JP5724727B2 - Method for producing Fe-based metal plate having high degree of {200} plane integration - Google Patents

Method for producing Fe-based metal plate having high degree of {200} plane integration Download PDF

Info

Publication number
JP5724727B2
JP5724727B2 JP2011165517A JP2011165517A JP5724727B2 JP 5724727 B2 JP5724727 B2 JP 5724727B2 JP 2011165517 A JP2011165517 A JP 2011165517A JP 2011165517 A JP2011165517 A JP 2011165517A JP 5724727 B2 JP5724727 B2 JP 5724727B2
Authority
JP
Japan
Prior art keywords
metal plate
magnetic field
base metal
plane integration
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011165517A
Other languages
Japanese (ja)
Other versions
JP2012237051A (en
Inventor
洋治 水原
洋治 水原
徹 稲熊
徹 稲熊
美穂 冨田
美穂 冨田
坂本 広明
広明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011165517A priority Critical patent/JP5724727B2/en
Publication of JP2012237051A publication Critical patent/JP2012237051A/en
Application granted granted Critical
Publication of JP5724727B2 publication Critical patent/JP5724727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、電動機、発電機、変圧器の磁心等の用途に好適であり、これらの磁心の小型化やエネルギー損失低減に貢献できる高い{200}面集積度を有するFe系金属板の製造方法に関する。   INDUSTRIAL APPLICABILITY The present invention is suitable for applications such as electric motors, generators, transformer cores, and the like, and a method for producing an Fe-based metal plate having a high {200} plane integration degree that can contribute to downsizing and energy loss reduction of these magnetic cores. About.

従来から電動機、発電機、変圧器等の磁心にはケイ素などを合金化した電磁鋼板が用いられている。電磁鋼板のうち、結晶方位が比較的ランダムな無方向性電磁鋼板は安価なコストで製造できるため、家電などのモータや変圧器などに汎用的に使用されている。この無方向性電磁鋼板の結晶方位はランダムなため、高い磁束密度は得られない。これに対し、結晶方位を揃えた方向性電磁鋼板は、高い磁束密度が得られるため、HV車などの駆動用モータなどハイエンド用途へ適用されている。しかし、現在工業化されている方向性電磁鋼板の製造には、長時間の熱処理が必要とされコストの高いものとなっている。   Conventionally, magnetic steel sheets made of an alloy of silicon or the like have been used for magnetic cores of electric motors, generators, transformers and the like. Among electrical steel sheets, non-oriented electrical steel sheets with relatively random crystal orientations can be manufactured at low cost, and are therefore generally used in motors and transformers for home appliances. Since the crystal orientation of this non-oriented electrical steel sheet is random, a high magnetic flux density cannot be obtained. On the other hand, grain-oriented electrical steel sheets with the same crystal orientation are applied to high-end applications such as drive motors for HV vehicles because high magnetic flux density is obtained. However, the production of grain-oriented electrical steel sheets that are currently industrialized requires a long heat treatment and is expensive.

工業化されている方向性電磁鋼板の製造方法以外の方法、特に、仕上焼鈍の昇温過程で、再結晶途中や再結晶後に磁場を印加して特定の結晶方位の集積度を高める技術として、次のような技術がある。   As a technique to increase the degree of integration of a specific crystal orientation by applying a magnetic field during recrystallization or after recrystallization in methods other than the manufacturing method of industrialized grain-oriented electrical steel sheets, particularly in the temperature raising process of finish annealing, There is a technology like this.

特許文献1には、無方向電磁鋼板の製造方法において、Si:2〜4mass%を含む珪素鋼板の冷間圧延仕上げ焼鈍時の回復ないし再結晶の初期段階に磁場を印加させて、集合組織をランダム化して磁気特性を向上させる技術が開示されている。この技術では、磁場の印加方向は、鋼板の圧延方向と同じであり、{hk0}〜{100}<001>の集積度が高まり、{111}面方位の集積度を低減することにより、板面内の全方向にわたって磁化されることを目的としている。
特許文献2には、一方向電磁鋼板の製造方法において、再結晶の際に圧延方向に磁場を印加し、圧延方向への結晶配向を<001>に促進することを目的とする技術が開示されている。
In Patent Document 1, in the method for producing a non-oriented electrical steel sheet, a magnetic field is applied to the initial stage of recovery or recrystallization at the time of cold rolling finish annealing of a silicon steel sheet containing Si: 2 to 4 mass%. A technique for improving the magnetic characteristics by randomization is disclosed. In this technique, the application direction of the magnetic field is the same as the rolling direction of the steel plate, and the integration degree of {hk0} to {100} <001> is increased, and the integration degree of the {111} plane orientation is reduced, thereby It is intended to be magnetized in all directions in the plane.
Patent Document 2 discloses a technique aimed at applying a magnetic field in the rolling direction during recrystallization and promoting crystal orientation in the rolling direction to <001> in the method for producing a unidirectional electrical steel sheet. ing.

特許文献3には、二方向性電磁鋼板の製造方法において、被処理鋼板をキューリー温度以下250℃以上の温度域で磁化容易方向に静磁界もしくは交番磁界を加えながら熱処理して、磁歪や鉄損を低減することを目的とする技術が開示されている。
非特許文献1には、アームコ鉄を熱間鍛造して、冷間圧延した板を最大1.5Tの磁場を印加しながら、700℃で熱処理して再結晶した結果、磁場印加方向と平行に<100>方位をもつ集合組織が増加することが報告されている。
In Patent Document 3, in a method of manufacturing a bi-directional electrical steel sheet, a steel sheet to be treated is heat-treated while applying a static magnetic field or an alternating magnetic field in a direction of easy magnetization in a temperature range of 250 ° C. or lower in a Curie temperature or lower, so Techniques aimed at reducing the above are disclosed.
In Non-Patent Document 1, as a result of hot forging armco iron and recrystallizing a cold-rolled plate at 700 ° C. while applying a maximum magnetic field of 1.5 T, the result is parallel to the magnetic field application direction. It has been reported that texture with <100> orientation increases.

しかしながら、特許文献3のような既に再結晶した鋼板の磁化容易方向に磁場をかけるだけでは満足な磁気特性を得られない。また、特許文献1、2や非特許文献1のような、鋼板の圧延方向や磁化容易方向に磁場をかけながら再結晶させる場合でも、それだけでは満足な磁気特性を得られない。   However, satisfactory magnetic properties cannot be obtained simply by applying a magnetic field in the easy magnetization direction of a steel plate that has already been recrystallized as in Patent Document 3. In addition, even when recrystallization is performed while applying a magnetic field in the rolling direction or the easy magnetization direction of a steel sheet as in Patent Documents 1 and 2 and Non-Patent Document 1, it is not possible to obtain satisfactory magnetic properties by itself.

特開平5−33062号公報JP-A-5-33062 特開平10−158741号公報Japanese Patent Laid-Open No. 10-158741 特開2009−127073号公報JP 2009-127073 A

Scandinavian Journal of Metallurgy 10(1981)P.3-8Scandinavian Journal of Metallurgy 10 (1981) P.3-8

高磁束密度、低鉄損の電磁鋼板を実現するためには、脱炭や焼鈍などに長時間の熱処理や、高圧下率で冷延する必要があり、高コスト化の原因となっていた。
そこで、本発明の課題は、高い{200}集合組織を有し、さらに、高い電気抵抗が付与されたFe系金属板を、短時間の熱処理や通常圧下率の冷延板を用いて、効率的かつ安定的に製造する方法を提供することである。
In order to realize an electromagnetic steel sheet with high magnetic flux density and low iron loss, it is necessary to perform heat treatment for a long time for decarburization and annealing or cold rolling at a high pressure ratio, which is a cause of high cost.
Therefore, the object of the present invention is to use an Fe-based metal plate having a high {200} texture and further imparted with a high electrical resistance by using a heat treatment for a short time or a cold-rolled plate having a normal reduction rate. It is providing the method of manufacturing efficiently and stably.

本発明者らは、上記先行文献で開示されているような磁場中熱処理により{100}面の集積度を高める方法に基づき、さらにα−Fe相の{200}面集積度を高める方法について検討した。その結果、磁場の印加だけでは集積度の向上に限界があり、磁場中での回復・再結晶により形成された{100}面の集積度を高めた集合組織を板全体でさらに高めるために、別の手段と組み合わせる必要があることを知見した。   The present inventors examined a method for further increasing the {200} plane integration degree of the α-Fe phase based on the method for increasing the {100} plane integration degree by heat treatment in a magnetic field as disclosed in the above-mentioned prior art. did. As a result, there is a limit to the improvement of the degree of integration only by the application of a magnetic field, and in order to further increase the texture of the whole plate with an increased degree of integration of {100} planes formed by recovery / recrystallization in the magnetic field, We found that it was necessary to combine with other means.

そしてさらに検討した結果、磁場中熱処理によって{100}面の集積度を高めた鉄板をA点以上の温度に加熱し、表面からFe以外の異種金属を鉄板内に拡散させて合金化させ、その後冷却すると、鉄板の{200}面集積度が高くなることを見出した。
そのような検討の結果なされた本発明の要旨は、以下のとおりである。
Then further studies as a result, the steel plate with increased {100} plane of the integration by the heat treatment in a magnetic field and heated to a temperature of more than three points A, different metals other than Fe from the surface was alloyed by diffusion into the iron plate, It discovered that the {200} plane integration degree of an iron plate became high when it cooled after that.
The gist of the present invention as a result of such examination is as follows.

(1)高い{200}面集積度を有するFe系金属板を製造する方法であって、
(a)α−γ変態成分系のFe系金属よりなり、加工組織を有する母材金属板を準備する工程と、
(a2)準備した母材金属板の片面あるいは両面にフェライト生成元素を付着する工程と、
(b)フェライト生成元素の付着した母材金属板を、キューリー温度以下では磁場を印加させながら母材のA点まで加熱し、母材金属板内の一部または全体にフェライト生成元素を拡散させ、合金化させる工程と、
(c)母材金属板をA点以上1300℃以下の温度に加熱、保持して、フェライト生成元素の拡散によって合金化されたα−Fe相の{200}面集積度を増加させるとともに{222}面集積度を低下させる工程と、
(d)母材金属板をA点未満の温度へ冷却し、合金化していない領域のγ−Fe相がα−Fe相へ変態する際に、該領域の{200}面集積度が30%以上99%以下となり、かつ、{222}面集積度が0.01%以上30%以下となるようにする工程
とを有することを特徴とする高い{200}面集積度を有するFe系金属板の製造方法。
(1) A method for producing an Fe-based metal plate having a high degree of {200} plane integration,
(A 1 ) a step of preparing a base metal plate made of an α-γ transformation component Fe-based metal and having a processed structure ;
(A2) attaching a ferrite-forming element to one side or both sides of the prepared base metal plate;
(B) the attached base metal plate ferrite forming element, and heated to 3 A base material while applying a magnetic field at the Curie temperature or less, the diffusion of ferrite forming elements in a part or all of the base metal plate And alloying step,
(C) The base metal plate is heated and held at a temperature of A 3 or higher and 1300 ° C. or lower to increase the {200} plane integration degree of the α-Fe phase alloyed by the diffusion of the ferrite-forming elements { 222} reducing the degree of surface integration;
(D) the base metal plate is cooled to a temperature of A less than 3 points, when the gamma-Fe phase in the region not alloyed is transformed to alpha-Fe phase, the region {200} plane integration of 30 % Of the Fe-based metal having a high {200} plane integration characterized by having a step of adjusting the {222} plane integration degree to 0.01% or more and 30% or less. A manufacturing method of a board.

