JP6812956B2 - Stainless steel plate for lamination and laminate - Google Patents

Stainless steel plate for lamination and laminate Download PDF

Info

Publication number
JP6812956B2
JP6812956B2 JP2017228268A JP2017228268A JP6812956B2 JP 6812956 B2 JP6812956 B2 JP 6812956B2 JP 2017228268 A JP2017228268 A JP 2017228268A JP 2017228268 A JP2017228268 A JP 2017228268A JP 6812956 B2 JP6812956 B2 JP 6812956B2
Authority
JP
Japan
Prior art keywords
stainless steel
plate
lamination
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017228268A
Other languages
Japanese (ja)
Other versions
JP2019099830A (en
Inventor
映斗 水谷
映斗 水谷
雄亮 石垣
雄亮 石垣
孝 寒川
孝 寒川
宮崎 淳
宮崎  淳
光幸 藤澤
光幸 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017228268A priority Critical patent/JP6812956B2/en
Publication of JP2019099830A publication Critical patent/JP2019099830A/en
Application granted granted Critical
Publication of JP6812956B2 publication Critical patent/JP6812956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、積層した際に優れた騒音減衰能が得られる積層用ステンレス鋼板に関する。 The present invention relates to a stainless steel sheet for lamination, which can obtain excellent noise attenuation ability when laminated.

自動車等に搭載されるエンジンの排気管には、放射熱から他の電子部品などを保護するため、遮熱板(ヒートインシュレーター)が装着されることがある。この遮熱板は、排気管から放出される騒音を減衰させる役割や、飛び石や雨水などの飛来物から排気管を保護する役割も有している。 A heat shield (heat insulator) may be attached to the exhaust pipe of an engine mounted on an automobile or the like in order to protect other electronic parts from radiant heat. This heat shield also has a role of attenuating the noise emitted from the exhaust pipe and a role of protecting the exhaust pipe from flying objects such as stepping stones and rainwater.

遮熱板の材料には、アルミニウム板やめっき鋼板、ステンレス鋼板などが用いられており、これらは使用環境によって使い分けられる。このうちステンレス鋼板は、他の材料に比べて耐熱性、耐食性および強度に優れるため、特に高温となるマニホールド部や、車体下に露出するマフラーなどの遮熱板に多く用いられている。 Aluminum plates, plated steel plates, stainless steel plates, etc. are used as the material of the heat shield plate, and these are used properly depending on the usage environment. Of these, stainless steel sheets are superior in heat resistance, corrosion resistance, and strength to other materials, and are therefore often used for manifolds, which are particularly hot, and heat shield plates such as mufflers exposed under the vehicle body.

また、遮熱板は、騒音減衰能(以降、単に減衰能ともいう)や剛性を高める観点から、積層構造とする場合がある。
例えば、特許文献1には、
「複数枚の金属板を互いに重ね合わせて形成したカバー構造において、複数枚の金属板を重ね合わせて複数個所で互いに結合すると共に、カバー内側の少なくとも1枚の金属板には複数の開口を形成したことを特徴とするカバー構造。」
が開示されている。
In addition, the heat shield plate may have a laminated structure from the viewpoint of increasing noise damping ability (hereinafter, also simply referred to as damping ability) and rigidity.
For example, in Patent Document 1,
"In a cover structure formed by stacking a plurality of metal plates on top of each other, the plurality of metal plates are stacked and bonded to each other at a plurality of places, and a plurality of openings are formed in at least one metal plate inside the cover. The cover structure is characterized by the fact that it has been done. "
Is disclosed.

また、特許文献2には、
「排気系部品を覆うヒートインシュレータにおいて、
固有振動数が互いに異なる第1の板材および第2の板材が積層されて構成されていると共に、これら第1の板材および第2の板材に亘って貫通する開口が形成されており、
前記開口の縁部には、前記第1の板材の外面および前記第2の板材の外面それぞれに回り込む回り込み部を有し且つこれら回り込み部によって板厚方向の両側から各板材を挟み込むグロメットが装着されており、
前記グロメットにおける前記第1の板材の外面への回り込み寸法および前記第2の板材の外面への回り込み寸法は、第1の板材および第2の板材それぞれの固有振動数に応じて異なる寸法に設定されていることを特徴とするヒートインシュレータ。」
が開示されている。
Further, in Patent Document 2,
"In the heat insulator that covers the exhaust system parts,
The first plate material and the second plate material having different natural frequencies are laminated and configured, and an opening penetrating through the first plate material and the second plate material is formed.
Grommets are attached to the edge of the opening to have wraparound portions that wrap around the outer surface of the first plate material and the outer surface of the second plate material, and to sandwich each plate material from both sides in the plate thickness direction by these wraparound portions. And
The wraparound dimension of the first plate material to the outer surface and the wraparound dimension of the second plate material to the outer surface of the grommet are set to different dimensions according to the natural frequencies of the first plate material and the second plate material, respectively. A heat insulator characterized by being "
Is disclosed.

特開2001-140642号公報Japanese Unexamined Patent Publication No. 2001-140642 特開2016-191345号公報Japanese Unexamined Patent Publication No. 2016-191345

しかし、特許文献1および2の技術では、遮熱板の構造自体を大きく変更する必要があり、部品形状の複雑化や部品点数の増加、製造工程(特に加工工程)の複雑化などに伴い、部品重量の増加や製造コストの増加を招くという問題がある。
そのため、部品形状の複雑化や製造工程の複雑化を回避しながら、遮熱板の減衰能を更に向上させることが望まれているのが現状である。
However, in the techniques of Patent Documents 1 and 2, it is necessary to significantly change the structure of the heat shield plate itself, and as the shape of parts becomes complicated, the number of parts increases, and the manufacturing process (particularly the processing process) becomes complicated. There is a problem that the weight of parts increases and the manufacturing cost increases.
Therefore, at present, it is desired to further improve the damping ability of the heat shield plate while avoiding the complicated parts shape and the complicated manufacturing process.

本発明は、上記の現状に鑑み開発されたものであって、優れた騒音減衰能を有する遮熱板を、部品形状の複雑化や製造工程の複雑化を回避しながら製造することを可能ならしめる、積層用ステンレス鋼板を提供することを目的とする。
また、本発明は、上記の積層用ステンレス鋼板を有する積層体を提供することを目的とする。
The present invention has been developed in view of the above-mentioned current situation, and if it is possible to manufacture a heat shield plate having excellent noise attenuation ability while avoiding complicated parts shape and manufacturing process. It is an object of the present invention to provide a stainless steel plate for laminating.
Another object of the present invention is to provide a laminate having the above-mentioned stainless steel plate for lamination.

