241B2 (en) | 2012-03-29 | 2016-02-24 | 日新製鋼株式会社 | Ferritic stainless steel for diffusion bonding and method for manufacturing diffusion bonding products |
JP5868242B2 (en) | 2012-03-29 | 2016-02-24 | 日新製鋼株式会社 | Austenitic stainless steel for diffusion bonding and method for manufacturing diffusion bonding products |
JP6105993B2 (en) * | 2013-03-25 | 2017-03-29 | 日新製鋼株式会社 | Molded product made of stainless steel foil joined by resistance heat |
JP6246478B2 (en) * | 2013-03-28 | 2017-12-13 | 日新製鋼株式会社 | Stainless steel heat exchanger component and method of manufacturing the same |
KR102037653B1 (en) * | 2013-05-15 | 2019-10-29 | 닛테츠 닛신 세이코 가부시키가이샤 | Process for producing stainless steel diffusion-joined product |
CN103331513B (en) * | 2013-07-03 | 2016-01-20 | 北京科技大学 | A kind of manufacture method of superplasticity two phase stainless steel sandwich |
CN103920987B (en) * | 2014-04-23 | 2015-10-28 | 哈尔滨工业大学 | A kind of titanium alloy and the micro-diffusion connection method of stainless vacuum |
KR102353735B1 (en) * | 2014-11-13 | 2022-01-20 | 엔브이 베카에르트 에스에이 | Sintered metal object comprising metal fibers |
-
2014
- 2014-11-05 JP JP2014225576A patent/JP6129140B2/en active Active
-
2015
- 2015-10-16 WO PCT/JP2015/079342 patent/WO2016072244A1/en active Application Filing
- 2015-10-16 SG SG11201703499XA patent/SG11201703499XA/en unknown
- 2015-10-16 US US15/523,882 patent/US20170321311A1/en not_active Abandoned
- 2015-10-16 CN CN201580056844.0A patent/CN107002189B/en active Active
- 2015-10-16 EP EP15857850.0A patent/EP3216888B1/en active Active
- 2015-10-16 KR KR1020177015017A patent/KR102384698B1/en active IP Right Grant
- 2015-10-16 ES ES15857850T patent/ES2886446T3/en active Active
- 2015-11-03 TW TW104136186A patent/TWI680193B/en active
Also Published As
Publication number | Publication date |
---|---|
JP2016089223A (en) | 2016-05-23 |
CN107002189A (en) | 2017-08-01 |
ES2886446T3 (en) | 2021-12-20 |
TWI680193B (en) | 2019-12-21 |
EP3216888B1 (en) | 2021-06-02 |
KR20170084138A (en) | 2017-07-19 |
CN107002189B (en) | 2019-07-05 |
EP3216888A1 (en) | 2017-09-13 |
SG11201703499XA (en) | 2017-06-29 |
EP3216888A4 (en) | 2018-05-30 |
US20170321311A1 (en) | 2017-11-09 |
TW201625806A (en) | 2016-07-16 |
WO2016072244A1 (en) | 2016-05-12 |
KR102384698B1 (en) | 2022-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6129140B2 (en) | Stainless steel for diffusion bonding | |
JP5846868B2 (en) | Manufacturing method of stainless steel diffusion bonding products | |
JP5868242B2 (en) | Austenitic stainless steel for diffusion bonding and method for manufacturing diffusion bonding products | |
JP5868241B2 (en) | Ferritic stainless steel for diffusion bonding and method for manufacturing diffusion bonding products | |
JP6079165B2 (en) | High toughness and corrosion resistant Ni alloy clad steel plate with excellent weld toughness and method for producing the same | |
JP2011190524A (en) | Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness | |
JP5904310B1 (en) | Ferritic stainless steel and manufacturing method thereof | |
JP6799387B2 (en) | Manufacturing method of ferritic stainless steel with excellent steam oxidation resistance | |
JP5643542B2 (en) | Thick steel plate with excellent fatigue characteristics | |
JP5311942B2 (en) | Stainless steel for brazing | |
JP7067998B2 (en) | Stainless steel | |
JP6573060B1 (en) | Clad steel plate | |
JP6411881B2 (en) | Ferritic stainless steel and manufacturing method thereof | |
JP6314806B2 (en) | Ferritic stainless steel sheet | |
JP7564695B2 (en) | Duplex stainless steel with excellent diffusion bonding and weldability | |
JP2000303150A (en) | Stainless steel for direct diffusion joining | |
JP7385487B2 (en) | Stainless steel materials and diffusion bonded bodies | |
JP6440552B2 (en) | Ferritic and martensitic duplex stainless steel with excellent Cu diffusibility during Cu brazing | |
JP7328504B2 (en) | Steel part and its manufacturing method | |
JP2019151901A (en) | Stainless steel | |
JP2024124853A (en) | Duplex stainless steel materials and diffusion bonded materials | |
JP2024057459A (en) | Ferritic stainless steel suitable for diffusion bonding and diffusion-bonded body | |
JP2013112829A (en) | Austenitic stainless steel and press plate using the same | |
JP2006051534A (en) | Steel plate line-heating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160712 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20160712 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20160803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161021 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161122 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170210 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20170220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170411 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6129140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |