JP6405632B2 - Fe-based metal plate and manufacturing method thereof - Google Patents

Fe-based metal plate and manufacturing method thereof Download PDF

Info

Publication number
JP6405632B2
JP6405632B2 JP2014001117A JP2014001117A JP6405632B2 JP 6405632 B2 JP6405632 B2 JP 6405632B2 JP 2014001117 A JP2014001117 A JP 2014001117A JP 2014001117 A JP2014001117 A JP 2014001117A JP 6405632 B2 JP6405632 B2 JP 6405632B2
Authority
JP
Japan
Prior art keywords
metal plate
based metal
thickness
ferrite
electrical resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014001117A
Other languages
Japanese (ja)
Other versions
JP2014150247A (en
Inventor
美穂 冨田
美穂 冨田
徹 稲熊
徹 稲熊
坂本 広明
広明 坂本
洋治 水原
洋治 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014001117A priority Critical patent/JP6405632B2/en
Publication of JP2014150247A publication Critical patent/JP2014150247A/en
Application granted granted Critical
Publication of JP6405632B2 publication Critical patent/JP6405632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、特に、電動機、発電機、変圧器の磁心等の用途に好適であり、これらの磁心の小型化やエネルギー損失低減に貢献できる鉄損を低減したFe系金属板およびその製造方法に関する。   The present invention is particularly suitable for applications such as electric motors, generators, transformer cores, and the like, and relates to an Fe-based metal plate with reduced iron loss that can contribute to downsizing and energy loss reduction of these magnetic cores and a method for manufacturing the same. .

従来から電動機、発電機、変圧器等の磁心にはケイ素鋼板が用いられている。ケイ素鋼板は、小さな励磁磁場において飽和磁束密度Bsに対する平均磁束密度B50の比率B50/Bsで高い値が得られること、及び交流励磁磁場において低鉄損であることが求められる。高い飽和磁束密度Bsに対する平均磁束密度B50の比率B50/Bsを得るためには、磁化容易方向であるα−Fe相の<100>軸を、使用する磁界方向に集積させることが有効とされている。そのため、鋼板面内にα−Fe相の{100}面を高集積化させる必要がある。一方、鉄損は磁壁の移動を妨害する介在物を低減したり、電気抵抗を大きくして渦電流を減少させたりして低減できる。   Conventionally, silicon steel plates have been used for magnetic cores of electric motors, generators, transformers and the like. A silicon steel plate is required to have a high value in the ratio B50 / Bs of the average magnetic flux density B50 to the saturation magnetic flux density Bs in a small excitation magnetic field and to have a low iron loss in an AC excitation magnetic field. In order to obtain the ratio B50 / Bs of the average magnetic flux density B50 to the high saturation magnetic flux density Bs, it is effective to integrate the <100> axis of the α-Fe phase, which is the easy magnetization direction, in the magnetic field direction to be used. Yes. Therefore, it is necessary to highly integrate the {100} plane of the α-Fe phase in the steel plate surface. On the other hand, the iron loss can be reduced by reducing the inclusions that obstruct the movement of the domain wall, or by increasing the electrical resistance to reduce the eddy current.

圧延面内に{100}面を高集積化させ、高い飽和磁束密度Bsに対する平均磁束密度B50の比率B50/Bsが得られるFe系金属板については、本発明者らは、先に特許文献1として次のような技術を提案している。
(a)α−γ変態系のFe系金属よりなる母材金属板の片面あるいは両面にフェライト生成元素を付着させる工程と、(b)該母材金属板を室温から母材金属板のA3点まで加熱して母材金属板内にフェライト生成元素を拡散させ、一部を母材に合金化させるとともに、合金化された領域でのα−Fe相の{200}面集積度を25%以上50%以下とし、かつ、{222}面集積度を40%以下とする工程と、(c)母材金属板をA3点以上の温度に加熱、保持して、フェライト生成元素と合金化されたα‐Fe相の面集積度について、{200}面集積度を増加させるとともに、{222}面集積度を低下させる工程と、(d)母材金属板をA3点未満の温度へ冷却し、合金化していない領域のγ−Fe相がα−Fe相へ変態する際に、該α−Fe相の{200}面集積度を高めて、{200}面集積度が30%以上99%以下となり、かつ、{222}面集積度が30%以下となるようにする工程とを有することを特徴とする高い{200}面集積度を有するFe系金属板の製造方法。
Regarding the Fe-based metal plate in which the {100} plane is highly integrated in the rolled surface and the ratio B50 / Bs of the average magnetic flux density B50 to the high saturation magnetic flux density Bs is obtained, the present inventors have previously described Patent Document 1 The following technologies have been proposed.
(A) a step of attaching a ferrite-forming element to one or both sides of a base metal plate made of a Fe-based metal of α-γ transformation; and (b) the base metal plate from point A3 of the base metal plate. And the ferrite-forming element is diffused in the base metal plate, and a part thereof is alloyed with the base material, and the {200} plane integration degree of the α-Fe phase in the alloyed region is 25% or more. 50% or less and a {222} plane integration degree of 40% or less, and (c) the base metal sheet was heated and held at a temperature of A3 or higher to be alloyed with a ferrite-forming element. Regarding the surface integration degree of the α-Fe phase, the step of increasing the {200} surface integration degree and decreasing the {222} surface integration degree; and (d) cooling the base metal plate to a temperature lower than the A3 point, When the γ-Fe phase in the non-alloyed region is transformed into the α-Fe phase, the α And a step of increasing the {200} plane integration degree of the Fe phase so that the {200} plane integration degree is 30% or more and 99% or less and the {222} plane integration degree is 30% or less. The manufacturing method of the Fe-type metal plate which has the high {200} plane integration degree characterized by these.

また、鉄損を低減するためには電気抵抗を大きくして渦電流を減少させたり、磁壁の移動を妨害する介在物を少なくしたりすることが行われてきた。   Further, in order to reduce the iron loss, it has been carried out to increase the electric resistance to reduce the eddy current or to reduce the inclusions that obstruct the domain wall movement.

また特許文献2には、Sol.Alを25ppm以上300ppm以下含有する二次再結晶粒より構成された一方向性電磁鋼板に冷間圧延と1050℃以上1300℃以下の浸珪処理とを行い、高磁束密度と低鉄損とを両立する磁気特性を得る技術が記載されている。   In Patent Document 2, Sol. A unidirectional electrical steel sheet composed of secondary recrystallized grains containing Al in a range of 25 ppm to 300 ppm is subjected to cold rolling and a siliconizing treatment at 1050 ° C. to 1300 ° C. to obtain high magnetic flux density and low iron loss. A technique for obtaining compatible magnetic properties is described.

さらに特許文献3には、鋼板の表層部にSnを1質量%以上含有し、かつ最表面側から中心部に向かってSn量が減少するSn拡散層が形成させて、交流磁気特性に優れた軟磁性鋼部品を得る技術が記載されている。   Furthermore, in Patent Document 3, an Sn diffusion layer containing 1% by mass or more of Sn in the surface layer portion of the steel sheet and decreasing in the Sn amount from the outermost surface side toward the center portion is formed, and excellent in AC magnetic characteristics. Techniques for obtaining soft magnetic steel parts are described.

しかしながら特許文献2に記載の技術では、均一組成で既に{100}面に高配向した一方向性電磁鋼板に浸珪処理して低鉄損化させるため、高価な設備を必要とし、コストが多くかかってしまう。また、特許文献3に記載の技術では、変形抵抗や冷間鍛造性も考慮したもののため、高磁束密度と低鉄損とにおいて高いレベルでの両立は難しい。   However, in the technique described in Patent Document 2, a unidirectional electrical steel sheet having a uniform composition and already highly oriented in the {100} plane is subjected to a siliconization treatment to reduce the iron loss. It will take. Moreover, in the technique described in Patent Document 3, since deformation resistance and cold forgeability are also taken into consideration, it is difficult to achieve both high magnetic flux density and low iron loss at a high level.

国際公開第2011/052654号International Publication No. 2011/052654 特開2008−169450号公報JP 2008-169450 A 特開2012−62503号公報JP 2012-62503 A

本発明はかかる事情に鑑みなされたものであり、安価で磁気特性が優れ、かつ鉄損の低いFe系金属板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an Fe-based metal plate that is inexpensive, excellent in magnetic properties, and low in iron loss, and a method for manufacturing the same.

