JP6221406B2 - Fe-based metal plate and manufacturing method thereof - Google Patents

Fe-based metal plate and manufacturing method thereof Download PDF

Info

Publication number
JP6221406B2
JP6221406B2 JP2013134300A JP2013134300A JP6221406B2 JP 6221406 B2 JP6221406 B2 JP 6221406B2 JP 2013134300 A JP2013134300 A JP 2013134300A JP 2013134300 A JP2013134300 A JP 2013134300A JP 6221406 B2 JP6221406 B2 JP 6221406B2
Authority
JP
Japan
Prior art keywords
metal plate
based metal
ferrite
austenite
base metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013134300A
Other languages
Japanese (ja)
Other versions
JP2015010241A (en
Inventor
美穂 冨田
美穂 冨田
徹 稲熊
徹 稲熊
坂本 広明
広明 坂本
洋治 水原
洋治 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013134300A priority Critical patent/JP6221406B2/en
Publication of JP2015010241A publication Critical patent/JP2015010241A/en
Application granted granted Critical
Publication of JP6221406B2 publication Critical patent/JP6221406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は発電機、電動機、変圧器の磁心等、特に高速回転機のロータ等の大きな応力が付加される部品に好適な、高強度、かつ優れた磁気特性を有するFe系金属板及びその製造方法に関するものである。   The present invention is an Fe-based metal plate having high strength and excellent magnetic properties suitable for parts to which large stress is applied, such as a rotor of a high-speed rotating machine, such as a magnetic core of a generator, an electric motor, or a transformer, and its manufacture It is about the method.

従来から電動機、発電機、変圧器等の磁心にはケイ素鋼板が用いられている。ケイ素鋼板は小さな励磁磁場において飽和磁束密度Bsに対する平均磁束密度B50の比率B50/Bsが得られること、及び交流励磁磁場において低鉄損であることが求められる。さらに近年のモータの小型化、ハイパワー化に伴い、可変速運転や商用周波数以上での高速で回転するモータが増加している。このような回転体に作用する遠心力は回転速度の2乗に比例して大きくなるため、ロータ等に使用される材料は高強度が必要となる。   Conventionally, silicon steel plates have been used for magnetic cores of electric motors, generators, transformers and the like. The silicon steel sheet is required to have a ratio B50 / Bs of the average magnetic flux density B50 to the saturation magnetic flux density Bs in a small excitation magnetic field and to have a low iron loss in an alternating excitation magnetic field. Furthermore, with recent miniaturization and higher power of motors, motors that rotate at high speeds at variable speed operation and commercial frequencies are increasing. Since the centrifugal force acting on such a rotating body increases in proportion to the square of the rotational speed, the material used for the rotor or the like needs to have high strength.

圧延面内に{200}面を高集積化させ、飽和磁束密度Bsに対する平均磁束密度B50の比率B50/Bsを高めたFe系金属板については、本発明者らは、先に特許文献1によって次のような技術を提案している。
(a)α−γ変態系のFe系金属よりなる母材金属板の片面あるいは両面にフェライト生成元素を付着させる工程と、
(b)該母材金属板を室温から母材金属板のA3点まで加熱して母材金属板内にフェライト生成元素を拡散させ、一部を母材に合金化させるとともに、合金化された領域でのα‐Fe相の{200}面集積度を25%以上50%以下とし、かつ、{222}面集積度を40%以下とする工程と、
(c)母材金属板をA3点以上の温度に加熱、保持して、フェライト生成元素と合金化されたα‐Fe相の面集積度について、{200}面集積度を増加させるとともに、{222}面集積度を低下させる工程と、
(d)母材金属板をA3点未満の温度へ冷却し、合金化していない領域のγ‐Fe相がα‐Fe相へ変態する際に、該α‐Fe相の{200}面集積度を高めて、{200}面集積度が30%以上99%以下となり、かつ、{222}面集積度が30%以下となるようにする工程とを有することを特徴とする高い{200}面集積度を有するFe系金属板の製造方法。
Regarding the Fe-based metal plate in which the {200} plane is highly integrated in the rolled surface and the ratio B50 / Bs of the average magnetic flux density B50 to the saturated magnetic flux density Bs is increased, the present inventors previously described The following technologies are proposed.
(A) attaching a ferrite-forming element to one side or both sides of a base metal plate made of an Fe-based metal in an α-γ transformation system;
(B) The base metal plate was heated from room temperature to A3 point of the base metal plate to diffuse the ferrite-forming elements in the base metal plate, and partly alloyed with the base material and alloyed A step of setting the {200} plane integration degree of the α-Fe phase in the region to 25% to 50% and the {222} plane integration degree to 40% or less;
(C) The base metal plate is heated and held at a temperature of A3 or higher to increase the {200} plane integration degree of the α-Fe phase alloyed with the ferrite-forming element, and { 222} reducing the degree of surface integration;
(D) When the base metal plate is cooled to a temperature below A3 and the γ-Fe phase in the non-alloyed region is transformed into the α-Fe phase, the degree of {200} plane integration of the α-Fe phase And having a {200} plane integration degree of 30% or more and 99% or less and a {222} plane integration degree of 30% or less. A method for producing an Fe-based metal plate having a degree of integration.

また、機械的性質を高めるためには固溶強化や析出強化などが一般的であるが、これらの強化方法の多くは、磁気特性を劣化させるため、強度と磁気特性の両立は非常に困難である。これに対して特許文献2には、Si量を3.5〜7.0%と高め、Ti,W,Mo,Mn,Ni,Co,Alなどの元素を添加して固溶強化を利用する技術が記載されている。   In order to improve mechanical properties, solid solution strengthening and precipitation strengthening are generally used. However, since many of these strengthening methods deteriorate magnetic properties, it is very difficult to achieve both strength and magnetic properties. is there. On the other hand, in Patent Document 2, the Si amount is increased to 3.5 to 7.0%, and elements such as Ti, W, Mo, Mn, Ni, Co, and Al are added to use solid solution strengthening. The technology is described.

さらに、特許文献3には鋼板に未再結晶組織を残留させた高強度電磁鋼板が提案されている。
しかしながら特許文献2に記載の技術を工場生産に適用した場合、圧延工程などにおいて板破断などのトラブルが生じやすいという問題があった。また特許文献3では製造性は良いものの、圧延直角方向での鋼板強度のばらつきが大きくなりやすいという問題点があった。
Further, Patent Document 3 proposes a high-strength electrical steel sheet in which an unrecrystallized structure remains in the steel sheet.
However, when the technique described in Patent Document 2 is applied to factory production, there is a problem that troubles such as plate breakage are likely to occur in a rolling process or the like. Further, Patent Document 3 has a problem that although the manufacturability is good, the variation in the strength of the steel sheet in the direction perpendicular to the rolling tends to increase.