さて、発明者らは、上記の課題を解決すべく、種々検討を重ねた。
その結果、
・積層構造を有する遮熱板では、遮熱板を構成する板材同士の接触面の表面形状、特に表面粗度が、遮熱板の減衰能に影響を及ぼす、
・すなわち、積層構造を有する遮熱板では、振動した際に遮熱板を構成する板材同士の接触面で摩擦熱が生じることが振動エネルギーの減衰に寄与している、
・接触面における摩擦エネルギーの増大には、板材同士の接触面の表面粗度を適正な範囲に制御することが重要であり、このような制御を行うことにより、部品形状自体を特殊な形状としなくとも、遮熱板の減衰能を高めることが可能になる、
との知見を得た。
本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
By the way, the inventors have repeated various studies in order to solve the above-mentioned problems.
as a result,
-In a heat shield plate having a laminated structure, the surface shape of the contact surface between the plate materials constituting the heat shield plate, particularly the surface roughness, affects the damping ability of the heat shield plate.
-That is, in a heat shield plate having a laminated structure, frictional heat is generated at the contact surface between the plate materials constituting the heat shield plate when vibrating, which contributes to the attenuation of vibration energy.
-In order to increase the frictional energy on the contact surface, it is important to control the surface roughness of the contact surface between the plate materials within an appropriate range, and by performing such control, the component shape itself becomes a special shape. Even if it is not, it is possible to increase the damping capacity of the heat shield plate,
I got the knowledge.
The present invention has been completed after further studies based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.2枚以上の板材を重ね合わせた積層体の素材となる積層用ステンレス鋼板であって、
該積層用ステンレス鋼板が、質量%で、
C:0.025%以下、
Si:0.01〜1.50%、
Mn:0.01〜1.00%、
S:0.010%以下、
P:0.050%以下、
Cr:10.5〜32.0%、
Ni:0.01〜0.60%、
Al:0.001〜6.0%および
N:0.050%以下
を含有するとともに、
Ti:0.01〜1.00%、
Nb:0.01〜1.00%および
Zr:0.01〜1.00%
のうちから選んだ1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
少なくとも一方の面の表面粗度が算術平均粗さRaで0.010〜1.50μmである、積層用ステンレス鋼板。
That is, the gist structure of the present invention is as follows.
A stainless steel plate for laminating, which is a material for a laminated body in which 1.2 or more plate materials are laminated.
The stainless steel sheet for lamination is based on mass%.
C: 0.025% or less,
Si: 0.01 to 1.50%,
Mn: 0.01 to 1.00%,
S: 0.010% or less,
P: 0.050% or less,
Cr: 10.5 to 32.0%,
Ni: 0.01-0.60%,
Al: 0.001 to 6.0% and N: 0.050% or less, and
Ti: 0.01-1.00%,
Nb: 0.01 to 1.00% and Zr: 0.01 to 1.00%
It contains one or more selected from the above, and has a component composition in which the balance consists of Fe and unavoidable impurities.
A stainless steel sheet for lamination, wherein the surface roughness of at least one surface is 0.010 to 1.50 μm in arithmetic average roughness Ra.

2.前記成分組成が、
Cu:0.01〜1.00%、
Mo:0.01〜3.00%および
REM:0.01〜0.30%
のうちから選んだ1種または2種以上を含有する、前記1に記載の積層用ステンレス鋼板。
2. 2. The composition of the ingredients
Cu: 0.01-1.00%,
Mo: 0.01 to 3.00% and REM: 0.01 to 0.30%
The stainless steel sheet for lamination according to 1 above, which contains one or more selected from the above.

3.2枚以上の板材を重ね合わせた積層体であって、
該板材のうち少なくとも1枚が、前記1または2に記載の積層用ステンレス鋼板であり、かつ、該積層用ステンレス鋼板は、算術平均粗さRaで0.010〜1.50μmの表面粗度となる少なくとも一方の面が該積層体の他の板材と接触するように、配置されており、
また、該積層体の損失係数が、該積層体の板材に使用する積層用ステンレス鋼板と同じ材質で、かつ、該積層体と同じ厚さであるステンレス鋼板の損失係数の2.0倍以上である、積層体。
3. A laminated body in which two or more plate materials are laminated.
At least one of the plate materials is the stainless steel sheet for lamination according to 1 or 2 above, and the stainless steel sheet for lamination has a surface roughness of 0.010 to 1.50 μm in arithmetic average roughness Ra. At least one surface of the laminate is arranged so as to be in contact with the other plate material of the laminate.
Further, the loss coefficient of the laminated body is 2.0 times or more the loss coefficient of the stainless steel sheet having the same material as the stainless steel sheet for lamination used for the plate material of the laminated body and the same thickness as the laminated body. There is a laminate.

本発明によれば、優れた騒音減衰能を有する遮熱板を、部品形状の複雑化や製造工程の複雑化を回避しながら製造することを可能ならしめる、積層用ステンレス鋼板を得ることができる。
また、本発明の積層用ステンレス鋼板を用いることで、特に静粛性への影響が大きい自動車の車体下に露出する排気管の大部分を覆う遮熱板を製造することが可能となるので、自動車の静粛性を大幅に高めることが可能となる。
According to the present invention, it is possible to obtain a stainless steel sheet for lamination, which makes it possible to manufacture a heat shield plate having an excellent noise damping ability while avoiding complicated parts shape and complicated manufacturing process. ..
Further, by using the stainless steel plate for lamination of the present invention, it is possible to manufacture a heat shield plate that covers most of the exhaust pipe exposed under the vehicle body of the automobile, which has a particularly large influence on quietness. It is possible to greatly improve the quietness of the car.

損失係数の測定に使用する積層試験片の形状を模式的に示す図である。It is a figure which shows typically the shape of the laminated test piece used for measuring the loss coefficient.

以下、本発明を具体的に説明する。
まず、本発明の積層用ステンレス鋼板の成分組成について説明する。なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
Hereinafter, the present invention will be specifically described.
First, the component composition of the stainless steel sheet for lamination of the present invention will be described. The unit in the component composition is "mass%", but hereinafter, unless otherwise specified, it is simply indicated by "%".

C:0.025%以下
Cは、鋼の強度を高めるのに有効な元素である。しかし、C量が0.025%を超えると、靭性や加工性が低下する。このため、C量は0.025%以下とする。また、加工性の観点からは、C量は低いほど望ましく、0.020%以下が好ましい。より好ましくは0.010%以下である。一方、部材としての強度を確保する観点からは、C量は0.001%以上が好ましく、より好ましくは0.003%以上である。
C: 0.025% or less C is an element effective for increasing the strength of steel. However, if the amount of C exceeds 0.025%, the toughness and workability deteriorate. Therefore, the amount of C is set to 0.025% or less. From the viewpoint of workability, the lower the amount of C, the more desirable, and 0.020% or less is preferable. More preferably, it is 0.010% or less. On the other hand, from the viewpoint of ensuring the strength as a member, the amount of C is preferably 0.001% or more, more preferably 0.003% or more.

Si:0.01〜1.50%
Siは、耐酸化性向上のために有効な元素である。この効果は、Siの0.01%以上の含有で得られる。しかし、Si量が1.50%を超えると、加工性が低下する。よって、Si量は0.01〜1.50%とする。好ましくは0.05〜1.00%である。より好ましくは0.10〜0.50%である。
Si: 0.01 to 1.50%
Si is an element effective for improving oxidation resistance. This effect is obtained with a content of 0.01% or more of Si. However, if the amount of Si exceeds 1.50%, the workability is lowered. Therefore, the amount of Si is set to 0.01 to 1.50%. It is preferably 0.05 to 1.00%. More preferably, it is 0.10 to 0.50%.