本発明者らは、組成が均一でないFe系金属板の鉄損について、鋭意研究、検討を行った。その結果、本発明者らは、フェライト生成元素が濃化すると、高い{200}面集積度が得られるととともに、Fe系金属板の表層の電気抵抗が増加して表皮効果を抑えられることを見出した。さらに、母材金属板の電気抵抗率が38μΩ・cm以上であり、かつ、集合組織が制御されていると、著しく鉄損が低減される現象を見出した。   The present inventors diligently studied and examined the iron loss of the Fe-based metal plate having a non-uniform composition. As a result, the inventors have found that when the ferrite-forming element is concentrated, a high degree of {200} plane integration is obtained, and the electrical resistance of the surface layer of the Fe-based metal plate is increased to suppress the skin effect. I found it. Furthermore, it has been found that the iron loss is remarkably reduced when the electric resistivity of the base metal plate is 38 μΩ · cm or more and the texture is controlled.

本発明は、以下のとおりである。
(1)両面にフェライト生成元素が濃化したFe系金属板であって、
前記Fe系金属板の板厚中心部の化学成分組成が、質量%で、Si:0.001%〜10.0%、Mn:2.0%超12.0%以下、及びAl:0.001%〜4.0%を含有し、残部が鉄および不可避不純物であるα−γ変態を生じ得る組成のFe系成分であり、
前記Fe系金属板の板厚中心部の電気抵抗率をRa、最表層の電気抵抗率をRbとすると、板厚中心部の電気抵抗率Raが38μΩ・cm以上200μΩ・cm以下、かつ、板厚中心部の電気抵抗率Ra<最表層の電気抵抗率Rbであり、
前記Fe系金属板の板面における{001}<470>、{116}<6 12 1>、{223}<692>のX線ランダム強度比をそれぞれA、B、Cとし、Z=(A+0.98B)/(4×0.98C)とした場合に、Z値が0.5<Z≦50を満足することを特徴とするFe系金属板。
(2)前記フェライト生成元素が濃化した領域の一部または全体がα−Fe単相であることを特徴とする(1)に記載のFe系金属板。
(3)前記板厚中心部の電気抵抗率Raが45μΩ・cm以上170μΩ・cm以下であることを特徴とする(1)または(2)に記載のFe系金属板。
(4)前記フェライト生成元素がAl、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ta、Ti、V、W、及びZnからなる群から選ばれる1種以上の元素であることを特徴とする(1)〜(3)のいずれかに記載のFe系金属板。
(5)前記板厚中心部の電気抵抗率Raの1.2倍以上である領域が最表層から深さxμmまで形成されており、xが0.05μm以上500μm以下であり、かつ、板厚の1/2未満であることを特徴とする(1)〜(4)のいずれかに記載のFe系金属板。
(6)前記Fe系金属板の板厚中心部の化学成分組成が、質量%で、Cr:0.001%〜9.0%、及びNi:0.001%〜8.0%からなる群から選ばれる1種または2種を含み、残部が鉄および不可避不純物であることを特徴とする(1)〜(5)のいずれかに記載のFe系金属板。
(7)前記Fe系金属板の板厚が10μm以上5mm以下であることを特徴とする(1)〜(6)のいずれかに記載のFe系金属板。
(8)Fe系金属よりなる母材金属板上にフェライト生成元素を付着させ、熱処理して拡散させて高い{200}面集積度を有するFe系金属板を製造する方法であって、
質量%で、Si:0.001%〜10.0%、Mn:2.0%超12.0%以下、及びAl:0.001%〜4.0%を含有し、残部が鉄および不可避不純物であるα−γ変態を生じ得る組成で、かつ板厚中心部の電気抵抗率をRaとした場合に、電気抵抗率Raが38μΩ・cm以上200μΩ・cm以下の母材金属板の両面にフェライト生成元素を付着させる工程と、
前記フェライト生成元素が付着した前記母材金属板を、前記母材金属板のA3点まで加熱して、前記フェライト生成元素を前記母材金属板に拡散させる工程と、
前記フェライト生成元素が拡散した母材金属板をさらにA3点以上1300℃以下の温度に加熱、保持する工程と、
前記A3点以上1300℃以下の温度に加熱、保持された母材金属板をA3点未満の温度へ冷却して、合金化していない領域のγ−Fe相をα−Fe相へ変態させ、前記Fe系金属板の板面における{001}<470>、{116}<6 12 1>、{223}<692>のX線ランダム強度比をそれぞれA、B、Cとし、Z=(A+0.98B)/(4×0.98C)とした場合に、Z値が0.5<Z≦50を満足するとともに、最表層の電気抵抗率をRbとした場合に、板厚中心部の電気抵抗率Ra<最表層の電気抵抗率Rbを満足するFe系金属板を得る工程と、
を有することを特徴とするFe系金属板の製造方法。
(9)前記フェライト生成元素がAl、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ta、Ti、V、W、及びZnからなる群から選ばれる1種以上の元素であることを特徴とする(8)に記載のFe系金属板の製造方法。
(10)前記Fe系金属板は、前記板厚中心部の電気抵抗率Raの1.2倍以上である領域が最表層から深さxμmまで形成されており、xが0.05μm以上500μm以下であり、かつ、板厚の1/2未満とすることを特徴とする(8)または(9)に記載のFe系金属板の製造方法。
(11)前記母材金属板が、質量%で、Cr:0.001%〜9.0%、及びNi:0.001%〜8.0%からなる群から選ばれる1種または2種を含み、残部が鉄および不可避不純物であることを特徴とする(8)〜(10)のいずれかに記載のFe系金属板の製造方法。
(12)前記母材金属板の厚みが10μm以上5mm未満であることを特徴とする(8)〜(11)のいずれかに記載のFe系金属板の製造方法。
The present invention is as follows.
(1) An Fe-based metal plate having ferrite-forming elements concentrated on both sides,
The chemical composition at the center of the thickness of the Fe-based metal plate is, by mass, Si: 0.001% to 10.0%, Mn: more than 2.0% and 12.0% or less, and Al: 0.00. Fe-based components having a composition that contains 001% to 4.0% and the balance can cause an α-γ transformation that is iron and inevitable impurities,
When the electrical resistivity at the center of the thickness of the Fe-based metal plate is Ra and the electrical resistivity of the outermost layer is Rb, the electrical resistivity Ra at the center of the thickness is 38 μΩ · cm to 200 μΩ · cm, and the plate The electrical resistivity Ra of the thickness center portion <the electrical resistivity Rb of the outermost layer,
The X-ray random intensity ratios of {001} <470>, {116} <6 12 1>, {223} <692> on the surface of the Fe-based metal plate are A, B, and C, respectively, and Z = (A + 0 .98B) / (4 × 0.98C), an Fe-based metal plate wherein the Z value satisfies 0.5 <Z ≦ 50.
(2) The Fe-based metal plate according to (1), wherein a part or the whole of the region where the ferrite-forming element is concentrated is an α-Fe single phase.
(3) The Fe-based metal plate according to (1) or (2), wherein the electrical resistivity Ra at the central portion of the plate thickness is 45 μΩ · cm to 170 μΩ · cm.
(4) The ferrite-forming element is one or more elements selected from the group consisting of Al, Cr, Ga, Ge, Mo, Sb, Si, Sn, Ta, Ti, V, W, and Zn. The Fe-based metal plate according to any one of (1) to (3).
(5) A region that is 1.2 times or more the electrical resistivity Ra at the center of the plate thickness is formed from the outermost layer to a depth of x μm, x is 0.05 μm or more and 500 μm or less, and the plate thickness The Fe-based metal plate according to any one of (1) to (4), wherein
(6) A group in which the chemical component composition of the center portion of the thickness of the Fe-based metal plate is mass%, and consists of Cr: 0.001% to 9.0% and Ni: 0.001% to 8.0%. The Fe-based metal plate according to any one of (1) to (5), wherein the Fe-based metal plate includes one or two selected from the group consisting of iron and inevitable impurities.
(7) The Fe-based metal plate according to any one of (1) to (6), wherein a thickness of the Fe-based metal plate is 10 μm or more and 5 mm or less.
(8) A method of manufacturing a Fe-based metal plate having a high degree of {200} plane integration by attaching a ferrite-forming element on a base metal plate made of Fe-based metal, heat-treating and diffusing it,
In mass%, Si: 0.001% to 10.0%, Mn: more than 2.0% and 12.0% or less, and Al: 0.001% to 4.0%, with the balance being iron and inevitable When the electrical resistivity Ra is 38 μΩ · cm or more and 200 μΩ · cm or less when the electrical resistivity Ra is a composition that can cause an α-γ transformation that is an impurity and the central portion of the plate thickness is Ra, the both sides of the base metal plate A step of attaching a ferrite-forming element;
Heating the base metal plate to which the ferrite-forming element is adhered to A3 point of the base metal plate, and diffusing the ferrite-forming element into the base metal plate;
A step of further heating and holding the base metal plate in which the ferrite-forming element is diffused to a temperature of not less than A3 and not more than 1300 ° C .;
The base metal plate heated and held at a temperature not lower than A3 point and not higher than 1300 ° C. is cooled to a temperature lower than A3 point to transform the γ-Fe phase in the non-alloyed region into an α-Fe phase, The X-ray random intensity ratios of {001} <470>, {116} <6 12 1>, {223} <692> on the surface of the Fe-based metal plate are A, B, and C, respectively, and Z = (A + 0. 98B) / (4 × 0.98C), the Z value satisfies 0.5 <Z ≦ 50, and the electrical resistivity of the outermost layer is Rb, and the electrical resistance at the center of the plate thickness A step of obtaining an Fe-based metal plate satisfying a ratio Ra <the outermost layer electrical resistivity Rb ;
The manufacturing method of the Fe-type metal plate characterized by having.
(9) The ferrite-forming element is at least one element selected from the group consisting of Al, Cr, Ga, Ge, Mo , Sb, Si, Sn, Ta, Ti, V, W, and Zn. The method for producing an Fe-based metal plate according to (8), which is characterized.
(10) In the Fe-based metal plate, a region that is 1.2 times or more the electrical resistivity Ra of the thickness center portion is formed from the outermost layer to a depth of x μm, and x is 0.05 μm or more and 500 μm or less. And the Fe-based metal plate production method according to (8) or (9), characterized in that the thickness is less than ½ of the plate thickness.
(11) The base metal plate may be one or two selected from the group consisting of Cr: 0.001% to 9.0% and Ni: 0.001% to 8.0% by mass%. The method for producing an Fe-based metal plate according to any one of (8) to (10), wherein the balance is iron and inevitable impurities.
(12) The method for producing an Fe-based metal plate according to any one of (8) to (11), wherein the base metal plate has a thickness of 10 μm or more and less than 5 mm.