国際公開第2011/052654号International Publication No. 2011/052654 特開昭60−238421号公報JP 60-238421 A 特開2005−113185号公報JP-A-2005-113185

本発明はかかる事情に鑑みなされたもので、磁気特性が優れ、かつ機械的特性に優れたFe系金属板、及びそのような金属板を安定的に製造する方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide an Fe-based metal plate having excellent magnetic properties and excellent mechanical properties, and a method for stably producing such a metal plate. .

本発明者らは、様々な異種元素を付与したFe系金属板の機械的特性について、鋭意研究、検討を行った。その結果、本発明者らはフェライト生成元素とオーステナイト生成元素からなる異種元素を付与したFe系金属板が、低温でも集合組織が高集積化すると同時に、低温での熱処理のため結晶粒が細かくなり機械的特性が向上することを見出した。   The present inventors diligently studied and examined the mechanical properties of Fe-based metal plates provided with various different elements. As a result, the present inventors have found that the Fe-based metal plate to which the heterogeneous element composed of the ferrite-forming element and the austenite-forming element is added is highly integrated at a low temperature, and at the same time, the crystal grains become fine due to the heat treatment at a low temperature. It has been found that mechanical properties are improved.

本発明のFe系金属板は、
(1)片面もしくは両面にフェライト生成元素とオーステナイト生成元素からなる異種元素が合金化してα−Fe単相となった合金化領域を有し、
少なくとも板厚中心部がα−γ変態成分系であり、
板面における{200}面集積度が30%以上99%以下、及び、{222}面集積度が0.01%以上30%以下であり、
質量%で、前記合金化領域の異種元素のフェライト生成元素の濃度をx%、オーステナイト生成元素の濃度をy%とすると、0.001<y/x<5であり、
飽和磁束密度Bsに対する平均磁束密度B50の比率、B50/Bsが0.85を超え、
板厚が10μm以上6mm以下である
ことを特徴とするFe系金属板
ここで{200}面集積度とは、試料表面に対して平行なα−Fe結晶の11ある方位面({110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442})の積分強度を測定し、その測定値それぞれを、ランダム方位である試料の理論積分強度で除した後、{200}強度の比率を百分率で求めたものである。
The Fe-based metal plate of the present invention is
(1) having an alloying region in which a heterogeneous element composed of a ferrite-forming element and an austenite-forming element is alloyed to form an α-Fe single phase on one side or both sides;
At least the thickness center part is an α-γ transformation component system,
{200} plane integration of the plate surface 99% or more and 30% or less, and {222} plane integration is Ri der than 30% 0.01%
When the concentration of the ferrite-forming element of the different element in the alloying region is x% and the concentration of the austenite-generating element is y% in mass%, 0.001 <y / x <5,
Ratio of average magnetic flux density B50 to saturation magnetic flux density Bs, B50 / Bs exceeds 0.85,
A Fe-based metal plate , wherein the plate thickness is 10 μm or more and 6 mm or less ,
Here, the {200} plane integration degree refers to 11 orientation planes ({110}, {200}, {211}, {310}, {222}, {321) of α-Fe crystals parallel to the sample surface. }, {411}, {420}, {332}, {521}, {442}), and dividing each of the measured values by the theoretical integrated intensity of the sample having a random orientation, { The ratio of 200} strength is obtained as a percentage.

(2)合金化した異種元素のオーステナイト生成元素がC、Co、Cu、Ni、N、Mn、Pdのうち1種以上であり、フェライト生成元素がAl、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ta、Ti、V、W、Znのうち1種以上であることを特徴とする(1)に記載のFe系金属板。 (2) The austenite generating element of the alloyed different element is one or more of C, Co, Cu, Ni, N, Mn, and Pd, and the ferrite generating element is Al, Cr, Ga, Ge, Mo, Sb, The Fe-based metal plate according to (1), which is one or more of Si, Sn, Ta, Ti, V, W, and Zn.

)Fe系金属よりなる母材金属板上に異種元素を付着させ、熱処理して拡散させた(1)または(2)に記載のFe系金属板を製造する方法であって、
(a)α−γ変態成分系のFe系金属よりなる鋳片から熱間圧延及び圧下率97%以上99.99%以下の冷間圧延によって厚みを減少させて母材金属板を得る工程と、
(b)前記母材金属板の片面もしくは両面に、フェライト生成元素とオーステナイト生成元素からなる異種元素を、異種元素層の厚みが0.05μm以上1000μm以下であり、Fe系金属板の最表層がα―Fe単相となるように付着させる工程と、
(c)異種元素が付着した前記母材金属板を、母材金属板のA3点まで加熱して、異種元素を母材金属板に拡散させる工程と、
(d)前記金属板をさらにA3点以上1300℃以下の温度に加熱、保持して異種元素を拡散させる工程と、
(e)前記金属板をA3点未満の温度へ冷却する工程を有することを特徴とするFe系金属板の製造方法。
( 3 ) A method for producing the Fe-based metal plate according to (1) or (2), wherein a different element is attached on a base metal plate made of Fe-based metal, and is diffused by heat treatment.
(A) a step of obtaining a base metal sheet by reducing the thickness from a cast slab made of Fe-based metal of α-γ transformation component by hot rolling and cold rolling with a rolling reduction of 97% or more and 99.99% or less; ,
(B) A heterogeneous element comprising a ferrite-forming element and an austenite-generating element is formed on one or both surfaces of the base metal plate, the thickness of the heterogeneous element layer is 0.05 μm or more and 1000 μm or less, and the outermost layer of the Fe-based metal plate is a process of adhering to form an α-Fe single phase;
(C) heating the base metal plate to which the different element is adhered to point A3 of the base metal plate, and diffusing the different element into the base metal plate;
(D) further heating and holding the metal plate at a temperature of A3 or higher and 1300 ° C. or lower to diffuse the different elements;
(E) A method for producing an Fe-based metal plate, comprising a step of cooling the metal plate to a temperature lower than A3.

本発明によれば、Fe系金属板にフェライト生成元素とオーステナイト生成元素からなる異種元素を拡散させて熱処理すると、集合組織を制御でき、かつ従来よりも高い機械的特性が得られることがわかった。
また、本発明によれば、既存設備を利用して、集合組織が制御され、かつ高い機械的特性を両立したFe系金属板を短時間で安定して製造することができ、経済性に優れる。
According to the present invention, it was found that when a heterogeneous element composed of a ferrite-forming element and an austenite-forming element is diffused and heat-treated in an Fe-based metal plate, the texture can be controlled and higher mechanical properties can be obtained than before. .
In addition, according to the present invention, it is possible to stably produce an Fe-based metal plate having a controlled texture and compatible with high mechanical properties in a short time using existing equipment, and is excellent in economic efficiency. .