(2)前記(1)に記載のFe系金属板を製造する方法において、前記(a2)、(b)の工程に代えて、次の
(e)準備した母材金属板に磁場を印加させながら前記Fe系金属のキューリー温度(℃)±50℃の温度まで加熱する熱処理を行う工程と、
(f)該熱処理後の母材金属板の片面あるいは両面にフェライト生成元素を付着する工程と、
(g)フェライト生成元素の付着した金属板を母材のA点まで加熱して、母材金属板内の一部または全体にフェライト生成元素を拡散させ、合金化させる工
を有することを特徴とする高い{200}面集積度を有するFe系金属板の製造方法。
(2) In the method for producing an Fe-based metal plate according to (1), instead of the steps (a2) and (b) , a magnetic field is applied to the prepared base metal plate (e) While performing a heat treatment to heat the Fe-based metal to a Curie temperature (° C.) ± 50 ° C.,
(F) attaching a ferrite-forming element to one or both surfaces of the base metal plate after the heat treatment;
The deposited metal plate (g) ferrite forming element and heated to 3 A base material, some or all of the base metal plate to diffuse the ferrite forming elements, as engineering for alloying
Method of manufacturing a Fe-based metal plate having a high {200} plane integration characterized by having and.

(3) 前記母材金属板に、磁束密度で0.01T以上の磁場を圧延方向と垂直に印加することを特徴とする前記(1)または(2)に記載の高い{200}面集積度を有するFe系金属板の製造方法。
(4) 前記母材金属板に、磁束密度で0.01T以上の磁場を圧延方向と垂直に印加するとともに、磁束密度で0.2T以上の磁場を圧延方向と平行に印加することを特徴とする前記(1)または(2)に記載の高い{200}面集積度を有するFe系金属板の製造方法。
(3) A high {200} plane integration degree according to (1) or (2), wherein a magnetic field having a magnetic flux density of 0.01 T or more is applied to the base metal plate perpendicularly to the rolling direction. The manufacturing method of the Fe-type metal plate which has this.
(4) A magnetic field having a magnetic flux density of 0.01 T or more is applied to the base metal plate perpendicular to the rolling direction, and a magnetic flux density of 0.2 T or more is applied in parallel to the rolling direction. The manufacturing method of the Fe-type metal plate which has the high {200} plane integration degree as described in said (1) or (2).

本発明によれば、圧延面内あるいは圧延面内とそれに垂直な面内の両方に、α−Feの{200}面が高集積化したFe系金属板を、従来のように長時間の熱処理を必要とせずに製造することができる。また、得られるFe系金属板は、<100>軸が圧延面内やそれに垂直な面内に集積しているため、同じ磁界を印加された場合により高い磁束密度が得られる。
さらに、少なくとも表層部に電気抵抗を増加する異種金属の拡散層を有するFe系金属板が得られるため、高周波鉄損の低減にも大きな効果が期待される。
According to the present invention, an Fe-based metal plate in which {200} planes of α-Fe are highly integrated in a rolling surface or both in a rolling surface and a surface perpendicular thereto is heat-treated for a long time as in the prior art. Can be produced without the need for Further, since the obtained Fe-based metal plate has the <100> axis accumulated in the rolling plane or a plane perpendicular thereto, a higher magnetic flux density can be obtained when the same magnetic field is applied.
Furthermore, since an Fe-based metal plate having a diffusion layer of a dissimilar metal that increases the electrical resistance at least in the surface layer portion is obtained, a great effect is expected in reducing high-frequency iron loss.

{200}面集積度を高めたFe系金属板を得るための過程を説明する図である。It is a figure explaining the process for obtaining the Fe-type metal plate which raised {200} plane integration degree. {200}面集積度を高めたFe系金属板の形態を説明する図である。It is a figure explaining the form of the Fe-type metal plate which raised {200} plane integration degree.

本発明は、高い{200}面集積度を有するFe系金属板の製造方法として、少なくとも金属板の表層部に{100}集合組織が形成させられるようにし、表面からこの領域の一部または全部にフェライト生成元素を加熱拡散させて、冷却時にFe系金属板全体の{200}集合組織の集積度をさらに高めるようにする。   In the present invention, as a method for producing an Fe-based metal plate having a high {200} plane integration degree, a {100} texture is formed at least on the surface layer portion of the metal plate, and a part or all of this region from the surface. Then, the ferrite-forming elements are diffused by heating to further increase the degree of {200} texture accumulation of the entire Fe-based metal plate during cooling.

このような本発明は、本発明者らが、表面に形成された集合組織における{100}結晶粒は、フェライト形成元素の拡散のための加熱過程のA点以上において優先的に粒成長することを見出したこと、さらには、フェライト形成元素を内部に拡散合金化させた後冷却すると、Fe系金属板の板面の{200}面集積度が高くなることを見出したことに基づいている。 Such invention, the present inventors have, {100} crystal grains in the formed texture on the surface, the grain growth preferentially in more than three points A heating process for the diffusion of the ferrite forming elements Furthermore, it is based on the fact that the {200} plane integration degree of the plate surface of the Fe-based metal plate is increased when the ferrite-forming element is formed into a diffusion alloy and then cooled. .

本発明の基本原理の説明
まず、高い{200}面集積度が得られる本発明の基本原理を、図1に基づいて説明する。
Description of the Basic Principle of the Present Invention First, the basic principle of the present invention that provides a high {200} plane integration degree will be described with reference to FIG.

(a)母材金属板の準備
α−γ変態成分系のFe系金属よりなり、圧延した状態の加工組織を有する母材金属板を準備し、その金属板の片面あるいは両面に、フェライト形成元素を蒸着法などを利用して付着させる。(図1−aの状態参照)
以下、母材金属板として純鉄板を、フェライト形成元素としてAlを用いた場合を例に説明する。
(b)集合組織の種付け、芽の形成
フェライト生成元素としてAlの付着した母材純鉄板を、母材のA点まで加熱して再結晶させるとともに、純鉄板内の一部または全体にAlを拡散させ母材に合金化させる。その際、キューリー温度以下の温度では、圧延方向と垂直に磁場を印加しながら加熱する。
加熱の昇温過程の回復あるいは再結晶初期の段階で磁場を印加することによって、純鉄板の表層部もしくは板厚方向全体に、磁場印可方向と垂直(圧延方向と平行)に{100}集合組織が形成される。(図1−b1の状態参照)
また、Alが拡散して合金化した領域ではα単相成分となり、その領域ではγ相からα相に変態していく。その際、回復再結晶の過程で形成された{100}集合組織の配向を引き継いで変態するため、合金化した領域でも{100}に配向した組織が形成される。
(A) Preparation of base metal plate A base metal plate made of an α-γ transformation component Fe-based metal and having a rolled microstructure is prepared, and a ferrite-forming element is formed on one or both sides of the metal plate. Is deposited by vapor deposition. (See the state in Fig. 1-a)
Hereinafter, a case where a pure iron plate is used as a base metal plate and Al is used as a ferrite forming element will be described as an example.
(B) Texture seeding and bud formation A base metal pure iron plate with Al adhering as a ferrite-forming element is recrystallized by heating to A 3 point of the base material, and a part or the whole of the pure iron plate is made of Al. Is diffused and alloyed with the base material. At that time, heating is performed while applying a magnetic field perpendicular to the rolling direction at a temperature equal to or lower than the Curie temperature.
By applying a magnetic field at the recovery stage of heating or at the initial stage of recrystallization, the {100} texture is perpendicular to the magnetic field application direction (parallel to the rolling direction) in the entire surface layer or thickness direction of the pure iron plate. Is formed. (Refer to the state of Fig. 1-b1)
Further, in the region where Al is diffused and alloyed, an α single-phase component is formed, and in that region, the γ phase is transformed to the α phase. At that time, since the transformation takes place with the orientation of the {100} texture formed in the process of recovery recrystallization, a {100} oriented structure is formed even in the alloyed region.

(c)集合組織の保存、高集積化
純鉄板をさらにA点以上1300℃以下の温度に加熱、保持する。
α単相成分の領域は、γ変態しないα−Fe相であるために、{100}結晶粒はそのまま保存され、その領域の中で{100}粒が優先成長して{200}面集積度が増加する。また、α単相成分でない領域はα相からγ相に変態する。
保持時間を長くすると、{100}結晶粒は粒の食い合いによって優先的に粒成長する。この結果、{200}面集積度はさらに増加する。また、Alの拡散に伴い、Fe−Al合金化した領域ではγ相からα相に変態していく。その際、変態する領域に隣接する領域ではすでに{100}に配向したα粒となっており、γ相からα相に変態する際に、隣接するα粒の結晶方位を引き継ぐかたちで変態する。これらにより、保持時間が長くなるとともに{200}面集積度がさらに増加する。(図1−cの状態参照)
Saving (c) texture, high integration pure iron further heated to a temperature of 1300 ° C. or less than three points A, hold.
Since the region of the α single phase component is an α-Fe phase that does not undergo γ transformation, {100} grains are preserved as they are, and {100} grains preferentially grow in the region, and the {200} plane integration degree Will increase. Further, the region that is not the α single phase component is transformed from the α phase to the γ phase.
When the holding time is lengthened, {100} grains grow preferentially due to grain engagement. As a result, the {200} plane integration degree further increases. In addition, with the diffusion of Al, the region transformed into an Fe—Al alloy transforms from the γ phase to the α phase. At that time, α grains already oriented in {100} are formed in the region adjacent to the region to be transformed, and when transforming from the γ phase to the α phase, the transformation takes place in the form of taking over the crystal orientation of the adjacent α grains. As a result, the holding time becomes longer and the {200} plane integration degree further increases. (See the state in Fig. 1-c)

(d)集合組織の成長
純鉄板をA点未満の温度へ冷却する。この時、合金化していない内部の領域のγ−Fe相は、α−Fe相へ変態する。この内部の領域は、A点以上の温度域において既に{100}に配向したα粒となっている領域に隣接しており、γ相からα相に変態する際に、隣接するα粒の結晶方位を引き継いで変態する。このため、その領域でも{200}面集積度が増加する。
この現象によって、合金化していない領域でも高い{200}面集積度が得られるようになる。
前の(c)の段階で、板全体にわたり合金化されるまでA点以上で保持された場合には、板全体にわたりすでに高い{200}面集積度の組織が形成されているので、冷却開始時の状態を保持したまま冷却される。
(D) the growth of pure iron texture cooled to a temperature of A less than 3 points. At this time, the γ-Fe phase in the non-alloyed inner region is transformed into the α-Fe phase. This internal region is adjacent to the region which is oriented α grains and already {100} in a temperature range of more than three points A, when transformed into α phase from γ phase, of the adjacent α grains It takes over the crystal orientation and transforms. For this reason, the {200} plane integration degree also increases in that region.
By this phenomenon, a high {200} plane integration degree can be obtained even in a non-alloyed region.
In the previous stage (c), when the A3 is held at 3 points or more until the entire plate is alloyed, a structure with a high {200} plane integration degree is already formed over the entire plate. Cooling while maintaining the initial state.

この例では、フェライト形成元素を母材に先に付着させてから、加熱処理を行ったが、まず、(e)前記の母材の純鉄板に磁場を印加させながら鉄のキューリー 温度±50℃温度までに加熱する熱処理工程を行い、次いで、(f)該熱処理後の純鉄板の片面あるいは両面にAlを付着した後に、(g)Alの付着した純鉄板を、母材のA 点まで加熱して、純鉄板の一部または全体にAlを拡散させ母材に合金化させ、その後、上記(c)、(d)の段階を行うようにしてもよい。
In this example, the ferrite forming element was first attached to the base material and then the heat treatment was performed. First, (e) the Curie temperature of iron ± 50 ° C. while applying a magnetic field to the pure iron plate of the base material. performing heat treatment step of heating up to temperature and then, (f) on one side or both sides of the net iron plate after heat treatment after attaching the Al, (g) a pure iron plate adhering of Al, a 3 of the base material Tenma May be heated to cause Al to diffuse into a part or the whole of the pure iron plate to be alloyed with the base material, and then the steps (c) and (d) may be performed.