本発明によれば、磁気特性が優れ、かつ鉄損の低いFe系金属板を安価に製造することができる。   According to the present invention, an Fe-based metal plate having excellent magnetic properties and low iron loss can be manufactured at low cost.

鉄損は渦電流損とヒステリシス損との和で表される。従来技術では、渦電流損は鋼板の電気抵抗を上げたり、薄手化したりすることによって低減されてきた。本発明者らは、フェライト生成元素を濃化させることにより、表層の電気抵抗が増加して表皮効果を抑制するとともに、板厚中心の電気抵抗を高くし、かつ、鋼板の集合組織を制御することにより、鉄損が著しく下がる現象を見出した。   Iron loss is expressed as the sum of eddy current loss and hysteresis loss. In the prior art, eddy current loss has been reduced by increasing the electrical resistance of the steel sheet or making it thinner. By concentrating ferrite-forming elements, the inventors increase the electrical resistance of the surface layer to suppress the skin effect, increase the electrical resistance at the center of the plate thickness, and control the texture of the steel plate. As a result, it was found that the iron loss was significantly reduced.

(本発明の基本原理の説明)
まず、Fe系金属板の板面における{001}<470>、{116}<6 12 1>、{223}<692>のX線ランダム強度比をそれぞれA、B、Cとし、Z=(A+0.98B)/(4×0.98C)とした場合に、0.5<Z≦50であり、さらに板厚中心部の電気抵抗率Raが38μΩ・cm以上200μΩ・cm以下、かつ板厚中心部の電気抵抗率Ra<最表層の電気抵抗率Rbの時に、従来技術よりも高い飽和磁束密度Bsに対する平均磁束密度B50の比率B50/Bs(以下、B50/Bs値)が得られ、かつ低鉄損となる基本原理を説明する。
(Description of the basic principle of the present invention)
First, the X-ray random intensity ratios of {001} <470>, {116} <6 12 1>, {223} <692> on the surface of the Fe-based metal plate are A, B, and C, respectively, and Z = ( When A + 0.98B) / (4 × 0.98C), 0.5 <Z ≦ 50, and the electrical resistivity Ra at the central portion of the plate thickness is 38 μΩ · cm or more and 200 μΩ · cm or less, and the plate thickness A ratio B50 / Bs (hereinafter referred to as B50 / Bs value) of the average magnetic flux density B50 to the saturation magnetic flux density Bs higher than that of the prior art is obtained when the electric resistivity Ra of the central portion <the electric resistivity Rb of the outermost layer, and Explain the basic principle of low iron loss.

本発明では母材金属板にα−γ変態を生じ得るFe系成分のものを用い、その両面にフェライト生成元素を付着させ、最終的にフェライト生成元素を拡散させて高いB50/Bs値かつ低い鉄損となるFe系金属板を得る。   In the present invention, an Fe-based component capable of causing α-γ transformation is used for the base metal plate, a ferrite-forming element is adhered to both surfaces thereof, and finally the ferrite-forming element is diffused to obtain a high B50 / Bs value and a low value. An Fe-based metal plate that causes iron loss is obtained.

母材金属板では、電気抵抗率Raが38μΩ・cm以上となるようにAlやSi、Mnなどを添加して、渦電流を抑制している。さらに母材金属板の両面にはフェライト生成元素を拡散させて、板厚中心部の電気抵抗率Ra<最表層の電気抵抗率Rbとすることにより、特に高周波領域での表皮効果を抑制している。なお、Fe系金属板の板厚中心部とは、フェライト生成元素が拡散されていない領域を指すものとする。ここで本発明者らは、母材金属板の両面にフェライト生成元素が濃化したFe系金属板のX線ランダム強度比から算出したZ値が0.5<Z≦50を満たすと、α−Fe相の結晶格子に応力が付加され、磁区幅が狭くなるため、さらに渦電流が抑制されることを見出した。この現象は板厚中心部の電気抵抗率Raが38μΩ・cm以上200μΩ・cm以下、かつ、板厚中心部の電気抵抗率Ra<最表層の電気抵抗率Rbの場合に起こり、従来よりも渦電流損が著しく小さくなる。結晶格子に応力が付加されると磁区幅が狭くなるのは、Z値に依存した結晶方位と磁歪との関係から、磁歪の逆効果による磁区細分化が起きたものと考えられる。   In the base metal plate, eddy currents are suppressed by adding Al, Si, Mn or the like so that the electric resistivity Ra is 38 μΩ · cm or more. Furthermore, the ferrite forming element is diffused on both surfaces of the base metal plate so that the electrical resistivity Ra of the central portion of the plate thickness <the electrical resistivity Rb of the outermost layer, thereby suppressing the skin effect particularly in the high frequency region. Yes. In addition, the plate | board thickness center part of a Fe-type metal plate shall point out the area | region where the ferrite production | generation element is not diffused. Here, when the Z value calculated from the X-ray random intensity ratio of the Fe-based metal plate enriched with ferrite-forming elements on both surfaces of the base metal plate satisfies 0.5 <Z ≦ 50, α It has been found that eddy current is further suppressed because stress is applied to the crystal lattice of the -Fe phase and the magnetic domain width is narrowed. This phenomenon occurs when the electrical resistivity Ra at the center of the plate thickness is 38 μΩ · cm or more and 200 μΩ · cm or less, and the electrical resistivity Ra at the center of the plate thickness is less than the electrical resistivity Rb of the outermost layer. Current loss is significantly reduced. The reason why the magnetic domain width narrows when stress is applied to the crystal lattice is considered to be due to the subdivision of the magnetic domain due to the inverse effect of magnetostriction, based on the relationship between the crystal orientation and magnetostriction depending on the Z value.