本発明者らは、特許文献1に示した方法についてさらに検討を加えた結果、金属板表面に拡散させる異種元素としてフェライト生成元素に加えてオーステナイト生成元素を加えることにより、金属板の集合組織を制御して、機械的特性が向上する現象を見出した。   As a result of further study of the method shown in Patent Document 1, the present inventors have added austenite-generating elements in addition to ferrite-forming elements as dissimilar elements to be diffused to the surface of the metal plate, thereby forming the texture of the metal plate. It was found that the mechanical properties were improved by controlling.

(本発明の基本原理の説明)
まず、フェライト生成元素とオーステナイト生成元素からなる異種元素を拡散させた時に、従来技術よりも機械的特性が向上する基本原理を説明する。
(Description of the basic principle of the present invention)
First, the basic principle that mechanical properties are improved over the prior art when different elements composed of ferrite-forming elements and austenite-forming elements are diffused will be described.

本発明では母材となるFe系金属板にα−γ変態系の組成のものを用い、その片面もしくは両面にフェライト生成元素とオーステナイト生成元素からなる異種元素を付着させ、異種元素を拡散させて集合組織を制御し、かつ機械的特性に優れたFe系金属板を得る。   In the present invention, an α-γ transformation composition is used for the Fe-based metal plate as a base material, and a heterogeneous element composed of a ferrite-forming element and an austenite-generating element is attached to one side or both sides thereof, and the foreign element is diffused An Fe-based metal plate having a controlled texture and excellent mechanical properties is obtained.

母材金属板には、強加工や脱炭などによって、板の片面もしくは両面の全面に{200}に近い方位に配向した組織を付与する。   The base metal plate is provided with a texture oriented in a direction close to {200} on one or both surfaces of the plate by strong processing, decarburization, or the like.

工程(a)ではα−γ変態系成分のFe系金属を、例えば圧下率97%以上99.99%以下で冷間圧延して母材金属板を得る。   In the step (a), the base metal plate is obtained by cold rolling the Fe-based metal of the α-γ transformation component at, for example, a reduction rate of 97% or more and 99.99% or less.

工程(b)では、母材金属板にフェライト生成元素とオーステナイト生成元素からなる異種元素を付着させる。   In the step (b), a heterogeneous element composed of a ferrite-forming element and an austenite-forming element is attached to the base metal plate.

工程(c)で、異種元素の付着した金属板を、母材金属板のA3点以上まで加熱して、母材金属板内の{200}に近い方位が配向した領域の一部または全体に異種元素を拡散させ、母材に合金化させ、合金化した領域でα−Fe相を保存する。あるいは{200}に近い方位が配向した領域を超えて内部にフェライト生成元素を拡散させて、γ−Fe相であった領域をα−Fe相へ変態させる。その時、保存されたα−Fe相の配向を引き継いで変態するため、合金化した領域でも{200}に近い方位に配向した組織が形成される。また、先にα相化した粒においても、さらに{200}に近い方位への配向が高まる。   In step (c), the metal plate to which the different elements are attached is heated to a point A3 or higher of the base metal plate, and part or all of the region in which the orientation close to {200} is oriented in the base metal plate Different elements are diffused and alloyed with the base material, and the α-Fe phase is stored in the alloyed region. Alternatively, the ferrite-forming element is diffused inside beyond the region where the orientation close to {200} is oriented to transform the region that was the γ-Fe phase into the α-Fe phase. At that time, since the transformation is carried out by taking over the preserved orientation of the α-Fe phase, a structure oriented in an orientation close to {200} is formed even in the alloyed region. Further, even in the α-phased grains, the orientation in the direction closer to {200} is further increased.

工程(d)では前記金属板をA3点以上1300℃以下の温度に加熱、保持する。α−Fe単相成分の領域は、γ変態を起こさないため、{200}に近い方位に配向した結晶粒はそのまま保存され、その領域の中で{200}に近い方位の結晶粒が優先成長して{200}面集積度が高まる。また、α−Fe単相成分でない領域はγ−Fe相へと変態する。保持時間を長くすると、{200}結晶粒は食い合いによって優先的に成長し、その結果、{200}面集積度はさらに高くなる。   In the step (d), the metal plate is heated and held at a temperature of A3 point or higher and 1300 ° C. or lower. Since the α-Fe single-phase component region does not cause γ transformation, crystal grains oriented in the direction close to {200} are stored as they are, and crystal grains in the direction close to {200} are preferentially grown in the region. Thus, the {200} plane integration degree is increased. Further, the region that is not the α-Fe single phase component is transformed into the γ-Fe phase. When the holding time is lengthened, the {200} crystal grains grow preferentially by biting, and as a result, the {200} plane integration degree is further increased.

工程(e)では金属板をA3点未満の温度へ冷却する。この時、合金化していない内部の領域のγ−Fe相はα−Fe相へ変態する。この内部の領域はA3点以上の温度域において、既に{200}に近い方位へ配向したα−Fe粒となっている領域に隣接しており、γ−Fe相からα−Fe相へ変態する際に、隣接するα−Fe粒の結晶方位を引き継いで変態する。このため、その領域でも{200}に近い方位が集積する。   In the step (e), the metal plate is cooled to a temperature lower than A3 point. At this time, the γ-Fe phase in the non-alloyed inner region is transformed into the α-Fe phase. This internal region is adjacent to a region that is already α-Fe grains oriented in a direction close to {200} in the temperature range of point A3 or higher, and transforms from the γ-Fe phase to the α-Fe phase. At this time, the transformation takes over the crystal orientation of the adjacent α-Fe grains. For this reason, directions close to {200} are also accumulated in that region.

異種元素としてフェライト生成元素とオーステナイト生成元素を適用すると、工程(c)において金属板内でA3点が変化する。すなわち、最表層の異種元素が十分に合金化した領域はα−Fe単相となるが、内部では、最表層から拡散してきた異種元素が合金化するため、合金量が少ない。このためオーステナイト生成元素の影響が大きく現れ、この領域ではA3点が存在する。従ってフェライト生成元素のみを拡散させた場合よりも、工程(d)でα−Fe相からγ−Fe相へと変態する領域を広くすることができ、この領域の配向をランダムにすることができる。工程(e)で冷却すると、この領域はγ−Fe相からα−Fe相へと変態するが、変態の際にα−Fe相の核生成サイトとなるγ粒界が多く存在するため、冷却後のα−Fe粒が細かくなる。さらにこの領域のγ−Fe相のランダム粒は、最表層のα−Fe単相領域で保存、成長した{200}結晶粒の方位を引き継いでα−Fe相へ変態するため、{200}に近い方位に配向する。このため高い{200}面集積度を有し、かつ、機械的性質に優れた金属板が得られる。   When a ferrite-forming element and an austenite-generating element are applied as the different elements, the point A3 changes in the metal plate in the step (c). That is, the region where the dissimilar elements in the outermost layer are sufficiently alloyed becomes the α-Fe single phase, but the amount of alloy is small because the dissimilar elements diffused from the outermost layer are alloyed inside. For this reason, the influence of an austenite generating element appears greatly, and A3 point exists in this region. Therefore, the region transformed from the α-Fe phase to the γ-Fe phase in the step (d) can be widened and the orientation of this region can be made random, compared with the case where only the ferrite-forming element is diffused. . When cooled in the step (e), this region transforms from the γ-Fe phase to the α-Fe phase, but there are many γ grain boundaries that become nucleation sites of the α-Fe phase during the transformation. Later α-Fe grains become finer. Furthermore, the random grains of the γ-Fe phase in this region are transformed into the α-Fe phase by taking over the orientation of the {200} crystal grains preserved and grown in the α-Fe single phase region of the outermost layer. Oriented in near azimuth. Therefore, a metal plate having a high {200} plane integration degree and excellent mechanical properties can be obtained.