また、磁場を母材金属板の圧延方向と垂直な方向に印加したが、垂直な方向に加えさらに圧延方向と平行な方向に印加してもよい(図1−b2の状態参照)。
圧延方向と平行な方向に磁場を印加することにより、フェライト生成元素を拡散させて、冷却した後に圧延方向と垂直な面方向にも{100}集合組織を形成することができるので、圧延方向と平行な方向及び垂直な方向の2方向に{100}集合組織を形成することができる。
Moreover, although the magnetic field was applied in the direction perpendicular to the rolling direction of the base metal sheet, it may be applied in a direction parallel to the rolling direction in addition to the perpendicular direction (see the state of FIG. 1-b2).
By applying a magnetic field in a direction parallel to the rolling direction, the ferrite-forming element is diffused, and after cooling, a {100} texture can be formed also in the plane direction perpendicular to the rolling direction. {100} textures can be formed in two directions, a parallel direction and a vertical direction.

以上、本発明の基本的な原理について説明したが、さらに、本発明の製造方法を規定する個々の条件の限定理由及び本発明を実施するに当たり好ましい条件について説明する。なお、以下の記載において、元素の含有量の%は質量%を意味するものとする。   Although the basic principle of the present invention has been described above, the reasons for limiting the individual conditions that define the production method of the present invention and the preferable conditions for carrying out the present invention will be further described. In the following description,% of the element content means mass%.

母材となるFe系金属板
(Fe系金属の基本的要件)
本発明では、まず、加工組織を有するFe系金属よりなる母材金属板の表層部あるいは板内に、{200}面集積度を高めるための芽となる{100}に配向した結晶粒を形成し、ついで、最終的には、その芽となるα粒の結晶方位を引き継ぐ形で板内にγ−α変態を進行させて、板全体の{200}面集積度を高める。
このため、母材金属板に用いるFe系金属は、加工組織を有し、α−γ変態成分系の組成を有する必要がある。母材金属板に用いるFe系金属が、加工組織を有しておれば、加熱によって回復・再結晶する際に磁場の作用により{100}に配向した集合組織の芽を形成することができ、また、α−γ変態系の成分であれば、フェライト形成元素を板内に拡散合金化することによって、α単相系成分の領域を形成することができる。
なお、α−γ変態系は、例えば、約600℃〜1000℃の範囲内にA点を有し、A点未満ではα相が体積比率で50%を超える主相となり、A点以上ではγ相が主相となる成分系である。
Fe-based metal plate as a base material (basic requirements for Fe-based metals)
In the present invention, first, {100} -oriented crystal grains that form buds for increasing the degree of {200} plane integration are formed in a surface layer portion or a plate of a base metal plate made of Fe-based metal having a processed structure. Then, finally, the γ-α transformation is advanced in the plate in such a way as to inherit the crystal orientation of the α grains serving as the buds, thereby increasing the {200} plane integration degree of the entire plate.
For this reason, the Fe-based metal used for the base metal plate needs to have a processed structure and an α-γ transformation component system composition. If the Fe-based metal used for the base metal plate has a processed structure, it can form {100} -oriented textured buds by the action of a magnetic field when recovered and recrystallized by heating, In addition, in the case of an α-γ transformation component, an α single-phase component region can be formed by forming a ferrite-forming element into a diffusion alloy in the plate.
Note that the α-γ transformation system has, for example, A 3 points in a range of about 600 ° C. to 1000 ° C., and if it is less than A 3 points, the α phase becomes a main phase exceeding 50% by volume, and A 3 points. The above is a component system in which the γ phase is the main phase.

(母材金属板の組成)
本発明は、原理的に、α−γ変態系の成分を有するFe系金属に適用可能であるので、特定の組成範囲のFe系金属に限定されるものではない。
α−γ変態系の成分代表的なものとして、純鉄(工業的に生産される比較的純度の高い鉄であって、純度が99.9%以上のものも含むものとする。)や普通鋼などの鋼が例示される。
例えば、C:1ppm〜0.2%、残部Fe及び不可避不純物よりなる純鉄や鋼を基本とし、適宜、添加元素を含有させたものである。
その他、C:0.1%以下、Si:0.1〜2.5%を基本成分とするα−γ変態系成分のケイ素鋼でもよい。
また、その他の不純物としては、微量のMn、Ni、Cr、Al、Mo、W、V、Ti、Nb、B、Cu、Co、Zr、Y、Hf、La、Ce、N、O、P、Sなどが含まれる。
(Composition of base metal plate)
In principle, the present invention is applicable to an Fe-based metal having an α-γ transformation component, and is not limited to an Fe-based metal having a specific composition range.
Typical components of the α-γ transformation system include pure iron (including industrially produced relatively high-purity iron having a purity of 99.9% or more), ordinary steel, and the like. This steel is exemplified.
For example, pure iron or steel consisting of C: 1 ppm to 0.2%, the balance Fe and unavoidable impurities is used as a base, and additional elements are appropriately contained.
In addition, silicon steel of α-γ transformation system component having C: 0.1% or less and Si: 0.1-2.5% as basic components may be used.
Other impurities include trace amounts of Mn, Ni, Cr, Al, Mo, W, V, Ti, Nb, B, Cu, Co, Zr, Y, Hf, La, Ce, N, O, P, S and the like are included.

(加工組織の形成)
母材金属板の加工組織は、圧延など常法にしたがって形成すればよい。例えば、α−γ変態成分系の組成を有するFe系金属よりなる鋳片(スラブ)から熱間圧延した素材金属板、あるいは熱間圧延後さらに冷間圧延した素材金属板を用い、その金属板に最終的に冷間圧延を施して加工組織を残留させればよい。その場合の冷延率は40%以上が好ましい。冷延率がその値未満では、{200}に配向した集合組織の芽を十分に形成できない。
(Formation of processed structure)
What is necessary is just to form the process structure of a base metal plate in accordance with a conventional method, such as rolling. For example, a material metal plate hot-rolled from a slab made of Fe-based metal having a composition of α-γ transformation component system, or a material metal plate cold-rolled after hot rolling, and the metal plate Finally, cold rolling may be performed to leave the processed structure. In that case, the cold rolling rate is preferably 40% or more. If the cold rolling rate is less than that value, the textured buds oriented in {200} cannot be sufficiently formed.

(母材金属板の厚み)
母材金属板の厚みは、10μm以上、5mm以下とする。厚みが10μm未満であると、積層させて磁心として使用する際に、積層枚数が増加して隙間が多くなり高い磁束密度が得られない。また、厚みが5mm超であると、拡散処理後の冷却後に{100}集合組織を十分に成長させられず、高い磁束密度が得られない。
(Thickness of base metal plate)
The thickness of the base metal plate is 10 μm or more and 5 mm or less. When the thickness is less than 10 μm, the number of stacked layers increases when the layers are used as a magnetic core, resulting in an increase in gaps and a high magnetic flux density cannot be obtained. If the thickness exceeds 5 mm, the {100} texture cannot be sufficiently grown after cooling after the diffusion treatment, and a high magnetic flux density cannot be obtained.

異種金属
(異種金属の種類)
上記母材金属板に、Fe以外の異種金属を拡散させ、鋼板厚み方向へ{100}化領域を増加させる。用いられる異種金属としては、フェライト生成元素が選ばれる。
そのために、α−γ変態系成分のFe系金属よりなる母材金属板の片面あるいは両面に異種金属を第二層として層状に付着させ、その元素が拡散して合金化した領域をα単相系の成分にして、α相に変態した領域以外にも、板内の{200}面集積度を高めるための{100}配向の芽として保存できるようにする。
そのようなフェライト形成元素として、Al、Cr、Ga、Ge、Mo、Sb、Si、Sn、Ti、V、W、Znの少なくとも1種を単独であるいは組み合わせて使用できる。
Dissimilar metals (types of dissimilar metals)
Dissimilar metals other than Fe are diffused in the base metal plate to increase the {100} region in the thickness direction of the steel plate. A ferrite-forming element is selected as the dissimilar metal used.
For this purpose, a heterogeneous metal is deposited as a second layer on one or both sides of a base metal plate made of an Fe-based metal as an α-γ transformation component, and the region in which the element diffuses and forms an alloy is formed in an α single phase. As a system component, in addition to the region transformed into the α phase, it can be stored as {100} oriented buds for increasing the {200} plane integration degree in the plate.
As such a ferrite forming element, at least one of Al, Cr, Ga, Ge, Mo, Sb, Si, Sn, Ti, V, W, and Zn can be used alone or in combination.

(異種金属の付着方法)
異種金属を層状で母材金属板の表面に付着させる方法としては、溶融めっきや電解めっきなどのめっき法、圧延クラッド法、PVDやCVDなどのドライプロセス、さらには粉末塗布など種々の方法を採用することができる。工業的に実施するための効率的に異種金属を付着させる方法としては、めっき法あるいは圧延クラッド法が適している。
異種金属の加熱前の付着厚みは、0.05μm以上、1000μm以下であることが望ましい。厚みが0.05μm未満では十分な{200}面集積度を得ることができない。また、1000μm超であると、異種金属を表面に残留させる場合でもその厚みが必要以上に厚くなる。
(Different metal adhesion method)
Various methods such as plating methods such as hot dipping and electrolytic plating, rolling clad methods, dry processes such as PVD and CVD, and powder coating are used as the method for adhering different types of metal to the surface of the base metal plate in layers. can do. A plating method or a rolling clad method is suitable as a method for depositing dissimilar metals efficiently for industrial implementation.
The adhesion thickness of the dissimilar metal before heating is desirably 0.05 μm or more and 1000 μm or less. If the thickness is less than 0.05 μm, a sufficient {200} plane integration degree cannot be obtained. Further, if it exceeds 1000 μm, the thickness becomes thicker than necessary even when the dissimilar metal remains on the surface.

磁場の印加・熱処理条件
(磁場の印加時期)
本発明では、先に説明したように、冷延後の加工組織を有するFe系金属板を熱処理して、昇温過程の回復あるいは再結晶初期の段階で磁場を印加することによって、Fe系金属板の表層部もしく板厚方向全体に、磁場印加方向に対して垂直方向に{100}集合組織を形成し、{100}集合組織の形成と同時に、あるいは{100}集合組織を形成した後に、表面から{100}集合組織を形成した領域の一部または全部に異種金属を拡散させて、冷却時にFe系金属板全体を{100}化させる。
したがって、磁場を印加して熱処理する工程は、異種金属をFe系金属板に付着させる前に単独で行ってもよいし、先に異種金属を付着させた金属板を加熱して異種金属を拡散させる際の昇温過程で行ってもよい。どちらで行っても同じ効果が得られる。
Magnetic field application and heat treatment conditions (magnetic field application time)
In the present invention, as described above, an Fe-based metal plate having a processed structure after cold rolling is heat-treated, and a magnetic field is applied at the stage of recovery of the heating process or at the initial stage of recrystallization. A {100} texture is formed in a direction perpendicular to the magnetic field application direction in the entire surface layer portion or thickness direction of the plate, and simultaneously with the formation of the {100} texture or after the {100} texture is formed Then, the dissimilar metal is diffused into a part or all of the region where the {100} texture is formed from the surface, and the entire Fe-based metal plate is converted to {100} during cooling.
Therefore, the step of applying a magnetic field and performing the heat treatment may be performed independently before attaching the dissimilar metal to the Fe-based metal plate, or the metal plate to which the dissimilar metal is first attached is heated to diffuse the dissimilar metal. You may carry out in the temperature rising process at the time of making. Either way, the same effect can be obtained.