ここでZ値は、Fe系金属板の板面に対するα−Fe相のX線ランダム強度比のうち、{001}<470>、{116}<6 12 1>、{223}<692>の強度比をそれぞれA、B、Cとした場合に、Z=(A+0.98B)/(4×0.98C)という関係を満たす値である。   Here, the Z value is the ratio of {001} <470>, {116} <6 12 1>, {223} <692> among the X-ray random intensity ratio of the α-Fe phase to the plate surface of the Fe-based metal plate. When the intensity ratios are A, B and C, respectively, the values satisfy the relationship Z = (A + 0.98B) / (4 × 0.98C).

Z値が0.5<Z≦50を満たすには、α−γ変態を生じ得る組成の母材金属板の両面に、強加工や脱炭などによって板表面の全面に{100}に近い方位に配向した組織を付与する。そして、母材金属板にフェライト生成元素を付着させ、母材金属板のA3点以上まで加熱して、母材金属板内の{100}に近い方位が配向した領域の一部または全部にフェライト生成元素を拡散させ、母材に合金化させ、合金化した領域でα−Fe相を保存する。あるいは、{100}に近い方位が配向した領域を超えて内部にフェライト生成元素を拡散させて、γ−Fe相であった領域をα−Fe相へ変態させる。その時、保存されたα−Fe相の配向を引き継いで変態するため、合金化した領域でも{100}に近い方位に配向した組織が形成される。また、先にα相化した粒においても、さらに{100}に近い方位への配向が高まる。   In order to satisfy the Z value of 0.5 <Z ≦ 50, an orientation close to {100} is formed on both surfaces of the base metal plate having a composition capable of causing α-γ transformation on the entire surface of the plate by strong processing or decarburization. To the oriented structure. Then, a ferrite-forming element is attached to the base metal plate, heated to the A3 point or higher of the base metal plate, and ferrite is partially or entirely in a region oriented in a direction near {100} in the base metal plate. The produced element is diffused and alloyed with the base material, and the α-Fe phase is stored in the alloyed region. Alternatively, the ferrite-forming element is diffused inside beyond the region where the orientation close to {100} is oriented, and the region that was the γ-Fe phase is transformed into the α-Fe phase. At that time, since the transformation of the preserved α-Fe phase is taken over, a structure oriented in an orientation close to {100} is formed even in the alloyed region. Further, even in the α-phased grains, the orientation in the direction closer to {100} is further increased.

ここで、フェライト生成元素が両面に付着した母材金属板をさらにA3点以上1300℃以下の温度に加熱して保持する。α単相成分の領域は、γ変態を起こさないα−Fe相であるために、{100}に近い方位に配向した結晶粒はそのまま保存され、その領域の中で{100}に近い方位の結晶粒が優先成長してZ値が増加する。また、α単相成分でない領域はγ変態する。保持時間を長くすると、{100}結晶粒は食い合いによって優先的に粒成長する。この結果、Z値はさらに増加する。   Here, the base metal plate with the ferrite-forming elements attached on both sides is further heated and held at a temperature of A3 or higher and 1300 ° C. or lower. Since the region of the α single phase component is an α-Fe phase that does not cause γ transformation, the crystal grains oriented in the orientation close to {100} are preserved as they are, and the orientation of the orientation close to {100} in the region is preserved. The crystal grains preferentially grow and the Z value increases. A region that is not an α single phase component undergoes γ transformation. When the holding time is lengthened, the {100} crystal grains grow preferentially by biting. As a result, the Z value further increases.

次に、フェライト生成元素が一部拡散した母材金属板をA3点未満の温度へ冷却する。この時、合金化していない内部の領域のγ−Fe相はα−Fe相へ変態する。この内部の領域はA3点以上の温度域において、既に{100}に近い方位へ配向したα粒となっている領域に隣接しており、γ相からα相に変態する際に、隣接するα粒の結晶方位を引き継いで変態する。このため、その領域でも{100}に近い方位が集積する。   Next, the base metal plate in which the ferrite-forming element is partially diffused is cooled to a temperature below the A3 point. At this time, the γ-Fe phase in the non-alloyed inner region is transformed into the α-Fe phase. This internal region is adjacent to a region that is already α grains oriented in a direction close to {100} in the temperature range of the A3 point or higher, and the adjacent α is transformed when transforming from the γ phase to the α phase. It takes over the crystal orientation of the grains and transforms. For this reason, directions close to {100} are also accumulated in that region.

以上、本発明の基本的な構成について説明したが、さらに、本発明の製造方法を規定する個々の条件の限定理由及び本発明を実施するに当たり、好ましい条件について説明する。   Although the basic configuration of the present invention has been described above, the reasons for limiting the individual conditions that define the production method of the present invention and the preferable conditions for carrying out the present invention will be described.

(母材金属板の成分)
母材金属板には、α−γ変態を生じ得る組成の成分を有するFe系金属を用いる。さらに電気抵抗を高くするため、質量%で、Si:0.001%〜10.0%、Mn:0.001%〜12.0%、及びAl:0.001%〜4.0%を含有し、残部がFe及び不可避不純物を基本とし、適宜、添加元素を含有させたものを用いることが好ましい。また、その他の不純物としては、微量のNi、Cr、Mo、W、V、Ti、Nb、B、Cu、Co、Zr、Y、Hf、La、Ce、N、O、P、Sなどが含まれる。さらに、他の元素として質量%でCr:0.001%〜9.0%、及びNi:0.001%〜8.0%を含有してもよい。これを超えて含有すると、母材金属が硬くなり、製品としてのFe系金属板の製造が難しくなる。
(Components of base metal plate)
For the base metal plate, an Fe-based metal having a component having a composition capable of causing the α-γ transformation is used. Further, in order to further increase the electric resistance, by mass%, Si: 0.001% to 10.0%, Mn: 0.001% to 12.0%, and Al: 0.001% to 4.0% are contained. In addition, it is preferable to use a material in which the balance is based on Fe and inevitable impurities and appropriately contains additional elements. Other impurities include trace amounts of Ni, Cr, Mo, W, V, Ti, Nb, B, Cu, Co, Zr, Y, Hf, La, Ce, N, O, P, S, etc. It is. Furthermore, you may contain Cr: 0.001% -9.0% and Ni: 0.001% -8.0% by mass% as another element. If the content exceeds this, the base metal becomes hard and it becomes difficult to produce an Fe-based metal plate as a product.

(母材金属板(Fe系金属板の板厚中心部)の電気抵抗)
母材金属板は、電気抵抗率Raが38μΩ・cm以上200μΩ・cm以下のものである。電気抵抗率が38μΩ・cm未満では高周波領域で使用した際に十分に渦電流損を低減できない。また、200μΩ・cmを超えるほど合金元素を添加すると、硬くなり母材金属板の製造が困難になる。より好ましくは45μΩ・cm以上170μΩ・cm以下である。なお、母材金属板の電気抵抗は、どの位置で測定してもほぼ近い値を示す。
(Electric resistance of base metal plate (Fe-type metal plate thickness center))
The base metal plate has an electrical resistivity Ra of 38 μΩ · cm to 200 μΩ · cm. When the electrical resistivity is less than 38 μΩ · cm, eddy current loss cannot be sufficiently reduced when used in a high frequency region. Moreover, when an alloy element is added so that it exceeds 200 microhm * cm, it will become hard and manufacture of a base metal plate will become difficult. More preferably, it is 45 μΩ · cm or more and 170 μΩ · cm or less. Note that the electrical resistance of the base metal plate is almost the same regardless of the measurement position.