以上、本発明の基本的な構成について説明したが、さらに本発明の製造方法を規定する個々の条件の限定理由及び本発明を実施するに当たり、好ましい条件について説明する。   Although the basic configuration of the present invention has been described above, the reasons for limiting the individual conditions that define the manufacturing method of the present invention and the preferable conditions for carrying out the present invention will be described.

(母材金属板の成分)
母材金属板にはA3点を有するα−γ変態系の成分を有するFe系金属を用いる。C:1質量ppm〜0.2質量%、残部Fe及び不可避不純物からなる純鉄や低炭素鋼を基本とし、適宜、添加元素を含有させたものである。C:0.1質量%以下、Si:0.1〜2.5質量%を基本成分とするα−γ変態系成分のケイ素鋼でもよい。MnやCrは添加することでα−γ変態領域を拡大させることができる。また、その他の不純物としては微量のMn,Ni,Cr,Al,Mo,W,Ti,V,Nb,B,Cu,Co,Zr,Y,Hf,La,Ce,N,O,P,S等が含まれる。
(Components of base metal plate)
As the base metal plate, an Fe-based metal having an α-γ transformation component having an A3 point is used. C: Pure iron or low carbon steel composed of 1 ppm by mass to 0.2% by mass, the balance Fe and inevitable impurities, and appropriately containing additional elements. An α-γ transformation component silicon steel having C: 0.1% by mass or less and Si: 0.1-2.5% by mass may be used. By adding Mn and Cr, the α-γ transformation region can be expanded. Other impurities include trace amounts of Mn, Ni, Cr, Al, Mo, W, Ti, V, Nb, B, Cu, Co, Zr, Y, Hf, La, Ce, N, O, P, and S. Etc. are included.

(フェライト生成元素の種類)
母材金属板の表層から拡散させるフェライト生成元素は、特にAl,Cr,Ga,Mo,Sb,Si,Sn,Ta,Ti,V,W,及びZnのうち1種以上であると良い。
(Types of ferrite-forming elements)
In particular, the ferrite forming element diffused from the surface layer of the base metal plate is preferably one or more of Al, Cr, Ga, Mo, Sb, Si, Sn, Ta, Ti, V, W, and Zn.

(オーステナイト生成元素の種類)
母材金属板の表層から拡散させるオーステナイト生成元素は、特にC、Co、Cu、Ni、N、Mn、Pdの1種以上であると良い。
(Types of austenite-generating elements)
The austenite generating element diffused from the surface layer of the base metal plate is particularly preferably one or more of C, Co, Cu, Ni, N, Mn, and Pd.

(Fe系金属板の厚み)
Fe系金属板の厚みは10μm以上、6mm以下とすることが好ましい。厚みが10μm未満であると積層させて磁心として使用する際に、積層枚数が増加して隙間が多くなり高い磁束密度が得られない。また、厚みが6mm超であると、拡散処理後の冷却後に、十分に内部まで集合組織が制御できない。
(Fe metal plate thickness)
The thickness of the Fe-based metal plate is preferably 10 μm or more and 6 mm or less. When the thickness is less than 10 μm, the number of stacked layers increases and the number of gaps increases, and a high magnetic flux density cannot be obtained. Further, if the thickness exceeds 6 mm, the texture cannot be sufficiently controlled to the inside after cooling after the diffusion treatment.

(Fe系金属板の集合組織)
製品金属板の板面に対するα−Fe相の{200}面集積度は、30%以上99%以下とする必要がある。この集積度が30%未満であると、十分に高い磁束密度が得られない。また99%を超えると、磁束密度は飽和し、製造も困難になる。望ましくは50%以上95%以下である。
なお、上記方位面の面集積度の測定は、MoKα線によるX線回折で行うことができる。
(Texture of Fe-based metal plate)
The {200} plane integration degree of the α-Fe phase with respect to the plate surface of the product metal plate needs to be 30% or more and 99% or less. If the degree of integration is less than 30%, a sufficiently high magnetic flux density cannot be obtained. On the other hand, if it exceeds 99%, the magnetic flux density is saturated and the production becomes difficult. Desirably, it is 50% or more and 95% or less.
In addition, the measurement of the plane integration degree of the azimuth plane can be performed by X-ray diffraction using MoKα rays.

詳細に述べると、各試料について、試料表面に対して平行なα−Fe結晶の11ある方位面({110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442})の積分強度を測定し、その測定値それぞれを、ランダム方位である試料の理論積分強度で除した後、{200}強度の比率を百分率で求める。   More specifically, for each sample, there are 11 orientation planes ({110}, {200}, {211}, {310}, {222}, {321}, which are 11 α-Fe crystals parallel to the sample surface. {411}, {420}, {332}, {521}, {442}) are measured, and each measured value is divided by the theoretical integrated strength of a sample having a random orientation, and then {200} Determine the strength ratio as a percentage.

その際、{200}強度比率では、以下の式(I)で表される。
{200}面集積度=[{i(200)/I(200)}/Σ{i(hkl)/I(hkl)}]×100 ・・・ (I)
ただし、記号は以下のとおりである。
i(hkl): 測定した試料における{hkl}面の実測積分強度
I(hkl): ランダム方位をもつ試料における{hkl}面の理論積分強度
Σ: α−Fe結晶の11の方位面についての和
ここで、ランダム方位を持つ試料の積分強度は、試料を用意して実測して求めてもよい。
At that time, the {200} strength ratio is represented by the following formula (I).
{200} plane integration degree = [{i (200) / I (200)} / Σ {i (hkl) / I (hkl)}] × 100 (I)
However, the symbols are as follows.
i (hkl): Measured integrated intensity of {hkl} plane in the measured sample I (hkl): Theoretical integrated intensity of {hkl} plane in the sample with random orientation Σ: Sum of 11 orientation planes of α-Fe crystal Here, the integrated intensity of a sample having a random orientation may be obtained by preparing a sample and actually measuring it.