(磁場を印加する際の加熱条件)
磁場を印加する温度範囲は、キューリー温度より高い温度ではFe系金属板が磁化しないため結晶配向の効果が得られないので、キューリー温度(純鉄で770℃)まででよいが、キューリー温度を超えて磁場を印加しても特に問題はない。また、200℃以下では回復や再結晶が起こりにくく、磁場を印加する効果がないので、200℃以上で磁場を印加するのがよい。異種金属の拡散より先に単独で行う場合には、200℃〜(母材のキューリー温度±50)℃の温度範囲で行うのがよい。
加熱時の昇温速度は、0.1℃/sec以上500℃/sec以下であるのが好ましい。この範囲の昇温速度において{200}面配向の芽が効率的に形成される。
(Heating conditions when applying a magnetic field)
The temperature range for applying the magnetic field may be up to the Curie temperature (770 ° C for pure iron) because the effect of crystal orientation cannot be obtained because the Fe-based metal plate is not magnetized at a temperature higher than the Curie temperature. Even if a magnetic field is applied, there is no particular problem. Moreover, since recovery and recrystallization hardly occur at 200 ° C. or less and there is no effect of applying a magnetic field, it is preferable to apply a magnetic field at 200 ° C. or more. When it is carried out independently prior to the diffusion of the different metal, it is preferably carried out in a temperature range of 200 ° C. to (base material Curie temperature ± 50) ° C.
The heating rate during heating is preferably 0.1 ° C./sec or more and 500 ° C./sec or less. {200} plane oriented buds are efficiently formed at a temperature rising rate within this range.

(磁場の印加方法と強さ)
磁場は、冷間圧延されたFe系金属板に対して、キューリー温度以下の温度範囲で、冷間圧延方向と垂直な方向(板厚方向)に印加する。あるいは、垂直な方向に加えてさらに圧延方向と平行な方向(板の長尺方向)に印加する。
この磁場の作用によって、冷間圧延されたFe系金属板が回復あるいは再結晶する時に、Fe系金属板に{100}方位に配向した集合組織が形成される。
磁場を冷間圧延方向と垂直な方向(板厚方向)に印加した場合は、板面に平行な方向に{100}方位に配向した集合組織が形成され、磁場を冷間圧延方向と平行な方向(板の長尺方向)に印加した場合は、板面に垂直な方向に{100}方位に配向した集合組織が形成される。このため、磁場を両方の方向に印加した場合は、板面に平行な方向と板面の垂直な方向の2方向に{100}方位に配向した集合組織が形成される。
(Magnetic field application method and strength)
The magnetic field is applied to the cold-rolled Fe-based metal plate in a direction (plate thickness direction) perpendicular to the cold rolling direction in a temperature range equal to or lower than the Curie temperature. Alternatively, in addition to the vertical direction, it is further applied in a direction parallel to the rolling direction (long plate direction).
By the action of this magnetic field, when the cold-rolled Fe-based metal plate recovers or recrystallizes, a texture oriented in the {100} direction is formed on the Fe-based metal plate.
When a magnetic field is applied in a direction perpendicular to the cold rolling direction (sheet thickness direction), a texture oriented in the {100} direction is formed in a direction parallel to the plate surface, and the magnetic field is parallel to the cold rolling direction. When applied in the direction (long direction of the plate), a texture oriented in the {100} direction in the direction perpendicular to the plate surface is formed. For this reason, when a magnetic field is applied in both directions, a texture oriented in the {100} direction is formed in two directions, a direction parallel to the plate surface and a direction perpendicular to the plate surface.

このような集合組織が形成される詳細なメカニズムは明らかではないが、回復あるいは再結晶の際に、冷延時の蓄積エネルギーに加えて、磁場のエネルギーを駆動力として、結晶回転もしくは結晶化することが考えられる。磁場の作用として、磁場を印加した方向と磁化容易方向が平行になるような優先方位をもつ結晶回転もしくは結晶化される。Fe系金属板では、磁化容易軸が<100>であるために、磁場印加方向と垂直な面が{100}になる傾向を示す。
その結果、圧延方向と垂直な方向に磁場を印加すると、圧延方向と平行に{100}集合組織が形成され、圧延方向と平行な方向に磁場を印加すると、圧延方向と垂直に{100}集合組織が形成されるものと考えられる。
Although the detailed mechanism by which such a texture is formed is not clear, during recovery or recrystallization, in addition to the energy stored during cold rolling, the energy of the magnetic field is used as the driving force to rotate or crystallize the crystal. Can be considered. As an action of the magnetic field, the crystal is rotated or crystallized with a preferential orientation such that the direction in which the magnetic field is applied and the direction of easy magnetization are parallel. In the Fe-based metal plate, since the easy axis of magnetization is <100>, the surface perpendicular to the magnetic field application direction tends to be {100}.
As a result, when a magnetic field is applied in a direction perpendicular to the rolling direction, a {100} texture is formed parallel to the rolling direction, and when a magnetic field is applied in a direction parallel to the rolling direction, {100} assembly is perpendicular to the rolling direction. An organization is considered to be formed.

磁場を形成するために印可する磁界は静磁界でも交番磁界でもよい。磁界を加える方法としては、よく知られている通常の方法を使用すればよい。圧延方向と垂直に磁場を印可するには、母材金属板の各圧延面に対向させて磁石を配置する方法などがあり、圧延方向と平行に磁場を印可するには、直流もしくは交流電流を流したコイル中に母材金属板を配置する方法などがある。
印加する磁場の強さは、磁場を圧延方向と垂直に印加する場合は、磁束密度で0.01T以上、10T以下が好ましい。0.01T未満では{200}面集積度を20%以上とすることが困難であり。10T以上では効果が飽和する。
また、磁場を圧延方向と平行に印加する場合は、同様な理由により磁束密度で0.2T以上、10T以下が好ましい。
The magnetic field applied to form the magnetic field may be a static magnetic field or an alternating magnetic field. As a method for applying the magnetic field, a well-known ordinary method may be used. In order to apply a magnetic field perpendicular to the rolling direction, there is a method of arranging a magnet so as to face each rolling surface of the base metal plate. To apply a magnetic field parallel to the rolling direction, a direct current or an alternating current is applied. There is a method of arranging a base metal plate in a flowed coil.
The strength of the magnetic field to be applied is preferably 0.01 T or more and 10 T or less in terms of magnetic flux density when the magnetic field is applied perpendicular to the rolling direction. If it is less than 0.01T, it is difficult to make the {200} plane integration degree 20% or more. Above 10T, the effect is saturated.
Moreover, when applying a magnetic field in parallel with a rolling direction, 0.2T or more and 10T or less are preferable at a magnetic flux density for the same reason.

({200}面集積度)
以上のような条件で磁場を印加することにより、母材金属板の一部あるいは全体の領域に、圧延方向の{200}面集積度を高めた領域、あるいは、板厚方向及び圧延方向の2方向の{200}面集積度を高めた領域を形成する。その領域における{200}面集積度は、20%以上60%以下が好ましい。その集積度が20%未満では拡散熱処理後に{200}面集積度を30%以上とすることが困難であり、60%超では加熱拡散熱処理後に磁気特性は飽和する。
({200} surface integration degree)
By applying a magnetic field under the conditions as described above, a region in which the {200} plane integration degree in the rolling direction is increased or 2 in the plate thickness direction and the rolling direction are applied to a part or the entire region of the base metal plate. A region having an increased degree of {200} plane integration in the direction is formed. The {200} plane integration degree in the region is preferably 20% or more and 60% or less. If the degree of integration is less than 20%, it is difficult to make the {200} plane integration degree 30% or more after diffusion heat treatment, and if it exceeds 60%, the magnetic properties are saturated after heat diffusion heat treatment.

なお、上記方位面の面集積度の測定は、MoKα線によるX線回折で行うことができる。
詳細に述べると、各試料について、試料表面に対して平行なα−Fe結晶の11ある方位面({110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442})の積分強度を測定し、その測定値それぞれを、ランダム方位である試料の理論積分強度で除した後、{110}あるいは{222}強度の比率を百分率で求める。
In addition, the measurement of the plane integration degree of the azimuth plane can be performed by X-ray diffraction using MoKα rays.
More specifically, for each sample, there are 11 orientation planes ({110}, {200}, {211}, {310}, {222}, {321}, which are 11 α-Fe crystals parallel to the sample surface. {411}, {420}, {332}, {521}, {442}) are measured, and each measured value is divided by the theoretical integrated strength of a sample in a random orientation, and then {110} Alternatively, the {222} strength ratio is obtained as a percentage.

その際、例えば、{110}強度比率では、以下の式(I)で表される。
{200}面集積度=[{i(110)/I(110)}/Σ{i(hkl)/I(hkl)}]×100 ・・・ (I)
ただし、記号は以下のとおりである。
i(hkl): 測定した試料における{hkl}面の実測積分強度
I(hkl): ランダム方位をもつ試料における{hkl}面の理論積分強度
Σ: α−Fe結晶の11の方位面についての和
ここで、ランダム方位を持つ試料の積分強度は、試料を用意して実測して求めてもよい。
In that case, for example, {110} intensity ratio is expressed by the following formula (I).
{200} plane integration degree = [{i (110) / I (110)} / Σ {i (hkl) / I (hkl)}] × 100 (I)
However, the symbols are as follows.
i (hkl): Measured integrated intensity of {hkl} plane in the measured sample I (hkl): Theoretical integrated intensity of {hkl} plane in the sample with random orientation Σ: Sum of 11 orientation planes of α-Fe crystal Here, the integrated intensity of a sample having a random orientation may be obtained by preparing a sample and actually measuring it.

加熱拡散処理
本発明では、異種金属としてフェライト生成元素、例えばAlを付着させた母材金属板を、母材金属板のA点(例えば、純鉄では910℃)まで加熱して、母材金属板に形成された{100}集合組織の領域の一部または全体にAlを拡散させ、母材に合金化させる。
以下、磁場を板厚方向に印加して、圧延方向に{100}集合組織が形成される母材金属板を用いた場合を例に、異種金属が拡散するときの変化の様子を説明するが、磁場を板厚方向と圧延方向に印加して、圧延方向と板厚方向の2方向に{100}集合組織が形成される母材金属板を用いた場合でも変化の様子は基本的に同様である。
The heat diffusion treatment present invention, the ferrite forming elements as dissimilar metals, for example is allowed and the base metal plate attached to Al, A 3-point of the base metal plate (e.g., a pure iron 910 ° C.) was heated to, preform Al is diffused into a part or the whole of the {100} texture region formed on the metal plate and alloyed with the base material.
Hereinafter, an example of a case where a base metal plate in which a {100} texture is formed in the rolling direction by applying a magnetic field in the plate thickness direction will be described in terms of changes when dissimilar metals diffuse. Even when a base metal plate in which {100} texture is formed in two directions of the rolling direction and the plate thickness direction by applying a magnetic field in the plate thickness direction and the rolling direction is basically the same. It is.