(最表層の電気抵抗)
両面にフェライト生成元素が濃化したFe系金属板の最表層の電気抵抗率Rbは、表皮効果を抑制するため母材金属板の電気抵抗率Raより高くする必要がある。ここで、最表層から深さ方向のある領域まで母材金属板の電気抵抗率Raより高くすることが好ましい。例えば、板厚中心部の電気抵抗率Raの1.2倍以上である領域が最表層から深さxμmまで形成され、この領域ではフェライト生成元素が濃化していることから、xが0.05μm以上500μm以下であるとより効率良く表皮効果を抑制できる。xが0.05μm未満だと表皮効果を十分に抑制することができない。また500μmを超えるようにするには長時間を要する。より好ましくは、(厚さ−2x)以下の厚さとなる板厚中心部の電気抵抗率Raの1.5倍以上である。深さxμmは、EPMA法を用いてFe系金属板の断面の複数の位置でAl、Si、Mn、Cr、Niの濃度を測定し、次式(1)から求めたRが、母材金属板の電気抵抗率Raに対し1.2Raとなる位置から求める。なお、各元素の濃度は質量%とする。
R=9.9+12.4×[Si%]+10×[Al%]+6.6×[Mn%]+3×[Cr%]+1.5×[Ni%] ・・・(1)
ここで、[]は各元素の濃度を表す。
(Electric resistance of outermost layer)
The electrical resistivity Rb of the outermost layer of the Fe-based metal plate enriched with ferrite-forming elements on both sides needs to be higher than the electrical resistivity Ra of the base metal plate in order to suppress the skin effect. Here, it is preferable to make it higher than the electrical resistivity Ra of the base metal plate from the outermost layer to a certain region in the depth direction. For example, a region that is 1.2 times or more the electrical resistivity Ra at the center of the plate thickness is formed from the outermost layer to a depth of x μm, and in this region, ferrite forming elements are concentrated, so x is 0.05 μm. When the thickness is 500 μm or less, the skin effect can be more efficiently suppressed. If x is less than 0.05 μm, the skin effect cannot be sufficiently suppressed. In addition, it takes a long time to exceed 500 μm. More preferably, it is 1.5 times or more of the electrical resistivity Ra of the central portion of the plate thickness, which is a thickness of (thickness-2x) or less. The depth x μm is measured by measuring the concentrations of Al, Si, Mn, Cr and Ni at a plurality of positions in the cross section of the Fe-based metal plate using the EPMA method, and R obtained from the following formula (1) is the base metal. It calculates | requires from the position used as 1.2Ra with respect to electrical resistivity Ra of a board. The concentration of each element is mass%.
R = 9.9 + 12.4 × [Si%] + 10 × [Al%] + 6.6 × [Mn%] + 3 × [Cr%] + 1.5 × [Ni%] (1)
Here, [] represents the concentration of each element.

(フェライト生成元素の種類)
α−γ変態系成分のFe系金属よりなる母材金属板に対して、フェライト生成元素を拡散させると、拡散して合金化した領域はα単相系の成分となり、板内の{200}面集積度を高めるため、{100}配向の芽として保存できる。また、フェライト生成元素が、特にAl、Cr、Ga、Mo、Sb、Si、Sn、Ta、Ti、V、W、及びZnからなる群から選択される1種または2種以上であると、高集積化をより効率良く行うことができる。
(Types of ferrite-forming elements)
When a ferrite-forming element is diffused into a base metal plate made of an Fe-based metal having an α-γ transformation component, the diffused and alloyed region becomes an α single-phase component, and {200} in the plate In order to increase the degree of surface integration, it can be stored as {100} oriented buds. Further, when the ferrite-forming element is one or more selected from the group consisting of Al, Cr, Ga, Mo, Sb, Si, Sn, Ta, Ti, V, W, and Zn, Integration can be performed more efficiently.

(Fe系金属板の厚み)
Fe系金属板の厚みは10μm以上、5mm以下とすることが好ましい。厚みが10μm未満であると積層させて磁心として使用する際に、積層枚数が増加して隙間が多くなり高い磁束密度が得られにくくなる。また、厚みが5mm超であると、拡散処理後の冷却後に{100}集合組織が十分に成長せず、高い磁束密度が得られにくくなる。
(Fe metal plate thickness)
The thickness of the Fe-based metal plate is preferably 10 μm or more and 5 mm or less. When the thickness is less than 10 μm, the number of stacked layers increases when the layers are used as a magnetic core, and the gap increases, making it difficult to obtain a high magnetic flux density. On the other hand, if the thickness exceeds 5 mm, the {100} texture does not grow sufficiently after cooling after the diffusion treatment, making it difficult to obtain a high magnetic flux density.

(Fe系金属板の集合組織)
Fe系金属板の板面に対するα−Fe相のX線ランダム強度比は、{001}<470>、{116}<6 12 1>、{223}<692>の強度比をそれぞれA、B、Cとし、Z=(A+0.98B)/(4×0.98C)とした場合に、Z値は0.5<Z≦50の条件を満たす必要がある。Z値が0.5未満であると十分に高い磁束密度が得られない。一方で、50を超えると、磁束密度は飽和する一方で、鉄損が高くなる。好ましくは2以上48以下である。
(Texture of Fe-based metal plate)
The X-ray random intensity ratio of the α-Fe phase to the plate surface of the Fe-based metal plate is the intensity ratio of {001} <470>, {116} <6 12 1>, {223} <692> as A and B, respectively. , C and Z = (A + 0.98B) / (4 × 0.98C), the Z value must satisfy the condition of 0.5 <Z ≦ 50. If the Z value is less than 0.5, a sufficiently high magnetic flux density cannot be obtained. On the other hand, when it exceeds 50, the magnetic flux density is saturated while the iron loss is increased. Preferably they are 2 or more and 48 or less.

Z値は、X線回折によって測定されるα−Fe相の{200}、{110}、{310}、{211}の極点図を基に級数展開法で計算した、3次元集合組織を表す結晶方位分布関数(Orientation Distribution Function、ODF)から求めればよい。なお、ランダム強度比とは、特定の方位への集積を持たない標準試料及び供試材のX線強度を同条件で測定し、得られた供試材のX線強度を標準試料のX線強度で除した数値である。Fe系金属板はフェライト生成元素の拡散に伴い、表層の組織が内部へと成長するため、X線回折の測定はFe系金属板表面で測定しても、板厚中心で測定しても良い。   The Z value represents a three-dimensional texture calculated by the series expansion method based on the {200}, {110}, {310}, and {211} pole figures of the α-Fe phase measured by X-ray diffraction. What is necessary is just to obtain | require from a crystal orientation distribution function (Orientation Distribution Function, ODF). The random intensity ratio means that the X-ray intensity of a standard sample and a test material that do not accumulate in a specific orientation is measured under the same conditions, and the X-ray intensity of the obtained test material is the X-ray intensity of the standard sample. It is a numerical value divided by intensity. As the Fe-based metal plate grows with the diffusion of ferrite-forming elements, the surface layer structure grows inward, so X-ray diffraction may be measured on the surface of the Fe-based metal plate or at the thickness center. .

(加熱拡散処理)
まず、フェライト生成元素を付着させた母材金属板を、母材金属板のA3点まで加熱して、母材金属板内の一部または全体にフェライト生成元素を拡散させ、母材に合金化させ、合金化した領域でα相を保存する。そして、母材金属板をさらにA3点以上1300℃以下の温度に加熱して、保持する。すでに合金化されている領域ではγ変態しないα単相の組織となり、α単相成分の領域はγ変態しないα−Fe相であるために、その領域の結晶粒の配向はそのまま保存され、その領域の中で{100}に近い方位の結晶粒が優先成長してZ値が増加する。また、α単相成分でない領域はγ変態する。また、Alの拡散に伴い、Fe−Al合金化した領域ではγ相からα相へ変態していく。その際、変態する領域に隣接する領域ではすでに{100}に近い方位に配向したα粒となっており、γ相からα相に変態する際に、隣接するα粒の結晶方位を引き継ぐかたちで変態する。これにより保持時間が長くなるとZ値が増加する。長時間保持するとZ値が増加する一方で、表層の電気抵抗率は低下していく。このため保持時間は0.5sec以上36000sec以下が好ましい。
(Heat diffusion treatment)
First, the base metal plate with the ferrite-forming element attached is heated to point A3 of the base metal plate, and the ferrite-forming element is diffused in part or all of the base metal plate and alloyed with the base material. The α phase is stored in the alloyed region. Then, the base metal plate is further heated to a temperature of A3 or higher and 1300 ° C. or lower and held. In the already alloyed region, it becomes an α single phase structure that does not undergo γ transformation, and the region of the α single phase component is an α-Fe phase that does not undergo γ transformation. In the region, crystal grains having an orientation close to {100} preferentially grow and the Z value increases. A region that is not an α single phase component undergoes γ transformation. In addition, as Al diffuses, the transformation from the γ phase to the α phase occurs in the Fe-Al alloyed region. At that time, in the region adjacent to the region to be transformed, α grains are already oriented in an orientation close to {100}, and when transforming from the γ phase to the α phase, the crystal orientation of the adjacent α grains is taken over. Metamorphosis. As a result, the Z value increases as the holding time increases. While holding for a long time increases the Z value, the electrical resistivity of the surface layer decreases. Therefore, the holding time is preferably 0.5 sec or more and 36000 sec or less.