(フェライト生成元素とオーステナイト生成元素の割合)
濃化領域の異種元素のフェライト生成元素の濃度を、質量%でx%、オーステナイト生成元素の濃度を、質量%でy%とすると、0.001<y/x<5を満たす割合で付着させる。y/xが0.001未満だと拡散領域のA3点を十分に下げることができず、強度が向上しない。また5超では冷却後にγ−Fe相が残ってしまうため、{200}面集積度が低下する。より好ましくは0.005≦y/x≦4である。
(Percentage of ferrite-forming elements and austenite-forming elements)
When the concentration of the ferrite-forming element of the heterogeneous element in the enriched region is x% in mass% and the concentration of the austenite-generating element is y% in mass% , adhesion is performed at a ratio satisfying 0.001 <y / x <5. . If y / x is less than 0.001, the A3 point of the diffusion region cannot be lowered sufficiently and the strength is not improved. On the other hand, if it exceeds 5, the γ-Fe phase remains after cooling, and the {200} plane integration degree decreases. More preferably, 0.005 ≦ y / x ≦ 4.

次に製造方法について述べる。(母材金属板の製造方法)
母材金属板はα−γ変態成分のFe系金属を圧下率97%以上99.99%以下で冷間圧延する。圧下率が97%未満では高い{200}面集積度が得られず、99.99%超では{200}面集積度の増加は飽和し、製造コストが増加する。圧下率を高くすることに変えて、ブラストやCCBなどFe系金属板の表層に歪を付与する方法でも良い。さらに脱炭や脱Mnを施しても良い。
Next, a manufacturing method will be described. (Manufacturing method of base metal plate)
The base metal sheet is cold-rolled with an α-γ transformation component Fe-based metal at a reduction rate of 97% to 99.99%. When the rolling reduction is less than 97%, a high {200} plane integration degree cannot be obtained, and when it exceeds 99.99%, the increase of the {200} plane integration degree is saturated and the manufacturing cost increases. Instead of increasing the rolling reduction, a method of applying strain to the surface layer of the Fe-based metal plate such as blast or CCB may be used. Further, decarburization or de-Mn may be performed.

(異種元素の付着)
異種元素層の厚さは、0.05μm以上1000μm以下であることが好ましい。異種元素層の厚さが0.05μm未満であると、合金領域を十分に形成することが困難になって、十分なα相の{200}面集積度が得られないことがある。また、異種元素層の厚さが1000μmを超えていると、A3点未満への冷却後に異種金属層が厚く残存することがあり、高い磁気特性が得られないことがある。異種元素の付着方法はEB蒸着法、イオンプレーティング法、めっき法及びスパッタ法のいずれでも良い。フェライト生成元素とオーステナイト生成元素はこれらの方法によって同時に付着させても良いし、別々に付着させても良い。
(Adhesion of different elements)
The thickness of the different element layer is preferably 0.05 μm or more and 1000 μm or less. If the thickness of the heterogeneous element layer is less than 0.05 μm, it may be difficult to sufficiently form an alloy region, and a sufficient α phase {200} plane integration degree may not be obtained. On the other hand, if the thickness of the different element layer exceeds 1000 μm, the different metal layer may remain thick after cooling to less than A3 point, and high magnetic characteristics may not be obtained. A different element may be attached by any one of EB vapor deposition, ion plating, plating, and sputtering. The ferrite-forming element and the austenite-generating element may be attached simultaneously by these methods, or may be attached separately.

(拡散熱処理)
フェライト生成元素とオーステナイト生成元素からなる異種元素を付着させた母材金属板を、母材金属板のA3点まで加熱して、母材金属板内の一部または全体に異種元素を拡散させ、母材に合金化させ、合金化した領域でα相を保存する。そして、母材金属板をさらにA3点以上1300℃以下の温度に加熱して、保持する。すでに合金化されている領域はγ変態しないα単相組織となり、その領域の結晶粒の配向はそのまま保存される。また、α単相でない領域はγ変態を起こす。さらに、異種元素の拡散に伴い、合金化した領域ではγ−α変態が進む。その際、変態する領域に隣接する領域ではすでに集合組織が保存されたα粒となっており、γ相からα相へ変態する際に、隣接するα粒の結晶方位を引き継ぐかたちで変態する。保持時間が長くなると集合組織が揃う半面、結晶粒が粗大化してしまい強度が低下するので、保持時間は0.5sec以上36000sec以下が好ましい。
(Diffusion heat treatment)
A base metal plate to which a heterogeneous element composed of a ferrite generating element and an austenite generating element is attached is heated to A3 point of the base metal plate to diffuse the dissimilar element partially or entirely in the base metal plate, Alloy the base material and store the alpha phase in the alloyed region. Then, the base metal plate is further heated to a temperature of A3 or higher and 1300 ° C. or lower and held. The already alloyed region has an α single-phase structure that does not undergo γ transformation, and the orientation of crystal grains in that region is preserved as it is. In addition, a region that is not α single phase causes γ transformation. Furthermore, with the diffusion of different elements, the γ-α transformation proceeds in the alloyed region. At that time, in the region adjacent to the region to be transformed, α grains in which the texture is already preserved are formed, and when transforming from the γ phase to the α phase, the transformation takes place in the form of taking over the crystal orientation of the adjacent α grains. On the other hand, as the holding time becomes longer, the texture becomes uniform, while the crystal grains become coarse and the strength is lowered. Therefore, the holding time is preferably 0.5 sec or more and 36000 sec or less.

本発明を実施例でさらに説明する。実施例での条件は本発明の実施可能性及び効果を確かめるために行った一条件例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用しうるものである。   The invention is further described in the examples. The conditions in the examples are one example of conditions that were used to confirm the feasibility and effects of the present invention, and the present invention is not limited to these one example conditions. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
真空溶解炉で表1に示す鋼種A〜Fの成分の鋼を溶解し、インゴットを鋳造した。インゴットをγ域で厚さ45mmまで熱間圧延し、続いて温間または冷間で加工し、母材金属板とした。表1に母材金属板の化学成分及びA3点を示した。次いで、母材金属板の両面にフェライト生成元素のAlとオーステナイト生成元素のNiを、合計の厚みで5μmとなるように付着させた。
Example 1
Ingots were cast by melting steels of steel types A to F shown in Table 1 in a vacuum melting furnace. The ingot was hot-rolled to a thickness of 45 mm in the γ region, and subsequently processed warm or cold to obtain a base metal plate. Table 1 shows the chemical composition and A3 point of the base metal plate. Next, the ferrite-forming element Al and the austenite-generating element Ni were adhered to both surfaces of the base metal plate so that the total thickness was 5 μm.

Figure 0006221406
Figure 0006221406

次いで、異種元素の付着した金属板に熱処理を行った。熱処理炉には赤外炉を用い、10-3Paレベルまで真空引きした雰囲気中で熱処理した。1050℃、保持時間を1200secとした。 Next, heat treatment was performed on the metal plate to which the different elements were attached. An infrared furnace was used as the heat treatment furnace, and heat treatment was performed in an atmosphere evacuated to a level of 10 −3 Pa. The holding time was 1200 sec at 1050 ° C.