Mn:0.01〜1.00%
Mnは、鋼の強度を高める元素であり、また、脱酸剤としての作用も有する。その効果は、Mnの0.01%以上の含有で得られる。しかし、Mn量が1.00%を超えると、耐食性が低下する。よって、Mn量は0.01〜1.00%とする。好ましくは0.05〜0.70%である。より好ましくは0.10〜0.50%である。
Mn: 0.01 to 1.00%
Mn is an element that increases the strength of steel and also has an action as an antacid. The effect is obtained with a content of 0.01% or more of Mn. However, if the amount of Mn exceeds 1.00%, the corrosion resistance is lowered. Therefore, the amount of Mn is set to 0.01 to 1.00%. It is preferably 0.05 to 0.70%. More preferably, it is 0.10 to 0.50%.

S:0.010%以下
Sは、耐食性を低下させるので、できるだけ低減することが望ましい。よって、S量は、0.010%以下とする。好ましくは0.005%以下である。
S: 0.010% or less S reduces corrosion resistance, so it is desirable to reduce it as much as possible. Therefore, the amount of S is set to 0.010% or less. It is preferably 0.005% or less.

P:0.050%以下
Pは、靭性を低下させる元素であり、可能な限り低減するのが望ましい。よって、P量は、0.050%以下とする。好ましくは0.035%以下である。
P: 0.050% or less P is an element that reduces toughness, and it is desirable to reduce it as much as possible. Therefore, the amount of P is set to 0.050% or less. It is preferably 0.035% or less.

Cr:10.5〜32.0%
Crは、表面に不動態皮膜を形成して耐酸化性を向上させるために必要な元素である。良好な耐酸化性を得るためには、Crの10.5%以上の含有が必要である。一方、Cr量が32.0%を超えると、鋼が硬質化して製造性や加工性が低下する。よって、Cr量は10.5〜32.0%とする。好ましくは10.5〜22.0%である。より好ましくは10.5〜20.0%である。
Cr: 10.5 to 32.0%
Cr is an element necessary for forming a passivation film on the surface to improve oxidation resistance. In order to obtain good oxidation resistance, it is necessary to contain Cr in an amount of 10.5% or more. On the other hand, when the amount of Cr exceeds 32.0%, the steel becomes hard and the manufacturability and workability deteriorate. Therefore, the amount of Cr is set to 10.5 to 32.0%. It is preferably 10.5 to 22.0%. More preferably, it is 10.5 to 20.0%.

Ni:0.01〜0.60%
Niは、鋼の靭性を向上させる元素である。この効果は、Niの0.01%以上の含有で得られる。しかし、Ni量が0.60%を超えると、鋼組織の一部にγ相が生成して成形性が低下する。よって、Ni量は0.01〜0.60%とする。好ましくは0.05〜0.40%である。より好ましくは0.10〜0.30%である。
Ni: 0.01 to 0.60%
Ni is an element that improves the toughness of steel. This effect is obtained with a content of 0.01% or more of Ni. However, when the amount of Ni exceeds 0.60%, a γ phase is generated in a part of the steel structure and the formability deteriorates. Therefore, the amount of Ni is set to 0.01 to 0.60%. It is preferably 0.05 to 0.40%. More preferably, it is 0.10 to 0.30%.

Al:0.001〜6.0%
Alは、鋼の脱酸材として作用する。その効果は、Alの0.001%以上の含有で得られる。また、Alは鋼の耐酸化性を向上させる効果を有し、特に優れた耐酸化性を必要とする場合には、Alを0.1%以上含有させることが好ましい。ただし、Al量が6.0%を超えると、鋼を硬質化させて加工性が低下する。よって、Al量は6.0%以下とする。好ましくは4.0%以下である。より好ましくは1.0%以下である。さらに好ましくは0.1%以下である。
Al: 0.001 to 6.0%
Al acts as a deoxidizing material for steel. The effect is obtained with a content of 0.001% or more of Al. Further, Al has an effect of improving the oxidation resistance of steel, and when particularly excellent oxidation resistance is required, it is preferable to contain Al in an amount of 0.1% or more. However, if the amount of Al exceeds 6.0%, the steel is hardened and the workability is lowered. Therefore, the amount of Al is set to 6.0% or less. It is preferably 4.0% or less. More preferably, it is 1.0% or less. More preferably, it is 0.1% or less.

N:0.050%以下
Nは、鋼の靭性および成形性を低下させるので、できるだけ低減するのが望ましい。よって、N量は0.050%以下とする。好ましくは0.030%以下である。より好ましくは0.010%以下である。
N: 0.050% or less N reduces the toughness and formability of the steel, and therefore it is desirable to reduce it as much as possible. Therefore, the amount of N is set to 0.050% or less. It is preferably 0.030% or less. More preferably, it is 0.010% or less.

Ti:0.01〜1.00%、Nb:0.01〜1.00%およびZr:0.01〜1.00%のうちから選んだ1種または2種以上
Ti、NbおよびZrは、CおよびNを固定してCr炭窒化物の生成を防ぐ効果があり、耐食性や成形性、溶接部の耐粒界腐食性を向上させる。そのためには、Ti、Nbおよび/またはZrの0.01%以上の含有が必要である。一方で、これらの元素の含有量が1.00%を超えると、鋼の靭性が低下し、製造性や加工性が低下し易くなる。よって、Ti量、Nb量およびZr量はいずれも、0.01〜1.00%とする。
なお、Ti量は、好ましくは0.05〜0.40%、より好ましくは0.15〜0.35%である。Nb量は、好ましくは0.05〜0.55%、より好ましくは0.15〜0.40%である。Zr量は、好ましくは0.05〜0.20%、より好ましくは0.05〜0.10%である。
One or more selected from Ti: 0.01 to 1.00%, Nb: 0.01 to 1.00% and Zr: 0.01 to 1.00% Ti, Nb and Zr are It has the effect of fixing C and N to prevent the formation of Cr carbonitride, and improves corrosion resistance, moldability, and intergranular corrosion resistance of welds. For that purpose, the content of Ti, Nb and / or Zr must be 0.01% or more. On the other hand, if the content of these elements exceeds 1.00%, the toughness of the steel is lowered, and the manufacturability and workability are likely to be lowered. Therefore, the Ti amount, the Nb amount, and the Zr amount are all set to 0.01 to 1.00%.
The amount of Ti is preferably 0.05 to 0.40%, more preferably 0.15 to 0.35%. The amount of Nb is preferably 0.05 to 0.55%, more preferably 0.15 to 0.40%. The amount of Zr is preferably 0.05 to 0.20%, more preferably 0.05 to 0.10%.

以上、基本成分について説明したが、強度や靭性、加工性、耐食性を向上させるため、必要に応じて、以下の元素を適宜含有させることができる。 Although the basic components have been described above, the following elements can be appropriately contained in order to improve strength, toughness, processability, and corrosion resistance.