Alを合金化した領域ではα単相成分となり、その領域ではγ相からα相に変態していく。先に、{100}集合組織が形成されている母材金属板を用いた場合には、γ相からα相に変態する際に、すでに形成された{100}集合組織の配向を引き継いで変態するため、合金化した領域でも{100}に配向した組織が形成される。
この結果、合金化された領域では、α−Fe相の{200}面集積度が25%以上99%以下となり、それに応じて{222}面集積度が0.1%以上40%以下となった組織が形成される。
In the region where Al is alloyed, an α single-phase component is formed, and in that region, the γ phase is transformed into the α phase. First, when a base metal plate having a {100} texture is used, the transformation is carried out by taking over the orientation of the already formed {100} texture when transforming from the γ phase to the α phase. Therefore, a structure oriented in {100} is formed even in the alloyed region.
As a result, in the alloyed region, the {200} plane integration degree of the α-Fe phase is 25% or more and 99% or less, and the {222} plane integration degree is 0.1% or more and 40% or less accordingly. Tissue is formed.

また、{100}集合組織が形成されていない母材金属板を用いた場合には、加熱拡散工程の昇温過程で、前記のように磁場を印加する。それにより、温度の上昇とともに、{100}に配向した結晶粒が形成される。また、その際にAlの拡散も同時に起こり、γ相からα相に変態する際に、{100}集合組織の配向を引き継いで変態するため、合金化した領域でも{100}に配向した組織が形成される。   In addition, when a base metal plate on which a {100} texture is not formed is used, a magnetic field is applied as described above in the heating process of the heating diffusion process. Thereby, as the temperature rises, crystal grains oriented in {100} are formed. In addition, Al diffusion also occurs at the same time, and when the transformation from the γ phase to the α phase takes place, the transformation takes over the orientation of the {100} texture. It is formed.

母材金属板をさらにA点以上1300℃以下の温度に加熱、保持する。それによって、Fe系金属板全体の{200}面集積度が図2に示すようにさらに高まる。
加熱温度がA点を超えるとα単相成分でない領域はγ変態する。また、すでに合金化されている領域ではγ変態しないα単相の組織となっているため、{100}結晶粒はそのまま保存され、その領域の中で{100}粒が優先成長して{200}面集積度が増加する。
保持時間を長くすると、{100}結晶粒は粒の食い合いによって優先的に粒成長する。この結果、{200}面集積度はさらに増加する。また、Alの拡散に伴い、Fe−Al合金化した領域ではγ相からα相に変態していく。その際、変態する領域に隣接する領域ではすでに{100}に配向したα粒となっており、γ相からα相に変態する際に、隣接するα粒の結晶方位を引き継ぐかたちで変態する。これらにより、保持時間が長くなるとともに{200}面集積度が増加する。また、その結果として{222}面集積度は低下する(図2−aの状態)。
Base metal plate further heated to a temperature of 1300 ° C. or less than three points A, hold. Thereby, the {200} plane integration degree of the entire Fe-based metal plate is further increased as shown in FIG.
Area heating temperature is not the α single phase components exceeding three points A is transformed gamma. In addition, since it has an α single-phase structure that does not undergo γ transformation in the already alloyed region, the {100} crystal grains are preserved as they are, and {100} grains preferentially grow in that region and {200 } The degree of surface integration increases.
When the holding time is lengthened, {100} grains grow preferentially due to grain engagement. As a result, the {200} plane integration degree further increases. In addition, with the diffusion of Al, the region transformed into an Fe—Al alloy transforms from the γ phase to the α phase. At that time, α grains already oriented in {100} are formed in the region adjacent to the region to be transformed, and when transforming from the γ phase to the α phase, the transformation takes place in the form of taking over the crystal orientation of the adjacent α grains. As a result, the holding time becomes longer and the {200} plane integration degree increases. Further, as a result, the {222} plane integration degree decreases (the state shown in FIG. 2A).

なお、最終的に50%以上のより高い{200}面集積度とするためには、保持時間を調整して、この段階において、α−Fe相の{200}面集積度が30%以上で、かつ、{222}面集積度が30%以下とするのが好ましい。
また、板全体が合金化されるまでA点以上で保持された場合には、板中心部までα単相組織となり、{100}に配向した粒組織が板中心に到達する。(図2−cの状態)
In order to finally obtain a higher {200} plane integration degree of 50% or more, the holding time is adjusted, and at this stage, the {200} plane integration degree of the α-Fe phase is 30% or more. In addition, it is preferable that the {222} plane integration degree is 30% or less.
Also, if the entire sheet is held by the A 3 point or higher until the alloying becomes α single-phase structure to the plate center, grain structure oriented in the {100} reaches the plate center. (State of Fig. 2-c)

加熱拡散処理において、磁場を印加する場合、A点まで昇温する昇温速度は、0.1℃/sec以上500℃/sec以下であるのが好ましい。この範囲の昇温速度において{200}面配向の芽が効率的に形成される。また磁場を印加しない場合の昇温速度も同様である。
昇温後の保持温度は、A点以上1300℃以下とするのが好ましい。1300℃を超える温度で加熱しても磁気特性に対する効果は飽和する。また、加熱保持時間は、保持温度に到達後直ちに冷却を開始してもよい(実質的には0.01秒以上保持)、600分以下の時間で保持して冷却を開始してもよい。600分を超えて保持しても効果が飽和する。
この条件を満たすと、{200}面配向の芽の高集積化がより進行し、より確実に冷却後にα−Fe相の{200}面集積度を30%以上とすることができる。
In heat diffusion treatment, the case of applying a magnetic field, Atsushi Nobori rate of raising the temperature to 3 A is preferably not more than 0.1 ° C. / sec or higher 500 ° C. / sec. {200} plane oriented buds are efficiently formed at a temperature rising rate within this range. The same applies to the rate of temperature rise when no magnetic field is applied.
The holding temperature after the temperature rise is preferably 3 points or more and 1300 ° C. or less. Even if it is heated at a temperature exceeding 1300 ° C., the effect on the magnetic properties is saturated. The heating and holding time may start cooling immediately after reaching the holding temperature (substantially hold for 0.01 seconds or more), or may be held for 600 minutes or less to start cooling. The effect is saturated even if it is kept for more than 600 minutes.
When this condition is satisfied, the accumulation of {200} plane-oriented buds further proceeds, and the {200} plane accumulation degree of the α-Fe phase can be set to 30% or more after cooling more reliably.

加熱拡散処理後の冷却
拡散処理後、Alが合金化されていない領域が残った状態で、冷却すると、合金化していない領域では、γからαへの変態の際に、すでに{100}に配向したα粒となって領域の結晶方位を引き継ぐかたちで変態し、{200}面集積度が増加し、α−Fe相の{200}面集積度が30%以上99%以下で、かつ、{222}面集積度が0.01%以上30%以下の集合組織を有する金属板が得られる(図2−bの状態)。
また、図2−cのように、板全体が合金化されるまでA点以上で保持され、{100}に配向した粒組織が板中心に到達した場合には、そのまま冷却して{100}に配向した粒組織が板中心まで到達した集合組織を得る。(図2−dの状態)
After cooling diffusion treatment after heating diffusion treatment, when the region where Al is not alloyed remains and is cooled, the non-alloyed region is already oriented to {100} during the transformation from γ to α. Transformed to take over the crystal orientation of the region, the {200} plane integration degree is increased, the {200} plane integration degree of the α-Fe phase is 30% or more and 99% or less, and { 222} A metal plate having a texture with a surface integration degree of 0.01% or more and 30% or less is obtained (state shown in FIG. 2B).
Further, as shown in FIG. 2C, when the grain structure that is held at A 3 points or more and is oriented to {100} reaches the center of the plate until the whole plate is alloyed, it is cooled as it is and {100 }, A texture in which the grain structure oriented to the center of the plate is obtained. (State of Fig. 2-d)

これにより、異種金属が板全体に合金化され、α−Fe相の{200}面集積度が30%以上99%以下で、かつ、{222}面集積度が0.01%以上30%以下の集合組織を有する金属板が得られる。
{200}面集積度の値や母材金属板表面の異種金属の残留の状態は、A点以上の保持時間や保持温度により変化し、図2bでは、{100}に配向した粒組織が板中心までは到達せず、異種金属も表面に残留した状態にあるが、板中心まで{100}に配向した粒組織とし、表面の第二層の全部を合金化することもできる。
Thereby, the dissimilar metal is alloyed on the entire plate, the {200} plane integration degree of the α-Fe phase is 30% or more and 99% or less, and the {222} plane integration degree is 0.01% or more and 30% or less. A metal plate having the following texture is obtained.
{200} surface residual state of dissimilar metals integration values and base metal sheet surface varies by A 3 point or more holding time and holding temperature, in FIG. 2b, grain structure oriented in the {100} is Although it does not reach the center of the plate and the dissimilar metal remains on the surface, a grain structure oriented {100} to the center of the plate can be used, and the entire second layer on the surface can be alloyed.

なお、拡散処理後の冷却の際、冷却速度は0.1℃/sec以上500℃/sec以下が好ましい。この温度範囲で冷却すると、{200}面配向の芽の成長がより進行する。   In the cooling after the diffusion treatment, the cooling rate is preferably 0.1 ° C./sec or more and 500 ° C./sec or less. When cooled in this temperature range, the growth of {200} plane oriented buds further proceeds.

以下、実施例により、本発明をさらに詳しく説明する。
(実施例1)
本実施例では母材に純鉄を、第二層にAlを適用して、製造条件と{200}面集積度の関係について調べた結果を示す。
Hereinafter, the present invention will be described in more detail by way of examples.
Example 1
In this example, pure iron is applied to the base material and Al is applied to the second layer, and the results of examining the relationship between the manufacturing conditions and the {200} plane integration degree are shown.

母材となる材質は純鉄であり、その他の成分は質量%でC:0.0001%、Si:0.0001%、Al:0.0002%、および不可避的不純物を含んでいた。この母材は、真空溶解によってインゴットを溶製し、それを熱間圧延し、その後冷間圧延によって所定の厚みに加工したものである。
熱間圧延は1000℃に加熱した厚み230mmのインゴットを厚み50mmまで薄肉化した。この熱延板から機械加工によって各種厚みの板材を切り出した後に、各種冷延率による冷間圧延で母材を得た。その結果、得られた母材の厚みは10μm〜800μmの範囲であった。
得られた冷延板について組織を観察したところ、母材の常温での主相はαFe相であった。α−γ変態を起こすA点は測定の結果911℃であった。
The material used as a base material was pure iron, and other components contained C: 0.0001%, Si: 0.0001%, Al: 0.0002%, and unavoidable impurities in mass%. This base material is obtained by melting an ingot by vacuum melting, hot rolling it, and then processing it to a predetermined thickness by cold rolling.
In hot rolling, an ingot having a thickness of 230 mm heated to 1000 ° C. was thinned to a thickness of 50 mm. After cutting a plate material of various thicknesses from this hot-rolled plate by machining, a base material was obtained by cold rolling at various cold rolling rates. As a result, the thickness of the obtained base material was in the range of 10 μm to 800 μm.
When the structure of the obtained cold-rolled sheet was observed, the main phase of the base material at room temperature was an αFe phase. A 3-point to cause alpha-gamma transformation was the result 911 ° C. of the measurement.

各母材には、第二層として、イオンプレーティング(以下IP法)、あるいは、溶融めっき法によって両面にAlを皮膜した。0.06μmの皮膜厚み(両面合計)のものはIP法で行い、その他は溶融めっき法で行なった。これらの厚みは片面のみで測定した値である。   Each base material was coated with Al as a second layer by ion plating (hereinafter referred to as IP method) or hot dipping method. The film thickness of 0.06 μm (total on both sides) was performed by the IP method, and the others were performed by the hot dipping method. These thicknesses are values measured on only one side.