(加熱拡散処理後の冷却)
拡散処理後、合金化されていない領域が残った状態で、冷却すると、合金化していない領域では、γからαへの変態の際に、すでに{100}に近い方位に配向したα粒となって領域の結晶方位を引き継ぐかたちで変態し、Z値が増加し、前述のZ値の条件を満たすような集合組織を有する金属板が得られる。冷却速度は0.1℃/sec以上500℃/sec以下が好ましい。この温度範囲で冷却すると、より高いZ値が得られる。
(Cooling after heat diffusion treatment)
After the diffusion treatment, when cooling is performed in a state where an unalloyed region remains, in the non-alloyed region, α grains already oriented in an orientation close to {100} are formed during the transformation from γ to α. In this way, a metal plate having a texture that satisfies the above-mentioned Z value condition is obtained by transforming the crystal orientation of the region and increasing the Z value. The cooling rate is preferably 0.1 ° C./sec or more and 500 ° C./sec or less. Cooling in this temperature range gives a higher Z value.

本発明を実施例でさらに説明する。実施例での条件は本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用しうるものである。   The invention is further described in the examples. The conditions in the examples are one condition example adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this one condition example. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
真空溶解炉で様々な成分の鋼を溶解し、インゴットを鋳造した。インゴットをγ域で厚さ50mmまで熱間圧延し、続いて温間または冷間で加工し、母材金属板とした。表1には母材金属板の化学成分、A3点、及び電気抵抗率Raを示した。次いで、母材金属板の両面にフェライト生成元素を付着させた。比較例においてはフェライト生成元素を付着させなかった場合を検討した。各元素はEB蒸着法、めっき法及びスパッタ法によって付着させた。次いで、フェライト生成元素の付着した金属板に熱処理を行った。熱処理炉には赤外炉を用い、10-3Paレベルまで真空引きした雰囲気中で熱処理した。保持温度は900℃〜1100℃、保持時間を100sec〜1200secとした。
Example 1
Ingots were cast by melting steel of various components in a vacuum melting furnace. The ingot was hot-rolled to a thickness of 50 mm in the γ region, and subsequently processed warm or cold to obtain a base metal plate. Table 1 shows the chemical composition, A3 point, and electrical resistivity Ra of the base metal plate. Next, a ferrite-forming element was adhered to both surfaces of the base metal plate. In the comparative example, the case where the ferrite forming element was not adhered was examined. Each element was attached by EB vapor deposition, plating, and sputtering. Next, heat treatment was performed on the metal plate to which the ferrite-forming element was adhered. An infrared furnace was used as the heat treatment furnace, and heat treatment was performed in an atmosphere evacuated to a level of 10 −3 Pa. The holding temperature was 900 ° C. to 1100 ° C., and the holding time was 100 sec to 1200 sec.

得られたFe系金属板を次のように評価した。まず、集合組織についてはX線回折法で評価した。続いて、磁気特性についてはSST(Single Sheet Tester)を用いて、5000A/mの磁化力に対する磁束密度B50を求めた。この時、測定周波数は50Hzとした。次に、VSM(Vibrating Sample Magnetometer)を用いて飽和磁束密度Bsを求めた。この際、印加した磁化力は0.8×106A/mとした。また鉄損はJIS C2256に準拠し、単板磁気試験機(SS
T)で求めた。フェライト生成元素が濃化して高い電気抵抗となっている領域はEPMA(Electron Probe Micro−Analysis)法を用いて板厚方向の複数の位置でAl、Si、Mn、Cr、Niの濃度を測定し、前述の式(1)から求めたRが、母材金属板の電気抵抗率Raに対し、1.2Raとなる位置を求めた。
The obtained Fe-based metal plate was evaluated as follows. First, the texture was evaluated by the X-ray diffraction method. Subsequently, for the magnetic characteristics, a magnetic flux density B 50 with respect to a magnetizing force of 5000 A / m was obtained using SST (Single Sheet Tester). At this time, the measurement frequency was 50 Hz. Next, the saturation magnetic flux density Bs was determined using a VSM (Vibrating Sample Magnetometer). At this time, the applied magnetizing force was set to 0.8 × 10 6 A / m. The iron loss conforms to JIS C2256 and is based on a single plate magnetic tester (SS
T). The region where the ferrite-generating element is concentrated and has a high electric resistance is measured by using the EPMA (Electron Probe Micro-Analysis) method to measure the concentrations of Al, Si, Mn, Cr and Ni at a plurality of positions in the plate thickness direction. The position where R obtained from the above-described equation (1) is 1.2 Ra with respect to the electrical resistivity Ra of the base metal plate was obtained.

電気抵抗率は四端子法を用いて測定した。母材金属板の電気抵抗率はフェライト生成元素を付着させる前に測定し、最表層の電気抵抗率はフェライト生成元素を付着させ、熱処理を行った後に測定した。   The electrical resistivity was measured using the four probe method. The electrical resistivity of the base metal plate was measured before attaching the ferrite-forming element, and the electrical resistivity of the outermost layer was measured after attaching the ferrite-forming element and performing heat treatment.

Figure 0006405632
Figure 0006405632

Figure 0006405632
Figure 0006405632

表1及び表2から明らかなように、本発明のFe系金属板は、高いB50/Bs値であると同時に、低鉄損であることが確認できた。これに対し、本発明の条件を外れる場合や、元素を付着させなかった場合には高いB50/Bs値と低鉄損とを両立するFe系金属板は得られなかった。また、比較例1及び4のように母材金属板の電気抵抗が低かった場合には十分に鉄損を低減出来なかった。また、比較例2のように、母材金属板の組成がA3点のないα単相系であると、十分に高い磁束密度が得られなかった。比較例3や5のようにZ値が低い場合には、高いB50/Bs値が得られず、さらには十分に鉄損を低減出来なかった。さらにフェライト生成元素を濃化させなかった比較例6ではB50/Bs値も低く、鉄損も大きかった。母材金属板の成分が比較例7のように高合金となると、加工中に割れて、金属板が作成出来なかった。Z値が50を超えた比較例8の場合、B50/Bs値はZ値が50以下の場合とほとんど変わらないが、鉄損を十分に低減できなかった。   As is clear from Tables 1 and 2, it was confirmed that the Fe-based metal plate of the present invention had a high B50 / Bs value and at the same time a low iron loss. On the other hand, when the condition of the present invention is not satisfied or when no element is adhered, an Fe-based metal plate that achieves both a high B50 / Bs value and a low iron loss cannot be obtained. Moreover, when the electrical resistance of the base metal plate was low as in Comparative Examples 1 and 4, the iron loss could not be reduced sufficiently. Further, as in Comparative Example 2, a sufficiently high magnetic flux density could not be obtained when the composition of the base metal plate was an α single phase system having no A3 point. When the Z value was low as in Comparative Examples 3 and 5, a high B50 / Bs value could not be obtained, and the iron loss could not be reduced sufficiently. Further, in Comparative Example 6 in which the ferrite-forming element was not concentrated, the B50 / Bs value was low and the iron loss was large. When the component of the base metal plate was a high alloy as in Comparative Example 7, it was cracked during processing, and the metal plate could not be created. In Comparative Example 8 where the Z value exceeded 50, the B50 / Bs value was almost the same as that when the Z value was 50 or less, but the iron loss could not be reduced sufficiently.

(実施例2)
本実施例では母材に表1に記載の鋼種C、E、F、J、K、S、V、B′を用いた。これらの母材は真空溶解によってインゴットを溶製した後に、熱間圧延、温間または冷間圧延によって所定の厚みに加工したものである。熱間圧延は1200℃に加熱した厚さ245mmのインゴットを厚さ50mmまで薄肉化した。この熱間圧延板から機械加工によって各種厚みの板材を切り出した後、温間または冷間圧延を実施し、厚み8μm〜5200μmの範囲の母材金属板を製造した。
(Example 2)
In this example, steel types C, E, F, J, K, S, V, and B ′ shown in Table 1 were used as the base material. These base materials are prepared by melting an ingot by vacuum melting and then processing it to a predetermined thickness by hot rolling, warm or cold rolling. In hot rolling, an ingot having a thickness of 245 mm heated to 1200 ° C. was thinned to a thickness of 50 mm. After cutting plate materials of various thicknesses from this hot-rolled plate by machining, warm or cold rolling was performed to produce a base metal plate having a thickness in the range of 8 μm to 5200 μm.