Cu:0.01〜1.00%、Mo:0.01〜3.00%およびREM:0.01〜0.30%のうちから選んだ1種または2種以上
Cuは、ステンレス鋼の耐食性を向上させる元素である。その効果を得るためには、Cuを0.01%以上含有させることが好ましい。しかし、Cu量が1.00%を超えると、加工性が低下し易くなる。よって、Cu量は1.00%以下とすることが好ましい。より好ましくは0.75%以下、さらに好ましくは0.50%以下である。
Moも、Cuと同様に、ステンレス鋼の耐食性を向上させる元素である。その効果を得るためには、Moを0.01%以上含有させることが好ましい。しかし、Mo量が3.00%を超えると、加工性が低下し易くなる。よって、Mo量は3.00%以下とすることが好ましい。より好ましくは2.20%以下、さらに好ましくは1.20%以下である。
REMは、Sc、Yおよび元素番号67〜71番(La〜Lu)までの元素の総称である。ここで、REMは、高温で生成する酸化皮膜の密着性を改善させ、耐酸化性を向上する効果があるため、特に優れた耐酸化性を必要とする場合に含有させることができる。その効果を得るためには、REM量を0.01%以上とすることが好ましい。より好ましくは0.03%以上、さらに好ましくは0.05%以上ある。一方、REM量が0.30%を超えると、加工性が低下し易くなる。よって、REM量は0.30%以下とすることが好ましい。より好ましくは0.20%以下、さらに好ましくは0.15%以下である。
One or more selected from Cu: 0.01 to 1.00%, Mo: 0.01 to 3.00% and REM: 0.01 to 0.30% Cu is the corrosion resistance of stainless steel. It is an element that improves. In order to obtain the effect, it is preferable to contain Cu in an amount of 0.01% or more. However, if the amount of Cu exceeds 1.00%, the workability tends to decrease. Therefore, the amount of Cu is preferably 1.00% or less. It is more preferably 0.75% or less, still more preferably 0.50% or less.
Like Cu, Mo is also an element that improves the corrosion resistance of stainless steel. In order to obtain the effect, it is preferable to contain Mo in 0.01% or more. However, if the amount of Mo exceeds 3.00%, the workability tends to decrease. Therefore, the amount of Mo is preferably 3.00% or less. It is more preferably 2.20% or less, still more preferably 1.20% or less.
REM is a general term for Sc, Y and elements with element numbers 67 to 71 (La to Lu). Here, REM has the effect of improving the adhesion of the oxide film formed at a high temperature and improving the oxidation resistance, and therefore can be contained when particularly excellent oxidation resistance is required. In order to obtain the effect, the REM amount is preferably 0.01% or more. It is more preferably 0.03% or more, still more preferably 0.05% or more. On the other hand, if the REM amount exceeds 0.30%, the workability tends to decrease. Therefore, the REM amount is preferably 0.30% or less. It is more preferably 0.20% or less, still more preferably 0.15% or less.

上記以外の成分はFeおよび不可避的不純物である。 Components other than the above are Fe and unavoidable impurities.

そして、本発明の積層用ステンレス鋼板では、その表面形状、具体的には、少なくとも一方の面の表面粗度を適正な範囲に調整することが極めて重要である。
表面粗度:算術平均粗さRaで0.010〜1.50μm
上述したように、積層構造を有する遮熱板では、振動した際に遮熱板を構成する板材同士の接点で摩擦熱が生じることが振動エネルギーの減衰に寄与しており、板材同士の接点となる少なくとも一方の板材の接触面の表面粗度を適正な範囲に制御して、接触面における摩擦エネルギーを増大させれば、遮熱板の減衰能を高めることが可能となる。
ここで、算術平均粗さRaが0.010μm未満では、摩擦係数が小さくなって十分な摩擦熱を得ることができず、遮熱板の減衰能を十分に高めることができない。一方、算術平均粗さRaが1.50μmを超えると、板材同士の接触面積が小さくなって、かえって摩擦熱が小さくなり、やはり遮熱板の減衰能を十分に高めることができない。
このため、表面粗度は算術平均粗さRaで0.010〜1.50μmとする。好ましくは0.03μm以上、より好ましくは0.05μm以上、さらに好ましくは0.10μm以上である。また、好ましくは1.00μm以下、より好ましくは0.70μm以下である。
Then, in the stainless steel sheet for lamination of the present invention, it is extremely important to adjust the surface shape, specifically, the surface roughness of at least one surface within an appropriate range.
Surface roughness: Arithmetic mean roughness Ra of 0.010 to 1.50 μm
As described above, in a heat shield plate having a laminated structure, frictional heat is generated at the contact points between the plate materials constituting the heat shield plate when vibrating, which contributes to the attenuation of vibration energy, and the contact points between the plate materials. If the surface roughness of the contact surface of at least one of the plate materials is controlled within an appropriate range to increase the frictional energy on the contact surface, the damping ability of the heat shield plate can be enhanced.
Here, if the arithmetic mean roughness Ra is less than 0.010 μm, the friction coefficient becomes small and sufficient frictional heat cannot be obtained, and the damping ability of the heat shield plate cannot be sufficiently enhanced. On the other hand, when the arithmetic average roughness Ra exceeds 1.50 μm, the contact area between the plate materials becomes small, the frictional heat becomes small, and the damping ability of the heat shield plate cannot be sufficiently enhanced.
Therefore, the surface roughness is set to 0.010 to 1.50 μm in arithmetic average roughness Ra. It is preferably 0.03 μm or more, more preferably 0.05 μm or more, and further preferably 0.10 μm or more. Further, it is preferably 1.00 μm or less, more preferably 0.70 μm or less.

ここで、算術平均粗さRaとは、JIS B0601(2001)に従い、Lフィルター:0.25mm、測定距離:1.25mmの条件で、鋼板の幅方向(圧延直角方向)に測定した粗さ曲線から得られる算術平均粗さである。 Here, the arithmetic mean roughness Ra is a roughness curve measured in the width direction (rolling perpendicular direction) of a steel sheet under the conditions of an L filter: 0.25 mm and a measurement distance: 1.25 mm according to JIS B0601 (2001). The arithmetic mean roughness obtained from.

また、積層用ステンレス鋼板の両面の表面粗度を上記のように調整してもよいが、積層体とした際に、他の板材と接触する側の面(以下、接触面ともいう)の表面粗度を算術平均粗さRaで0.010〜1.50μmの範囲とし、一方、他の板材とは接触しない側の面の表面粗度を、接触面の表面粗度と異なるようにする、例えば、接触面の表面粗度を上記の範囲に調整したうえで、他方の面に鏡面研磨を施して、当該他方の面の表面粗度を算術平均粗さRaで0.010μm未満としてもよい。このようなステンレス鋼板を、例えば、遮熱板を構成する積層体の最も外側で使用することにより、優れた騒音減衰能を得つつ、美麗な外観を確保することが可能となる。 Further, the surface roughness of both sides of the stainless steel plate for lamination may be adjusted as described above, but when the laminate is formed, the surface of the surface on the side in contact with other plate materials (hereinafter, also referred to as the contact surface). The roughness shall be in the range of 0.010 to 1.50 μm in arithmetic average roughness Ra, while the surface roughness of the surface on the side not in contact with other plate materials shall be different from the surface roughness of the contact surface. For example, after adjusting the surface roughness of the contact surface to the above range, the other surface may be mirror-polished so that the surface roughness of the other surface is less than 0.010 μm in arithmetic average roughness Ra. .. By using such a stainless steel plate on the outermost side of the laminate constituting the heat shield plate, for example, it is possible to secure a beautiful appearance while obtaining excellent noise attenuation ability.