得られたFe系金属板の評価は以下のように行った。まず、集合組織についてはX線回折法で評価した。
続いて、引張強度はJIS5号引張り試験片を採取して、機械的性質を測定した。フェライト生成元素とオーステナイト生成元素の比率は、金属板表面の任意の位置においてφ100μmのエリアをEPMA(Electron Probe Micro−Analysis)法を用いて面分布を測定し、その平均値から求めた。磁気特性についてはSST(Single Sheet Tester)を用いて、5000A/mの磁化力に対する磁束密度B50を求めた。この時、測定周波数は50Hzとした。次にVSM(Vibrating Sample Magnetometer)を用いて飽和磁束密度Bsを求めた。この際、印加した磁化力は0.8×106A/mとした。また鉄損はJIS C2256に準拠し、単板磁気試験機(SST)で求めた。
Evaluation of the obtained Fe-type metal plate was performed as follows. First, the texture was evaluated by the X-ray diffraction method.
Subsequently, as for the tensile strength, a JIS No. 5 tensile test piece was sampled and the mechanical properties were measured. The ratio of the ferrite-forming element and the austenite-generating element was obtained from an average value obtained by measuring an area of φ100 μm at an arbitrary position on the surface of the metal plate by using an EPMA (Electron Probe Micro-Analysis) method. As for the magnetic characteristics, a magnetic flux density B50 with respect to a magnetizing force of 5000 A / m was obtained using an SST (Single Sheet Tester). At this time, the measurement frequency was 50 Hz. Next, the saturation magnetic flux density Bs was obtained using VSM (Vibrating Sample Magnetometer). At this time, the applied magnetizing force was 0.8 × 10 6 A / m. The iron loss was determined by a single plate magnetic tester (SST) in accordance with JIS C2256.

表2及び表3から明らかなように、母材成分がα−γ変態系成分であり、A3点を有するものは高い{200}面集積度を有しておりB50/Bsも0.85を超え、かつ、引張強度も高くなった。一方、母材がα−γ変態系成分でない比較例1では、B50/Bsが0.85を大きく下回り、また引張強度も低かった。   As is clear from Tables 2 and 3, the base material component is an α-γ transformation component, and those having A3 point have a high {200} plane integration degree, and B50 / Bs is also 0.85. The tensile strength increased. On the other hand, in Comparative Example 1 where the base material was not an α-γ transformation component, B50 / Bs was significantly lower than 0.85, and the tensile strength was low.

Figure 0006221406
Figure 0006221406

Figure 0006221406
Figure 0006221406

(実施例2)
本実施例では母材に表1に記載の鋼種Aを用いた。この母材は真空溶解によってインゴットを溶製した後に、熱間圧延、温間または冷間圧延により様々な厚みに加工したものである。熱間圧延は1200℃に加熱した厚さ245mmのインゴットを厚さ50mmまで薄肉化した。この熱間圧延板から機械加工によって各種の板材を切り出し、温間または冷間で圧延を実施し、厚み0.1〜5.6mmの母材金属板を製造した。得られた母材金属板の両面に種々のフェライト生成元素とオーステナイト生成元素を付着させた。フェライト生成元素としてAl,Mo,Si,Sn,V、オーステナイト生成元素としてCo,Cu,Ni,Mn,Pdを付着させた。比較例においてはフェライト生成元素またはオーステナイト生成元素を単独で付着させた場合、さらには異種元素を付着させなかった場合を検討した。
(Example 2)
In this example, steel type A shown in Table 1 was used as a base material. This base material is obtained by melting an ingot by vacuum melting and then processing it into various thicknesses by hot rolling, warm or cold rolling. In hot rolling, an ingot having a thickness of 245 mm heated to 1200 ° C. was thinned to a thickness of 50 mm. Various plate materials were cut out from this hot-rolled plate by machining and rolled hot or cold to produce a base metal plate having a thickness of 0.1 to 5.6 mm. Various ferrite-forming elements and austenite-forming elements were adhered to both surfaces of the obtained base metal plate. Al, Mo, Si, Sn, and V were attached as ferrite forming elements, and Co, Cu, Ni, Mn, and Pd were attached as austenite generating elements. In the comparative example, the case where a ferrite-forming element or an austenite-forming element was attached alone, and a case where a different element was not attached was examined.

熱処理炉には赤外炉を用い、10-3Paレベルまで真空引きした雰囲気中で熱処理した。保持温度は900℃〜1200℃、保持時間を5〜18000secとした。評価は実施例1と同じ方法により行った。 An infrared furnace was used as the heat treatment furnace, and heat treatment was performed in an atmosphere evacuated to a level of 10 −3 Pa. The holding temperature was 900 ° C. to 1200 ° C., and the holding time was 5 to 18000 sec. Evaluation was performed by the same method as in Example 1.

表4及び表5から明らかなように、発明例はすべて350MPa以上の引張強度を有すると同時に、B50/Bsが0.85以上となることがわかった。これに対し、本発明の条件を外れる場合や、異種元素を付着させなかった場合には、集合組織も制御できず、引張強度も低かった。また比較例2や3のようにy/xが5を超えた場合には、B50/Bsが低く、引張強度も低くなった。また比較例4のようにフェライト生成元素のみを付着させた場合、高い{200}面集積度が得られたものの、引張強度は低かった。比較例6ではオーステナイト生成元素のみを付着させたが、この場合には{200}面集積度も低く、引張強度も低い結果であった。   As is clear from Tables 4 and 5, it was found that all the inventive examples had a tensile strength of 350 MPa or more and at the same time B50 / Bs was 0.85 or more. On the other hand, when the conditions of the present invention were not met or when different elements were not attached, the texture could not be controlled and the tensile strength was low. Moreover, when y / x exceeded 5 like the comparative examples 2 and 3, B50 / Bs was low and the tensile strength was also low. Further, when only the ferrite-forming element was adhered as in Comparative Example 4, a high {200} plane integration degree was obtained, but the tensile strength was low. In Comparative Example 6, only the austenite-forming element was adhered, but in this case, the {200} plane integration degree was low and the tensile strength was low.