次に第二層を付着させた母材金属板に各種条件で熱処理を施す実験を行なった。熱処理にはゴールドイメージ炉を用い、プログラム制御により各種昇温速度、保持時間を制御した。昇温、保持の間は10-3Paレベルまで真空引きした雰囲気中で行なった。また、昇温過程において母材金属板の圧延方向に垂直に磁場を印加した。
母材金属板の冷却時には、Arガスを導入して流量の調整によって冷却速度を制御した。
Next, an experiment was performed in which the base metal plate to which the second layer was adhered was subjected to heat treatment under various conditions. A gold image furnace was used for heat treatment, and various heating rates and holding times were controlled by program control. The temperature raising and holding were performed in an atmosphere evacuated to a level of 10 −3 Pa. Further, a magnetic field was applied perpendicularly to the rolling direction of the base metal plate during the temperature raising process.
When cooling the base metal plate, Ar gas was introduced and the cooling rate was controlled by adjusting the flow rate.

昇温過程における{100}配向の芽の形成(種付け)、保持過程における{100}配向粒の保存・高集積化、冷却過程における成長に関して、同じ母材−Al皮膜条件の組み合わせの母材金属板を3つ用意して、それぞれの過程毎で熱処理実験を行なって集合組織の変化を調べた。   For the formation of {100} -oriented buds (seeding) in the temperature raising process, the storage and high integration of {100} -oriented grains in the holding process, and the base metal of the same matrix-Al coating condition combination in the cooling process Three plates were prepared, and heat treatment experiments were performed for each process to examine changes in texture.

昇温過程の種付けに関する試料は、母材金属板を所定の昇温速度で室温からA点である911℃まで加熱し、また、一部の試料では890℃まで加熱し、保持時間無しで室温まで冷却して作製した。加熱の昇温過程の200〜800℃の温度範囲において、1.2Tの磁場を試料の圧延方向に垂直に印加した。冷却速度は100℃/secとした。集合組織の測定は前述したX線回折法による方法で行い、X線は表面から照射し、α−Fe相の{200}、{222}面集積度を求めた。 Samples relates seeding Atsushi Nobori process, and heated from room temperature to the base metal plate at a predetermined heating rate up to 911 ° C. is a 3-point A, also, in some samples were heated to 890 ° C., without holding time It was produced by cooling to room temperature. In the temperature range of 200 to 800 ° C. in the heating process, a 1.2 T magnetic field was applied perpendicular to the rolling direction of the sample. The cooling rate was 100 ° C./sec. The texture was measured by the X-ray diffraction method described above. X-rays were irradiated from the surface, and the {200}, {222} plane integration degree of the α-Fe phase was determined.

保持過程における保存・高集積化に関する試料は、母材金属板を種付けに関する試料と同じ方法で加熱し、10秒の保持時間の後に室温まで冷却して作製した。ここで、冷却速度は100℃/secとした。集合組織の測定は前述したX線回折法による方法で行い、X線は表面から照射し、α−Fe相の{200}、{222}面集積度を求めた。   The sample relating to storage and high integration in the holding process was prepared by heating the base metal plate in the same manner as the sample for seeding, and cooling to room temperature after a holding time of 10 seconds. Here, the cooling rate was 100 ° C./sec. The texture was measured by the X-ray diffraction method described above. X-rays were irradiated from the surface, and the {200}, {222} plane integration degree of the α-Fe phase was determined.

冷却過程における成長に関する試料は、保存・高集積化に関する試料と同じ方法で作製した。合金化されてない位置の{200}、{222}面集積度を評価するため、合金化されていない位置が評価面となるように、作製した試料の表面から所定の距離までの層を除去した試験片を作製した。板全体に合金化されている場合は、板厚の1/2tの位置とした。
集合組織の測定は前述したX線回折法による方法で行い、X線は、試験片の表面と、層を除去された試験片の所定の面からそれぞれ照射し、それぞれのα−Fe相の{200}、{222}面集積度を求めた。
Samples related to growth in the cooling process were prepared in the same manner as samples related to storage and high integration. In order to evaluate the degree of {200} and {222} plane integration at the unalloyed position, the layers from the surface of the prepared sample to a predetermined distance are removed so that the unalloyed position becomes the evaluation surface. A test piece was prepared. When the whole plate was alloyed, the position was 1/2 t of the plate thickness.
The texture is measured by the X-ray diffraction method described above, and X-rays are irradiated from the surface of the test piece and a predetermined surface of the test piece from which the layer has been removed, respectively, and the {alpha} -Fe phase { 200}, {222} plane integration degree was determined.

得られた製品の評価は磁気測定によって行なった。まずSST(Single Sheet Tester)を用いて5000A/mの磁化力に対する磁束密度B50を求めた。この時、測定周波数は50Hzとした。次に、VSM(Vibrating Sample Magnetometer)を用いて飽和磁束密度Bsを求めた。この際に印加した磁化力は0.8×106A/mであった。評価値は飽和磁束密度に対するB50の比率B50/Bsとした。 The obtained product was evaluated by magnetic measurement. First, a magnetic flux density B50 with respect to a magnetizing force of 5000 A / m was determined using SST (Single Sheet Tester). At this time, the measurement frequency was 50 Hz. Next, the saturation magnetic flux density Bs was determined using a VSM (Vibrating Sample Magnetometer). The magnetizing force applied at this time was 0.8 × 10 6 A / m. The evaluation value was the ratio B50 / Bs of B50 to the saturation magnetic flux density.

また、第二層の合金化割合とα単相領域の割合は次のように定義して求めた。
L断面においてL方向1mm×全厚みの視野でEPMA(Electron Probe Micro-Analysis)法を用いてFe含有量の面分布とAl含有量の面分布を測定した。
第二層の合金化割合は、熱処理の前後における、Fe≦0.5mass%、かつ、Al≧99.5mass%となる領域の面積を求め、Alを皮膜し熱処理を施していない場合の面積をS0、全ての熱処理が完了した製品での面積をSとすると、第二層の合金化率は(S0−S)/S0×100で定義した。
α単相領域の割合は、L断面で観察した熱処理後の金属板断面の面積をT0、熱処理後の異種金属の拡散領域の面積をTとすると、(T/T0)×100で定義した。第二層がAlの場合には、TはAl≧0.9mass%となる領域の面積とした。
The alloying ratio of the second layer and the ratio of the α single phase region were determined and defined as follows.
In the L cross-section, the surface distribution of Fe content and the surface content of Al content were measured using EPMA (Electron Probe Micro-Analysis) method in the L direction 1 mm × total thickness field of view.
The alloying ratio of the second layer is the area when Fe ≦ 0.5 mass% and Al ≧ 99.5 mass% before and after heat treatment, and the area when Al is coated and not subjected to heat treatment. S0, where the area of the product after completion of all heat treatments is S, the alloying rate of the second layer is defined as (S0−S) / S0 × 100.
The ratio of the α single phase region was defined as (T / T0) × 100, where T0 is the area of the metal plate cross section after heat treatment observed in the L cross section and T is the area of the dissimilar metal diffusion region after heat treatment. When the second layer is Al, T is the area of the region where Al ≧ 0.9 mass%.

表1、2に、母材金属板の条件や熱処理の条件、製造途中のそれぞれの過程において及び製造後において測定した{200}面集積度と{222}面集積度を示した。また、得られた製品金属板の第二層の合金化割合や磁気測定評価結果などを示した。   Tables 1 and 2 show the conditions of the base metal plate, the heat treatment conditions, the {200} plane integration degree and the {222} plane integration degree measured in each process during and after manufacture. Moreover, the alloying ratio of the second layer of the obtained product metal plate, magnetic measurement evaluation results, and the like are shown.

表1、2に示すように、本発明例では、いずれもα−Fe相の{200}面集積度が30%以上、および、{222}面集積度が30%以下の製品金属板が得られており、かつ、その金属板は、B50/Bs値が0.88以上の優れた磁気特性が得られていることが確認できる。
また、そのような金属板は、表1、2に示すように、純鉄よりなる金属板に他の金属を付着して第二層を形成し、それをA点以上の温度に加熱して冷却する熱処理を施すこと及び加熱の昇温過程で磁場を印加することにより、熱処理の各段階においてα−Fe相の{200}面が高集積化し、本発明例の製品金属板が得られることが確認できる。
さらに、本発明例では、母材金属板と第二層の厚み、昇温速度、加熱保持温度と保持時間の組み合わせに基づく、幅広い合金化割合およびα単相領域割合の範囲で優れた磁気特性の製品金属板が得られることが確認できる。
これに対し、磁場を印可しながら加熱して冷却する熱処理を施しても、第二層の金属を用いないNo.1の例や、A点以上の温度に加熱しないNo.2の例では、本発明例のような高い{200}面集積度の金属板は得られず、その結果、得られた磁気特性も劣っている。
As shown in Tables 1 and 2, in the examples of the present invention, a product metal plate in which the {200} plane integration degree of the α-Fe phase is 30% or more and the {222} plane integration degree is 30% or less is obtained. In addition, it can be confirmed that the metal plate has excellent magnetic properties with a B50 / Bs value of 0.88 or more.
In addition, as shown in Tables 1 and 2, such a metal plate is formed by adhering another metal to a metal plate made of pure iron to form a second layer, which is heated to a temperature of 3 points or more. By applying a heat treatment for cooling and applying a magnetic field in the heating temperature raising process, the {200} plane of the α-Fe phase is highly integrated at each stage of the heat treatment, and the product metal plate of the present invention example is obtained. I can confirm that.
Furthermore, in the present invention example, excellent magnetic properties in a range of a wide range of alloying ratio and α single-phase region ratio based on the combination of the base metal plate and the second layer thickness, the heating rate, the heating holding temperature and holding time It can be confirmed that a product metal plate is obtained.
On the other hand, No. 2 which does not use the metal of the second layer even when heat treatment is performed by heating and cooling while applying a magnetic field. No. 1 or A. No. No heating to a temperature of 3 points or more. In the example 2, a metal plate having a high {200} plane integration degree as in the example of the present invention cannot be obtained, and as a result, the obtained magnetic characteristics are also inferior.

Figure 0005724727
Figure 0005724727

Figure 0005724727
Figure 0005724727

(実施例2)
本実施例では母材にFe系金属板を、第二層にSi、Sn、Ti、W、Ga、Zn、Ge、Cr、Mo、Sb、V、92Al8Si(質量%)合金を適用して、製造条件と{200}面集積度の関係について調べた結果を示す。
(Example 2)
In this embodiment, an Fe-based metal plate is applied to the base material, and Si, Sn, Ti, W, Ga, Zn, Ge, Cr, Mo, Sb, V, and 92Al8Si (mass%) alloy are applied to the second layer. The result of having investigated about the relationship between manufacturing conditions and {200} plane integration degree is shown.

母材となるFe系金属板としては7種類の成分系A〜Gを用意し、具体的な成分は表3に示した。これらの母材の製造としては、真空溶解によってインゴットを溶製し、それを熱間圧延し、その後冷間圧延によって所定の厚みに加工したものである。
熱間圧延は1000℃に加熱した厚み230mmのインゴットを厚み50mmまで薄肉化した。この熱延板から機械加工によって各種厚みの板材を切り出した後に、各種冷延率の冷間圧延を実施し、各種厚みの母材金属板を製造した。その結果、得られた母材の厚みは10μm〜700μmの範囲であった。
得られた冷延板について組織を観察したところ、いずれの母材の常温での主相はαFe相であった。また、α−γ変態を起こすA点を測定し表3に示した。
Seven types of component systems A to G were prepared as the Fe-based metal plate serving as a base material, and specific components are shown in Table 3. In manufacturing these base materials, an ingot is melted by vacuum melting, hot-rolled, and then processed into a predetermined thickness by cold rolling.
In hot rolling, an ingot having a thickness of 230 mm heated to 1000 ° C. was thinned to a thickness of 50 mm. After cutting a plate material of various thicknesses from the hot-rolled plate by machining, cold rolling at various cold rolling rates was performed to produce base metal plates of various thicknesses. As a result, the thickness of the obtained base material was in the range of 10 μm to 700 μm.
When the structure of the obtained cold-rolled sheet was observed, the main phase of any base material at room temperature was the αFe phase. Also showed A 3 point to cause alpha-gamma transformation to the measured Table 3.