次に、本発明の積層体について説明する。
本発明の積層体は、2枚以上の板材を重ね合わせた積層体であって、
該板材のうち少なくとも1枚が、上記の積層用ステンレス鋼板であり、かつ、該積層用ステンレス鋼板は、算術平均粗さRaで0.010〜1.50μmの表面粗度となる少なくとも一方の面が該積層体の他の板材と接触するように、配置されており、
また、該積層体の損失係数が、該積層体の板材に使用する積層用ステンレス鋼板と同じ材質で、かつ、該積層体と同じ厚さであるステンレス鋼板の損失係数の2.0倍以上である、ものである。
Next, the laminated body of the present invention will be described.
The laminated body of the present invention is a laminated body in which two or more plate materials are laminated.
At least one of the plate materials is the above-mentioned stainless steel sheet for lamination, and the stainless steel sheet for lamination has at least one surface having a surface roughness of 0.010 to 1.50 μm in arithmetic average roughness Ra. Is arranged so as to come into contact with the other plate material of the laminate.
Further, the loss coefficient of the laminated body is 2.0 times or more the loss coefficient of the stainless steel sheet having the same material as the stainless steel sheet for lamination used for the plate material of the laminated body and the same thickness as the laminated body. There is something.

ここで、積層体に用いる板材は2枚以上とすればよく、3枚重ねや4枚重ねの積層体としてもよい。また、枚数が多いほど優れた減衰能および遮音性が得られるが、部品質量や工数が増加するため、目的にあわせて適切な枚数を選択する。
また、積層体を構成する板材全てに、上記の積層用ステンレス鋼板を用いてもよいが、少なくとも1枚を上記の積層用ステンレス鋼板とし、かつ、上記の積層用ステンレス鋼板を、表面粗度が算術平均粗さRaで0.010〜1.50μmである少なくとも一方の面が該積層体を構成する他の板材と接触するように、配置する必要がある。これにより、積層体の減衰能を高める、具体的には、積層体の損失係数を、該積層体の板材に使用する積層用ステンレス鋼板と同じ材質で、かつ、該積層体と同じ厚さであるステンレス鋼板の損失係数の2.0倍以上とすることが可能となる。例えば、積層体を構成する板材に積層用ステンレス鋼板を1枚使用する場合には、当該積層用ステンレス鋼板において表面粗度を算術平均粗さRaで0.010〜1.50μmの範囲に調整した面を、積層体を構成する他の板材と接触するように(他の板材との接触面となるように)配置する。なお、積層体を構成する板材に積層用ステンレス鋼板を2枚以上使用する場合には、板材の配置は特に限定されないが、表面粗度を算術平均粗さRaで0.010〜1.50μmの範囲に調整した面同士が互いに接触するように、板材を配置することが好適である。
なお、その他の板材としては、ステンレス鋼板の他に、アルミニウム板やめっき鋼板などを用いることができる。
Here, the number of plate materials used for the laminated body may be two or more, and a three-layered or four-layered laminated body may be used. Further, as the number of sheets increases, excellent damping ability and sound insulation can be obtained, but since the mass of parts and man-hours increase, an appropriate number of sheets is selected according to the purpose.
Further, the above-mentioned stainless steel sheet for lamination may be used for all the plate materials constituting the laminate, but at least one of the above-mentioned stainless steel sheets for lamination is used, and the above-mentioned stainless steel sheet for lamination has a surface roughness. It is necessary to arrange so that at least one surface having an arithmetic average roughness Ra of 0.010 to 1.50 μm is in contact with the other plate material constituting the laminate. Thereby, the damping ability of the laminated body is enhanced, specifically, the loss coefficient of the laminated body is made of the same material as the stainless steel plate for lamination used for the plate material of the laminated body, and has the same thickness as the laminated body. It is possible to make the loss coefficient of a certain stainless steel sheet 2.0 times or more. For example, when one stainless steel plate for lamination is used as the plate material constituting the laminate, the surface roughness of the stainless steel plate for lamination is adjusted in the range of 0.010 to 1.50 μm in arithmetic average roughness Ra. The surface is arranged so as to be in contact with other plate materials constituting the laminated body (so as to be a contact surface with other plate materials). When two or more stainless steel plates for laminating are used as the plate material constituting the laminated body, the arrangement of the plate materials is not particularly limited, but the surface roughness is 0.010 to 1.50 μm in arithmetic average roughness Ra. It is preferable to arrange the plate materials so that the surfaces adjusted to the range come into contact with each other.
As the other plate material, an aluminum plate, a plated steel plate, or the like can be used in addition to the stainless steel plate.

ここで、損失係数とは、JIS G0602に準拠して、試験片の保持方式:つり下げ(加振)、試験片の加振方法:インパルスハンマの条件で測定される減衰曲線(減衰自由振動波形)から、減衰法により求めた1/1オクターブバンド中心周波数1kHZにおける損失係数である。 Here, the loss coefficient is a damping curve (damping free vibration waveform) measured under the conditions of test piece holding method: suspension (vibration) and test piece vibration method: impulse hammer in accordance with JIS G0602. ), It is a loss coefficient at a 1/1 octave band center frequency of 1 kHz obtained by the attenuation method.

また、前述の積層用ステンレス鋼板とその他の材料による積層体における板材の配置(積層順)は、用途などに応じ適宜決定すればよい。
例えば、外部からの飛来物などと接触するおそれのある、車体下に露出する遮熱板などに用いる場合には、耐食性や強度を高める観点から、上記の積層用ステンレス鋼板が最も外側(設置したときに車体から遠い側)となるように配置することが好ましい。
一方、エキゾーストマニホールドなどの高温部材の遮熱板に用いる場合は、耐熱性を高める観点から、上記の積層用ステンレス鋼板が最も内側(設置したときに車体(高温部材)に近い側)となるように配置することが好ましい。
Further, the arrangement (lamination order) of the plate materials in the laminate made of the above-mentioned stainless steel plate for lamination and other materials may be appropriately determined according to the application and the like.
For example, when used for a heat shield plate exposed under the vehicle body that may come into contact with flying objects from the outside, the above-mentioned stainless steel plate for lamination is the outermost (installed) from the viewpoint of improving corrosion resistance and strength. Sometimes it is preferable to arrange it so that it is on the side far from the vehicle body).
On the other hand, when used as a heat shield plate for high-temperature members such as exhaust manifolds, the above-mentioned stainless steel plate for lamination should be on the innermost side (the side closer to the vehicle body (high-temperature member) when installed) from the viewpoint of improving heat resistance. It is preferable to arrange it in.

なお、積層体の好適厚さは0.1〜2.0mmである。また、積層体を構成する板材の好適厚さは、2枚重ねの積層体の場合、0.2〜1.0mm、3枚重ね以上の積層体の場合、0.1〜0.6mmである。 The suitable thickness of the laminate is 0.1 to 2.0 mm. Further, the preferable thickness of the plate material constituting the laminated body is 0.2 to 1.0 mm in the case of the laminated body of two layers, and 0.1 to 0.6 mm in the case of the laminated body of three or more layers. ..