得られた母材金属板にフェライト生成元素としてAl、Cr、Ga、Ge、Mo、Ni、Sb、Si、Sn、Ti、V、W、またはZnをイオンプレーティング法、溶融めっき法、電気めっき法、スパッタ法を適用して、付着させた。熱処理は赤外炉を用い、10-3Paレベルまで真空引きした雰囲気中で熱処理した。保持温度は800℃〜1350℃、保持時間を0.3sec〜38000secとした。評価は実施例1と同じ方法により行った。 The resulting base metal plate is plated with Al, Cr, Ga, Ge, Mo, Ni, Sb, Si, Sn, Ti, V, W, or Zn as an element for forming ferrite by ion plating, hot dipping, electroplating. The method was applied by sputtering. The heat treatment was performed using an infrared furnace in an atmosphere evacuated to a level of 10 −3 Pa. The holding temperature was 800 ° C. to 1350 ° C., and the holding time was 0.3 sec to 38000 sec. Evaluation was performed by the same method as in Example 1.

Figure 0006405632
Figure 0006405632

表3に示すようにフェライト生成元素を濃化させた場合には、高い磁束密度(B50/Bs値)が得られ、かつ、低鉄損となることがわかった。これに対して、比較例9のようにオーステナイト生成元素であるNiを付着させた場合にはZ値が低く、高いB50/Bs値が得られなかった。またZ値が低く、集合組織の発達が不十分であっても、磁気特性が劣ることがわかった。   As shown in Table 3, it was found that when the ferrite-forming element was concentrated, a high magnetic flux density (B50 / Bs value) was obtained and the iron loss was low. On the other hand, when Ni which is an austenite generating element was adhered as in Comparative Example 9, the Z value was low and a high B50 / Bs value was not obtained. It was also found that the magnetic properties were inferior even when the Z value was low and the texture development was insufficient.

(実施例3)
本実施例ではフェライト生成元素として2種類の金属を混合したものを用いた。母材は実施例1の表1に示した鋼種Gを用いた。フェライト生成元素は溶融めっき法、スパッタ法を適用して付着させた。熱処理は赤外炉を用い、10-3Paレベルまで真空引きした雰囲気中で熱処理した。保持温度は1025℃〜1050℃、保持時間は2sec〜500secとした。また、評価は実施例1と同じ方法で行った。
(Example 3)
In this example, a mixture of two kinds of metals was used as a ferrite-forming element. As a base material, steel type G shown in Table 1 of Example 1 was used. The ferrite-forming element was deposited by applying a hot dipping method or a sputtering method. The heat treatment was performed using an infrared furnace in an atmosphere evacuated to a level of 10 −3 Pa. The holding temperature was 1025 ° C. to 1050 ° C., and the holding time was 2 sec to 500 sec. The evaluation was performed in the same manner as in Example 1.

Figure 0006405632
Figure 0006405632

表4に示したようにフェライト生成元素同士の組み合わせであれば、高いB50/Bs値及び低い鉄損が得られることがわかった。   As shown in Table 4, it was found that a high B50 / Bs value and a low iron loss can be obtained with a combination of ferrite-forming elements.

Claims (12)

両面にフェライト生成元素が濃化したFe系金属板であって、
前記Fe系金属板の板厚中心部の化学成分組成が、質量%で、Si:0.001%〜10.0%、Mn:2.0%超12.0%以下、及びAl:0.001%〜4.0%を含有し、残部が鉄および不可避不純物であるα−γ変態を生じ得る組成のFe系成分であり、
前記Fe系金属板の板厚中心部の電気抵抗率をRa、最表層の電気抵抗率をRbとすると、板厚中心部の電気抵抗率Raが38μΩ・cm以上200μΩ・cm以下、かつ、板厚中心部の電気抵抗率Ra<最表層の電気抵抗率Rbであり、
前記Fe系金属板の板面における{001}<470>、{116}<6 12 1>、{223}<692>のX線ランダム強度比をそれぞれA、B、Cとし、Z=(A+0.98B)/(4×0.98C)とした場合に、Z値が0.5<Z≦50を満足することを特徴とするFe系金属板。
Fe-based metal plate with ferrite-forming elements concentrated on both sides,
The chemical composition at the center of the thickness of the Fe-based metal plate is, by mass, Si: 0.001% to 10.0%, Mn: more than 2.0% and 12.0% or less, and Al: 0.00. Fe-based components having a composition that contains 001% to 4.0% and the balance can cause an α-γ transformation that is iron and inevitable impurities,
When the electrical resistivity at the center of the thickness of the Fe-based metal plate is Ra and the electrical resistivity of the outermost layer is Rb, the electrical resistivity Ra at the center of the thickness is 38 μΩ · cm to 200 μΩ · cm, and the plate The electrical resistivity Ra of the thickness center portion <the electrical resistivity Rb of the outermost layer,
The X-ray random intensity ratios of {001} <470>, {116} <6 12 1>, {223} <692> on the surface of the Fe-based metal plate are A, B, and C, respectively, and Z = (A + 0 .98B) / (4 × 0.98C), an Fe-based metal plate wherein the Z value satisfies 0.5 <Z ≦ 50.
前記フェライト生成元素が濃化した領域の一部または全体がα−Fe単相であることを特徴とする請求項1に記載のFe系金属板。   2. The Fe-based metal plate according to claim 1, wherein a part or the whole of the region where the ferrite-forming element is concentrated is an α-Fe single phase. 前記板厚中心部の電気抵抗率Raが45μΩ・cm以上170μΩ・cm以下であることを特徴とする請求項1または2に記載のFe系金属板。   3. The Fe-based metal plate according to claim 1, wherein an electrical resistivity Ra at the central portion of the plate thickness is 45 μΩ · cm to 170 μΩ · cm. 前記フェライト生成元素がAl、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ta、Ti、V、W、及びZnからなる群から選ばれる1種以上の元素であることを特徴とする請求項1〜3のいずれか1項に記載のFe系金属板。   The ferrite-forming element is one or more elements selected from the group consisting of Al, Cr, Ga, Ge, Mo, Sb, Si, Sn, Ta, Ti, V, W, and Zn. Item 4. The Fe-based metal plate according to any one of Items 1 to 3. 前記板厚中心部の電気抵抗率Raの1.2倍以上である領域が最表層から深さxμmまで形成されており、xが0.05μm以上500μm以下であり、かつ、板厚の1/2未満であることを特徴とする請求項1〜4のいずれか1項に記載のFe系金属板。   A region that is 1.2 times or more the electrical resistivity Ra at the center of the plate thickness is formed from the outermost layer to a depth of x μm, x is 0.05 μm or more and 500 μm or less, and 1 / th of the plate thickness. The Fe-based metal plate according to any one of claims 1 to 4, wherein the Fe-based metal plate is less than 2. 前記Fe系金属板の板厚中心部の化学成分組成が、質量%で、Cr:0.001%〜9.0%、及びNi:0.001%〜8.0%からなる群から選ばれる1種または2種を含み、残部が鉄および不可避不純物であることを特徴とする請求項1〜5のいずれか1項に記載のFe系金属板。   The chemical composition at the center of the thickness of the Fe-based metal plate is selected from the group consisting of Cr: 0.001% to 9.0% and Ni: 0.001% to 8.0% in mass%. The Fe-based metal plate according to claim 1, wherein the Fe-based metal plate includes one or two kinds, and the balance is iron and inevitable impurities. 前記Fe系金属板の板厚が10μm以上5mm以下であることを特徴とする請求項1〜6のいずれか1項に記載のFe系金属板。   The thickness of the said Fe-type metal plate is 10 micrometers or more and 5 mm or less, The Fe-type metal plate of any one of Claims 1-6 characterized by the above-mentioned. Fe系金属よりなる母材金属板上にフェライト生成元素を付着させ、熱処理して拡散させて高い{200}面集積度を有するFe系金属板を製造する方法であって、
質量%で、Si:0.001%〜10.0%、Mn:2.0%超12.0%以下、及びAl:0.001%〜4.0%を含有し、残部が鉄および不可避不純物であるα−γ変態を生じ得る組成で、かつ板厚中心部の電気抵抗率をRaとした場合に、電気抵抗率Raが38μΩ・cm以上200μΩ・cm以下の母材金属板の両面にフェライト生成元素を付着させる工程と、
前記フェライト生成元素が付着した前記母材金属板を、前記母材金属板のA3点まで加熱して、前記フェライト生成元素を前記母材金属板に拡散させる工程と、
前記フェライト生成元素が拡散した母材金属板をさらにA3点以上1300℃以下の温度に加熱、保持する工程と、
前記A3点以上1300℃以下の温度に加熱、保持された母材金属板をA3点未満の温度へ冷却して、合金化していない領域のγ−Fe相をα−Fe相へ変態させ、前記Fe系金属板の板面における{001}<470>、{116}<6 12 1>、{223}<692>のX線ランダム強度比をそれぞれA、B、Cとし、Z=(A+0.98B)/(4×0.98C)とした場合に、Z値が0.5<Z≦50を満足するとともに、最表層の電気抵抗率をRbとした場合に、板厚中心部の電気抵抗率Ra<最表層の電気抵抗率Rbを満足するFe系金属板を得る工程と、
を有することを特徴とするFe系金属板の製造方法。
A method of producing a Fe-based metal plate having a high {200} plane integration degree by attaching a ferrite-forming element on a base metal plate made of Fe-based metal, and heat-treating and diffusing the element.
In mass%, Si: 0.001% to 10.0%, Mn: more than 2.0% and 12.0% or less, and Al: 0.001% to 4.0%, with the balance being iron and inevitable When the electrical resistivity Ra is 38 μΩ · cm or more and 200 μΩ · cm or less when the electrical resistivity Ra is a composition that can cause an α-γ transformation that is an impurity and the central portion of the plate thickness is Ra, the both sides of the base metal plate A step of attaching a ferrite-forming element;
Heating the base metal plate to which the ferrite-forming element is adhered to A3 point of the base metal plate, and diffusing the ferrite-forming element into the base metal plate;
A step of further heating and holding the base metal plate in which the ferrite-forming element is diffused to a temperature of not less than A3 and not more than 1300 ° C .;
The base metal plate heated and held at a temperature not lower than A3 point and not higher than 1300 ° C. is cooled to a temperature lower than A3 point to transform the γ-Fe phase in the non-alloyed region into an α-Fe phase, The X-ray random intensity ratios of {001} <470>, {116} <6 12 1>, {223} <692> on the surface of the Fe-based metal plate are A, B, and C, respectively, and Z = (A + 0. 98B) / (4 × 0.98C), the Z value satisfies 0.5 <Z ≦ 50, and the electrical resistivity of the outermost layer is Rb, and the electrical resistance at the center of the plate thickness A step of obtaining an Fe-based metal plate satisfying a ratio Ra <the outermost layer electrical resistivity Rb ;
The manufacturing method of the Fe-type metal plate characterized by having.
前記フェライト生成元素がAl、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ta、Ti、V、W、及びZnからなる群から選ばれる1種以上の元素であることを特徴とする請求項8に記載のFe系金属板の製造方法。 The ferrite-forming element is one or more elements selected from the group consisting of Al, Cr, Ga, Ge, Mo , Sb, Si, Sn, Ta, Ti, V, W, and Zn. The manufacturing method of the Fe-type metal plate of Claim 8. 前記Fe系金属板は、前記板厚中心部の電気抵抗率Raの1.2倍以上である領域が最表層から深さxμmまで形成されており、xが0.05μm以上500μm以下であり、かつ、板厚の1/2未満とすることを特徴とする請求項8または9に記載のFe系金属板の製造方法。   In the Fe-based metal plate, a region that is 1.2 times or more the electrical resistivity Ra of the plate thickness center portion is formed from the outermost layer to a depth of x μm, and x is 0.05 μm or more and 500 μm or less, And the manufacturing method of the Fe-type metal plate of Claim 8 or 9 made into less than 1/2 of plate | board thickness. 前記母材金属板が、質量%で、Cr:0.001%〜9.0%、及びNi:0.001%〜8.0%からなる群から選ばれる1種または2種を含み、残部が鉄および不可避不純物であることを特徴とする請求項8〜10のいずれか1項に記載のFe系金属板の製造方法。   The base metal plate contains one or two selected from the group consisting of Cr: 0.001% to 9.0% and Ni: 0.001% to 8.0% by mass%, and the balance The method for producing an Fe-based metal plate according to any one of claims 8 to 10, wherein is iron and inevitable impurities. 前記母材金属板の厚みが10μm以上5mm未満であることを特徴とする請求項8〜11のいずれか1項に記載のFe系金属板の製造方法。   The thickness of the said base metal plate is 10 micrometers or more and less than 5 mm, The manufacturing method of the Fe type metal plate of any one of Claims 8-11 characterized by the above-mentioned.
JP2014001117A 2013-01-08 2014-01-07 Fe-based metal plate and manufacturing method thereof Active JP6405632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014001117A JP6405632B2 (en) 2013-01-08 2014-01-07 Fe-based metal plate and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013001181 2013-01-08
JP2013001181 2013-01-08
JP2014001117A JP6405632B2 (en) 2013-01-08 2014-01-07 Fe-based metal plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014150247A JP2014150247A (en) 2014-08-21
JP6405632B2 true JP6405632B2 (en) 2018-10-17