Figure 0006221406
Figure 0006221406

Figure 0006221406
Figure 0006221406

Figure 0006221406
Figure 0006221406

Figure 0006221406
Figure 0006221406

(実施例3)
本実施例では母材に表1に記載の鋼種Cを用いた。この母材は真空溶解によってインゴットを溶製した後に、熱間圧延、温間または冷間圧延により様々な厚みに加工したものである。熱間圧延は1200℃に加熱した厚さ245mmのインゴットを厚さ50mmまで薄肉化した。この熱間圧延板から機械加工によって各種の板材を切り出し、温間または冷間で圧延を実施し、厚み0.2〜4.7mmの母材金属板を製造した。得られた母材金属板の両面に種々のフェライト生成元素とオーステナイト生成元素を付着させた。フェライト生成元素としてCr,Ga,Sb,Ta,Ti,W,Zn、オーステナイト生成元素としてCo,Cu,Ni,Mn,Pdを付着させた。比較例においてはフェライト生成元素またはオーステナイト生成元素を単独で付着させた場合を検討した。
(Example 3)
In this example, steel type C shown in Table 1 was used as a base material. This base material is obtained by melting an ingot by vacuum melting and then processing it into various thicknesses by hot rolling, warm or cold rolling. In hot rolling, an ingot having a thickness of 245 mm heated to 1200 ° C. was thinned to a thickness of 50 mm. Various plate materials were cut out from this hot-rolled plate by machining and rolled hot or cold to produce a base metal plate having a thickness of 0.2 to 4.7 mm. Various ferrite-forming elements and austenite-forming elements were adhered to both surfaces of the obtained base metal plate. Cr, Ga, Sb, Ta, Ti, W, Zn were adhered as ferrite-generating elements, and Co, Cu, Ni, Mn, and Pd were adhered as austenite-generating elements. In the comparative example, the case where a ferrite-forming element or an austenite-forming element was attached alone was examined.

熱処理炉には赤外炉を用い、10-3Paレベルまで真空引きした雰囲気中で熱処理した。保持温度は960℃〜1270℃、保持時間を0.5〜6000secとした。評価は実施例1と同じ方法により行った。 An infrared furnace was used as the heat treatment furnace, and heat treatment was performed in an atmosphere evacuated to a level of 10 −3 Pa. The holding temperature was 960 ° C. to 1270 ° C., and the holding time was 0.5 to 6000 sec. Evaluation was performed by the same method as in Example 1.

表6及び表7から明らかなように、発明例はすべて350MPa以上の引張強度を有すると同時に、B50/Bsが0.85以上となることがわかった。これに対し、本発明の条件を外れる場合や、異種元素を付着させなかった場合には、集合組織も制御できず、引張強度も低かった。また比較例10のようにy/xが5を超えた場合には、B50/Bsが低く、引張強度も低くなった。また比較例11のようにフェライト生成元素のみを付着させた場合、高い{200}面集積度が得られたものの、引張強度は低かった。比較例12ではオーステナイト生成元素のみを付着させたが、この場合には{200}面集積度も低く、引張強度も低い結果であった。   As is clear from Tables 6 and 7, all of the inventive examples have a tensile strength of 350 MPa or more and at the same time, B50 / Bs is 0.85 or more. On the other hand, when the conditions of the present invention were not met or when different elements were not attached, the texture could not be controlled and the tensile strength was low. Moreover, when y / x exceeded 5 like the comparative example 10, B50 / Bs was low and the tensile strength was also low. Further, when only the ferrite-forming element was adhered as in Comparative Example 11, a high {200} plane integration degree was obtained, but the tensile strength was low. In Comparative Example 12, only the austenite-forming element was adhered, but in this case, the {200} plane integration degree was low and the tensile strength was low.

Figure 0006221406
Figure 0006221406

Figure 0006221406
Figure 0006221406

Figure 0006221406
Figure 0006221406

Figure 0006221406
(実施例4)
本実施例では母材に表1に記載の鋼種Dと鋼種Eを用いた。この母材は真空溶解によってインゴットを溶製した後に、熱間圧延、温間または冷間圧延により様々な厚みに加工したものである。熱間圧延は1200℃に加熱した厚さ225mmのインゴットを厚さ25mmまで薄肉化した。この熱間圧延板から機械加工によって各種の板材を切り出し、冷間で圧延を実施し、厚み0.008〜6.2mmの母材金属板を製造した。得られた母材金属板の両面にフェライト生成元素のSiやZn、オーステナイト生成元素のMn,Cuを付着させた。熱処理は実施例2と同様に行った。保持温度は700〜1325℃、保持時間を0.05〜40000secとした。評価は実施例1と同じ方法により行った。
Figure 0006221406
Example 4
In this example, steel types D and E shown in Table 1 were used for the base material. This base material is obtained by melting an ingot by vacuum melting and then processing it into various thicknesses by hot rolling, warm or cold rolling. In the hot rolling, an ingot having a thickness of 225 mm heated to 1200 ° C. was thinned to a thickness of 25 mm. Various plate materials were cut out from this hot-rolled plate by machining and rolled in a cold manner to produce a base metal plate having a thickness of 0.008 to 6.2 mm. Ferrite-forming elements Si and Zn, and austenite-forming elements Mn and Cu were adhered to both surfaces of the obtained base metal plate. The heat treatment was performed in the same manner as in Example 2. The holding temperature was 700 to 1325 ° C., and the holding time was 0.05 to 40000 sec. Evaluation was performed by the same method as in Example 1.

表8及び表9から明らかなように、発明例はすべて400MPa以上の引張強度を有すると同時に、B50/Bsが0.85以上となることがわかった。これに対し、本発明の条件を外れる場合には、B50/Bsは低く、引張強度も低いレベルに留まった。   As is apparent from Tables 8 and 9, all of the inventive examples have a tensile strength of 400 MPa or more, and at the same time, B50 / Bs is 0.85 or more. On the other hand, when the conditions of the present invention were not satisfied, B50 / Bs was low and the tensile strength remained at a low level.

Figure 0006221406
Figure 0006221406

Figure 0006221406
Figure 0006221406

Claims (3)