次に、本発明の積層用ステンレス鋼板の製造方法について説明する。
上記した成分組成からなる溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊−分塊法によりスラブとする。
このスラブを、1100〜1250℃で1〜24時間加熱したのち、熱間圧延によって板厚:2.0〜4.0mm程度の熱延鋼板とし、ついで、熱延鋼板に800℃〜1050℃で5秒〜15分間保持する熱延板焼鈍を施して、熱延焼鈍板とする。
その後、必要に応じて、酸洗や機械研磨によって脱スケールを施して製品としてもよいし、さらに板厚を薄くする場合は、上記の熱延焼鈍板に、冷間圧延および冷延板焼鈍を施して、冷延焼鈍板とする。
また、最終製品板の表面粗度は、最終圧延時に使用する圧延ロールの粗度および径(直径)と、調質圧延や研磨、酸洗などを適切な条件としたうえで、これらを適宜、組み合わせることにより、調整することができる。
また、最終的な部品形状に加工した後、研磨などによって積層体の素材となる積層用ステンレス鋼板の表面粗度を調整してもよいが、生産効率の観点からは、部品形状に加工する前に、表面粗度を調整することが好ましい。
Next, the method for manufacturing the stainless steel sheet for lamination of the present invention will be described.
The molten steel having the above-mentioned composition is melted by a known method such as a converter, an electric furnace, a vacuum melting furnace, etc., and made into a slab by a continuous casting method or a lump-incubation method.
This slab is heated at 1100 to 1250 ° C. for 1 to 24 hours and then hot-rolled to obtain a hot-rolled steel sheet having a plate thickness of about 2.0 to 4.0 mm, and then the hot-rolled steel sheet is heated at 800 ° C to 1050 ° C. The hot-rolled sheet is annealed by holding it for 5 seconds to 15 minutes to obtain a hot-rolled annealed sheet.
Then, if necessary, the product may be descaled by pickling or mechanical polishing, or if the plate thickness is to be further reduced, the above hot-rolled annealed plate is subjected to cold rolling and cold-rolled annealed. Apply to make a cold-rolled annealed plate.
In addition, the surface roughness of the final product plate shall be determined by appropriately setting the roughness and diameter (diameter) of the rolling roll used at the time of final rolling, temper rolling, polishing, pickling, etc. as appropriate conditions. It can be adjusted by combining them.
Further, after processing into the final part shape, the surface roughness of the stainless steel sheet for lamination, which is the material of the laminated body, may be adjusted by polishing or the like, but from the viewpoint of production efficiency, before processing into the part shape. In addition, it is preferable to adjust the surface roughness.

また、本発明の積層体は、本発明の積層用ステンレス鋼板を含む2枚以上の板材を重ね合わせ、これらの板材を、例えば、溶接、ボルト締結、リベット接合、かしめなどにより固定することで、製造することができる。
なお、これらの固定方法の条件等については特に限定されず、常法に従えばよい。
Further, in the laminated body of the present invention, two or more plate materials including the stainless steel plate for lamination of the present invention are laminated, and these plate materials are fixed by, for example, welding, bolt fastening, riveting, caulking, or the like. Can be manufactured.
The conditions of these fixing methods are not particularly limited, and the conventional method may be followed.

表1に示す成分組成(残部はFeおよび不可避的不純物)の鋼を、真空溶解炉によってより溶製し、1100〜1300℃で1時間加熱した後に熱間圧延を行って、板厚:4.0mmの熱延鋼板とした。つぎに、得られた熱延鋼板に、900〜1100℃で1分間保持する熱処理(熱延板焼鈍)を施してから、表面スケールを研削によって除去することで、熱延焼鈍板を得た。 Steel having the composition shown in Table 1 (the balance is Fe and unavoidable impurities) was further melted by a vacuum melting furnace, heated at 1100 to 1300 ° C. for 1 hour, and then hot-rolled to obtain a plate thickness of 4. A 0 mm hot-rolled steel sheet was used. Next, the obtained hot-rolled steel sheet was subjected to a heat treatment (hot-rolled sheet annealing) held at 900 to 1100 ° C. for 1 minute, and then the surface scale was removed by grinding to obtain a hot-rolled annealed sheet.

ついで、かくして得られた熱延焼鈍板に、表2の記号BA〜BDに示す条件で、冷間圧延(リバース圧延)、冷延板焼鈍(焼鈍温度:900〜1100℃、保持時間:1分)、酸洗(後述する表3の記号CFと同じ条件)および/または調質圧延(ロール表面粗度Ra:0.05〜0.1μm)を行って冷延焼鈍板とした。これら冷延焼鈍板の一部に対しては、さらに表3の記号CA〜CFの表面加工を施して、表面状態を変化させた。こうした方法によって、種々の表面粗度に調整した、厚さ:0.5mmまたは1.0mmのステンレス鋼板を得た。
ここで、表3の記号CAの鏡面研磨は、粒度:1200番の研磨紙で研磨した後、粒度:1μmのダイヤモンドペーストを用いてバフ研磨することで行った。記号CB、CC、CDの研磨紙による研磨では、それぞれ粒度:1000番(♯1000)、粒度:600番(♯600)、粒度:180番(♯180)の研磨紙を用いた。記号CEの研削盤による研磨は、粒度:400番のCBN砥石を用い、砥石周速:1500m/min、送り速度:5m/minの条件で行った。なお、研削盤および研磨紙による研磨では、研磨方向は鋼板の長手方向(圧延方向)とした。
また、記号CFの酸洗は、硝酸濃度:170g/L、塩酸濃度:7g/Lである混酸溶液を作製し、60℃の溶液中で、40〜120秒間電解することで行った。
なお、いずれの表面加工においても、板厚の減少量は0.05mm以下であった。
Then, the hot-rolled annealed sheet thus obtained was subjected to cold rolling (reverse rolling) and cold-rolled sheet annealing (annealing temperature: 900 to 1100 ° C., holding time: 1 minute) under the conditions shown in the symbols BA to BD in Table 2. ), Pickling (same conditions as the symbol CF in Table 3 described later) and / or temper rolling (roll surface roughness Ra: 0.05 to 0.1 μm) to obtain a cold-rolled annealed sheet. A part of these cold-rolled annealed plates was further subjected to surface processing of symbols CA to CF in Table 3 to change the surface state. By such a method, stainless steel sheets having a thickness of 0.5 mm or 1.0 mm adjusted to various surface roughness were obtained.
Here, the mirror polishing of the symbol CA in Table 3 was performed by polishing with a polishing paper having a particle size of 1200 and then buffing with a diamond paste having a particle size of 1 μm. In polishing with abrasive papers having symbols CB, CC, and CD, abrasive papers having a particle size of 1000 (# 1000), a particle size of 600 (# 600), and a particle size of 180 (# 180) were used, respectively. Polishing with a grinder with the symbol CE was carried out using a CBN grindstone having a particle size of No. 400 under the conditions of a grindstone peripheral speed of 1500 m / min and a feed rate of 5 m / min. In the polishing with a grinder and polishing paper, the polishing direction was the longitudinal direction (rolling direction) of the steel sheet.
The pickling of the symbol CF was carried out by preparing a mixed acid solution having a nitric acid concentration: 170 g / L and a hydrochloric acid concentration: 7 g / L, and electrolyzing the mixture in a solution at 60 ° C. for 40 to 120 seconds.
In any surface processing, the amount of reduction in plate thickness was 0.05 mm or less.