各母材へ第二層であるSi、Sn、Ti、W、Ga、Zn、Ge、Cr、Mo、Sb、V、92Al8Si合金を皮膜させる方法としては、溶融めっき法、蒸着法(IP法、スパッタ法)を適用した。そして、Sn、Znでは溶融めっき法により皮膜し、その他の金属については、蒸着法で皮膜した。
それぞれの異種金属の皮膜の厚みを母材の両面合計で表4、6に示した。
As a method of coating each base material with Si, Sn, Ti, W, Ga, Zn, Ge, Cr, Mo, Sb, V, and 92Al8Si alloy as a second layer, a hot dipping method, a vapor deposition method (IP method, Sputtering method) was applied. Then, Sn and Zn were coated by a hot dipping method, and other metals were coated by a vapor deposition method.
Tables 4 and 6 show the thicknesses of the films of the different kinds of metals as the total of both surfaces of the base material.

引き続き、磁場の印加時期を除いて実施例1で用いた同じ方法により各種条件で熱処理を施し、製造途中の各過程において状態を評価する実験を行った。
本発明例53、54、55、56、58、59、60、61、64、65、66、67、70、71、72、および、比較例51、52、56、57、62、63、68、69は、第二層を皮膜するより先に、200〜800℃で磁場を印加して昇温する熱処理した後に、室温まで冷却し、その後第二層の皮膜を形成してから熱処理して種付けを行ったものである。その他の比較例、本発明例は、実施例1と同じ順番で保存、集積化及び成長を行った。
Subsequently, heat treatment was performed under various conditions by the same method used in Example 1 except for the application time of the magnetic field, and an experiment was performed to evaluate the state in each process during production.
Invention Examples 53, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 70, 71, 72, and Comparative Examples 51, 52, 56, 57, 62, 63, 68 69, before coating the second layer, heat treatment is performed by applying a magnetic field at 200 to 800 ° C., and then cooling to room temperature, after which the second layer coating is formed and then heat-treated. It has been seeded. The other comparative examples and the inventive examples were stored, integrated and grown in the same order as in Example 1.

ここで、第二層の合金化割合とα単相領域の割合は次のように求めた。
第二層の合金化割合では、第二層の金属元素を[M]とすると、いずれの元素の場合も、Fe≦0.5mass%、かつ、[M]≧99.5mass%となる領域の面積を求めた。そして、第二層の元素を皮膜し熱処理を施していない場合の面積をS0、全ての熱処理が完了した製品での面積をSとし、第二層の合金化割合を(S0−S)/S0×100から求めた。
α単相領域の割合では、L断面で観察した熱処理後の金属板断面の面積をT0、熱処理後の異種金属の拡散領域の面積をTとすると、(T/T0)×100で定義した。第二層がSiの場合には、TはSi≧1.9mass%となる領域の面積から求めた。同様に、Snの場合にはSn≧3.0mass%となる領域、Tiの場合には、Ti≧3.0mass%となる領域、Wの場合には、W≧6.6mass%となる領域、Gaの場合には、Ga≧4.1mass%となる領域、Znの場合には、Zn≧7.2mass%となる領域、Geの場合には、Ge≧6.4mass%となる領域、Crの場合には、Cr≧14.3mass%となる領域、Moの場合には、Mo≧3.8mass%となる領域、Sbの場合には、Sb≧3.6mass%となる領域、Vの場合には、V≧1.8mass%となる領域、92Al8Si合金の場合には、Al≧0.9mass%かつSi≧0.1mass.%となる領域それぞれの面積を求めた。
Here, the alloying ratio of the second layer and the ratio of the α single phase region were determined as follows.
In the alloying ratio of the second layer, when the metal element of the second layer is [M], in any element, the region where Fe ≦ 0.5 mass% and [M] ≧ 99.5 mass% is satisfied. The area was determined. The area in the case where the element of the second layer is coated and not heat-treated is S0, the area in the product after all the heat treatment is S, and the alloying ratio of the second layer is (S0-S) / S0. It calculated | required from * 100.
The ratio of the α single phase region was defined as (T / T0) × 100, where T0 is the area of the metal plate cross section observed in the L cross section and T is the area of the dissimilar metal diffusion region after the heat treatment. When the second layer was Si, T was obtained from the area of the region where Si ≧ 1.9 mass%. Similarly, in the case of Sn, a region where Sn ≧ 3.0 mass%, in the case of Ti, a region where Ti ≧ 3.0 mass%, in the case of W, a region where W ≧ 6.6 mass%, In the case of Ga, a region where Ga ≧ 4.1 mass%, in the case of Zn, a region where Zn ≧ 7.2 mass%, in the case of Ge, a region where Ge ≧ 6.4 mass%, Cr In the case of Cr ≧ 14.3 mass%, in the case of Mo, in the case of Mo ≧ 3.8 mass%, in the case of Sb, in the region of Sb ≧ 3.6 mass%, in the case of V Is a region where V ≧ 1.8 mass%. In the case of 92Al8Si alloy, Al ≧ 0.9 mass% and Si ≧ 0.1 mass. The area of each region to be% was obtained.

表4〜7には、母材金属板の条件や熱処理の条件、製造途中のそれぞれの過程で及び、製造後において測定した{200}面集積度と{222}面集積度を示した。また、得られた製品金属板の第二層の合金化割合や磁気測定評価結果などを示した。   Tables 4 to 7 show the conditions of the base metal plate, the heat treatment conditions, the {200} plane integration degree and the {222} plane integration degree measured in each process during the manufacturing and after the manufacturing. Moreover, the alloying ratio of the second layer of the obtained product metal plate, magnetic measurement evaluation results, and the like are shown.

表4〜7に示すように、本発明例では、種々のα−γ変態系の化学組成からなる鋼を用い、種々の異種金属を用いたいずれの場合においても、α−Fe相の{200}面集積度が30%以上、および、{222}面集積度が30%以下の条件を満たす製品金属板が得られており、かつ、その金属板は、B50/Bs値が0.87以上の優れた磁気特性が得られていることが確認できる。
また、そのような金属板は、表4〜7に示すように、予め磁場中熱処理を施した母材金属板に、他の金属を付着して第二層を形成し、それをA点以上の温度に加熱して冷却する熱処理を施すことにより、あるいは、第二層を形成した母材金属板をA点以上の温度に加熱する際に磁場を印加し、その後冷却して冷却する熱処理を施すことにより、熱処理の各段階においてα−Fe相の{200}面が高集積化し、本発明例の製品金属板が得られることが確認できる。
さらに、本発明例では、母材金属板と第二層の厚み、昇温速度、加熱保持温度と保持時間の組み合わせに基づく、幅広い合金化割合およびα単相領域割合の範囲で優れた磁気特性の製品金属板が得られることが確認できる。
これに対し、磁場を印可しながら加熱して冷却する熱処理を施しても、第二層の金属を用いないNo.29、35、41、46、51、57、62、68、73、79、85、90の例や、A点以上の温度に加熱しないNo.30、36、42、47、52、58、63、69、74、80、86、91の例では、本発明例のような高い{200}面集積度の金属板は得られず、その結果、得られた磁気特性も劣っている。
As shown in Tables 4 to 7, in the examples of the present invention, steels having various α-γ transformation chemical compositions were used, and in any case using various dissimilar metals, α-Fe phase {200 } A product metal plate satisfying the condition that the degree of surface integration is 30% or more and the degree of {222} surface integration is 30% or less is obtained, and the metal plate has a B50 / Bs value of 0.87 or more. It can be confirmed that excellent magnetic properties are obtained.
Also, such metal plate, as shown in Table 4-7, the base metal plate which has been subjected to pre-magnetic field during the heat treatment, the second layer is formed by deposition of other metals, it A 3 points by heat treatment of cooling and heating to a temperature above or the second layer and the formed base metal plate of a magnetic field was applied during heating to a temperature of at least three points a, cooled and then cooled By performing the heat treatment, it can be confirmed that the {200} plane of the α-Fe phase is highly integrated in each stage of the heat treatment, and the product metal plate of the present invention example is obtained.
Furthermore, in the present invention example, excellent magnetic properties in a range of a wide range of alloying ratio and α single-phase region ratio based on the combination of the base metal plate and the second layer thickness, the heating rate, the heating holding temperature and holding time It can be confirmed that a product metal plate is obtained.
On the other hand, No. 2 which does not use the metal of the second layer even when heat treatment is performed by heating and cooling while applying a magnetic field. No. 29, 35, 41, 46, 51, 57, 62, 68, 73, 79, 85, 90, A No. No heating to a temperature of 3 points or more. In the examples of 30, 36, 42, 47, 52, 58, 63, 69, 74, 80, 86, 91, a metal plate having a high {200} plane integration degree as in the present invention example cannot be obtained, and as a result, The obtained magnetic properties are also inferior.

Figure 0005724727
Figure 0005724727

Figure 0005724727
Figure 0005724727
Figure 0005724727
Figure 0005724727

Figure 0005724727
Figure 0005724727
Figure 0005724727
Figure 0005724727

(実施例3)
実施例1において、No.1〜3、6、8、9、13、15、17、20、21、24、25の条件で、母材金属板の製造、第二層の付着、種付け、保存高集積化、成長の各工程を行って製品金属板を作成する際、種付け工程の磁場の印加方法として、圧延方向に垂直に印可するのに加えて、圧延方向に平行にも印加する方法を行った。
表8に、実施例1で用いた製造条件の一部に圧延方向に平行に印加した磁場の大きさと磁場を印可した温度範囲を追加して示すとともに、製造後に測定した板厚方向と板面に平行方向(圧延方向)の{200}面集積度と{222}面集積度、及び磁気測定評価結果を示した。なお、表8では、1a、2a・・・というように、対応する実施例1のNoにaを付して表8のNo.とした。
(Example 3)
In Example 1, no. Under conditions of 1-3, 6, 8, 9, 13, 15, 17, 20, 21, 24, 25, each of manufacture of the base metal plate, adhesion of the second layer, seeding, storage high integration, growth When producing a product metal plate by performing the process, as a method of applying a magnetic field in the seeding process, in addition to applying perpendicularly to the rolling direction, a method of applying also in parallel to the rolling direction was performed.
Table 8 shows a part of the manufacturing conditions used in Example 1 with the addition of the magnitude of the magnetic field applied in parallel to the rolling direction and the temperature range to which the magnetic field is applied, and the thickness direction and the plate surface measured after the manufacturing. The {200} plane integration degree and {222} plane integration degree in the parallel direction (rolling direction) and the magnetic measurement evaluation results are shown. In Table 8, “a” is added to the corresponding No in Example 1 such as 1a, 2a. It was.

表8に示すように、本発明例では、α−Fe相の板厚方向及び圧延方向の{200}面集積度が、いずれも30%以上99%以下で、かつ、{222}面集積度が0.01%以上30%以下となり、B50/Bsの値が、板厚方向及び圧延方向の2方向で0.87以上の優れた磁気特性鋼板が得られることが確認できた。
これに対し、磁場を2方向から印可しながら加熱して冷却する熱処理を施しても、第二層の金属を用いないNo.1aの例や、A点以上の温度に加熱しないNo.2aの例では、本発明例のような2方向に高い{200}面集積度を有する金属板は得られず、その結果、得られた磁気特性も劣っている。
As shown in Table 8, in the example of the present invention, the {200} plane integration degree in the plate thickness direction and the rolling direction of the α-Fe phase is both 30% or more and 99% or less, and the {222} plane integration degree. From 0.01% to 30%, it was confirmed that an excellent magnetic property steel plate having a B50 / Bs value of 0.87 or more in the two directions of the plate thickness direction and the rolling direction was obtained.
On the other hand, No. 2 which does not use the metal of the second layer even when heat treatment is performed by heating and cooling while applying a magnetic field from two directions. No. 1a or A. No heating to a temperature of 3 points or higher. In the example of 2a, a metal plate having a high {200} plane integration degree in two directions as in the present invention example cannot be obtained, and as a result, the obtained magnetic properties are also inferior.