片面もしくは両面にフェライト生成元素とオーステナイト生成元素からなる異種元素が合金化してα−Fe単相となった合金化領域を有し、
少なくとも板厚中心部がα−γ変態成分系であり、
板面における{200}面集積度が30%以上99%以下、及び、{222}面集積度が0.01%以上30%以下であり、
質量%で、前記合金化領域の異種元素のフェライト生成元素の濃度をx%、オーステナイト生成元素の濃度をy%とすると、0.001<y/x<5であり、
飽和磁束密度Bsに対する平均磁束密度B50の比率、B50/Bsが0.85を超え、
板厚が10μm以上6mm以下である
ことを特徴とするFe系金属板
ここで{200}面集積度とは、試料表面に対して平行なα−Fe結晶の11ある方位面({110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442})の積分強度を測定し、その測定値それぞれを、ランダム方位である試料の理論積分強度で除した後、{200}強度の比率を百分率で求めたものである。
It has an alloying region in which a heterogeneous element composed of a ferrite-forming element and an austenite-forming element is alloyed to form an α-Fe single phase on one side or both sides,
At least the thickness center part is an α-γ transformation component system,
{200} plane integration of the plate surface 99% or more and 30% or less, and {222} plane integration is Ri der than 30% 0.01%
When the concentration of the ferrite-forming element of the different element in the alloying region is x% and the concentration of the austenite-generating element is y% in mass%, 0.001 <y / x <5,
Ratio of average magnetic flux density B50 to saturation magnetic flux density Bs, B50 / Bs exceeds 0.85,
A Fe-based metal plate , wherein the plate thickness is 10 μm or more and 6 mm or less ,
Here, the {200} plane integration degree refers to 11 orientation planes ({110}, {200}, {211}, {310}, {222}, {321) of α-Fe crystals parallel to the sample surface. }, {411}, {420}, {332}, {521}, {442}), and dividing each of the measured values by the theoretical integrated intensity of the sample having a random orientation, { The ratio of 200} strength is obtained as a percentage.
合金化した異種元素のオーステナイト生成元素がC、Co、Cu、Ni、N、Mn、Pdのうち1種以上であり、フェライト生成元素がAl、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ta、Ti、V、W、Znのうち1種以上であることを特徴とする請求項1に記載のFe系金属板。   The alloyed austenite generating element of different elements is one or more of C, Co, Cu, Ni, N, Mn, and Pd, and the ferrite generating elements are Al, Cr, Ga, Ge, Mo, Sb, Si, Sn 2. The Fe-based metal plate according to claim 1, wherein the Fe-based metal plate is at least one of Ta, Ti, V, W, and Zn. Fe系金属よりなる母材金属板上に異種元素を付着させ、熱処理して拡散させた請求項1または2に記載のFe系金属板を製造する方法であって、
(a)α−γ変態成分系のFe系金属よりなる鋳片から熱間圧延及び圧下率97%以上99.99%以下の冷間圧延によって厚みを減少させて母材金属板を得る工程と、
(b)前記母材金属板の片面もしくは両面に、フェライト生成元素とオーステナイト生成元素からなる異種元素を、異種元素層の厚みが0.05μm以上1000μm以下であり、Fe系金属板の最表層がα―Fe単相となるように付着させる工程と、
(c)異種元素が付着した前記母材金属板を、母材金属板のA3点まで加熱して、異種元素を母材金属板に拡散させる工程と、
(d)前記金属板をさらにA3点以上1300℃以下の温度に加熱、保持して異種元素を拡散させる工程と、
(e)前記金属板をA3点未満の温度へ冷却する工程を有することを特徴とするFe系金属板の製造方法。
A method for producing an Fe-based metal plate according to claim 1 or 2, wherein a heterogeneous element is adhered on a base metal plate made of Fe-based metal, and is diffused by heat treatment.
(A) a step of obtaining a base metal sheet by reducing the thickness from a cast slab made of Fe-based metal of α-γ transformation component by hot rolling and cold rolling with a rolling reduction of 97% or more and 99.99% or less; ,
(B) A heterogeneous element comprising a ferrite-forming element and an austenite-generating element is formed on one or both surfaces of the base metal plate, the thickness of the heterogeneous element layer is 0.05 μm or more and 1000 μm or less, and the outermost layer of the Fe-based metal plate is a process of adhering to form an α-Fe single phase;
(C) heating the base metal plate to which the different element is adhered to point A3 of the base metal plate, and diffusing the different element into the base metal plate;
(D) further heating and holding the metal plate at a temperature of A3 or higher and 1300 ° C. or lower to diffuse the different elements;
(E) A method for producing an Fe-based metal plate, comprising a step of cooling the metal plate to a temperature lower than A3.
JP2013134300A 2013-06-26 2013-06-26 Fe-based metal plate and manufacturing method thereof Active JP6221406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013134300A JP6221406B2 (en) 2013-06-26 2013-06-26 Fe-based metal plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013134300A JP6221406B2 (en) 2013-06-26 2013-06-26 Fe-based metal plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015010241A JP2015010241A (en) 2015-01-19
JP6221406B2 true JP6221406B2 (en) 2017-11-01

Family

ID=52303675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013134300A Active JP6221406B2 (en) 2013-06-26 2013-06-26 Fe-based metal plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6221406B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623533B2 (en) * 2015-03-25 2019-12-25 日本製鉄株式会社 Fe-based metal plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140442A (en) * 1989-10-25 1991-06-14 Sumitomo Metal Ind Ltd Silicon steel sheet having excellent magnetic characteristics and its manufacture
JPH03281758A (en) * 1990-03-29 1991-12-12 Sumitomo Metal Ind Ltd High tensile strength silicon steel sheet and its manufacture
KR100797895B1 (en) * 2006-12-22 2008-01-24 성진경 Method of forming cube-on-face texture on surface, method of manufacturing non-oriented electrical steel sheets using the same and non-oriented electrical steel sheets manufactured by using the same
JP6044093B2 (en) * 2011-03-28 2016-12-14 新日鐵住金株式会社 Fe-based metal plate and manufacturing method thereof
JP5724727B2 (en) * 2011-04-28 2015-05-27 新日鐵住金株式会社 Method for producing Fe-based metal plate having high degree of {200} plane integration

Also Published As

Publication number Publication date
JP2015010241A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
JP6767687B1 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2019019355A (en) Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP6651759B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4023183B2 (en) Non-oriented electrical steel sheet for rotating machine and manufacturing method thereof
CN111373494B (en) High permeability soft magnetic alloy and method for manufacturing high permeability soft magnetic alloy
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP5278626B2 (en) Fe-based metal plate and manufacturing method thereof
CN113474472B (en) Non-oriented electromagnetic steel sheet
JP2017040002A (en) Nonoriented electrical steel sheet for high frequency and method for producing the same
JP5648335B2 (en) Fe-based metal plate with partially controlled crystal orientation
JP2535963B2 (en) Silicon steel sheet having excellent magnetic properties and method for producing the same
JP4218077B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2003213385A (en) Nonoriented silicon steel sheet
JP6623533B2 (en) Fe-based metal plate
JP6044093B2 (en) Fe-based metal plate and manufacturing method thereof
JP6481288B2 (en) Fe-based metal plate with excellent magnetic properties
JP5472198B2 (en) Method for producing Fe-based metal plate having high {110} plane integration or {222} plane integration
JP5724727B2 (en) Method for producing Fe-based metal plate having high degree of {200} plane integration
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
JP2022506636A (en) Electric steel strips or sheet steel for high frequency electric motor applications with improved polarization and low magnetic loss
JP6405632B2 (en) Fe-based metal plate and manufacturing method thereof
JP6464581B2 (en) Fe-based metal plate and manufacturing method thereof
JP2006241554A (en) Method for manufacturing non-oriented electromagnetic steel sheet having high magnetic flux density
JP7184226B1 (en) Rotating electric machine, stator core and rotor core set, method for manufacturing rotating electric machine, method for manufacturing non-oriented electrical steel sheet, method for manufacturing rotor and stator of rotating electrical machine, and set of non-oriented electrical steel sheet
JP3706765B2 (en) Hot rolled electrical steel sheet having excellent magnetic properties and corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R151 Written notification of patent or utility model registration

Ref document number: 6221406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350