ついで、得られたステンレス鋼板の表面粗度(算術平均粗さRa)を、以下の方法により測定した。
すなわち、ステンレス鋼板表面に任意の位置において、JIS B0601(2001)に従い、Lフィルター:0.25mm、測定距離:1.25mmの条件で、鋼板の幅方向(圧延直角方向)に粗さ曲線を測定し、算術平均粗さRaを求めた。なお、測定は3回行い、その3回の平均値を、表4に算術平均粗さRaとして示す。
Then, the surface roughness (arithmetic mean roughness Ra) of the obtained stainless steel sheet was measured by the following method.
That is, the roughness curve is measured in the width direction (rolling perpendicular direction) of the steel sheet under the conditions of L filter: 0.25 mm and measurement distance: 1.25 mm according to JIS B0601 (2001) at an arbitrary position on the surface of the stainless steel sheet. Then, the arithmetic mean roughness Ra was obtained. The measurement was performed three times, and the average value of the three times is shown in Table 4 as the arithmetic mean roughness Ra.

ついで、得られたステンレス鋼板(厚さ:0.5mm)からそれぞれ、幅:120mm、長さ:180mmの試験片を複数切出し、同一の表面処理を行った同一鋼種の試験片2枚を重ね合わせて、スポット溶接により固定し、図1のような積層試験片を得た。なお、積層試験片では、表面粗度を調整した側の面同士が接触するように、同一鋼種の2枚の試験片を重ね合わせた。
溶接条件は、加圧力:2kN、電流:7kA、ナゲット径:約6mmとした。また、積層試験片の角部分には、損失係数の測定時に糸を通すため、直径:5mmの穴を空けた。
また、積層を行っていない基準試験片も別途作製した。すなわち、得られたステンレス鋼板(厚さ:1.0mm)からそれぞれ、幅:120mm、長さ:180mmの試験片を切出し、該試験片の角部分に損失係数の測定時に糸を通すための直径:5mmの穴を空けて、基準試験片を作製した。
Then, a plurality of test pieces having a width of 120 mm and a length of 180 mm were cut out from the obtained stainless steel plate (thickness: 0.5 mm), and two test pieces of the same steel type subjected to the same surface treatment were overlapped. Then, it was fixed by spot welding to obtain a laminated test piece as shown in FIG. In the laminated test piece, two test pieces of the same steel type were overlapped so that the surfaces on the side where the surface roughness was adjusted were in contact with each other.
Welding conditions were: pressing force: 2 kN, current: 7 kA, nugget diameter: about 6 mm. Further, a hole having a diameter of 5 mm was formed in the corner portion of the laminated test piece in order to pass a thread when measuring the loss coefficient.
In addition, a reference test piece that was not laminated was also prepared separately. That is, a test piece having a width of 120 mm and a length of 180 mm is cut out from the obtained stainless steel plate (thickness: 1.0 mm), and a diameter for threading a thread through the corner portion of the test piece when measuring the loss coefficient. : A reference test piece was prepared by making a hole of 5 mm.

かくして得られた積層試験片および基準試験片を用い、JIS G0602(1993)に準拠して、試験片の保持方式:つり下げ(加振)、試験片の加振方法:インパルスハンマの条件で減衰曲線(減衰自由振動波形)を測定し、減衰法により、1kHZ帯(1/1オクターブバンド中心周波数1kHZ)の損失係数を求めた。
すなわち、積層試験片および基準試験片を、その角に空けた穴に糸を通して梁に吊り下げて、インパルスハンマで積層試験片および基準試験片をそれぞれ加振し、その際の減衰曲線を測定した。ついで、これらの減衰曲線をオクターブ分析によって周波数ごとに分離し、減衰法により、自動車排気管からの騒音で特に問題となる1kHZ帯の損失係数を求めた。
なお、使用した測定機器は、FFTアナライザー(小野測器製CF9200)、インパルスハンマ(小野測器製GK3100)、および、加速度センサー(小野測器製NP3211)である。また、測定はいずれも室温で行った。
そして、以下の基準により、騒音減衰能を評価した。
◎(合格、特に優れる):積層試験片の損失係数が、基準試験片の損失係数の3.0倍以上
○(合格、優れる):積層試験片の損失係数が、基準試験片の損失係数の2.0倍以上3.0倍未満
×(不合格):積層試験片の損失係数が、基準試験片の損失係数の2.0倍未満
評価結果を表4に示す。
Using the laminated test piece and the reference test piece thus obtained, according to JIS G0602 (1993), the test piece holding method: suspension (vibration), test piece vibration method: attenuation under the condition of impulse hammer. The curve (damped free vibration waveform) was measured, and the loss coefficient of the 1 kHz band (1/1 octave band center frequency 1 kHz) was obtained by the damping method.
That is, the laminated test piece and the reference test piece were hung on the beam by passing a thread through a hole made in the corner, and the laminated test piece and the reference test piece were vibrated by an impulse hammer, respectively, and the damping curve at that time was measured. .. Then, these attenuation curves were separated for each frequency by octave analysis, and the loss coefficient in the 1 kHz band, which is particularly problematic due to noise from the automobile exhaust pipe, was obtained by the attenuation method.
The measuring instruments used were an FFT analyzer (CF9200 manufactured by Ono Sokki), an impulse hammer (GK3100 manufactured by Ono Sokki), and an acceleration sensor (NP3211 manufactured by Ono Sokki). All measurements were performed at room temperature.
Then, the noise attenuation ability was evaluated according to the following criteria.
◎ (Pass, especially excellent): The loss coefficient of the laminated test piece is 3.0 times or more of the loss coefficient of the reference test piece ○ (Pass, excellent): The loss coefficient of the laminated test piece is the loss coefficient of the reference test piece. 2.0 times or more and less than 3.0 times × (Failure): The loss coefficient of the laminated test piece is less than 2.0 times the loss coefficient of the reference test piece. The evaluation results are shown in Table 4.

Figure 0006812956
Figure 0006812956

Figure 0006812956
Figure 0006812956

Figure 0006812956
Figure 0006812956

Figure 0006812956
Figure 0006812956

表4より、発明例ではいずれも、優れた騒音減衰能が得られていることがわかる。特に、算術平均粗さRaを0.10〜1.00μmの範囲とした積層試験片では、特に優れた騒音減衰能が得られていた。
一方、比較例ではいずれも、十分な騒音減衰能が得られなかった。
From Table 4, it can be seen that excellent noise attenuation ability is obtained in all of the invention examples. In particular, a laminated test piece having an arithmetic average roughness Ra in the range of 0.10 to 1.00 μm was able to obtain particularly excellent noise attenuation ability.
On the other hand, in each of the comparative examples, sufficient noise attenuation ability could not be obtained.