Figure 0005724727
Figure 0005724727

(実施例4)
実施例2の31、33、37、39、42、45、48、50、53、56、59、61、64、67、70、72、75、78、81、84、87、89、92、94の条件で製品金属板を作成する際、種付け工程の磁場の印加方法として、圧延方向に垂直に印可するのに加えて、実施例3と同様に圧延方向に平行にも印加する方法を行った。
表9に、実施例2で用いた製造条件の一部に圧延方向に平行に印加した磁場の大きさと磁場を印可した温度範囲を追加して示した。また、表10に、製造後に測定した板厚方向と圧延方向の{200}面集積度と{222}面集積度、及び磁気測定評価結果を示した。なお、実施例のNoは、表8と同様に付した。
表10に示すように、本発明例では、α−Fe相の板厚方向及び圧延方向の{200}面集積度が、いずれも30%以上99%以下で、かつ、{222}面集積度が0.01%以上30%以下となり、B50/Bsの値が、板厚方向及び圧延方向の2方向で0.8以上の優れた磁気特性鋼板が得られることが確認できた。
Example 4
31, 33, 37, 39, 42, 45, 48, 50, 53, 56, 59, 61, 64, 67, 70, 72, 75, 78, 81, 84, 87, 89, 92, of Example 2. When producing a product metal plate under the conditions of 94, as a method of applying a magnetic field in the seeding process, in addition to applying perpendicularly to the rolling direction, a method of applying also in parallel to the rolling direction as in Example 3 was performed. It was.
In Table 9, the magnitude of the magnetic field applied in parallel to the rolling direction and the temperature range in which the magnetic field was applied are shown as part of the manufacturing conditions used in Example 2. Table 10 shows the {200} plane integration degree and {222} plane integration degree in the sheet thickness direction and the rolling direction measured after manufacture, and the magnetic measurement evaluation results. In addition, No of Example was attached | subjected similarly to Table 8.
As shown in Table 10, in the example of the present invention, the {200} plane integration degree in the plate thickness direction and the rolling direction of the α-Fe phase are both 30% or more and 99% or less, and the {222} plane integration degree. There becomes less than 30% 0.01%, the value of B50 / Bs is, it was confirmed that the thickness direction and excellent magnetic properties steel sheet 0.8 6 or more in two directions in the rolling direction can be obtained.

Figure 0005724727
Figure 0005724727
Figure 0005724727
Figure 0005724727

本発明のFe系金属板は、ケイ素鋼板が使用されるような変圧器などの磁心等へ好適であり、これらの磁心の小型化やエネルギー損失低減に貢献できる。   The Fe-based metal plate of the present invention is suitable for a magnetic core such as a transformer in which a silicon steel plate is used, and can contribute to miniaturization of these magnetic cores and reduction of energy loss.

Claims (4)

高い{200}面集積度を有するFe系金属板を製造する方法であって、
(a)α−γ変態成分系のFe系金属よりなり、加工組織を有する母材金属板を準備する工程と、
(a2)準備した母材金属板の片面あるいは両面にフェライト生成元素を付着する工程と、
(b)フェライト生成元素の付着した母材金属板を、キューリー温度以下では磁場を印加させながら母材のA点まで加熱し、母材金属板内の一部または全体にフェライト生成元素を拡散させ、合金化させる工程と、
(c)母材金属板をA点以上1300℃以下の温度に加熱、保持して、フェライト生成元素の拡散によって合金化されたα−Fe相の{200}面集積度を増加させるとともに{222}面集積度を低下させる工程と、
(d)母材金属板をA点未満の温度へ冷却し、合金化していない領域のγ−Fe相がα−Fe相へ変態する際に、該領域の{200}面集積度が30%以上99%以下となり、かつ、{222}面集積度が0.01%以上30%以下となるようにする工程
とを有することを特徴とする高い{200}面集積度を有するFe系金属板の製造方法。
A method for producing an Fe-based metal plate having a high degree of {200} plane integration,
(A 1 ) a step of preparing a base metal plate made of an α-γ transformation component Fe-based metal and having a processed structure ;
(A2) attaching a ferrite-forming element to one side or both sides of the prepared base metal plate;
(B) the attached base metal plate ferrite forming element, and heated to 3 A base material while applying a magnetic field at the Curie temperature or less, the diffusion of ferrite forming elements in a part or all of the base metal plate And alloying step,
(C) The base metal plate is heated and held at a temperature of A 3 or higher and 1300 ° C. or lower to increase the {200} plane integration degree of the α-Fe phase alloyed by the diffusion of the ferrite-forming elements { 222} reducing the degree of surface integration;
(D) the base metal plate is cooled to a temperature of A less than 3 points, when the gamma-Fe phase in the region not alloyed is transformed to alpha-Fe phase, the region {200} plane integration of 30 % Of the Fe-based metal having a high {200} plane integration characterized by having a step of adjusting the {222} plane integration degree to 0.01% or more and 30% or less. A manufacturing method of a board.
前記請求項1に記載のFe系金属板を製造する方法において、前記(a2)、(b)の工程に代えて、次の
(e)準備した母材金属板に磁場を印加させながら前記Fe系金属のキューリー温度(℃)±50℃の温度まで加熱する熱処理を行う工程と、
(f)該熱処理後の母材金属板の片面あるいは両面にフェライト生成元素を付着する工程と、
(g)フェライト生成元素の付着した金属板を母材のA点まで加熱して、母材金属板内の一部または全体にフェライト生成元素を拡散させ、合金化させる工
を有することを特徴とする高い{200}面集積度を有するFe系金属板の製造方法。
2. The method for producing an Fe-based metal plate according to claim 1, wherein, instead of the steps (a2) and (b), the following (e) while applying a magnetic field to the prepared base metal plate, the Fe A step of performing a heat treatment for heating to a Curie temperature (° C.) ± 50 ° C. of the base metal;
(F) attaching a ferrite-forming element to one or both surfaces of the base metal plate after the heat treatment;
The deposited metal plate (g) ferrite forming element and heated to 3 A base material, some or all of the base metal plate to diffuse the ferrite forming elements, as engineering for alloying
Method of manufacturing a Fe-based metal plate having a high {200} plane integration characterized by having and.
前記母材金属板に、磁束密度で0.01T以上の磁場を圧延方向と垂直に印加することを特徴とする請求項1または2に記載の高い{200}面集積度を有するFe系金属板の製造方法。   3. The Fe-based metal plate having a high degree of {200} plane integration according to claim 1, wherein a magnetic field having a magnetic flux density of 0.01 T or more is applied to the base metal plate perpendicularly to the rolling direction. Manufacturing method. 前記母材金属板に、磁束密度で0.01T以上の磁場を圧延方向と垂直に印加するとともに、磁束密度で0.2T以上の磁場を圧延方向と平行に印加することを特徴とする請求項1または2に記載の高い{200}面集積度を有するFe系金属板の製造方法。   A magnetic field having a magnetic flux density of 0.01 T or more is applied to the base metal plate perpendicularly to the rolling direction, and a magnetic field having a magnetic flux density of 0.2 T or more is applied in parallel to the rolling direction. The manufacturing method of the Fe-type metal plate which has the high {200} plane integration degree of 1 or 2.
JP2011165517A 2011-04-28 2011-07-28 Method for producing Fe-based metal plate having high degree of {200} plane integration Active JP5724727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011165517A JP5724727B2 (en) 2011-04-28 2011-07-28 Method for producing Fe-based metal plate having high degree of {200} plane integration

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011102357 2011-04-28
JP2011102357 2011-04-28
JP2011165517A JP5724727B2 (en) 2011-04-28 2011-07-28 Method for producing Fe-based metal plate having high degree of {200} plane integration

Publications (2)

Publication Number Publication Date
JP2012237051A JP2012237051A (en) 2012-12-06
JP5724727B2 true JP5724727B2 (en) 2015-05-27

Family

ID=47460206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165517A Active JP5724727B2 (en) 2011-04-28 2011-07-28 Method for producing Fe-based metal plate having high degree of {200} plane integration

Country Status (1)

Country Link
JP (1) JP5724727B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221406B2 (en) * 2013-06-26 2017-11-01 新日鐵住金株式会社 Fe-based metal plate and manufacturing method thereof
JP6481288B2 (en) * 2013-08-22 2019-03-13 新日鐵住金株式会社 Fe-based metal plate with excellent magnetic properties
JP6497145B2 (en) * 2015-03-16 2019-04-10 新日鐵住金株式会社 Electrical steel sheet with high strength and excellent magnetic properties

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560580B2 (en) * 1991-09-10 1996-12-04 日本鋼管株式会社 Method for manufacturing high silicon steel sheet having high magnetic permeability
JP2000017334A (en) * 1998-07-06 2000-01-18 Kawasaki Steel Corp Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
JP2000328143A (en) * 1999-05-21 2000-11-28 Kawasaki Steel Corp Manufacture of dual-phase steel having microstructure
JP5131747B2 (en) * 2007-11-21 2013-01-30 新日鐵住金株式会社 Manufacturing method of bi-directional electrical steel sheet
JP5186989B2 (en) * 2008-04-21 2013-04-24 新日鐵住金株式会社 Soft magnetic steel sheet for core and core member
JP6044093B2 (en) * 2011-03-28 2016-12-14 新日鐵住金株式会社 Fe-based metal plate and manufacturing method thereof
JP5472198B2 (en) * 2011-04-28 2014-04-16 新日鐵住金株式会社 Method for producing Fe-based metal plate having high {110} plane integration or {222} plane integration

Also Published As

Publication number Publication date
JP2012237051A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5186989B2 (en) Soft magnetic steel sheet for core and core member
KR101463368B1 (en) Fe-BASED METAL PLATE AND METHOD FOR MANUFACTURING SAME
JP5533801B2 (en) Fe-based metal plate
JP5648335B2 (en) Fe-based metal plate with partially controlled crystal orientation
JP5724727B2 (en) Method for producing Fe-based metal plate having high degree of {200} plane integration
JP5472198B2 (en) Method for producing Fe-based metal plate having high {110} plane integration or {222} plane integration
JP6481288B2 (en) Fe-based metal plate with excellent magnetic properties
JP6044093B2 (en) Fe-based metal plate and manufacturing method thereof
JP6623533B2 (en) Fe-based metal plate
JP6203473B2 (en) Method for producing Fe-based metal plate having high degree of {200} plane integration
JP6405632B2 (en) Fe-based metal plate and manufacturing method thereof
JP6464581B2 (en) Fe-based metal plate and manufacturing method thereof
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
JP6464750B2 (en) Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof
JP6613589B2 (en) High strength, high magnetic flux density Fe-based metal plate and method for producing the same
JP6464753B2 (en) Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof
JPH0651897B2 (en) Semi-process electrical steel sheet
JPH08288137A (en) Magnetic foil and its manufacture
JPH01119620A (en) Manufacture of sheet metal of fe-ni magnetic alloy
JPH01242756A (en) Fe-base magnetic alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R151 Written notification of patent or utility model registration

Ref document number: 5724727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350