Family

ID=51572973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001117A Active JP6405632B2 (en) 2013-01-08 2014-01-07 Fe-based metal plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6405632B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183360A (en) * 2015-03-25 2016-10-20 新日鐵住金株式会社 Fe-BASED METAL PLATE
JP6623533B2 (en) * 2015-03-25 2019-12-25 日本製鉄株式会社 Fe-based metal plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120420A (en) * 1994-10-14 1996-05-14 Nisshin Steel Co Ltd Corrosion resistant soft-magnetic steel
JP2001262289A (en) * 2000-03-15 2001-09-26 Kawasaki Steel Corp NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN >=1 kHz FREQUENCY REGION
BRPI1009094B1 (en) * 2009-03-13 2021-09-08 Nippon Steel Corporation UNORIENTED MAGNETIC STEEL SHEET AND METHOD TO PRODUCE IT
CN104228187B (en) * 2009-10-28 2016-10-26 新日铁住金株式会社 Fe system metallic plate and manufacture method thereof
JP2012112015A (en) * 2010-11-26 2012-06-14 Jfe Steel Corp Nondirectional electromagnetic steel sheet, and method for manufacturing the same
PL2703514T3 (en) * 2011-04-27 2017-09-29 Nippon Steel & Sumitomo Metal Corporation Fe-BASED METAL PLATE AND METHOD FOR MANUFACTURING SAME

Also Published As

Publication number Publication date
JP2014150247A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
JP5186989B2 (en) Soft magnetic steel sheet for core and core member
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP5533801B2 (en) Fe-based metal plate
JP6223826B2 (en) Ferromagnetic amorphous alloy ribbons with reduced surface protrusions, their casting methods and applications
JP5278626B2 (en) Fe-based metal plate and manufacturing method thereof
JP2018529021A (en) FeCo alloy, FeSi alloy or Fe sheet or strip and method for manufacturing the same, magnetic transformer core manufactured from the sheet or strip, and transformer including the same
JP6929005B2 (en) Ultra-low cobalt iron-cobalt magnetic alloy
JP4616935B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5867713B2 (en) Electrical steel sheet
JP2021509441A (en) Bidirectional electromagnetic steel sheet and its manufacturing method
EP3239309B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP6044093B2 (en) Fe-based metal plate and manufacturing method thereof
Jafari et al. Microstructural and magnetic properties study of Fe–P rolled sheet alloys
JP2012001769A (en) Fe-BASED METAL PLATE HAVING PARTIALLY CONTROLLED CRYSTAL ORIENTATION
JP6405632B2 (en) Fe-based metal plate and manufacturing method thereof
JP2018165383A (en) Nonoriented electromagnetic steel sheet
JP6481287B2 (en) Fe-based metal plate with excellent magnetic properties
JP6623533B2 (en) Fe-based metal plate
JP5472198B2 (en) Method for producing Fe-based metal plate having high {110} plane integration or {222} plane integration
JP5724727B2 (en) Method for producing Fe-based metal plate having high degree of {200} plane integration
JP3434844B2 (en) Low iron loss, high magnetic flux density amorphous alloy
JP6464581B2 (en) Fe-based metal plate and manufacturing method thereof
JP6203473B2 (en) Method for producing Fe-based metal plate having high degree of {200} plane integration
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
JP2022509670A (en) Non-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R151 Written notification of patent or utility model registration

Ref document number: 6405632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350