Claims (3)

2枚以上の板材を重ね合わせた積層体の素材となる積層用ステンレス鋼板であって、
該積層用ステンレス鋼板が、質量%で、
C:0.025%以下、
Si:0.01〜1.50%、
Mn:0.01〜1.00%、
S:0.010%以下、
P:0.050%以下、
Cr:10.5〜32.0%、
Ni:0.01〜0.60%、
Al:0.001〜6.0%および
N:0.050%以下
を含有するとともに、
Ti:0.01〜1.00%、
Nb:0.01〜1.00%および
Zr:0.01〜1.00%
のうちから選んだ1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
少なくとも一方の面の表面粗度が算術平均粗さRaで0.31〜1.50μmであり、板厚が1.0mm以下である(ただし、C:0.010%、Si:0.51%、Mn:0.34%、S:0.005%、P:0.04%、Cr:20.22%、Ni:0.13%、Al:0.001%、N:0.012%、Ti:0.001%およびNb:0.359%を含有する成分組成を有し、かつ、少なくとも一方の面の表面粗度が算術平均粗さRaで0.35μmであり、かつ、板厚が1mmである場合を除く)、積層用ステンレス鋼板。
A stainless steel plate for laminating, which is a material for a laminated body in which two or more plate materials are laminated.
The stainless steel sheet for lamination is based on mass%.
C: 0.025% or less,
Si: 0.01 to 1.50%,
Mn: 0.01 to 1.00%,
S: 0.010% or less,
P: 0.050% or less,
Cr: 10.5 to 32.0%,
Ni: 0.01-0.60%,
Al: 0.001 to 6.0% and N: 0.050% or less, and
Ti: 0.01-1.00%,
Nb: 0.01 to 1.00% and Zr: 0.01 to 1.00%
It contains one or more selected from the above, and has a component composition in which the balance consists of Fe and unavoidable impurities.
The surface roughness of at least one surface is 0.31 to 1.50 μm in arithmetic average roughness Ra, and the plate thickness is 1.0 mm or less (however, C: 0.010%, Si: 0.51%). , Mn: 0.34%, S: 0.005%, P: 0.04%, Cr: 20.22%, Ni: 0.13%, Al: 0.001%, N: 0.012%, It has a component composition containing Ti: 0.001% and Nb: 0.359%, and the surface roughness of at least one surface is 0.35 μm in arithmetic average roughness Ra, and the plate thickness is (Except when it is 1 mm) , stainless steel plate for lamination.
前記成分組成が、
Cu:0.01〜1.00%、
Mo:0.01〜3.00%および
REM:0.01〜0.30%
のうちから選んだ1種または2種以上を含有する、請求項1に記載の積層用ステンレス鋼板。
The composition of the ingredients
Cu: 0.01-1.00%,
Mo: 0.01 to 3.00% and REM: 0.01 to 0.30%
The stainless steel sheet for lamination according to claim 1, which contains one or more selected from the above.
2枚以上の板材を重ね合わせた積層体であって、
該板材が、請求項1または2に記載の積層用ステンレス鋼板であり、かつ、該積層用ステンレス鋼板は、算術平均粗さRaで0.31〜1.50μmの表面粗度となる少なくとも一方の面が該積層体の他の板材と接触するように、配置されており、また、該積層用ステンレス鋼板はそれぞれ同じ材質であり、
さらに、該積層体の損失係数が、該積層体の板材に使用する積層用ステンレス鋼板と同じ材質で、かつ、該積層体と同じ厚さであるステンレス鋼板の損失係数の2.0倍以上である、積層体。


It is a laminated body in which two or more plate materials are laminated.
The plate material is the stainless steel sheet for lamination according to claim 1 or 2, and the stainless steel sheet for lamination has at least one having a surface roughness of 0.31 to 1.50 μm in arithmetic average roughness Ra. The surfaces are arranged so as to be in contact with other plate materials of the laminated body, and the stainless steel sheets for lamination are each made of the same material.
Further, the loss coefficient of the laminated body is 2.0 times or more the loss coefficient of the stainless steel sheet having the same material as the stainless steel sheet for lamination used for the plate material of the laminated body and the same thickness as the laminated body. There is a laminate.


JP2017228268A 2017-11-28 2017-11-28 Stainless steel plate for lamination and laminate Active JP6812956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017228268A JP6812956B2 (en) 2017-11-28 2017-11-28 Stainless steel plate for lamination and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017228268A JP6812956B2 (en) 2017-11-28 2017-11-28 Stainless steel plate for lamination and laminate

Publications (2)

Publication Number Publication Date
JP2019099830A JP2019099830A (en) 2019-06-24
JP6812956B2 true JP6812956B2 (en) 2021-01-13

Family

ID=66976173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017228268A Active JP6812956B2 (en) 2017-11-28 2017-11-28 Stainless steel plate for lamination and laminate

Country Status (1)

Country Link
JP (1) JP6812956B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645832A (en) * 1987-06-30 1989-01-10 Aichi Steel Works Ltd Composite metal plate excellent in vibration-damping property and heat resistance
JPH07100987A (en) * 1993-10-05 1995-04-18 Toyota Motor Corp Damping metal pipe
JPH09300085A (en) * 1996-05-15 1997-11-25 Daido Steel Co Ltd Manufacture of clad material having flat joined interface
JP5868241B2 (en) * 2012-03-29 2016-02-24 日新製鋼株式会社 Ferritic stainless steel for diffusion bonding and method for manufacturing diffusion bonding products
JP6246478B2 (en) * 2013-03-28 2017-12-13 日新製鋼株式会社 Stainless steel heat exchanger component and method of manufacturing the same
JP6129140B2 (en) * 2014-11-05 2017-05-17 日新製鋼株式会社 Stainless steel for diffusion bonding
JP6370275B2 (en) * 2015-08-17 2018-08-08 日新製鋼株式会社 Damping ferritic stainless steel material and manufacturing method
JP6370276B2 (en) * 2015-08-17 2018-08-08 日新製鋼株式会社 High Al content damping ferritic stainless steel material and manufacturing method

Also Published As

Publication number Publication date
JP2019099830A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
CA2860746C (en) Ferritic stainless steel foil
KR102544884B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5561447B1 (en) Stainless steel plate and stainless steel foil
JP6606988B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP2007186791A (en) High strength non-oriented electrical steel sheet and method for manufacture the same
JP4710465B2 (en) Method for producing non-oriented electrical steel sheet for rotor
KR101994559B1 (en) Ferritic stainless steel foil and method for manufacturing the same
JP6812956B2 (en) Stainless steel plate for lamination and laminate
JP4998672B2 (en) Manufacturing method of damping alloy sheet
WO2018074405A1 (en) Stainless steel sheet and stainless steel foil
KR20190012216A (en) Ferritic stainless steel plate
JP6464750B2 (en) Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof
JP4258859B2 (en) Non-oriented electrical steel sheet with good machinability and low iron loss
JP7490406B2 (en) Ferritic stainless steel material, its manufacturing method, and vibration damping member
JP7490407B2 (en) Ferritic stainless steel material, its manufacturing method, and vibration damping member
JPS5945748B2 (en) Damping steel plate for processing and its manufacturing method
JP7028148B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
JPS5843450B2 (en) Manufacturing method of vibration damping thin steel plate
JP3034590B2 (en) Manufacturing method of damping steel sheet with excellent workability
JP6303301B2 (en) Fe-based metal plate and manufacturing method thereof
JP4123675B2 (en) Non-oriented electrical steel sheet
JP2001295001A (en) Nonoriented silicon steel sheet excellent in high frequency magnetic property and weldability
JPH03285017A (en) Production of resistance welded tube having high vibration damping property
JPH0718386A (en) Fe-cr alloy excellent in burr resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6812956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250